螺旋升角的计算方法

螺旋升角的计算方法

螺旋导程的计算方法:

可以用螺旋线展开后形成的直角三角形来说明:

(1)导程S:螺旋线绕圆柱体转一圈,沿圆柱体轴线方向移动的距离,即三角形的BC边;

(2)螺旋角ω:螺旋线的切线方向与圆柱体轴线之间的夹角,即三角形中的∠ABC;

(3)螺旋升角λ:螺旋线与圆柱体端面之间的夹角,即三角形中的∠BAC。

由△ABC可知:三要素之间的关系如下式:

P=AC?cotω=π?D?cotω=π?D tanω

P=AC?tanλ=π?D?tanλ

注:ω+λ=90°

如果是螺纹则:D中径= D大径- 0.6495*P

齿轮螺旋角计算方式

齿轮计算方式 已知中心距128,Z仁41 Z2=20 .怎么求斜齿轮法向模数、螺旋角 标准中心距 a = Mt ( Z1 + Z2 ) / 2 = Mt (41+20)/2=128 , 所以,齿轮端面模数Mt=4.19672131 ; 根据齿轮知识、Mt的数值,选取标准法面模数4; 法面模数Mn = Mt cos B , 所以,cos B = 4 / 4.19672131 ; B = 17.6124 ° =17° 36' 45〃 1. 先算未变位时中心距a=m (z1+z2 ) /2 3. 计算变位后的中心距 a '=a X cos a/cos a' 如果是斜齿轮,那么: a=m (z1+z2 ) / (2cos B) inv at '=2 (xn 1+xn2 )x tan a n/ (z1+z2 ) +inv at a '=a x cos at/cos at ' 例: 已知中心距=450,乙=65, Z2=33 Mt(33 65)/2 450 450 Mt 9.18367347 49 根据齿轮知识、Mt的数值,选取标准法面模数9。 法面模数Mn = Mt cos B ,cos B =9/9.18367347=0.979999999934667 B =11°28' 42〃 d=ZMt=Z Mn/cos B =65*9/0.979999999934667=596.93877555=d1 d=ZMt=Z Mn/cos B =33*9/0.979999999934667=303.06122451=d2 例: 已知中心距=430,Z1=100, Z2=21

Mt(21 100)/2 430 430 Mt 7.1074380165 60.5 根据齿轮知识、Mt的数值,选取标准法面模数7。 法面模数Mn = Mt cos B , cos B =7/7.1074380165=0.9848837209 B =9°58' 30〃 d=ZMt=Z Mn/cos B =100*7/0.9848837209=710.7438146645=d1 d=ZMt=Z Mn/cos B =21*7/0.9848837209=149.2561983517=d1

螺旋叶片的拉伸公式

冷拉螺旋叶片开料计算公式 一、前言 冷拉螺旋叶片开料问题已经存在很多年了,手册的理论公式在生产实践中有很大局限,太多资料手册大家抄来抄去,以讹传讹。这一问题不仅长时间困扰着我,相信也同样困扰着多数设计制作螺旋机的同行。 二、理论计算公式 理论公式在各手册都有,只要有中学几何知识就可以推导出来,不必用微积分来虚张声势。我很早就怀疑过公式,因为公式的错误先例不是没有。几年前曾推导过一遍发现公式没有问题,又不想在机械行业深入,所以此事就不了了之。生产时靠工人的简易公式自己掌握开料的富余量,忍受其螺距误差,得过且过。 理论公式: S——螺距 D——螺旋体外径 d—螺旋轴直径 ——一螺距的螺旋外径展开长 ——一螺距的螺旋内径展开长 ——螺旋叶片宽度 ——开料叶片内孔半径 R=b+r————(公式5)——开料叶片外圆半径 ——整圆开料理论上拉伸后的富裕角 一、展开图法: 1、做直角三角形ABC和ABD,其中AB等于螺旋节的导程H,BC等于πD,BD 等于πd,斜边b,a分别为螺旋内外缘线的实长。 2、做等腰三角形使其上底等于b,下底等于a,高度等于(D-d)/2。 3、延长等腰梯形两腰交于o点,以o为圆心,o1,o2各为半径作两圆,并在外圆周上量取a的长度得点4,连o4所得圆环部分即为所求展开图。

