初中数学中考复习 4 第12课时 反比例函数
第3单元 第12课时 反比例函数的图像与性质

∠A=60°,菱形的一个顶点 C 在反比例函数 y=xk(x<
0)的图像上,则反比例函数的表达式为( B )
A.Байду номын сангаас=-3 x 3
B.y=-
3 x
C.y=-x3
D.y=
3 x
图 1.12-1
‹#›
返回目录
重难点2 反比例函数的图像与性质【链接:2020 徐州 T26】 【例 2】 (2020·徐州)如图 1.12-2,在平面直角坐标系中, 一次函数 y=kx+b 的图像经过点 A(0,-4),B(2,0),交反比 例函数 y=mx (x>0)的图像于点 C(3,a),点 P 在反比例函数的图 像上,横坐标为 n(0<n<3),PQ∥y 轴,交直线 AB 于点 Q,D 是 y 轴上任意一点,连接 PD,QD.
‹#›
返回目录
(2)求△DPQ 面积的最大值.
解:设点P的坐标为(n,
6 n
)(0<n<3),∵PQ∥y
轴,
∴点Q的坐标为(n,2n-4),
∴PQ=n6-2n+4(0<n<3),
∴S△DPQ=21PQ·n=3-n2+2n=-(n-1)2+4,
∵0<n<3,∴当n=1时,△DPQ面积的最大值为4.
‹#›
返回目录
重难点3 反比例函数与一次函数的综合【链接: 2020 徐州 T8】
‹#›
返回目录
【例 3】 (2020·徐州)如图 1.12-3,在平面直角
坐标系中,函数 y=4x(x>0)与 y=x-1 的图像交于点
P(a,b),则代数式1a-1b的值为( C )
A.-12
B.12
C.-14
D.14
【中考数学复习】一次函数与反比例函数知识

【中考数学复习】一次函数与反比例函数知识提要初中代数中涉及的函数有:一次函数(包括正比例函数)、反比例函数、二次函数.每种函数一般从下面四个方面研究:定义,图象,性质,求解析式.本讲研究一次函数和反比例函数.一、一次函数1、定义:函数)0(≠+=k b kx y 称为一次函数,若0=b 则称函数为正比例函数.2、图象:一次函数是过点(0,b )和点(kb -,0)的直线.当b=0时的正比例函数)0(≠=k kx y 是过原点的一条直线,若k 与b 的符号不同,则直线经过的象限也不同,如图所示:3、性质:当0>k 时,y 随x 的增大而增大;当0<k 时,y 随x 的增大而减小.(此性质为一次函数的单调性)另外,正比例函数关于原点O 中心对称4、求解析式:求一次函数的解析式,一般需要两个条件,求出表达式b kx y +=中的k 及b 的值,常用待定系数法来求一次函数.而正比例函数的解析式只需要一个条件.二、反比例函数1、定义:形如)0(≠=k x k y 形式称为反比例函数,定义域为0≠x 的所有实数.2、图象:反比例图象为双曲线,如图所示:3、性质:反比例函数x k y =在0>k 且0>x 时,函数值y 随x 的增大而减小;在0>k 且0<x 时,函数值y 随x 的增大而减小.即:当0>k 时,反比例函数x k y =分布在一、三象限,在每个象限内,y 随x 的增大而减小,如图(1)所示.当0<k 时,反比例函数xk y =分布在二、四象限,在每个象限内,y 随x 的增大而增大,如图(2)所示.反比例函数x k y =图象上的点关于原点O 成中心对称的.当0>k 时,函数的图象关于直线x y =成轴对称;当0<k 时,函数的图象关于直线x y -=成轴对称.4、求解析式:反比例函数的解析式,只需要一个条件,求出xk y =)0(≠k 中的k 即可.在解决有关一次函数及反比例函数的问题时,常运用数形结合及分类讨论的思想方法.待定系数法是研究函数表达式的基本方法,同时紧密结合图象寻求思路,是处理这类问题的重要方法.例1、已知正比例函数x y =和)0(>=a ax y 的图象与反比例函数xky =(k>0)的图象在第一象限内分别相交于A 、B 两点,过A 、B 作x 轴的垂线,垂足分别为C 、D ,设△AOC 和△BOD 的面积分别为1S 、2S ,则1S 与2S 的大小关系怎样?例2、两个反比例函数x y 3=,x y 6=在第一象限内的图象如图所示,点1P ,2P ,3P ,…2005P 在反比例函数x y 6=图象上,它们的横坐标分别是1x ,2x ,3x ,…2005x ,纵坐标分别是1,3,5,…,共2005个连续奇数,过点1P ,2P ,3P ,…2005P 分别作y 轴的平行线,与xy 3=的图象交点依次是)(111y x Q ,,)(222y x Q ,,)(333y x Q ,,…)(200520052005y x Q ,,则_________2005=y .例3、平面直角坐标系内有A (2,-1)、B (3,3)两点,点P 是y 轴上一动点,求P 到A 、B 距离之和最小时的坐标.例4、已知一次函数的图象经过点(2,2),它与两坐标轴所围成的三角形的面积等于1,求这个一次函数的解析式.例5、已知A (-2,0)、B (4,0),点P 在直线221+=x y 上,若△PAB 是直角三角形,求点P 的坐标.例6、已知两人连续6年对某县农村甲鱼养殖业的规模(产量)进行调查,提供两个方面的信息,如图所示,请根据图中提供的信息,求:(1)第2年全县生产甲鱼的只数及甲鱼池的个数;(2)到第6年,这个县的甲鱼养殖规模比第1年是扩大了还是缩小了,请说明理由.例7、如图,已知C 、D 是双曲线xm y =在第一象限内的分支上的两点,直线CD 分别交x 轴、y 轴于A 、B 两点,设C 、D 的坐标分别是(11y x ,)、(22y x ,),连接OC 、OD.(1)求证:111y m y OC y +<<;(2)若α=∠=∠AOD BOC ,31tan =α,10=OC ,求直线CD 的解析式.(3)在(2)的条件下,双曲线是否存在一点P ,使POD POC S S ∆∆=?若存在,求出P 点坐标;若不存在,请说明理由.例8、有一个附有进、出水管的容器,每单位时间进、出的水量都是一定的,设从某时刻开始5分钟内只进水不出水,在随后的15分钟内既进水又出水,得到时间x (分)与水量y (升)之间的关系如图所示,若20分钟后只放水不进水,求多长时间能将水放完?例9、为了预防流感,某学校对教室用药熏消毒法进行消毒,已知药物燃烧时,室内每立方米空气中的含药量y (毫克)与时间x (分钟)成正比例,药物燃烧后,y 与x 成反比例(如图),观测得药物8分钟燃毕,此时室内空气中每立方米的含药量为6毫克,请根据题中提供的信息解答下列问题:(1)药物燃烧时,y 关于x 的函数关系式为__________,自变量x 的取值范围是___________;药物燃烧后y 关于x 的函数关系式为____________.(2)研究表明,当空气中的每立方米含药量低于1.6毫克时,学生方可进教室,那么从消毒开始,至少需要经过多少分钟后,学生才能回到教室.(3)研究表示,当空气中每立方米的含药量不低于3毫克且持续时间不低于10分钟时,才能有效杀灭空气中的病菌,那么此次消毒是否有效?为什么?例10、某家电生产企业根据市场调查分析,决定调整产品生产方案,准备每周(按120个工时计算)生产空调器、彩电、冰箱共360台,且冰箱至少生产60台,已知生产这些家电产品每台所需工时和每台产值如下表所示:家电名称空调器彩电冰箱工时/个213141产值/千元432问每周应生产空调器、彩电、冰箱各多少台,才能使产值最高?最高产值是多少?(以千元为单位)练习1、已知0≠abc 并且p b a c a c b c b a =+=+=+而直线p px y +=一定通过()A 第一、二象限B 第二、三象限C 第三、四象限D 第一、四象限2、函数kx y =和)0(<=k x k y 在同一坐标系中的图象是()3、一次函数b kx y +=过点)(11y x ,和)(22y x ,,且0>k ,b<0,当210x x <<时,有()A 21y b y >>B 21y b y <<C b y y <<<210D 012<<<y b y 4、若点(-2,1y ),(1,2y ),(2,3y )在反比例函数x y 21=的图象上,则下列结论正确的是()A 123y y y >>B 312y y y >>C 132y y y >>D 321y y y >>5、反比例函数x k y =的图象是轴对称图形,它的一条对称轴是下列正比例函数图象中的()A kxy -=B x k y =C x k k y =D kxy =6、一个一次函数图象与直线49545+=x y 平行,与x 轴、y 轴的交点分别为A 、B ,并且过点(-1,-25),则在线段AB 上(包括端点A 、B ),横、纵坐标都是整数的点有()A 4个B 5个C 6个D 7个7、如图,正比例函数x y 3=的图象与反比例函数xk y =(0>k )的图象交于点A ,若取k 为1,2,3,…,20,对应的Rt △AOB 的面积分别为1S ,2S ,…20S ,则__________2021=+++S S S .8、不论k 为何值,解析式0)11()3()12(=--+--k y k x k 表示函数的图象都经过一定点,则这个定点是_________.9、如图所示,直线l 和双曲线x k y =(0>k )交于A 、B 两点,P 是线段AB 上的点(不与A 、B 重合),过点A 、B 、P 分别向x轴作垂线,垂足分别为C 、D 、E ,连接OA 、OB 、OP.