高等数学论文
大学数学论文(5篇)

大学数学论文(5篇)高校数学论文(5篇)高校数学论文范文第1篇参与全国高校生数学竞赛除了上述的必要条件之外,还需具备四个充分条件:如何稳固参与预赛的人数、制定合理有效的培训内容、师资队伍的建设以及经费来源等。
首先,如何有效地组织高校生参与竞赛,可谓是四个条件中最重要的一项,也是下一节笔者所讨论的重点;另外,作为数学竞赛的主要内容:《高等数学》是工科类同学必修的基础理论课,《数学分析》、《高等代数》、《解析几何》等课程是数学专业的专业基础课。
这些是数学竞赛得以顺当开展的基础。
第三,调动部分高校专任的数学老师组成竞赛培训团队也是一项重要的环节,笔者将会在第三节做具体的讨论。
最终是竞赛活动经费,笔者认为可以从以下三个方面获得:第一方面,每所高校都会有专项的创新活经费,可以从今项经费中申请一部分;其次方面,各赛区的主办方会拔给每个学校一些经费;第三方面,适当地向参与培训的同学收取(或变相地收取)一部分。
这些经费主要用于:参与竞赛的同学报名费、培训老师的课时费和同学竞赛时的考试相关费用等。
基于上述分析,在一般高校开展数学竞赛培训以及组织同学参与全国高校生数学竞赛是完全可行的并具有实际意义的。
2一般高校同学现状分析为了吸引、鼓舞更多的同学参加数学竞赛活动,必需先了解现在一般高校本科生的生源现状及其学习状态。
不得不承认,全国高校自扩招以来,一般高校高校生的质量普遍下降。
主要缘由有两个:一是高校的教育已由精英式转为大众式;二是随着扩招的进行,大多数优质生源进入了985或211这样的重点高校,这样就导致一般高校中的优质生源比例相对削减。
限于优质生源比例小的问题,再加上数学理论繁杂与浅显,学习起来困难重重,多数同学在学习数学时会产生犯难心情从而心生畏惧。
还有小部分的同学在进校时数学基础就比较差,(或由此产生的)学习数学的乐观性很低。
还有一部分同学认为数学无实际用途,从主观上学习数学的爱好消极。
基于以上几点缘由加上一些来自一般高校教学条件的限制,许多高校生的实际数学水平较低,所引发的直接结果就是学习成果下降、考试分数偏低、补考人数增多,更有甚者一些同学由于数学不及格而无法毕业。
学习高等数学体会论文

Hefei University大一高等数学论文院系:电子信息与电气自动化学生姓名:**学号: **********专业:自动化班级:一班年级:一年级****: ***完成时期: 十二月十三号摘要:高等数学是大学工科里的一门基础学科。
在我学的自动化专业中更显得格外重要。
经历了快一个学期的高等数学学习对这门课程有一定认识的同时,在学习的过程中遇到了各式各样的难题与困惑,因此,特对在学习中的遇到困难与将来如何更好的努力,不断提高学习这门课的能力进行了总结,希望在以后的时间里可以有所进步。
Abstract:Higher mathematics is an important basic engineering inside the university. The more I learn in automation specialty in very important. Experienced higher mathematics almost a semester has certain understanding at the same time on the course, in the learning process encountered problems and confusion, so to every kind of, in the study of the difficulties and strive in the future how to better, continuously improve the ability of learning this course are summarized, in the hope that time can make progress.关键词:高等数学、总结方法、极限一:对高中数学的回顾高中学习数学我经历过两个数学老师。