螺旋图螺旋展开图 手册上不仅给出了这些公式,还给出了不同规格螺旋机的叶片开料尺寸表格,都是理论值,可以说用在实践中就是错误的,根本没用。手册公式表格如果不能用于指导生产,那么它又有何价值? 三、关于叶片下料切口(富裕角)的问题 上面的理论公式中有一项α—整圆开料理论上拉伸后的富裕角,这个问题是我耗费精力深入大论的引子。 手册上引出这样一个项目给了无数人误导,以为α缺口应该开料切除,论坛帖子里甚至有人解释说“这么做一定有其道理,我们不用知道为什么,照做就行了”。有的说去缺口为了焊接时接缝整齐。还有一杂志上的一篇技术文章对不带缺口的叶片发现新大陆似的进行“理论计算”,结论是不开切口如何省料。这些观点都让我“忍无可忍”。 我在这里讲两点: 1、我们厂十几年来制作螺旋机,下料一直是不开缺口的整圆。 2、开缺口的叶片开料方法从理论上就是错误的。 一个圆环的缺口部分与其他部分性质上有区别吗?仅仅是占据的圆心角大小不同而已。 ,在理论上叶片开料内径及外径对应的富裕角α相同,这一点手册上没有列出来,也没有必要列出来。公式里列出α富裕角仅仅是表明,开料为一个整圆时,圆环拉伸后理论上对应的螺旋叶片大于一个整螺距,手册上画的带缺口的图是对应一个螺距的,是正确的,并没有说下料时要把长出部分切除呀。 所以,不开缺口的开料方法不单是为了省料,不单是为了错开焊缝,也不单是为了加工省事,而是因为这样做在理论上就是正确的。开料时去掉α缺口真的是多此一举。 接口焊缝有V 型口对不正是因为叶片拉伸时接口处的变形不充分造成,即使去掉切口,这一问题仍然存在。不过该问题在成形时可以忽略其影响。 四、螺旋叶片的加工分析及叶片开料假想公式 本人经过半个月大部分业余时间、部分上班时间,在车间、设备现场等进行了大量实测、分析计算,得到以下结果,希望能够更精确的指导生产。 实测数据见下表。其中D ,d 、2r'是由我提供给车间生产的尺寸,序号4、5的2r'是车间自己计算我从工人那里得来,序5的2r'应该是记错了,S 、l'(内圆拉伸后螺旋长)以及序号8、9、x

斜齿轮齿廓任意圆螺旋角计算公式的推导

附录(5) 斜齿轮齿廓上任意圆螺旋角计算公式的推导 周万峰 大家知道,所谓斜齿轮的螺旋角是指斜齿轮分度圆上的螺旋角。而分度圆以上圆的螺旋角都大于分度圆螺旋角,分度圆以下圆的螺旋角都小于分度圆螺旋角。那么不在分度圆上的螺旋角怎样计算呢也就是说,斜齿轮齿廓上任意圆的螺旋角的计算方法是怎样的呢它的计算公式是这样的: ββtg d d tg k k = (1) k β——斜齿轮齿廓上任意圆的螺旋角; k d ——斜齿轮齿廓上任意圆直径; d ——斜齿轮分度圆直径; β——斜齿轮分度圆螺旋角。 教材、手册上从未见过这个公式,而且一般也极少计算这个k β的值。不过有时为了验算变位斜齿轮的齿宽能否进行公法线长度的测量还必须计算这个值,即用公式(1)计算。那么公式(1)是怎么来的呢 笔者认为它应该是这样推导出来的:众所周知,斜齿轮的螺旋角是这样形成的:即圆柱体绕自己的轴线作等速转动,圆柱面上有一动点沿素线作等速直线运动,此动点的轨迹就是圆柱面上的螺旋线。将圆柱面展开,则螺旋线展成一条斜直线,如图1所示。圆柱转动一圈,动点沿素线移动的距离叫做导程,用T 表示。圆柱展开面上的斜直线1AA (或21A A )与轴线或母线(圆柱面上平行轴线的线)的夹角叫做螺旋角,用β表示。