设△AOC 的面积为1S ,△BOD 的面积为2S ,△POE 的面积为3S ,则321S S S 、、的大小关系是______________.10、甲、乙两车出发后再同一条公路行驶,行驶路程与时间的关系如图所示,那么可以知道:(1)出发行驶在前面的车是_________,此时两车相隔_________;(2)两车的速度分别为甲:___________千米/小时,乙:_________千米/小时,经过___________小时,快车追上慢车;(3)甲、乙两车均行驶600千米时各用的时间分别是:甲用_________小时,乙用__________小时.11、如图,函数221+-=x y 的图象交y 轴于M ,交x 轴于N ,MN 上两点A ,B 在x 轴上射影分别为11B A 、,若411>+OB OA ,则A OA 1∆的面积1S 与B OB 1∆的面积2S 的大小关系是_____________.12、已知非负数x 、y 、z 满足323=++z y x ,433=++z y x ,则z y x w 423+-=的最大值为_________,最小值为__________.13、在直角坐标系中,有四个点:A (-8,3),B (-4,5),C (0,n ),D (m ,0),当四边形ABCD 的周长最短时,求nm 的值.14、设直线1)1(=++y k kx (k 是自然数)与两坐标轴所围成的图形的面积为1S ,2S ,…,2000S .求200021S S S +++ 的值.15、如图(1),已知直线m x y +-=21与反比例函数xk y =的图象在第一象限内交于A 、B 两点(点A 在点B 的左侧),分别于x 、y 轴交于C 、D ,AE ⊥x 轴于E.(1)若OE·CE=12,求k 的值;(2)如图(2),作BF ⊥y 轴于F ,求证:EF ∥CD ;(3)在(1)(2)的条件下,5=EF ,52=AB ,P 是x 轴正半轴上一点,且△PAB 是以P 为直角顶点的等腰直角三角形,求P 点的坐标.(1)(2)16、已知直线62+-=-k y x 和143+=+k y x ,若它们的交点在第四象限内.(1)求k 的取值范围;(2)若k 为非负整数,点A 的坐标为(2,0),点P 在直线62+-=-k y x 上,求使△PAO 为等腰三角形的点P 的坐标.17、A 市、B 市和C 市分别有某种机器10台、10台和8台,现决定把这些机器支援给D 市18台,E 市10台.已知从A 市调运一台机器到D 市、E 市的运费分别为200元和800元,从B 市调运一台机器到D 市、E 市的运费分别为300元和700元,从C 市调运一台机器到D 市、E 市的运费分别为400元和500元.(1)设从A 市、B 市各调x 台到D 市,当28台机器全部调运完毕后,求总运费w (元)关于x (台)的函数式,并求w 的最大值和最小值;(2)设从A 市调x 台到D 市,从B 市调y 台到D 市,当28台机器全部调运完毕后,用x ,y 表示总运费w (元),并求w 的最大值和最小值.18、直线133+-=x y 与x 轴、y 轴分别交于点A 、B ,以线段AB 为直角边在第一象限内作等腰直角三角形ABC ,其中∠BAC=90°.如果第二象限内有一点P (a ,21),使△ABP 的面积和△ABC 的面积相等,求a 的值.文式思维教育,传播知识,分享快乐19、如图,在直角坐标系中,点1O 的坐标为(1,0),⊙1O 与x 轴交于原点O 和点A ,又点B 、C 的坐标分别为(-1,0),(0,b ),且30<<b ,直线l 是过B 、C 点的直线.(1)当点C 在线段OC 上移动时,过点1O 作l D O 直线⊥1,交l 于D ,若a S S CBO BOC=∆∆1,试求b a 与的函数关系式及a 的取值范围.20、某仓储系统有20条输入传送带、20条输出传送带.某日,控制室的电脑显示,每条输入传送带每小时进库的货物流量如图(a ),每条输出传送带每小时出库的货物流量如图(b ),而该日仓库中原有货物8吨,在0时至5时,仓库中货物存量变化情况如图(c ),则在0时至2时有多少条输入传送带在工作?在4至5时有多少条输入传送带和输出传送带在工作?。
2020人教版中考数学《反比例函数》专题及答案详解

4 x (a> 0)中,得 a=2,
把( 4+ b, b)代入函数解析式得 b= 4 b ,解得 b= 2 2 ﹣ 2,
∴y2 =2 2 ﹣2,
∴A2 的坐标是( 4 2 ,0),
设 C3 的纵坐标是 c(c>0),则 C3 横坐标为 4 2 +c,把( 4 2 + c, c)代入函数解析式得 c 4
(3)直接写出当 y1> y2 时, x 的取值范围 .
【思路分析】
(1)将 A 点坐标代入反比例函数解析式求出 m,即可得到反比例函数解析式;把 y=-3 代入反
比例函数解析式求出 a 的值,得到 B 点坐标,再将 A, B 坐标代入一次函数解析式求出 k, b,
即可求出一次函数解析式;
(2)利用 A 、B 坐标求出直线 AB 解析式,由解析式求出 C、D 两点坐标;分别对 B、 C、 P 三
1
A. y
1 B.
x1
【答案】 C.
1
1
1
y
1 C. y
1 D. y
1
x1
x1
x1
【解析】二次函数平移的规律“左加右减,上加下减”对所有函数的图象平移均适合.
∵将 y
1 的图象向右平移 1 个单位长度后所得函数关系式为
y
1,
x
x1
∴将 y
1 的图象向右平移
1 个单位长度,再向上平移
x
1 个单位长度所得图象的解析式为
= 4 2 c,
解得 c= 2 3 ﹣ 2 2 ,
∴y3 =2 3 ﹣ 2 2 .
∵y1 =2 1 ﹣ 2 0 ,y2 =2 2 ﹣2 1 ,y3 =2 3 ﹣ 2 2 ,…
∴y100= 2 100 ﹣ 2 99 ,
人教版初中数学反比例函数知识点总复习附答案

人教版初中数学反比例函数知识点总复习附答案一、选择题1.矩形ABCO如图摆放,点B在y轴上,点C在反比例函数ykx=(x>0)上,OA=2,AB=4,则k的值为()A.4 B.6 C.325D.425【答案】C【解析】【分析】根据矩形的性质得到∠A=∠AOC=90°,OC=AB,根据勾股定理得到OB22OA AB=+=5C作CD⊥x轴于D,根据相似三角形的性质得到CD85=,OD45=求得8545,)于是得到结论.【详解】解:∵四边形ABCO是矩形,∴∠A=∠AOC=90°,OC=AB,∵OA=2,AB=4,∴过C作CD⊥x轴于D,∴∠CDO=∠A=90°,∠COD+∠COB=∠COB+∠AOB=90°,∴∠COD=∠AOB,∴△AOB∽△DOC,∴OB AB OA OC CD OD==,2542CD OD==,∴CD855=,OD45=,∴C(455,855),∴k325 =,故选:C .【点睛】本题考查了反比例函数图象上点的坐标特征,反比例函数的性质,矩形的性质,相似三角形的判定和性质,正确的作出辅助线是解题的关键.2.如图,反比例函数y =2x的图象经过矩形OABC 的边AB 的中点D ,则矩形OABC 的面积为( )A .1B .2C .4D .8【答案】C 【解析】 【分析】由反比例函数的系数k 的几何意义可知:2OA AD =g ,然后可求得OA AB g 的值,从而可求得矩形OABC 的面积. 【详解】解:Q 反比例函数2y x=, 2OA AD ∴=g .D Q 是AB 的中点, 2AB AD ∴=.∴矩形的面积2224OA AB AD OA ===⨯=g g .故选:C . 【点睛】本题主要考查的是反比例函数k 的几何意义,掌握反比例函数系数k 的几何意义是解题的关键.3.下列函数中,当x >0时,函数值y 随自变量x 的增大而减小的是( ) A .y =x 2 B .y =xC .y =x+1D .1y x=【答案】D 【解析】 【分析】需根据函数的性质得出函数的增减性,即可求出当x >0时,y 随x 的增大而减小的函数. 【详解】解:A 、y =x 2是二次函数,开口向上,对称轴是y 轴,当x >0时,y 随x 的增大而增大,错误;B 、y =x 是一次函数k =1>0,y 随x 的增大而增大,错误;C 、y =x+1是一次函数k =1>0,y 随x 的增大而减小,错误;D 、1y x=是反比例函数,图象无语一三象限,在每个象限y 随x 的增大而减小,正确; 故选D . 【点睛】本题综合考查了二次函数、一次函数、反比例函数的性质,熟练掌握函数的性质是解题的关键.4.已知点()11,A y -、()22,B y -都在双曲线32my x+=上,且12y y >,则m 的取值范围是( ) A .0m < B .0m >C .32m >-D .32m <-【答案】D 【解析】 【分析】根据已知得3+2m <0,从而得出m 的取值范围. 【详解】∵点()11,A y -、()22,B y -两点在双曲线32my x+=上,且y 1>y 2, ∴3+2m <0,∴32m <-, 故选:D . 【点睛】本题考查了反比例函数图象上点的坐标特征,当k >0时,该函数图象位于第一、三象限,当k <0时,函数图象位于第二、四象限.5.如图,在平面直角坐标系中,正方形ABCD的顶点A的坐标为(﹣1,1),点B在x轴正半轴上,点D在第三象限的双曲线y=8x上,过点C作CE∥x轴交双曲线于点E,则CE的长为( )A.85B.235C.3.5 D.5【答案】B 【解析】【分析】设点D(m,8m),过点D作x轴的垂线交CE于点G,过点A过x轴的平行线交DG于点H,过点A作AN⊥x轴于点N,根据AAS先证明△DHA≌△CGD、△ANB≌△DGC可得AN=DG=1=AH,据此可得关于m的方程,求出m的值后,进一步即可求得答案.【详解】解:设点D(m,8m),过点D作x轴的垂线交CE于点G,过点A过x轴的平行线交DG于点H,过点A作AN⊥x轴于点N,如图所示:∵∠GDC+∠DCG=90°,∠GDC+∠HDA=90°,∴∠HDA=∠GCD,又AD=CD,∠DHA=∠CGD=90°,∴△DHA≌△CGD(AAS),∴HA=DG,DH=CG,同理△ANB≌△DGC(AAS),∴AN=DG=1=AH,则点G(m,8m﹣1),CG=DH,AH=﹣1﹣m=1,解得:m=﹣2,故点G(﹣2,﹣5),D(﹣2,﹣4),H(﹣2,1),则点E(﹣85,﹣5),GE=25,CE=CG﹣GE=DH﹣GE=5﹣25=235,故选:B.