先说说第一个数学老师吧,这是一个年轻的小伙老师,他以前是教初中的后来通过考试,升就教了高中,我们是他教的第一届的高中学生。
高数学习方法总结论文【精选4篇】

高数学习方法总结论文【精选4篇】高数学习方法总结论文【精选4篇】在日常学习、工作或生活中,需要学习的内容越来越多,想要高效的学习,就一定要掌握正确的学习方法!那么,大家知道要怎样正确高效的学习吗?以下是小编为大家整理的高数学习方法总结论文,供大家参考借鉴,希望可以帮助到有需要的朋友。
高数学习方法总结论文1大学生学习高等数学要掌握合适的学习方法,因人而异,这里我只是结合我自己的一些学习方法和经验供大家参考。
高等数学作为高等教育的一门基础学科,几乎对所有的专业的学习都有帮助,对于我们飞行器动力工程专业,高等数学是联系物理,力学,以及贯穿于专业基础课的一把刃剑和纽带,对于大一这一年的学习尤为重要,只有打下坚实的基础,对于之后学习其他的学科,包括选修课中的工程数学的分支(复变函数,数理方程等),都有很大的帮助。
首先了解高等数学的组织结构,大一上学期主要学习极限,函数,以及微分和积分,(空间几何在下学期学),在期末考试中大多数都集中在积分和微分这部分。
极限是积分和微分的基础,重要的概念和思想在学习极限这部分就会体现出来,有些问题运用基本定义就会迎刃而解,在掌握了基本概念和常用的解题方法后,学习起来就会很轻松;下学期比较重要,相对于上学期的内容也较丰富和复杂;对于偏导数和曲线积分、曲面积分,需要扎实的微积分思想,此外就是级数和微分方程;总之,高等数学可以说是积分,微分占据主要地位。
(一)做题的方法和技巧学习高等数学的过程中必不可少的就是学习方法的及时总结,理想的情况下就是保证每个人手中都有一本课外的教辅书(个人推荐吉米多维奇),在平时做作业和做课外题目的过程中,自己会做的题目也要做到自己的思想和答案的思想进行比较,互相补充,遇到好的解题方法要记下来,要记的内容是题目,方法和自己的感受;遇到不明白的题目时不要浮躁,也不要着急先看答案,首先进行冷静的思考,要知道考的内容是什么,要用到什么知识点,然后一步一步看答案,这里我的意思是先看答案的第一步求解的问题是什么,然后停止看答案,想一想答案的这一步对你是否有启示作用,接下来自己试一试能不能继续独立往下做,如果不行的话继续往下看答案,直到做出来为止,做完后一定做好笔记。
高等数学教学论文(5篇)

高等数学教学论文(5篇)高等数学教学论文(5篇)高等数学教学论文范文第1篇爱好是最好的老师,数学又是美的,但是数学学习往往是枯燥的,同学很难体会到这种奇妙。
如何提高同学对高等数学的爱好是授课老师需要思索的问题。
我在教学中为了让教学更加生动加入了一些生活中的数学应用。
比如,为什么人们能精确猜测几十年后的日食,却没法精确猜测明天的天气;为什么人们可以通过https平安地扫瞄网页而不会被监听;为什么全球变暖的速度超过一个界限就变得不行逆了;为什么把文本文件压缩成zip体积会削减许多,而mp3文件压缩成zip大小却几乎不变;民生统计指标究竟应当采纳平均数还是中位数;当人们说两种乐器声音的音高相同而音色不同的时候究竟是什么意思在这些例子中数学是好玩的,体现了基础、重要、深刻、美的数学。