图 1 显然由图1知, T R tg 2πβ= (2) 由公式(2)知,当导程T 一定时,圆柱半径R 越大,则螺旋角β越大;当圆柱体半径R 一定时,导程T 越大,则螺旋角越小。 图2 是斜齿轮齿顶圆展开图,a β是齿顶圆螺旋角。图3是斜齿轮分度圆展开图,β是分度圆螺旋角。对同一个斜齿轮而言,分度圆上的导程,齿顶圆上的导程以及齿面上各点的导程都是相同的;但分度圆直径小于齿顶圆直径,故齿顶圆螺旋角大于分度圆螺旋角。所以,齿顶圆螺旋角的计算公式为T D tg a πβ=,而分度圆螺旋角计算公式为, d tg πβ=所以βπtg d =T ,将T 代入齿顶圆螺旋角计算式,则 ββtg d D tg a = (3) 这就是齿顶圆螺旋角的计算公式。如将公式(3)中的D 换成k d ,将a β换成k β则公式(3)就成为了公式(1)。这就是斜齿轮齿廓上任意圆螺旋角的计算公式。总之,只要将k d 换成齿廓上哪个圆的直径,则k β即为哪个圆上的螺旋角。比如计算基圆螺旋角,则将k d 换成b d (b d 为基圆直径)。如将k d 换成分度圆d ,则ββ=k 。如此而已。 图2

齿轮螺旋角计算方式(学校教学)

页脚* 1 齿轮计算方式 已知中心距128,Z1=41 Z2=20 .怎么求斜齿轮法向模数、螺旋角 标准中心距 a = Mt ( Z1 + Z2 ) / 2 = Mt (41+20)/2=128, 所以,齿轮端面模数Mt=4.19672131 ; 根据齿轮知识、Mt 的数值,选取标准法面模数4; 法面模数Mn = Mt cos β , 所以,cos β = 4 / 4.19672131; β = 17.6124°=17°36′45″ 外啮合变位圆柱齿轮,已知变位系数,求中心距: 1.先算未变位时中心距 a=m (z1+z2)/2 2.再求变为后的啮合角 inv α′=2(x1+x2)×tan α/(z1+z2)+inv α 3.计算变位后的中心距 a ′=a ×cos α/cos α′ 如果是斜齿轮,那么: a=m (z1+z2)/(2cos β) inv αt ′=2(xn1+xn2)×tan αn/(z1+z2)+inv αt a ′=a ×cos αt/cos αt ′ 例: 已知中心距=450, Z 1=65, Z 2=33 18367347.949450 t 450 2/)6533(===+M Mt 根据齿轮知识、Mt 的数值,选取标准法面模数9。 法面模数Mn = Mt cos β , cos β=9/9.18367347=0.979999999934667 Β=11°28′42″ d=ZMt=ZMn/cos β=65*9/0.979999999934667=596.93877555=d1 d=ZMt=ZMn/cos β=33*9/0.979999999934667=303.06122451=d2 例: 已知中心距=430, Z 1=100, Z 2=21