【点睛】本题考查了正方形的性质、反比例函数图象上点的坐标特点和全等三角形的判定与性质,构造全等、充分运用正方形的性质是解题的关键.6.如图,A,B是反比例函数y=4x在第一象限内的图象上的两点,且A,B两点的横坐标分别是2和4,则△OAB的面积是()A.4 B.3 C.2 D.1【答案】B【解析】【分析】先根据反比例函数图象上点的坐标特征及A,B两点的横坐标,求出A(2,2),B(4,1).再过A,B两点分别作AC⊥x轴于C,BD⊥x轴于D,根据反比例函数系数k的几何意义得出S△AOC=S△BOD=12×4=2.根据S四边形AODB=S△AOB+S△BOD=S△AOC+S梯形ABDC,得出S△AOB=S梯形ABDC,利用梯形面积公式求出S梯形ABDC=12(BD+AC)•CD=12×(1+2)×2=3,从而得出S△AOB=3.【详解】∵A,B是反比例函数y=4x在第一象限内的图象上的两点,且A,B两点的横坐标分别是2和4,∴当x=2时,y=2,即A(2,2),当x=4时,y=1,即B(4,1),如图,过A,B两点分别作AC⊥x轴于C,BD⊥x轴于D,则S △AOC =S △BOD =12×4=2, ∵S 四边形AODB =S △AOB +S △BOD =S △AOC +S 梯形ABDC , ∴S △AOB =S 梯形ABDC ,∵S 梯形ABDC =12(BD+AC )•CD=12×(1+2)×2=3, ∴S △AOB =3, 故选B .【点睛】本题考查了反比例函数()0ky k x=≠中k 的几何意义,反比例函数图象上点的坐标特征,梯形的面积,熟知反比例函数图象上的点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S 与k 的关系为S=12|k|是解题的关键.7.已知点()1,3M -在双曲线ky x=上,则下列各点一定在该双曲线上的是( ) A .()3,1- B .()1,3--C .()1,3D .()3,1【答案】A 【解析】 【分析】先求出k=-3,再依次判断各点的横纵坐标乘积,等于-3即是在该双曲线上,否则不在. 【详解】∵点()1,3M -在双曲线ky x=上, ∴133k =-⨯=-, ∵3(1)3⨯-=-, ∴点(3,-1)在该双曲线上, ∵(1)(3)13313-⨯-=⨯=⨯=,∴点()1,3--、()1,3、()3,1均不在该双曲线上, 故选:A. 【点睛】此题考查反比例函数解析式,正确计算k 值是解题的关键.8.使关于x的分式方程=2的解为非负数,且使反比例函数y=图象过第一、三象限时满足条件的所有整数k的和为().A.0 B.1 C.2 D.3【答案】B【解析】试题分析:分别根据题意确定k的值,然后相加即可.∵关于x的分式方程=2的解为非负数,∴x=≥0,解得:k≥-1,∵反比例函数y=图象过第一、三象限,∴3﹣k>0,解得:k<3,∴-1≤k<3,整数为-1,0,1,2,∵x≠0或1,∴和为-1+2=1,故选,B.考点:反比例函数的性质.9.如图,点P是反比例函数y=kx(x<0)图象上一点,过P向x轴作垂线,垂足为M,连接OP.若Rt△POM的面积为2,则k的值为()A.4 B.2 C.-4 D.-2【答案】C【解析】【分析】根据反比例函数的比例系数k的几何意义得到S△POD=12|k|=2,然后去绝对值确定满足条件的k的值.【详解】解:根据题意得S△POD=12|k|,所以12|k||=2,而k<0,所以k=-4.故选:C.【点睛】本题考查了反比例函数的比例系数k的几何意义:在反比例函数y=kx图象中任取一点,过这一个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|.10.如图,已知在平面直角坐标系中,点O 是坐标原点,AOB V 是直角三角形,90AOB ∠=︒,2OB OA =,点B 在反比例函数2y x =上,若点A 在反比例函数k y x=上,则k 的值为( )A .12B .12-C .14D .14-【答案】B 【解析】 【分析】通过添加辅助线构造出相似三角形,再根据相似三角形的性质可求得1,2x A x ⎛⎫- ⎪⎝⎭,然后由点的坐标即可求得答案. 【详解】解:过点B 作BE x ⊥于点E ,过点A 作AF x ⊥于点F ,如图:∵点B 在反比例函数2y x=上 ∴设2,B x x ⎛⎫ ⎪⎝⎭∴OE x =,2BE x= ∵90AOB ∠=︒∴90AOD BOD ∠+∠=︒ ∴90BOE AOF ∠+∠=︒ ∵BE x ⊥,AF x ⊥ ∴90BEO OFA ∠=∠=︒ ∴90OAF AOF ∠+∠=︒ ∴BOE OAF ∠=∠ ∴BOE OAF V V ∽ ∵2OB OA = ∴12OF AF OA BE OE BO === ∴121122OF BE x x =⋅=⋅=,11222x AF OE x =⋅=⋅= ∴1,2x A x ⎛⎫- ⎪⎝⎭∵点A 在反比例函数k y x=上 ∴12x k x=- ∴12k =-. 故选:B 【点睛】本题考查了反比例函数与相似三角形的综合应用,点在函数图象上则点的坐标就满足函数解析式,结合已知条件能根据相似三角形的性质求得点A 的坐标是解决问题的关键.11.函数y =1-kx与y =2x 的图象没有交点,则k 的取值范围是( ) A .k<0 B .k<1C .k>0D .k>1【答案】D 【解析】 【分析】由于两个函数没有交点,那么联立两函数解析式所得的方程无解.由此可求出k 的取值范围. 【详解】令1-k x =2x ,化简得:x 2=1-2k ;由于两函数无交点,因此1-2k<0,即k >1. 故选D . 【点睛】函数图象交点坐标为两函数解析式组成的方程组的解.如果两函数无交点,那么联立两函数解析式所得的方程(组)无解.12.直线y =ax (a >0)与双曲线y =3x交于A (x 1,y 1)、B (x 2,y 2)两点,则代数式4x 1y 2-3x 2y 1的值是( ) A .-3a B .-3 C .3aD .3【答案】B 【解析】 【分析】先把1(A x ,1)y 、2(B x ,2)y 代入反比例函数3y x=得出11x y g 、22x y g 的值,再根据直线与双曲线均关于原点对称可知12x x =-,12y y =-,再把此关系式代入所求代数式进行计算即可. 【详解】解:1(A x Q ,1)y 、2(B x ,2)y 在反比例函数3y x=的图象上, 11223x y x y ∴==g g ,Q 直线(0)y ax a =>与双曲线3y x=的图象均关于原点对称,12x x ∴=-,12y y =-,∴原式111111433x y x y x y =+=-=--.故选:B . 【点睛】本题考查的是反比例函数图象的对称性及反比例函数的性质,根据题意得出11223x y x y ==g g ,12x x =-,12y y =-是解答此题的关键.13.如图,点A ,B 是双曲线18y x=图象上的两点,连接AB ,线段AB 经过点O ,点C 为双曲线ky x=在第二象限的分支上一点,当ABC V 满足AC BC =且:13:24AC AB =时,k 的值为( ).A.2516-B.258-C.254-D.25-【答案】B【解析】【分析】如图作AE⊥x轴于E,CF⊥x轴于F.连接OC.首先证明△CFO∽△OEA,推出2()COFAOES OCS OA∆∆=,因为CA:AB=13:24,AO=OB,推出CA:OA=13:12,推出CO:OA=5:12,可得出2()COFAOES OCS OA∆∆==25144,因为S△AOE=9,可得S△COF=2516,再根据反比例函数的几何意义即可解决问题.【详解】解:如图作AE⊥x轴于E,CF⊥x轴于F.连接OC.∵A、B关于原点对称,∴OA=OB,∵AC=BC,OA=OB,∴OC⊥AB,∴∠CFO=∠COA=∠AEO=90°,∴∠COF+∠AOE=90°,∠AOE+∠EAO=90°,∴∠COF=∠OAE,∴△CFO∽△OEA,∴2()COFAOES OCS OA∆∆=,∵CA:AB=13:24,AO=OB,∴CA:OA=13:12,∴CO:OA=5:12,∴2()COF AOE S OC S OA ∆∆==25144, ∵S △AOE =9,∴S △COF =2516, ∴||25216k =, ∵k <0, ∴258k =- 故选:B .【点睛】本题主要考查反比例函数图象上的点的特征、等腰三角形的性质、相似三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,根据相似三角形解决问题,属于中考选择题中的压轴题.14.点(2,﹣4)在反比例函数y=k x 的图象上,则下列各点在此函数图象上的是( ) A .(2,4)B .(﹣1,﹣8)C .(﹣2,﹣4)D .(4,﹣2) 【答案】D【解析】【详解】∵点(2,-4)在反比例函数y=k x 的图象上, ∴k =2×(-4)=-8.∵A 中2×4=8;B 中-1×(-8)=8;C 中-2×(-4)=8;D 中4×(-2)=-8,∴点(4,-2)在反比例函数y=k x 的图象上. 故选D .【点睛】本题考查了反比例函数图象上点的坐标特征,解题的关键是求出反比例系数k ,解决该题型题目时,结合点的坐标利用反比例函数图象上点的坐标特征求出k 值是关键.15.已知反比例函数2y x =-,下列结论不正确的是 A .图象必经过点(-1,2)B .y 随x 的增大而增大C .图象在第二、四象限内D .若x >1,则y >-2【答案】B【解析】【分析】此题可根据反比例函数的性质,即函数所在的象限和增减性对各选项作出判断.