二、培育同学自我学习力量授人以鱼不如授人以渔,单纯教会同学某一道题目的计算不如使同学把握解题的方法。
因此讲解题目时可以结合方法论:开头解一道题的时候我会告知同学这就和解决任何一个实际问题一样,首先从要观看事物开头,把数学题目观看清晰;接下来就需要分析事物,搞清晰题目的特点、有什么样的函数性质、证明的条件和结论会有什么样的联系,依据计算状况预备相应的定理和公式;最终就是解决问题,结合把握的计算和推理技巧完成题目的求解。
通过这样的讲解,和必要的练习,同学完成的不再是一道道独立的数学题目,实现的是方法论的应用,也是更清楚的规律思维的训练,有助于提高同学的自我学习力量。
“教是为了不教”,把握解题方法,有自学力量,以后工作遇到实际问题也能迎刃而解。
三、重视规律思维的训练不管是工作还是生活中人们都会遇到数学问题,假如没有规律思维只是表面理解就有可能陷入“数学陷阱”。
在教学中我经常举这样一个例子:有个婴儿吃了某款奶粉后突发急病死亡,而奶粉厂却高调坚称奶粉没有问题,是否有股对这个黑心奶粉厂口诛笔伐并将之搞垮的冲动呢?且慢,不妨先做道算术题:假设该奶粉对婴儿有万分之一的致死率,同时有100万婴儿使用这款奶粉,那就应当有约100名孩子中招,但事实上称使用该奶粉后死亡的说法却远远没有100个。
大一上高数论文

大一上高数论文高数是大一上学期的一门重要课程,它是数学的基础和核心内容之一。
通过研究高数,我们可以掌握数学分析和推理的基本原理,培养逻辑思维和解决问题的能力。
因此,深入研究高数的理论与应用是非常有意义的。
本论文的目的是介绍高数的重要性和研究目标。
在引言部分,我将概述将要讨论的主题和论文的结构。
我将首先阐述高数在现实生活中的应用和意义,以及它在其他学科中的作用。
接着,我将介绍论文的主题,包括高数的基本概念和方法。
最后,我将简要介绍论文的章节安排和内容大纲。
通过本论文的研究,我们可以更好地理解高数的重要性和应用场景,提高研究兴趣和学业成绩。
同时,这也为进一步深入研究高等数学奠定了基础,为未来学术研究和职业发展打下坚实的数学基础。
本篇论文旨在解释高数的基本概念和术语,介绍基本的数学符号和公式,并讨论高数的重要性和应用领域。
高数的基本概念和术语高数,即高等数学,是研究计量、计算、结构和变化的一门数学学科。
它关注数、数量、结构和空间等概念的定量描述和分析。
在高数中,有一些基本的概念和术语需要理解和掌握:数:高数研究的基本对象,可以是实数、复数、向量等。
数量:数的具体表达和度量。
结构:指数间的关系和组织方式,如数的运算规则和性质。
空间:高数中研究的对象所存在的背景和场所。
基本的数学符号和公式在高数中,使用一些符号和公式来表达和计算数学问题。
下面是一些常见的符号和公式:π:表示圆周率,约等于3..表示求和符号,用于将一系列数相加。
表示括号,用于改变运算次序。
x,y,z:表示未知数或变量。
高数中还有许多复杂的数学符号和公式,它们用于描述和计算更复杂的数学问题。
掌握这些符号和公式可以帮助我们更深入地理解和解决数学难题。
高数的重要性和应用领域高数作为一门基础学科,具有广泛的应用领域。
它的重要性体现在以下几个方面:科学研究:高数为各个科学领域提供了必要的数学工具和方法,如物理学、化学、生物学等。
工程技术:高数在工程设计、计算机科学、电子技术等领域的应用非常广泛,为实际问题的分析和解决提供了数学支持。
数学毕业论文(精选3篇)

数学毕业论文(精选3篇)数学是所有理工科学科的基础,大学生中数学专业的人也很多,读书是学习,摘抄是整理,写作是创造,这里是小编给家人们分享的数学毕业论文【精选3篇】,仅供借鉴。