齿轮滚刀安装角的调整方法计算口诀

齿轮滚刀安装角的调整方法计算口诀 摘要:本文主要介绍了一种在滚齿机上加工斜齿圆柱齿轮时,滚刀安装角的调整方法及计算口诀,借助于该口诀,能够方便地进行滚刀安装角大小计算及偏转方向确定,从而迅速进行滚刀安装。 关键词:滚刀;安装角;方法;口诀 在Y3150E型滚齿机上加工斜齿圆柱齿轮时,为了切出准确的齿形,应使滚刀和工件处于正确的“啮合”位置,即保证滚刀刀齿的排列方向与齿轮齿槽方向一致,从而加工出一定螺旋角的齿轮齿槽。为此,在加工齿轮前须将滚刀轴线相对于齿轮顶面偏转一定的角度进行安装,该偏转角称为滚刀安装角,用δ表示。滚刀安装角δ的大小和方向不仅与滚刀螺旋升角ω大小和方向有关,还与被加工齿轮的螺旋角β的大小和方向有关,这就给滚刀的实际调整安装带来了不便。本人总结出“八字口诀”,来帮助滚刀的调整安装。 如图所示为滚切斜齿圆柱齿轮时滚刀轴线偏转情况,其安装角大小为:δ=β±ω(β>ω) (a)右旋滚刀滚切右旋齿轮 (b)左旋滚刀滚切右旋齿轮 右旋滚刀滚切左旋齿轮 (d)左旋滚刀滚切左旋齿轮 滚切斜齿圆柱齿轮时滚刀的安装角 从图中不难看出,当滚刀的螺旋升角ω的旋向与齿轮螺旋角β的旋向相同时,滚刀安装角δ的大小为β-ω;当滚刀的螺旋升角ω的旋向与齿轮螺旋角β的旋向不同时,滚刀安装角δ的大小为β+ω。滚刀安装角δ的偏转方向与被加工齿轮的旋向有关,当加工右旋齿轮时,滚刀逆时针偏转;当加工左旋齿轮时,滚刀顺时针偏转。根据以上分析,可总结出如下口诀:“同减异加,右逆左顺。” 同减异加:是指当滚刀的螺旋升角ω的旋向与齿轮的螺旋角β的旋向相同时,滚刀安装角计算公式取“-”号;当滚刀的螺旋升角ω的旋向与齿轮的螺旋角β的旋向不同时,滚刀安装角计算公式取“+”号。 右逆左顺:是指当加工右旋齿轮时,滚刀逆时针偏转安装角δ;加工左旋齿轮时,滚刀顺时针偏转安装角δ。 例如:用ω=2°的左旋滚刀加工β=20°的左旋齿轮时,则对照口诀用“同减”和“左顺”来确定。即:滚刀的安装角大小为δ=β-ω=20°-2°=18°,方向为顺时针偏转。 又如:用ω=2°的左旋滚刀加工β=20°的右旋齿轮时,则对照口诀用:“异加”和“右逆”来计算和偏转。即:滚刀的安装角大小为δ=β+ω=20°+2°=22°,方向为逆时针偏转。 加工直齿轮时,因β=0°,则滚刀安装角δ为: δ=±ω 其偏转方向决定于滚刀的螺旋升角ω的旋向,即左旋时逆时针偏转ω,右旋时顺时针偏转ω,此时不必用以上口诀。

齿轮螺旋角计算方式

齿轮计算方式 已知中心距128,Z1=41 Z2=20 .怎么求斜齿轮法向模数、螺旋角 标准中心距 a = Mt ( Z1 + Z2 ) / 2 = Mt (41+20)/2=128, 所以,齿轮端面模数Mt=4.19672131 ; 根据齿轮知识、Mt 的数值,选取标准法面模数4; 法面模数Mn = Mt cos β , 所以,cos β = 4 / 4.19672131; β = 17.6124°=17°36′45″ 外啮合变位圆柱齿轮,已知变位系数,求中心距: 1.先算未变位时中心距 a=m (z1+z2)/2 2.再求变为后的啮合角 inv α′=2(x1+x2)×tan α/(z1+z2)+inv α 3.计算变位后的中心距 a ′=a ×cos α/cos α′ 如果是斜齿轮,那么: a=m (z1+z2)/(2cos β) inv αt ′=2(xn1+xn2)×tan αn/(z1+z2)+inv αt a ′=a ×cos αt/cos αt ′ 例: 已知中心距=450, Z 1=65, Z 2=33 18367347.949 450t 450 2/)6533(===+M Mt 根据齿轮知识、Mt 的数值,选取标准法面模数9。 法面模数Mn = Mt cos β , cos β=9/9.18367347=0.979999999934667 Β=11°28′42″ d=ZMt=ZMn/cos β=65*9/0.979999999934667=596.93877555=d1 d=ZMt=ZMn/cos β=33*9/0.979999999934667=303.06122451=d2 例: 已知中心距=430, Z 1=100, Z 2=21