【详解】解: A 、把(-1,2)代入函数解析式得:2=-21-成立,故点(-1,2)在函数图象上,故选项正确;B 、由k=-2<0,因此在每一个象限内,y 随x 的增大而增大,故选项不正确;C 、由k=-2<0,因此函数图象在二、四象限内,故选项正确;D 、当x=1,则y=-2,又因为k=-2<0,所以y 随x 的增大而增大,因此x >1时,-2<y <0,故选项正确;故选B .【点睛】本题考查反比例函数的图像与性质.16.如图,点A 是反比例函数2(0)y x x=>的图象上任意一点,AB x P 轴交反比例函数3y x=-的图象于点B ,以AB 为边作ABCD Y ,其中C 、D 在x 轴上,则ABCD S Y 为( )A .2.5B .3.5C .4D .5【答案】D【解析】【分析】 过点B 作BH ⊥x 轴于H ,根据坐标特征可得点A 和点B 的纵坐标相同,由题意可设点A 的坐标为(2a,a ),点B 的坐标为(3a -,a ),即可求出BH 和AB ,最后根据平行四边形的面积公式即可求出结论.【详解】解:过点B 作BH ⊥x 轴于H∵四边形ABCD 为平行四边形∴//AB x 轴,CD=AB∴点A 和点B 的纵坐标相同由题意可设点A 的坐标为(2a ,a ),点B 的坐标为(3a -,a ) ∴BH=a ,CD=AB=2a -(3a -)=5a∴ABCD S Y =BH·CD=5 故选D .【点睛】此题考查的是反比例函数与几何图形的综合题,掌握利用反比例函数求几何图形的面积是解决此题的关键.17.已知抛物线y=x 2+2x+k+1与x 轴有两个不同的交点,则一次函数y=kx ﹣k 与反比例函数y=k x在同一坐标系内的大致图象是( ) A . B . C . D .【答案】D【解析】【分析】依据抛物线y=x 2+2x+k+1与x 轴有两个不同的交点,即可得到k <0,进而得出一次函数y=kx ﹣k 的图象经过第一二四象限,反比例函数y=k x 的图象在第二四象限,据此即可作出判断.【详解】∵抛物线y=x 2+2x+k+1与x 轴有两个不同的交点,∴△=4﹣4(k+1)>0,解得k <0,∴一次函数y=kx ﹣k 的图象经过第一二四象限,反比例函数y=k x的图象在第二四象限, 故选D .【点睛】本题考查了二次函数的图象与x 轴的交点问题、反比例函数图象、一次函数图象等,根据抛物线与x 轴的交点情况确定出k 的取值范围是解本题的关键.18.如图,Rt ABO ∆中,90AOB ∠=︒,3AO BO =,点B 在反比例函数2y x =的图象上,OA 交反比例函数()0k y k x=≠的图象于点C ,且2OC CA =,则k 的值为( )A .2-B .4-C .6-D .8-【答案】D【解析】【分析】 过点A 作AD ⊥x 轴,过点C 作CE ⊥x 轴,过点B 作BF ⊥x 轴,利用AA 定理和平行证得△COE ∽△OBF ∽△AOD ,然后根据相似三角形的性质求得21()9BOF OAD S OB S OA ==V V ,24()9COE AOD S OC S OA ==V V ,根据反比例函数比例系数的几何意义求得212BOF S ==V ,从而求得4COE S =V ,从而求得k 的值.【详解】解:过点A 作AD ⊥x 轴,过点C 作CE ⊥x 轴,过点B 作BF ⊥x 轴∴CE ∥AD ,∠CEO=∠BFO=90°∵90AOB ∠=︒∴∠COE+∠FOB=90°,∠ECO+∠COE=90°∴∠ECO=∠FOB∴△COE ∽△OBF ∽△AOD又∵3AO BO =,2OC CA = ∴13OB OA =,23OC OA = ∴21()9BOF OAD S OB S OA ==V V ,24()9COE AOD S OC S OA ==V V ∴4COE BOFS S =V V ∵点B 在反比例函数2y x =的图象上 ∴212BOF S ==V ∴4COE S =V∴42k =,解得k=±8 又∵反比例函数位于第二象限,∴k=-8故选:D .【点睛】本题考查反比例函数的性质和相似三角形的判定和性质,正确添加辅助线证明三角形相似,利用数形结合思想解题是关键.19.若点()11,A y -,()22,B y -,()33,C y 在反比例函数8y x =-的图象上,则y 1,y 2,y 3的大小关系是( )A .123y y y <<B .213y y y <<C .132y y y <<D .321y y y << 【答案】D【解析】【分析】由于反比例函数的系数是-8,故把点A 、B 、C 的坐标依次代入反比例函数的解析式,求出123,,y y y 的值即可进行比较.【详解】解:∵点()11,A y -、()22,B y -、()33,C y 在反比例函数8y x =-的图象上, ∴1881y =-=-,2842y =-=-,383y =-, 又∵8483-<<, ∴321y y y <<.故选:D .【点睛】本题考查的是反比例函数的图象和性质,难度不大,理解点的坐标与函数图象的关系是解题的关键.20.若A(-3,y1)、B(-1,y2)、C(1,y3)三点都在反比例函数y=kx(k>0)的图象上,则y1、y2、y3的大小关系是()A. y1>y2>y3B. y3>y1>y2C. y3>y2>y1D. y2>y1>y3【答案】B【解析】【分析】反比例函数y=kx(k>0)的图象在一、三象限,根据反比例函数的性质,在每个象限内y随x的增大而减小,而A(-3,y1)、B(-1,y2)在第三象限双曲线上的点,可得y2<y1<0,C(1,y3)在第一象限双曲线上的点y3>0,于是对y1、y2、y3的大小关系做出判断.【详解】∵反比例函数y=kx(k>0)的图象在一、三象限,∴在每个象限内y随x的增大而减小,∵A(-3,y1)、B(-1,y2)在第三象限双曲线上,∴y2<y1<0,∵C(1,y3)在第一象限双曲线上,∴y3>0,∴y3>y1>y2,故选:B.【点睛】此题考查反比例函数的图象和性质,解题关键在于当k>0,时,在每个象限内y随x的增大而减小;当k<0时,y随x的增大而增大,注意“在每个象限内”的意义,这种类型题目用图象法比较直观得出答案.。
中考数学复习之反比例函数模型

15
4
)
C.4
D.5
【解析】
与
四
边
形
组
合
模
型
练习2:【2018盐城】如图,点D为矩形OABC的AB边的中点,反比例函数 =
与
四
边
形
组
合
模
型
> 0 的图象经过点D,交BC边于点E,若△BDE的面积为1,则=______.
【解析】
与
四
边
形
组
合
模
型
大部分的中考试题中,对反比例函数的考查都出现在选择题和填空题中,
一
点
一
垂
线
模
型
【解析】
一
点
一
垂
线
模
型
练习3:如图,在平面直角坐标系中,点D在函数 =
轴于点A,点C为线段AD的中点,延长线段OC交函数 =
> 0 的图象上,DA⊥
> 0 的图象于点E,
EB⊥轴于点B,若四边形ABEC的面积为1,则的值为______。
一
点
一
垂
线
模
型
y
D
E
的变化多端是分不开的,而且容易与其他函数图象或其他图象建立联系,再者
就是整张试题怎么也得出现点曲线调剂一下吧,二次函数往往要用在压轴题里
面,所以反比例函数就成了选择题和填空题的备选知识点了。别看反比例函数
知识点少,但题目类型很多,本节老师将反比例函数常见的一些类型进行了汇
总,并列举了练习题和相应的中考题,疏漏在所难免,望大家海涵!
轴上,点C在y轴的正半轴上,点F在AB上,点B,E在反比例函数 =
中考复习反比例函数图像与性质

二、知识梳理
1.反比例函数的概念 反比例函数的概念 如果两个变量间的关系可以表示成 k (k为常数,k≠0)的形式,那么 为常数,k≠0)的形式, y= x 的反比例函数, 称y是x的反比例函数,它的图像是双曲
k 可以称为“双曲线y= 线,可以称为“双曲线y= x
”。 ”。
2.反比例函数的图象与性质 反比例函数的图象与性质
3. 反比例函数y= (k是常数,k≠0)的图象经过 点(a,- a) , 那么k_____0(填“>”或“<”). 4.若反比例函数y= k 经过点(-1,2),则一次函数 x y=-kx+2的图象一定不经过第_____象限. 5.如图,△OPQ是边长为2的等边三角形,若反 比例函数的图象过点P,则它的解析式是 _________. k 6.已知反比例函数 x 图象与直线 y = 2 x和 y = x + 1 的图象过同一点.(1)求这个反比例函数的解 析式; (2)当>0时,这个反比例函数值随的增大 如何变化?
m +1 5.已知一次函数y=x+m与反比例函数 已知一次函数y=x+m与反比例函数y= 5.已知一次函数y=x+m与反比例函数y= x
(m≠-1)的图象在第一象限内的交点为P(x (m≠-1)的图象在第一象限内的交点为P(x0,3). 的图象在第一象限内的交点为 (1)求 的值; (1)求x0的值; (2)求一次函数和反比例函数的解析式. (2)求一次函数和反比例函数的解析式. 求一次函数和反比例函数的解析式
(1)自变量的取值范围是除0以外的一切实数 自变量的取值范围是除0 k>0时 (2)当k>0时,它的两个分支分别在第一象限和 第三象限内无限伸展;在每一象限内, 第三象限内无限伸展;在每一象限内,y随x值的 增大而减小。 k<0时 增大而减小。当k<0时,它的两个分支分别在第 二象限和第四象限内无限伸展;在每一象限内, 二象限和第四象限内无限伸展;在每一象限内, 值的增大而增大。 y随x值的增大而增大。
初中数学反比例函数知识点总复习附解析
A.-3aB.-3C. D.3
【答案】B
【解析】
【分析】
先把 , 、 , 代入反比例函数 得出 、 的值,再根据直线与双曲线均关于原点对称可知 , ,再把此关系式代入所求代数式进行计算即可.