大学数学研究论文篇一【摘要】本研究以高职院校单招班级为调查对象,通过问卷调查法研究高职单招学生对高等数学课程分层教学的看法,采用有效的分层次教学形式,培养学生的学习能力、激发学生学习的内动力,进而为分层教学的具体实施提供参考。
【关键词】高等数学;分层次教学;教学改革高职单招的生源较为复杂,其中一类对象是中职生,其特点是在进入高等职业教育前具有相应专业课的理论知识,并具备一定的职业技能素养,但在公共文化课程方面与统招生相比,存在一定的差距。
目前来看,部分高职院校将高考统招生源和单招生源放在同一个班级上课,造成学生接收程度不一、教学效果不佳等问题。
本文将根据高职部分单招生源在高中时期数学基础薄弱的事实,对其教学方法及课程设置进行合理的分层教学探索[1]。
1分层教学改革的原因高职生源与本科生源在高等数学课程教学上的区别高等数学课程具有较强的工具性和实用性,是学生提高自身能力和素质的载体。
从教学内容来看,高职版虽然基本上是本科版的压缩,但是高职高等数学的教材和课堂结构、教学模式和教学方法应与本科高校不同,须改变传统的以教师讲授为主的满堂灌,改变课堂教学模式的单一性,寻找优质的适合高职生源的课程资源、教材及教学方法以满足学生的学习需求及毕业后的岗位需求。
用教学改革的办法推进高职单招班高等数学分层教学的课堂教学结构战略性调整,增强应对不同生源学生需求的适应性和灵活性,提高课堂教学的效率,改变满堂灌的课堂教学模式。
高职不同生源学生在学习高等数学时的基础差异高职院校主要招生形式是高考统招和对口单招。
生源结构的复杂性和生源素质的差异性对高职院校的教育教学工作带来了极大的考验和挑战。
不同生源的同层教学会让高职单招生源中原本基础不好的学生跟不上进度,进而造成部分学生缺乏独立学习能力和探索精神。
大一高等数学论文
大一高等数学论文第一篇:大一高等数学论文高等数学论文高等数学作为一门基础课程,他在各个领域的重要性就不言而喻了,但现如今在大学普遍的教学方式:“定义→性质→例题”。
这种模式显然不够,并且在大学一个课堂的内容很多,各种各样新的概念更是层出不穷,让学生应接不暇,而我们学习大多是在课后自己去学的,这样就会产生一种自我满足心理,对于学过的内容去看资料做习题时就会认为自己会做了差不多能懂了,便认为自己学会了;还有就是对如何学、学到什么程度,在别的课程影响下,学习高等数学的深度也是不同的,学习太深会感到越难,从而影响到学习兴趣,这样的人大有人在。
但在现今学习的潮流下,我们总不能说不学了,学习还是要学的,关键就在于怎么学、如何去学。
你想要老师改变教学方式是不可能的,因为老师不是为你一个人而讲的,要考虑到大多数同学,在几十人甚至一百多人的课堂上,固定的教学模式也成了普遍的事,我们可以做的就是跟老师交流,建议老师做出细微的调整,那么我们学习便主要靠自己了,改变自己才是最好的方法,虽说每个人都知道学习的方式很多,但大都会感到力不从心,无从下手。
我在这就谈谈我自己的看法吧。
如今进入大学,首先第一点需要做的就是改变自己的思想观念。
记得刚来时,学习高等数学还像以前那样总是等着老师,很少预习,老师讲到哪,书就看到。
结果才几堂课就发现自己跟不上了。
例如对于学习函数的极限用“ξ~δ”语言表示时,老师讲的很快,感觉定义一下子就弹出来了,感到有点突兀,接下来讲的例题就有点跟不上了,学习也有了影响。
后来作了深刻的思考,明白大学跟高中是完全不同的,高中老师是带着你督促你学,而大学老师是引导你学,给你一个方向,剩下的路要你自己一步步去寻找,同时老师也在课堂上多次强调这种观念,让我们先从思想上作出调整。
还记得后来花了很长时间才弄清弄熟,这就要我们预习了,提前作了解、思考,也能更深入了解定义了,走在老师的前面是有必要的。