螺旋齿轮传动设计计算

% 螺旋齿轮传动设计计算 % 已知条件:齿数、法面压力角、法面模数、齿顶高系数、顶隙系数、轴交角 z1=17;z2=50;alpha_n=20;m_n=2;ha=1;C=0.25;Sigma=60;hd=pi/180; % 计算齿轮的分度圆柱压力角、基圆柱和节圆柱螺旋角、法面和端面节圆压力角 beta_1=0.5*(Sigma-1);beta_2=beta_1; fprintf(' 两齿轮螺旋角 beta_1 = %3.4f °\n',beta_1); alpha_t1=atan(tan(alpha_n*hd)/cos(beta_1*hd));alpha_t2=alpha_t1; fprintf(' 两齿轮分度圆柱螺旋角 alpha_t1 = %3.4f °\n',alpha_t1/hd); beta_b1=atan(tan(beta_1*hd)*cos(alpha_t1));beta_b2=beta_b1; fprintf(' 两齿轮基圆柱螺旋角 beta_b1 = %3.4f °\n',beta_b1/hd); k=sin(beta_b1)/sin(beta_b1); beta_1p=atan(k*sin(Sigma*hd)/(1+k*cos(Sigma*hd)));beta_2p=beta_1p; fprintf(' 两齿轮节圆柱螺旋角 beta_1p = %3.4f °\n',beta_1p/hd); alpha_np=acos(sin(beta_b1)/sin(beta_1p)); fprintf(' 两齿轮法面节圆压力角 alpha_np = %3.4f °\n',alpha_np/hd); alpha_t1p=acos(tan(beta_b1)/tan(beta_1p));alpha_t2p=alpha_t1p; fprintf(' 两齿轮端面节圆压力角 alpha_t1p = %3.4f °\n',alpha_t1p/hd); % 确定两齿轮的变位系数 inv_t1p=tan(alpha_t1p)-alpha_t1p;inv_t1=tan(alpha_t1)-alpha_t1; inv_t2p=tan(alpha_t2p)-alpha_t2p;inv_t2=tan(alpha_t2)-alpha_t2; xc=(z1*(inv_t1p-inv_t1)+z2*(inv_t2p-inv_t2))/(2*tan(alpha_n*hd)) x_n1=input(' 选择小齿轮法面变位系数 x_n1 = '); x_n2=xc-x_n1; fprintf(' 大齿轮法面变位系数 x_n2 = %3.4f \n',x_n2); % 计算齿轮的几何尺寸 m_np=m_n*cos(alpha_n*hd)/cos(alpha_np); fprintf(' 公共齿条的法面模数 m_np = %3.4f mm \n',m_np); r_1p=m_np*z1/(2*cos(beta_1*hd)); r_2p=m_np*z2/(2*cos(beta_2*hd)); fprintf(' 小齿轮节圆柱半径 r_1p = %3.4f mm \n',r_1p); fprintf(' 大齿轮节圆柱半径 r_2p = %3.4f mm \n',r_2p); a=(r_1p+r_2p); fprintf(' 两齿轮最小中心距 a = %3.4f mm \n',a); r_1=m_n*z1/(2*cos(beta_1*hd)); r_2=m_n*z2/(2*cos(beta_2*hd));

齿轮滚刀安装角调整方法计算口诀

齿轮滚刀安装角调整方法计算 在Y3150E型滚齿机上加工斜齿圆柱齿轮时,为了切出准确的齿形,应使滚刀和工件处于正确的“啮合”位置,即保证滚刀刀齿的排列方向与齿轮齿槽方向一致,从而加工出一定螺旋角的齿轮齿槽。为此,在加工齿轮前须将滚刀轴线相对于齿轮顶面偏转一定的角度进行安装,该偏转角称为滚刀安装角,用δ表示。 (1)滚刀安装角δ的大小和方向与滚刀螺旋升角γZ大小和方向有关,还与被加工齿轮的螺旋角β的大小和方向有关; (2)“同减异加,右逆左顺”的“八字口诀”; 同减异加:是指当滚刀的螺旋升角γZ的旋向与齿轮的螺旋角β的旋向相同时,滚刀安装角计算公式取“-”号; 当滚刀的螺旋升角γZ的旋向与齿轮的螺旋角β的旋向不同时,滚刀安装角计算公式取“+”号。 右逆左顺:是指当加工右旋齿轮时,滚刀逆时针偏转安装角δ;加工左旋齿轮时,滚刀顺时针偏转安装角δ。 (3)滚切斜齿圆柱齿轮时滚刀轴线偏转情况,其安装角大小为:δ=β±γZ (β>γZ); ▲滚切斜齿圆柱齿轮时滚刀的安装角当滚刀的螺旋升角γZ的旋向与齿轮螺旋角β的旋向相同时,滚刀安装角δ的大小为β-γZ;当滚刀的螺旋升角γZ的旋向与齿轮螺旋角β的旋向不同时,滚刀安装角δ的大小为β+γZ。 ▲滚刀安装角δ的偏转方向与被加工齿轮的旋向有关,当加