∴反比例函数的图象在二、四象限,
∴9m+3<0,解得m<﹣ .
故选:B.
【点睛】
此题主要考查了反比例函数的性质,以及反比例函数图象上点的坐标特点,关键是掌握反比例函数的性质
9.如图,在同一坐标系中(水平方向是x轴),函数 和 的图象大致是()
A. B. C. D.
【答案】A
【解析】
【分析】
根据一次函数及反比例函数的图象与系数的关系作答.
A.8B. C.4D.
【答案】A
【解析】
【分析】设 , ,根据反比例函数图象上点的坐标特征得出 , 根据三角形的面积公式得到 ,即可求出 .
【详解】 轴,
,B两点纵坐标相同,
设 , ,则 , ,
,
,
故选A.
【点睛】本题考查了反比例函数图象上点的坐标特征,三角形的面积,熟知点在函数的图象上,则点的坐标满足函数的解析式是解题的关键.
B、y=x是一次函数k=1>0,y随x的增大而增大,错误;
C、y=x+1是一次函数 k=1>0,y随x的增大而减小,错误;
D、 是反比例函数,图象无语一三象限,在每个象限y随x的增大而减小,正确;
故选D.
【点睛】
本题综合考查了二次函数、一次函数、反比例函数的性质,熟练掌握函数的性质是解题的关键.
人教版初中数学反比例函数知识点总复习含答案解析
人教版初中数学反比例函数知识点总复习含答案解析一、选择题1.如图,二次函数2y ax bx c =++的图象如图所示,则一次函数y ax c =+和反比例函数b y x=在同平面直角坐标系中的图象大致是( )A .B .C .D .【答案】D【解析】【分析】直接利用二次函数图象经过的象限得出a ,b ,c 的值取值范围,进而利用一次函数与反比例函数的性质得出答案.【详解】∵二次函数y=ax 2+bx+c 的图象开口向下,∴a <0,∵二次函数y=ax 2+bx+c 的图象经过原点,∴c=0,∵二次函数y=ax 2+bx+c 的图象对称轴在y 轴左侧,∴a ,b 同号,∴b <0,∴一次函数y=ax+c ,图象经过第二、四象限,反比例函数y=b x图象分布在第二、四象限, 故选D .【点睛】此题主要考查了反比例函数、一次函数、二次函数的图象,正确把握相关性质是解题关键.2.如图所示是一块含30°,60°,90°的直角三角板,直角顶点O 位于坐标原点,斜边AB垂直于x 轴,顶点A 在函数y 1=1k x(x>0)的图象上,顶点B 在函数y 2= 2k x (x>0)的图象上,∠ABO=30°,则21k k =( )A .-3B .3C .13D .- 13【答案】A【解析】【分析】 根据30°角所对的直角边等于斜边的一半,和勾股定理,设出适当的常数,表示出其它线段,从而得到点A 、B 的坐标,表示出k 1、k 2,进而得出k 2与k 1的比值.【详解】如图,设AB 交x 轴于点C ,又设AC=a.∵AB ⊥x 轴 ∴∠ACO=90°在Rt △AOC 中,OC=AC·tan ∠OAB=a·tan60°3∴点A 3a ,a )同理可得 点B 3,-3a )∴k 1332 , k 23a×(-3a )3a∴213333k a k a==-. 故选A.【点睛】考查直角三角形的边角关系,反比例函数图象上点的坐标特征,设适合的常数,用常数表示出k ,是解决问题的方法.3.如图,点P 是反比例函数(0)k y k x=≠的图象上任意一点,过点P 作PM x ⊥轴,垂足为M . 连接OP . 若POM ∆的面积等于2. 5,则k 的值等于 ( )A .5-B .5C . 2.5-D .2. 5【答案】A【解析】【分析】 利用反比例函数k 的几何意义得到12|k|=2,然后根据反比例函数的性质和绝对值的意义确定k 的值.【详解】解:∵△POM 的面积等于2.5,∴12|k|=2.5, 而k <0,∴k=-5,故选:A .【点睛】本题考查了反比例函数系数k 的几何意义:在反比例函数y=k x图象中任取一点,过这一个点向x 轴和y 轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|.也考查了反比例函数的性质.4.如图,反比例函数11k y x=的图象与正比例函数22y k x =的图象交于点(2,1),则使y 1>y 2的x 的取值范围是( )A.0<x<2 B.x>2 C.x>2或-2<x<0 D.x<-2或0<x<2【答案】D【解析】【分析】先根据反比例函数与正比例函数的性质求出B点坐标,由函数图象即可得出结论.【详解】∵反比例函数与正比例函数的图象均关于原点对称,∴A、B两点关于原点对称.∵A(2,1),∴B(-2,-1).∵由函数图象可知,当0<x<2或x<-2时函数y1的图象在y2的上方,∴使y1>y2的x的取值范围是x<-2或0<x<2.故选D.5.给出下列函数:①y=﹣3x+2:②y=3x;③y=﹣5x:④y=3x,上述函数中符合条件“当x>1时,函数值y随自变量x增大而增大”的是()A.①③B.③④C.②④D.②③【答案】B【解析】【分析】分别利用一次函数、正比例函数、反比例函数的增减性分析得出答案.【详解】解:①y=﹣3x+2,当x>1时,函数值y随自变量x增大而减小,故此选项不符合题意;②y=3x,当x>1时,函数值y随自变量x增大而减小,故此选项不符合题意;③y=﹣5x,当x>1时,函数值y随自变量x增大而增大,故此选项符合题意;④y=3x,当x>1时,函数值y随自变量x增大而增大,故此选项符合题意;故选:B.【点睛】此题考查一次函数、正比例函数、反比例函数,正确把握相关性质是解题关键.6.如图,四边形OABF中,∠OAB=∠B=90°,点A在x轴上,双曲线kyx=过点F,交AB于点E,连接EF.若BF2OA3=,S△BEF=4,则k的值为()A.6 B.8 C.12 D.16【答案】A【解析】【分析】由于23BFOA=,可以设F(m,n)则OA=3m,BF=2m,由于S△BEF=4,则BE=4m,然后即可求出E(3m,n-4m),依据mn=3m(n-4m)可求mn=6,即求出k的值.【详解】如图,过F作FC⊥OA于C,∵23 BFOA=,∴OA=3OC,BF=2OC ∴若设F(m,n)则OA=3m,BF=2m ∵S△BEF=4∴BE=4 m则E(3m,n-4m)∵E在双曲线y=kx上∴mn=3m(n-4m)∴mn=6即k=6.故选A.【点睛】此题主要考查了反比例函数的图象和性质、用坐标表示线段长和三角形面积,表示出E点坐标是解题关键.7.使关于x的分式方程=2的解为非负数,且使反比例函数y=图象过第一、三象限时满足条件的所有整数k的和为().A.0 B.1 C.2 D.3【答案】B【解析】试题分析:分别根据题意确定k的值,然后相加即可.∵关于x的分式方程=2的解为非负数,∴x=≥0,解得:k≥-1,∵反比例函数y=图象过第一、三象限,∴3﹣k>0,解得:k<3,∴-1≤k<3,整数为-1,0,1,2,∵x≠0或1,∴和为-1+2=1,故选,B.考点:反比例函数的性质.8.如图,,A B是双曲线kyx=上两点,且,A B两点的横坐标分别是1-和5,ABO-∆的面积为12,则k的值为()A.3-B.4-C.5-D.6-【答案】C【解析】【分析】分别过点A、B作AD⊥x轴于点D,BE⊥x轴于点E,根据S△AOB=S梯形ABED+S△AOD- S△BOE =12,故可得出k的值.分别过点A 、B 作AD ⊥x 轴于点D ,BE ⊥x 轴于点E ,∵双曲线k y x =的图象的一支在第二象限 ∴k<0, ∵A ,B 两点在双曲线k y x=的图象上,且A ,B 两点横坐标分别为:-1,-5, ∴A (-1,-k ),B (-5, 5k -) ∴S △AOB =S 梯形ABED +S △AOD - S △BOE=1||11||(||)(51)1||525225k k k k ⨯+⨯-+⨯⨯-⨯⨯=12||5k =12, 解得,k=-5故选:C .【点睛】 本题考查反比例函数系数k 的几何意义,过双曲线上的任意一点分别向两条坐标轴作垂线,与坐标轴围成的矩形面积就等于|k|.本知识点是中考的重要考点,同学们应高度关注.9.如图,点P 是反比例函数y =k x(x <0)图象上一点,过P 向x 轴作垂线,垂足为M ,连接OP .若Rt △POM 的面积为2,则k 的值为( )A .4B .2C .-4D .-2【答案】C【解析】【分析】 根据反比例函数的比例系数k 的几何意义得到S △POD =12|k|=2,然后去绝对值确定满足条件的k 的值.解:根据题意得S△POD=12|k|,所以12|k||=2,而k<0,所以k=-4.故选:C.【点睛】本题考查了反比例函数的比例系数k的几何意义:在反比例函数y=kx图象中任取一点,过这一个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|.10.如图,矩形ABCD的边AB在x轴上,反比例函数kyx=(0)k≠的图象过D点和边BC的中点E,连接DE,若CDE∆的面积是1,则k的值是()A.4 B.3 C.25D.2【答案】A【解析】【分析】设E的坐标是(m,n),k=mn,则C的坐标是(m,2n),求得D的坐标,然后根据三角形的面积公式求得mn的值,即k的值.【详解】解:设E的坐标是(m,n),k=mn,则C的坐标是(m,2n),在y=mnx中,令y=2n,解得:x=2m,∵S△CDE=1,∴12|n|•|m-2m|=1,即12n×2m=1,∴mn=4.∴k=4.故选:A.【点睛】本题考查了待定系数法求函数的解析式,利用mn表示出三角形的面积是关键.11.