虽说明白了这反面,但实际上做起来就不是那么快改过来的,这需要一个调整期的,不要心急,想学习好就得坚持。
高等数学数学论文4600字_高等数学数学毕业论文范文模板
高等数学数学论文4600字_高等数学数学毕业论文范文模板高等数学数学论文4600字(一):数学建模竞赛与高等数学课堂教学论文摘要:现阶段,随着社会的发展,我国的教育水平的发展也有了改善。
高等教育法第五条规定:“高等教育的任务是培养具有创新精神和实践能力的高级专门人才,发展科学技术文化,促进社会主义现代化建设。
”因此,培养创新型人才是高等教育的根本目标。
教育特别是高等教育承担着为国家培养创新型人才的神圣使命,世界各国的经济和综合国力的竞争,归根到底就是人才创新能力的竞争。
培养创新型人才的核心是创新意识和创新思维能力的培养。
高等数学是高等院校中的基础学科,它在培养大学生抽象逻辑思维能力、创新精神以及创新能力都具有独特而重要的作用。
我校除了文科专业外均开设了高等数学课程,与学校坚持“建设高水平理工大学,培养应用型创新人才”的办学方向相一致。
关键词:数学建模竞赛;高等数学课堂;教学引言:数学建模旨在用数学知识和和方法来解决实际问题,在数学建模的过程中,首先通过分析问题,把实际问题转化为数学语言,从而描述成大家较熟悉的数学问题。
然后借助数学理论、计算机理论等工具对这些数学问题进行求解,最终获得相对应实际问题的解决方案或者对相应实际问题有更深入和更详细的了解。
随着科学技术的发展日益迅猛,数学建模已经被广泛应用在生物、化学、医学、工程技术、航天科技等众多领域。
因此数学建模也越来越受到社会的普遍重视,并成为现代科学技术工作者必备的重要能力之一。
很多高等院校也把每年的全国大学生数学建模成绩作为衡量教学水平的一个重要指标。
一、将数学建模思想融入高等数学混合式教学中数学建模是一种数学的思维方式,是利用数学思想和方法,通过预设、简化和概括建立的与实际问题比较接近并基本能处理实际问题的一种模型或方法,并在工程、经济、生态乃至于社会科学等领域的问题都可以融入数学建模的方法。
因此,数学和数学思想越来越广泛地得到了应用。
混合式教学简单的说就是把线下(传统)学习和线上(网络)学习的优势结合在一起,换句话说,既要发挥教师教学设计、教学指导、教学启发以及教学评价的主导作用,又要体现学生主动学习和自觉学习的主体地位。
高考数学论文(5篇)
高考数学论文(5篇)高考数学论文(5篇)高考数学论文范文第1篇一、近年来高考试题中涉及工科高等数学学问的考题类型及难度分析1、涉及函数与极限部分的试题这部分试题大都以客观题的形式消失,分值不大,难度中等或较低,只需结合初等数学学问作简洁整理和代入。
但是同学必需娴熟把握简洁极限的求法以及函数连续的定义。
如(2021年陕西12题),(2021年湖北6题),(2021年四川5题)2、涉及导数及其应用部分的试题此类试题考试形式敏捷,涉及导数的几何意义、单调性、极值、最值、不等式的证明以及实际应用问题等,所占分值在12分左右。
客观题难度较低,主观题其次小问通常有肯定难度,而且有些问题需要借助于高等数学的定理来证明(例6需要拉格朗日定理作依托)。
完整解答问题需要同学具有良好的数学素养,能全面考察同学力量。
如(2021全国大纲卷8题),(2021安徽17题),(2021辽宁21题),(2021福建18题)3、涉及向量及其运算的试题直接涉及向量内积、向量夹角、向量间关系试题多以客观题形式消失,立体几何中证明线、面平行、垂直、求动点的轨迹、最值等“动态”型问题通常以主观题形式考查且分值都在10份以上。
主要考察同学用向量学问识把抽象的空间图象关系、空间中的点、线、面的位置关系转化为详细的数量关系,降低思维难度,淡化推理论证,简化思维过程的力量。
如(2021安徽13题),(2021全国大纲卷19题),(2021江苏15题)4、涉及定积分的试题由于新课程标准的实施,涉及定积分制试点的试题消失在近年来全国新课标卷中,基本是以客观题的形式消失,分值不高,主要考查定积分的定义、几何意义以及简洁的计算。
如(2021全国新课标9题)除了涉及高等数学的学问点外,高考命题越来越注意“力量立意”。
增加了有关数学建模思想、数学算法思想以及数学探究等开放性试题,在考查同学一般数学力量(思维力量、计算力量、空间想象力量)的基础上,全面地测量同学观看、试验、联想、猜想、归纳、类比、推广等思维活动的水平以及抽象、概括并建立数学模型的力量。
高等数学论文毕业范文.doc
高等数学论文毕业范文高等数学课程不仅是学生掌握一些实用的数学工具的主渠道,它更是培养学生的数学思维、数学素质、创新能力的重要载体,所以,高等数学教学对大学生有着重要的意义。
下面是我为大家整理的高等数学论文,供大家参考。
高等数学论文范文一:独立学院高等数学分层教学摘要:独立学院学生的学习基础差别比较大,并且高等数学内容繁多,学生学习起来有一定的难度,所以有必要对独立学院的学生进行分层次教学。
文章对独立学院高等数学分层教学进行研究。
关键词:独立学院;高等数学;分层教学一、前言近年来随着高校招生规模的扩大独立学院应运而生,独立学院所招的学生高考分数一般在公办普通高校本科和专科之间,由于在这一区间内的分值范围比较大,所以独立学院所招的学生学习能力和学习基础差别较大。
因此,不能照搬公立本科院校的教学模式对独立学院的学生进行教学。
二、独立院校高等数学分层教学的必要性和重要性高等数学是高校理工类学生必修的公共课程,首先这门课程具有内容繁多,公式复杂,推理证明过程对学生的逻辑性思维要求较高的特点,学生学习起来有一定的难度。
其次,大学同初中和高中不同。
由于现在的学生长期接受初中、高中教师耳提面命式的管教,刚进入大学校门会有种突然解放的感觉,他们会不自觉的放松自己。
因为高等数学是一门非常重要的基础课程,学习高等数学可以为以后的理工科课程的学习打下基础,所以一般大学都将高等数学教学放在大一进行。
加之独立学院招收学生的学习基础相差比较大,如果实行大班不加区分的统一授课的话基础较差的学生学习起来会比较吃力,进而打击到学生学习高等数学的积极性,这对于刚刚进入大学校门还没有来得及适应大学生活和学习规律的大一新生来说无疑是致命的。
所以,独立院校高等数学分层教学是很有必要的。
独立院校的高等数学教师应当在开课之前对新生的学习情况有所了解,根据学生学习能力和基础的好坏进行分层备课和教学。
这种分层次教学的理念在一些地方的初中、高中有所实行,但是大学中很少使用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高等数学基础概念——极限
学院:印刷工程系
专业:包装技术与设计
班级:15包装2班
姓名:***
学号:*********
一、摘要
高等数学极限理论是高等数学教学环节中的重要内容,是学习高等数学、线性代数以及复变函数等大学数学科目的基础科目,极限概念是微积分中最基本的概念,极限思想是数学中极为重要的思想。
下面主要介绍了高等数学中的数列与函数极限的概念、运算法则以及求解方法进行简析。
文章最后,介绍了数学极限思想的发展简史,并对其日后的发展趋势进行展望。
二、关键词
高等数学,数列极限,函数极限,运算法则
三、正文
(一)极限的概念
极限概念是由某些实际问题的精确破解而产生的,是用以描述变量在一定的变化过程中的终极状态的一个概念。
比如物理中的瞬时速度的问题。