如图,直线y=k和双曲线y=kx相交于点P,过点P作PA0垂直于x轴,垂足为A0,x 轴上的点A0,A1,A2,…A n的横坐标是连续整数,过点A1,A2,…A n:分别作x轴的垂线,与双曲线y=kx(k>0)及直线y=k分别交于点B1,B2,…B n和点C1,C2,…C n,则n nn nA BC B 的值为()A.11n+B.11n-C.1nD.11n-【答案】C【解析】【分析】由x轴上的点A0,A1,A2,…,A n的横坐标是连续整数,则得到点An(n+1,0),再分别表示出∁n(n+1,k),B n(n+1,kn1+),根据坐标与图形性质计算出A n B n=kn1+,B n∁n =k﹣kn1+,然后计算n nn nA BB C.【详解】∵x轴上的点A0,A1,A2,…,A n的横坐标是连续整数,∴An(n+1,0),∵∁n A n⊥x轴,∴∁n(n+1,k),B n(n+1,kn1+),∴A n B n=kn1+,B n∁n=k﹣kn1+,∴n n n n AB BC =11k n k k n +-+=1n . 故选:C .【点睛】考查了反比例函数与一次函数的交点问题,解题关键是抓住了反比例函数与一次函数图象的交点坐标满足两函数解析式.12.如图,已知点A ,B 分别在反比例函数12y x =-和2k y x=的图象上,若点A 是线段OB 的中点,则k 的值为( ).A .8-B .8C .2-D .4-【答案】A【解析】【分析】 设A (a ,b ),则B (2a ,2b ),将点A 、B 分别代入所在的双曲线解析式进行解答即可.【详解】解:设A (a ,b ),则B (2a ,2b ),∵点A 在反比例函数12y x =-的图象上, ∴ab =−2;∵B 点在反比例函数2k y x =的图象上, ∴k =2a•2b =4ab =−8.故选:A .【点睛】本题考查了反比例函数图象上点的坐标特征,图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.13.如图,Rt△AOB中,∠AOB=90°,AO=3BO,OB在x轴上,将Rt△AOB绕点O顺时针旋转至△RtA'OB',其中点B'落在反比例函数y=﹣2x的图象上,OA'交反比例函数y=kx的图象于点C,且OC=2CA',则k的值为()A.4 B.72C.8 D.7【答案】C【解析】【详解】解:设将Rt△AOB绕点O顺时针旋转至Rt△A'OB'的旋转角为α,OB=a,则OA=3a,由题意可得,点B′的坐标为(acosα,﹣asinα),点C的坐标为(2asinα,2acosα),∵点B'在反比例函数y=﹣2x的图象上,∴﹣asinα=﹣2acosα,得a2sinαcosα=2,又∵点C在反比例函数y=kx的图象上,∴2acosα=k2asinα,得k=4a2sinαcosα=8.故选C.【点睛】本题主要考查反比例函数与几何图形的综合问题,解此题的关键在于先设旋转角为α,利用旋转的性质和三角函数设出点B'与点C的坐标,再通过反比例函数的性质求解即可.14.矩形ABCO如图摆放,点B在y轴上,点C在反比例函数ykx(x>0)上,OA=2,AB=4,则k的值为()A.4 B.6 C.325D.425【答案】C【解析】【分析】根据矩形的性质得到∠A=∠AOC=90°,OC=AB,根据勾股定理得到OB22OA AB=+=5C作CD⊥x轴于D,根据相似三角形的性质得到CD855=,OD455=,求得C (85555,)于是得到结论.【详解】解:∵四边形ABCO是矩形,∴∠A=∠AOC=90°,OC=AB,∵OA=2,AB=4,∴过C作CD⊥x轴于D,∴∠CDO=∠A=90°,∠COD+∠COB=∠COB+∠AOB=90°,∴∠COD=∠AOB,∴△AOB∽△DOC,∴OB AB OA OC CD OD==,2542CD OD==,∴CD85=,OD45=,∴4585),∴k325 =,故选:C.【点睛】本题考查了反比例函数图象上点的坐标特征,反比例函数的性质,矩形的性质,相似三角形的判定和性质,正确的作出辅助线是解题的关键.15.当0x <时,反比例函数2y x =-的图象( ) A .在第一象限,y 随x 的增大而减小 B .在第二象限,y 随x 的增大而增大C .在第三象限,y 随x 的增大而减小D .在第四象限,y 随x 的增大而减小 【答案】B【解析】【分析】反比例函数2y x =-中的20k =-<,图像分布在第二、四象限;利用0x <判断即可. 【详解】解:Q 反比例函数2y x=-中的20k =-<, ∴该反比例函数的图像分布在第二、四象限;又0x <Q ,∴图象在第二象限且y 随x 的增大而增大.故选:B .【点睛】本题主要考查的是反比例函数的性质,对于反比例函数()0k y k x=≠,(1)0k >,反比例函数图像分布在一、三象限;(2)k 0< ,反比例函数图像分布在第二、四象限内.16.反比例函数y=的图象如图所示,则一次函数y=kx+b (k≠0)的图象的图象大致是( )A .B .C .D .【答案】D【解析】【分析】先由反比例函数的图象得到k ,b 同号,然后分析各选项一次函数的图象即可.【详解】∵y=的图象经过第一、三象限,∴kb >0,∴k ,b 同号,选项A 图象过二、四象限,则k <0,图象经过y 轴正半轴,则b >0,此时,k ,b 异号,故此选项不合题意;选项B 图象过二、四象限,则k <0,图象经过原点,则b=0,此时,k ,b 不同号,故此选项不合题意;选项C 图象过一、三象限,则k >0,图象经过y 轴负半轴,则b <0,此时,k ,b 异号,故此选项不合题意;选项D 图象过一、三象限,则k >0,图象经过y 轴正半轴,则b >0,此时,k ,b 同号,故此选项符合题意; 故选D .考点:反比例函数的图象;一次函数的图象.17.如图,点A 是反比例函数2(0)y x x=>的图象上任意一点,AB x P 轴交反比例函数3y x=-的图象于点B ,以AB 为边作ABCD Y ,其中C 、D 在x 轴上,则ABCD S Y 为( )A .2.5B .3.5C .4D .5【答案】D【解析】【分析】 过点B 作BH ⊥x 轴于H ,根据坐标特征可得点A 和点B 的纵坐标相同,由题意可设点A 的坐标为(2a,a ),点B 的坐标为(3a -,a ),即可求出BH 和AB ,最后根据平行四边形的面积公式即可求出结论.【详解】解:过点B 作BH ⊥x 轴于H∵四边形ABCD 为平行四边形∴//AB x 轴,CD=AB∴点A 和点B 的纵坐标相同由题意可设点A 的坐标为(2a ,a ),点B 的坐标为(3a -,a ) ∴BH=a ,CD=AB=2a -(3a -)=5a∴ABCD S Y =BH·CD=5 故选D .【点睛】此题考查的是反比例函数与几何图形的综合题,掌握利用反比例函数求几何图形的面积是解决此题的关键.18.已知反比例函数y=﹣8x,下列结论:①图象必经过(﹣2,4);②图象在二,四象限内;③y 随x 的增大而增大;④当x >﹣1时,则y >8.其中错误的结论有( )个 A .3 B .2 C .1 D .0【答案】B【解析】【分析】根据反比例函数的性质,逐一进行判断即可得答案.【详解】①当x=﹣2时,y=4,即图象必经过点(﹣2,4);②k=﹣8<0,图象在第二、四象限内;③k=﹣8<0,每一象限内,y 随x 的增大而增大,错误;④k=﹣8<0,每一象限内,y 随x 的增大而增大,若0>x >﹣1,﹣y >8,故④错误, 故选B .【点睛】本题考查了反比例函数的性质,熟练掌握反比例函数的性质是解题关键.19.已知点11(,)x y ,22(,)x y 均在双曲线1y x =-上,下列说法中错误的是( ) A .若12x x =,则12y y =B .若12x x =-,则12y y =-C .若120x x <<,则12y y <D .若120x x <<,则12y y > 【答案】D【解析】【分析】先把点A (x 1,y 1)、B (x 2,y 2)代入双曲线1y x =-,用y 1、y 2表示出x 1,x 2,据此进行判断.【详解】∵点(x 1,y 1),(x 2,y 2)均在双曲线1y x =-上, ∴111y x =-,221y x =-. A 、当x 1=x 2时,-11x =-21x ,即y 1=y 2,故本选项说法正确; B 、当x 1=-x 2时,-11x =21x ,即y 1=-y 2,故本选项说法正确; C 、因为双曲线1y x=-位于第二、四象限,且在每一象限内,y 随x 的增大而增大,所以当0<x 1<x 2时,y 1<y 2,故本选项说法正确; D 、因为双曲线1y x=-位于第二、四象限,且在每一象限内,y 随x 的增大而增大,所以当x 1<x 2<0时,y 1>y 2,故本选项说法错误;故选:D .【点睛】 本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.20.对于反比例函数2y x=-,下列说法不正确的是( ) A .图象分布在第二、四象限B .当0x >时,y 随x 的增大而增大C .图象经过点(1,-2)D .若点()11,A x y ,()22,B x y 都在图象上,且12x x <,则12y y <【答案】D【解析】【分析】根据反比例函数图象的性质对各选项分析判断后利用排除法求解.【详解】A. k=−2<0,∴它的图象在第二、四象限,故本选项正确;B. k=−2<0,当x>0时,y 随x 的增大而增大,故本选项正确;C.∵221-=-,∴点(1,−2)在它的图象上,故本选项正确; D. 若点A (x 1,y 1),B (x 2,y 2)都在图象上,,若x 1<0< x 2,则y 2<y 1,故本选项错误. 故选:D.【点睛】本题考查了反比例函数的图象与性质,掌握反比例函数的性质是解题的关键.。
初中数学《反比例函数》单元教学设计以及思维导图
初中数学《反比例函数》单元教学设计以及思维导图适用年级九年级所需时间共5课时,其中课内共用4课时(每周5课时),课外1课时。
主题单元学习概述反比例函数是北师大版九年级上册第五章的内容,它是学生在八年级学习了一次函数后以及将要在九年级下学期学习三角函数和二次函数之前安排的,具有承上启下的地位和作用。
本单元包括四部分内容,分别是反比例函数的意义、性质和应用以及课题学习。
本单元的学习重点是:反比例函数的意义,反比例函数的图像及增减性和对称性,利用反比例函数解决实际问题。
本单元的学习难点是:反比例函数解析式的确定,反比例函数增减性的理解及运用,如何把一个实际问题抽象成数学问题并加以解决,课题学习--猜想、证明与拓广。
本单元的教材划分还是很科学的,先理解反比例函数的意义,然后综合运用函数的三种研究方法(解析法、表格法、图像法)探索反比例函数的性质,最后学以致用,运用函数知识解决现实生活中的实际问题,特别的是课题学习更是体现了数学来源于生活又服务于生活的特点。
主要学习方式:自主、合作、探究预期学习成果:学生能够理解反比例函数的意义和性质并能利用相关知识解决现实生活中的实际问题。
主题单元规划思维导图主题单元学习目标知识与技能:能正确区分正比例函数、一次函数和反比例函数;求反比例函数解析式;会用描点法画出反比例函数的图象,提高画图能力;逐步提高从函数图象中获取信息的能力;能灵活运用正比例函数、一次函数和反比例函数知识剖析实际问题,体会函数模型的重要性过程与方法:经历抽象反比例函数的过程,体会反比例函数的意义;经历比较与探索能发现反比例函数的性质并能应用性质解决相关问题提高探索能力和解决问题能力;经历分析实际问题中变量之间的关系,建立反比例函数模型,从而明白解决问题的过程。
情感态度与价值观:从具体情境和已有经验出发讨论两个变量之间的依存关系,加深对函数意义的理解;提高处理较复杂问题的耐心和能力;进一步体会方程与函数的关系,能充分利用函数的图象和性质进行观察、比较、计算、归纳,从而解决有关的函数问题。
浙教版初中数学初二数学下册《反比例函数》教案及教学反思
浙教版初中数学初二数学下册《反比例函数》教案及教学反思教学目标•知识目标:1.理解反比例函数的定义和基本性质;2.掌握反比例函数的图像、零点和极限;3.能够应用反比例函数解决实际问题。
•能力目标:1.培养学生分析和解决数学问题的能力;2.培养学生独立思考、合作交流的能力。
教学重难点•教学重点:1.反比例函数的定义、基本性质和图像;2.反比例函数的应用。
•教学难点:1.反比例函数的极限和零点的理解和计算;2.实际问题中反比例函数的应用。
教学内容与方法教学内容第一部分:反比例函数的概念和性质1.反比例函数的定义和基本性质;2.反比例函数的图像和特征;3.反比例函数的零点和极限。
第二部分:反比例函数的应用1.实际问题中反比例函数的应用。
教学方法1.教师讲授:通过PPT、黑板、教学视频等方式,讲解反比例函数的定义、性质、图像和特征。
2.示范讲解:通过讲解多个例题和练习,帮助学生掌握反比例函数的应用方法。
3.独立思考:让学生自己思考、归纳整理、总结反比例函数的应用方法。
4.合作交流:通过小组活动、讨论等方式,让学生互相交流、合作思考,提高自己的思考和解决问题的能力。
教学流程第一部分:反比例函数的概念和性质1.反比例函数的定义和基本性质1.教师讲解:通过PPT,讲解反比例函数的定义和基本性质。
2.示范讲解:通过例题演示,让学生理解反比例函数的定义和基本性质。
3.学生练习:通过课堂练习,让学生掌握反比例函数的定义和基本性质。
2.反比例函数的图像和特征1.教师讲解:通过PPT和黑板,讲解反比例函数的特征和图像。
2.示范讲解:通过演示例题,让学生了解反比例函数的图像和特征。
3.学生练习:通过课堂练习,让学生掌握反比例函数的图像和特征。
3.反比例函数的零点和极限1.教师讲解:通过PPT,讲解反比例函数的零点和极限。
2.示范讲解:通过演示例题,让学生了解反比例函数的零点和极限。
3.学生练习:通过课堂练习,让学生掌握反比例函数的极限和零点。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第三单元 函数第12课时 反比例函数 练习1 反比例函数的图象与性质点对点·课时内考点巩固30分钟1. (2018柳州)已知反比例函数的解析式为y =|a |-2x ,则a 的取值范围是( )A. a ≠2B. a ≠-2C. a ≠±2D. a =±22. (2019天门)反比例函数y =-3x ,下列说法不正确的是( )A. 图象经过点(1,-3)B. 图象位于第二、四象限C. 图象关于直线y =x 对称D. y 随x 的增大而增大3. 下列各点中,与点(-3,4)在同一个反比例函数图象上的点的是( ) A. (2,-3) B. (3,4) C. (2,-6) D. (-3,-4)4. 点 M (a ,2a )在反比例函数 y =8x 的图象上,那么 a 的值是( )A. 4B. -4C. 2D. ±25. (2019海南)如果反比例函数y =a -2x (a 是常数)的图象在第一、三象限,那么a 的取值范围是( )A. a <0B. a >0C. a <2D. a >26. (2019天津)若点A (-3,y 1),B (-2,y 2),C (1,y 3)都在反比例函数y =-12x 的图象上,则y 1,y 2,y 3的大小关系是( )A. y 2<y 1<y 3B. y 3<y 1<y 2C. y 1<y 2<y 3D. y 3<y 2<y 17. 反比例函数y =kx 的图象经过点A (-1,2),则当x >1时,函数值y 的取值范围是( )A. y >-1B. -1<y <0C. y <-2D. -2<y <08. (2018天水)若点A (a ,b )在反比例函数y =3x 的图象上,则代数式ab -1的值为________.9. 反比例函数y =(2m -1)xm 2-2,x >0时,y 随着x 的增大而增大,则m 的值是________10. 已知一个反比例函数的图象位于第二、四象限内,点P (x 0,y 0)在这个反比例函数的图象上,且x 0y 0>-4.请你写出这个反比例函数的表达式__________.(写出符合题意的一个即可)11. 已知A (x 1,y 1),B (x 2,y 2)都在反比例函数y =-2x 的图象上.若x 1x 2=-4,则y 1y 2的值为________.12. 已知A (1,m ),B (2,n )是反比例函数y =kx 图象上的两点,若m -n =4,则k 的值为________.13. 已知反比例函数的图象经过三个点A (-4,-3)、B (2m ,y 1)、C (6m ,y 2).若y 1-y 2=4,则m 的值为________.14. 已知反比例函数y =mx 在其所在象限内y 随x 的增大而减小,点P (2-m ,m +1)是该反比例函数图象上一点,则m 的值为________.15. 已知A (x 1,y 1),B (x 2,y 2)是反比例函数y =k x 图象上的两点,且x 1+x 2=-2,x 1·x 2=2,y 1+y 2=-43,则k =________.16. 已知点A (x 1,y 1)、B (x 2,y 2)是反比例函数y =kx 图象上的两点,且(x 1-x 2)(y 1-y 2)=9,3x 1=2x 2,则k 的值为________.点对线·板块内考点衔接5分钟1. (2019北京)在平面直角坐标系xOy 中,点A (a ,b )(a >0,b >0)在双曲线y =k 1x 上,点A 关于x 轴的对称点B 在双曲线y =k 2x上,则k 1+k 2的值为________.2. (2019益阳)反比例函数y =kx 的图象上有一点P (2,n ),将点P 向右平移1个单位,再向下平移1个单位得到点Q ,若点Q 也在该函数的图象上,则k =________.3. 已知A 、B 两点分别在反比例函数y =2m -3x (m ≠32)和y =3m -2x (m ≠23)的图象上,且点A 与点B 关于y 轴对称,则m 的值为________.练习2 反比例函数与几何图形或一次函数结合点对线·板块内考点衔接15分钟1. 若一次函数 y =ax +6(a ≠0)的图象与反比例函数y =3x 的图象只有一个交点,则a 的值为________.2. 若直线y =-x +m 与双曲线y =nx (x >0)交于A (2,a ),B (4,b )两点,则mn 的值为________.3. (2019绥化)一次函数y 1=-x +6与反比例函数y 2=8x (x >0)的图象如图所示,当y 1>y 2时,自变量x的取值范围是________.第3题图4. 如图,在平面直角坐标系中,直线y =-x +2与反比例函数y =1x 的图象有唯一公共点.若直线y=-x +b 与反比例函数y =1x的图象没有公共点,则b 的取值范围是________第4题图点对面·跨板块考点迁移20分钟1. 如图,过x 轴的正半轴上任意一点P ,作y 轴的平行线,分别与反比例函数y =3x (x >0),y =-6x (x >0)的图象相交于点A ,B ,若C 为y 轴上任意一点,连接AC ,BC ,则△ABC 的面积为________.第1题图2. (2019抚顺)如图,矩形ABCD 的顶点A ,C 在反比例函数y =kx (k >0,x >0)的图象上,若点A 的坐标为(3,4),AB =2,AD ∥x 轴,则点C 的坐标为________.第2题图3. 如图,正方形ABCD 的边长为2,点B 与原点O 重合,与反比例函数y =kx 的图象交于E 、F 两点,若△DEF 的面积为98,则k 的值为________.第3题图4.(2019陕西黑马卷)如图,已知反比例函数y =4x 的图象经过Rt △OAB 斜边OB 的中点D ,与直角边AB相交于点C ,则△OBC 的面积为________.第4题图5.(2019陕西报告会分享试题)如图,反比例函数y=kx的图象经过平行四边形ABCD对角线的交点P,已知点A、C、D在坐标轴上,BD⊥DC,平行四边形ABCD的面积为6,则k=________.