我们知道速度可以用位移差与时间差的比值表示,若时间差趋于零,则此比值就是某时刻的瞬时速度,这就产生了一个问题:趋于无限小的时间差与位移差求比值,就是0÷0,这有意义吗(这个意义是指“分析”意义,因为几何意义颇为直观,就是该点斜率)?这也迫使人们去为此开发出合乎理性的解释,极限的思想呼之欲出在数学领域中“极限”是用来描述变量在一定的变化过程中的极限状态的。
粗略地讲,在高等数学中,极限一直是一个重要内容,并以各种形式出现而贯穿全部内容。
(二)数列极限
首先介绍刘徽的"割圆术",设有一半径为1的圆,在只知道直边形的面积计算方法的情况下,要计算其面积。
为此,他先作圆的内接正六边形,其面积记为A1,再作内接正十二边形,其面积记为A2,内接二十四边形的面积记为A3,如此将边数加倍,当n无限增大时,An无限接近于圆面积,他计算到3072=6*2的9次方边形,利用不等式An+1<A<An+2[(An+1)-An](n=1,2,3....)得到圆周率=3927/1250约等于3.1416。
数列极限标准定义:对数列{xn},若存在常数a,对于任意ε>0,总存在正整数N,使得当n>N时,|xn-a|<ε成立,那么称a是数列{xn}的极限。
(三)函数极限的通俗定义
1、设函数y=f(x)在(a,+∞)内有定义,如果当x→+∞时,函数f(x)无限接近一个确定的常数A,则称A为当x趋于+∞时函数f(x)的极限。
记作lim f(x)=A ,x→+∞。
2、设函数y=f(x)在点a左右近旁都有定义,当x无限趋近a时(记作x→a),函数值无限接近一个确定的常数A,则称A为当x无限趋近a时函数f(x)的极限。
记作limf(x)=A ,x→a。
※函数的左右极限:
1:如果当x从点x=x0的左侧(即x〈x0)无限趋近于x0时,函数f(x)无限趋近于常数a,就是a是函数f(x)在点x0处的左极限,记作x→x0-limf(x)=a.
2: 如果当x从点x=x0的右侧(即x>x0)无限趋近于点x0时,函数f(x)无限趋近于常数a,就是说a是函数f(x)在点x0处的右极限,记作x→x0+limf(x)=a.
(四)极限的运算规则(或称有关公式)
lim(f(x)+g(x))=limf(x)+limg(x)
lim(f(x)-g(x))=limf(x)-limg(x)
lim(f(x)*g(x))=limf(x)*limg(x)
lim(f(x)/g(x))=limf(x)/limg(x) ( limg(x)不等于0 )
lim(f(x))^n=(limf(x))^n
以上limf(x) limg(x)都存在时才成立
lim(1+1/x)^x =e x→∞
lim(1+1/x)^x =e x→0
(五)两个重要极限
1、lim sin(x)/x=1,x→0
2、lim(1 + 1/x)^x=e,x→0 (e≈2.7182818...,无理数)
(六)极限求解的方法
1.迫敛性求解
求解的要点是,当极限不容易直接求出解的时候,就可以考虑将求解极限的变量做适当的放大或者缩小,使得放大、缩小所得的自变量易于求解极限,且二者的极限值相同,即原极限存在且等于此公共值。
2.洛必达法则
∞/∞型不定式极限常用的方式就是洛必达法则,有时还需要利用推广的洛必达法则进行求解。
即将x→a换成x→a+0或x→a-0也可以适应洛必达法则。
应用洛必达法则的时候应注意一下几点:要验证应用洛必达法则的条件应对极限进行分析确定其类型,然后才能继续使用洛必达法则,主要符合这个条件就可以利用法则求解极限;另外,其他类型的不定式也可以求解极限。
3.极限内涵和判断准则