第5题图6.(2019郴州)如图,点A,C分别是正比例函数y=x的图象与反比例函数y=4x的图象的交点,过A点作AD⊥x轴于点D,过C点作CB⊥x轴于点B,则四边形ABCD的面积为________.第6题图7. (2019陕西定心卷)如图,点A 是反比例函数y =-8x 图象上的一点,过点A 的直线与y 轴交于点B ,与反比例函数y =kx(x >0)的图象交于点C 、D .若AB =BC =CD ,则k 的值为________.第7题图8. (2019陕西报告会分享试题)如图,△OAC 和△BAD 都是等腰直角三角形,∠ACO =∠ADB =90°,反比例函数y =kx在第一象限的图象经过点B ,若OA 2-AB 2=8,则k 的值为________.第8题图参考答案第12课时 反比例函数练习1 反比例函数的图象与性质点对点·课时内考点巩固1. C2. D 【解析】当x =1时,y =-31=-3,故A 选项正确;由k =-3<0,图象位于第二、四象限,B选项正确;由反比例函数的对称性,可知反比例函数y =-3x 关于y =x 对称,C 选项正确;由反比例函数的性质,k <0,在每个象限内,y 随x 的增大而增大,不在同一象限,不具有此性质,D 选项错误.3. C 【解析】点(-3,4)在反比例函数的图象上,∴k =-3×4=-12,∵2×(-6)=-12;∴点(2,-6)在该反比例函数的图象上,故选C .4. D 【解析】∵M (a ,2a )在y =8x 的图象上,∴2a 2=8,∴a 2=4,∴a =±2.5. D 【解析】由题意可得a -2>0,解得a >2.6. B 【解析】∵k =-12<0,∴反比例函数的图象在第二、四象限内,且在每一象限内y 随x 的增大而增大,∵A 、B 在第二象限,-3<-2,∴0<y 1<y 2,∵点C 在第四象限,∴y 3<0,∴y 3<y 1<y 2.7. D 【解析】根据题意,k -1=2,解得k =-2,∴反比例函数解析式为y =-2x .当x =1时,y =-2,在第四象限内,y 值随x 值的增大而增大,∴函数值y 的取值范围是-2<y <0.8. 2 【解析】∵点A (a ,b )在反比例函数y =3x 的图象上,∴ab =3,则代数式ab -1=3-1=2.9. -1 【解析】∵反比例函y =(2m -1)xm 2-2,∴m 2-2=-1,∴m 2=1,m =±1,∵x >0时,y 随着x 的增大而增大,∴2m -1<0,∴m <12,∴m =-1.10. y =-2x (答案不唯一) 【解析】由于x 0y 0>-4,且函数图象位于第二、四象限,则只要写出的反比例函数表达式中的k 满足-4<k <0即可.11. -1 【解析】根据题意得y 1=-2x 1,y 2=-2x 2,∴y 1y 2=-2x 1·(-2x 2)=4x 1x 2=4-4=-1.12. 8 【解析】∵A (1,m )、B (2,n )是反比例函数y =k x 图象上的两点,∴m =k ,n =k 2,∵m -n =k -k2=k2=4,∴k =8. 13. 1 【解析】设反比例函数表达式为y =kx (k ≠0).∵反比例函数经过点A (-4,-3),∴k =-4×(-3)=12,∵y 1-y 2=4,即122m -126m =246m=4,∴m =1.14. 2 【解析】∵点P (2-m ,m +1)是反比例函数y =mx 图象上一点,∴m =(2-m )(m +1),解得m=±2,∵反比例函数y =mx在其所在象限内y 随x 的增大而减小,∴m >0,∴m = 2.15. 43 【解析】∵A (x 1,y 1),B (x 2,y 2)是反比例函数y =k x 图象上的两点,∴y 1=k x 1,y 2=kx 2,∴y 1+y 2=k x 1+k x 2=k (x 1+x 2)x 1x 2=k ×-22=-43,∴k =43. 16. -54 【解析】∵点A (x 1,y 1)、B (x 2,y 2)是反比例函数y =kx 图象上的两点,∴x 1y 1=k ,x 2y 2=k ,∴(x 1-x 2)(y 1-y 2)=x 1y 1-x 1y 2-x 2y 1+x 2y 2=k -x 1k x 2-x 2k x 1+k =2k -x 1x 2k -x 2x 1k =9,∵3x 1=2x 2,∴x 1x 2=23,x 2x 1=32,∴2k -23k -32k =9,解得k =-54.点对线·板块内考点衔接1. 0 【解析】∵点A (a ,b )(a >0,b >0)在双曲线y =k 1x 上,∴k 1=ab .∵点A (a ,b )与点B 关于x 轴对称,∴B (a ,-b ).∵点B (a ,-b )在双曲线y =k 2x上,∴k 2=-ab .∴k 1+k 2=ab +(-ab )=0.2. 6 【解析】∵反比例函数y =k x 的图象上有一点P (2,n ),∴k2=n .又∵将点P 向右平移1个单位,再向下平移1个单位得到点Q ,∴点Q 的坐标为(3,n -1),∵点Q 也在该函数的图象上,∴k3=n -1,解方程组⎩⎨⎧k2=n k 3=n -1,得⎩⎪⎨⎪⎧k =6n =3.3. 1 【解析】设点A 的坐标为(a ,n ),则点B 的坐标为(-a ,n ),∵A 、B 两点分别在反比例函数y =2m -3x (m ≠32)和y =3m -2x (m ≠23)的图象上,∴⎩⎪⎨⎪⎧n =2m -3a n =3m -2-a,解得m =1.练习2 反比例函数与几何图形或一次函数结合点对线·板块内考点衔接1. -3 【解析】联立⎩⎪⎨⎪⎧y =3xy =ax +6,得ax 2+6x -3=0,∵一次函数y =ax +6(a ≠0)的图象与反比例函数的图象只有一个交点,∴62-4a ×(-3)=0,解得a =-3.2. 48 【解析】由题意得⎩⎨⎧-2+m =n2①-4+m =n4②, ①-②得,n4=2,解得n =8,把n =8代入①求得m =6,∴mn =48.3. 2<x <4 【解析】由y 1>y 2可知一次函数的图象在反比例函数图象的上方,所以观察图象可得x 的取值范围为2<x <4.4. -2<b <2 【解析】如解图,∵直线y =-x +2与反比例函数y =1x的图象有唯一公共点,反比例函数的图象是中心对称图形,∴直线y =-x -2与反比例函数y =1x的图象有唯一公共点,∴-2<b <2时,直线y =-x +b 与反比例函数y =1x的图象没有公共点.第4题解图点对面·跨板块考点迁移1. 92 【解析】设点P 坐标为(a ,0) 则点A 坐标为(a ,3a ),B 点坐标为(a ,-6a ),∴S △ABC =12AB ·OP =12·(3a +6a )·a =92. 2. (6,2) 【解析】∵点A (3,4)在反比例函数y =k x的图象上,∴k =3×4=12.∵四边形ABCD 是矩形,∴AD ∥BC , AB ⊥BC .∵AD ∥x 轴,∴BC ∥x 轴,AB ⊥x 轴.∵AB =2,∴点B 的坐标为(3,2).∴点C 的纵坐标为2.∵点C 在反比例函数y =12x 的图象上,∴x C =122=6,∴点C 的坐标为(6,2). 3. 1 【解析】设AF =a (a <2),则F (a ,2),E (2,a ),∴FD =DE =2-a ,∴S △DEF =12DF ·DE =12(2-a )2=98,解得a =12或72(舍去),∴点F 的坐标为(12,2),∴k =1. 4. 6 【解析】如解图,过点D 作DE ⊥OA 于点E ,交OC 于点F ,∵S △ODE =S △OAC ,∴S △ODF =S 四边形EFCA ,∴S △OBC =S 四边形DEAB .设D 点的横坐标为x ,则纵坐标为4x ,∵D 为OB 的中点.∴EA =x ,AB =8x ,∴S 四边形DEAB =12(4x +8x)x =6,∴S △OBC =6.第4解题图5. -3 【解析】如解图,过点P 作PE ⊥y 轴于点E .∵四边形ABCD 为平行四边形,∴AB =CD .又∵BD ⊥x 轴,∴四边形ABDO 为矩形,∴AB =DO ,∴S 矩形ABDO =S ▱ABCD =6.∵P 为对角线交点,PE ⊥y 轴,∴四边形PDOE 为矩形且面积为3,即DO ·EO =3 ,∴设P 点坐标为(x ,y ),k =xy =-3.第5题解图6. 8 【解析】∵y =4x的图象与y =x 的图象都关于原点O 成中心对称,∴这两个函数图象的交点关于原点O 成中心对称.设A (t ,t ),则t >0,C (-t ,-t ).∵AD ⊥x 轴,BC ⊥x 轴,∴D (t ,0),B (-t ,0).∴BD=2t ,AD =CB =t .∴S 四边形ABCD =S △ABD +S △CBD =12BD ·AD +12BD ·BC =12·2t ·t +12·2t ·t =2t 2.∵点A (t ,t )在y =4x的图象上,∴t =4t.∴t 2=4.∴S 四边形ABCD =2×4=8. 7. 4 【解析】根据题意,设点D 的坐标为(a ,b ),∵AB =BC =CD ,∴点C 的坐标为(12a ,2b ),∴B (0,3b ),∴A (-12a ,4b ),∵点A (-12a ,4b )在反比例函数y =-8x 的图象上,∴-12a ×4b =-8,∴ab =4,即k 的值为4.8. 4 【解析】设B 点坐标为(a ,b ),∵△OAC 和△BAD 都是等腰直角三角形,∴OA =2AC ,AB =2AD ,OC =AC ,AD =BD ,∵OA 2-AB 2=8,∴2AC 2-2AD 2=8,即AC 2-AD 2=4,∴(AC +AD )(AC -AD )=4,∴(OC +BD )·CD =4,∴a ·b =4,∴k =4.。