极限的内涵可以利用公式进行描述,即ε>0;|an-a|<ε,以此来描述数列{an}在变化的过程中所定义的是a近似的程度。
即在{an}在变化的过程中an与a可以任意的接近,且可以要多接近就多接近,这也是极限的思路之一。
上式表示的是an和a的绝对值之间的差值小于ε,且不是任何一项an都有这个性质,而是在某一个时刻后,即n>N的时候才能体现出来。
用纯粹的数学方式表达:极限存在的辨识方法:极限存在左右极限存在且体现相等;符合夹逼定理;符合连续定理(单调有界数列必有极限);符合柯西准则。
(七)对极限理论理解概述
所谓的极限理论是第二次数学危机所推动的一种类似的微增量类的计算形式,经过一个长期发展过程,数学家达朗贝尔、拉格朗日、贝努力家族、拉普拉斯等人的努力下,微积分理论的发展得到了极大的丰富。
如著名的法国数学家柯西的研究就从分析基础严密话的工作项前迈进了一个台阶,在其努力下连续、导数、微分、积分、无穷大极数的和等建立打下来较为坚实的基础。
但是因为当时的情况所限,实数的严格理论没有最终形成和完善,所以柯西的极限理论还不能得到最终完善。
可以之后的一些数学家如:维尔斯特拉斯、戴德金等都经过自身的努力在各自的领域上进行了深入的研究,都将分析基础归结为实数理论,并与70年代各自建立了完整的实数体系,因此在极限理论上,柯西所开辟的道路上完善起来的。
而数学分析的无矛盾性问题也被归结实数论的无无矛盾性,从而使得微积分学也获得了较为牢固的理论基础。
(八)数学极限思想的发展及其展望
极限的朴素思想和应用可追溯到古代,我国古代哲学名著《庄子》记载着庄子的朋友惠施的一句话:“一尺之棰,日取其半,万世不竭。
”其含义是:长为一尺的木棒,第一天截取它的一半,第二天截取剩下的一半,这样的过程无穷无尽地进行下去。
随着天数的增多,所剩下的木棒越来越短,截取量也越来越小,无限地接近于0,但永远不会等于0。
17世纪后半叶,牛顿和莱布尼茨在前人研究的基础上,分别从物理与几何的不同思想基础、不同研究方向,分别独立地建立了微积分学。
他们建立微积分的出发点使直观的无穷小量,极限概念被明确提出,但含糊不清。
牛顿子发明微积分的时候,合理地设想:t越小,这个平均速度应当越接近物体在时刻t时的瞬时速度。
这一新的数学方法,受到数学家和物理学家欢迎,并充分地运用它解决了大量过去无法问津的科技问题,因此,整个18世纪可以说是微积分的世纪。
但由于它逻辑上的不完备也招来了哲学上的非难甚至嘲讽与攻击,贝克莱主教曾猛烈地攻击牛顿的微分概念。
实事求是地讲,把瞬时速度说成是无穷小时间内所走的无穷小的距离之比,即“时间微分”与“距离微分”之比,是牛顿一个含糊不清的表述。
其实,牛顿也曾在著作中明确指出过:所谓“最终的比”不是“最终的量”的比。
而是比所趋近的极限。
但他既没有清除另一些模糊不清的陈述,又没有严格界说极限的含义。
包括莱布尼茨对微积分的最初发现,也没有明确极限的意思。
因而,牛顿及其后一百年间的数学家,都不能有力地还击贝克莱的这种攻击,这就是数学史上所谓第二次数学危机。
经过近一个世纪的尝试与酝酿,数学家们在严格化基础上重建微积分的努力到19世纪初开始获得成效。
由于法国数学家柯西、德国数学家魏尔斯特拉斯等人的工作,以及实数理论的建立,才使极限理论建立在严密的理论基础之上。
所谓“定义”极限,本质上就是给“无限接近”提供一个合乎逻辑的判定方法,和一个规范的描述格式。
至此极限理论才真正建立起来,微积分这门学科才得以严密化。
六、结束语
极限思想是高等数学学习过程中不可或缺的一种重要的思维基础,它不仅为后续高等数学知识的学习提供了知识储备,更为以高等数学为基础的大学数学体系的学习和研究提供了宝贵的资源。
参考文献:《极限的历史》;
参考文献:《高等数学》;。