工右旋齿轮时,滚刀逆时针偏转;当加工左旋齿轮时,滚刀顺时针偏转。 例:用γZ=2°的左旋滚刀加工β=20°的左旋齿轮时,则对照口诀用“同减”和“左顺”来确定。即:滚刀的安装角大小为δ=β-γZ=20°-2°=18°,方向为顺时针偏转。 又如:用γZ=2°的左旋滚刀加工β=20°的右旋齿轮时,则对照口诀用:“异加”和“右逆”来计算和偏转。即:滚刀的安装角大小为δ=β+γZ=20°+2°=22°,方向为逆时针偏转。 (4)加工直齿轮时,因β=0°,则滚刀安装角δ为:δ=±γZ其偏转方向决定于滚刀的螺旋升角γZ的旋向,即左旋时逆时针偏转γZ,右旋时顺时针偏转γZ。

螺旋千斤顶设计计算说明书

螺旋千斤顶设计计算说明书 精04 张为昭 2010010591 目录 一、基本结构和使用方法------------------------------------------3 二、设计要求----------------------------------------------------3 三、基本材料选择和尺寸计算--------------------------------------3 (一)螺纹材料和尺寸----------------------------------------3 (二)手柄材料和尺寸----------------------------------------8 (三)底座尺寸----------------------------------------------9 四、主要部件基本尺寸及材料--------------------------------------9 五、创新性设计--------------------------------------------------9 一、基本结构及使用方法 要求设计的螺旋千斤顶主要包括螺纹举升结构、手柄、外壳体、和托举部件几个部分,其基本结构如下图所示: 调整千斤顶托举部件到被托举重物合适的托举作用点,然后插入并双手或单手转动手柄,即可将重物举起。 二、设计要求 (1)最大起重量: max 25 F kN =; (2)最大升距: max 200 h mm =;(3)可以自锁; (4)千斤顶工作时,下支承面为木材,其许用挤压应力:[]3 p MPa σ=; (5)操作时,人手最大可以提供的操作约为:200N。 三、基本部件材料选择及尺寸计算 (一)螺纹材料和尺寸 考虑到螺旋千斤顶螺纹的传力特性选择的螺纹类型为梯形螺纹。 (1)材料选择 A

螺旋千斤顶计算说明书

螺旋千斤顶设计任务书 学生姓名王辉专业年级2007级机械设计制造及其自动化设计题目:设计螺旋千斤顶 设计条件: 1、最大起重量F = 55 kN; 2、最大升距H =220 mm。 设计工作量: 1、绘制出总装配图一张,标注有关尺寸,填写标题栏及零件明细表; 2、编写设计计算说明书一份。 指导教师签名:2009年月日

一、作业目的 1. 熟悉螺旋千斤顶的工作原理,设计与计算的方法; 2. 运用所学的知识解决设计中所遇到的具体实际问题,培养独立工作能力,以及初步学会综合运用所学知识,解决材料的选择,强度计算和刚度计算,制造工艺与装配工艺等方面的问题; 3. 熟悉有关设计资料,学会查阅手册和运用国家标准。 二、螺旋千斤顶的设计 千斤顶一般由底座1,螺杆4、螺母5、托杯10,手柄7等零件所组成(见图1―1)。螺杆在固定螺母中旋转,并上下升降,把托杯上的重物举起或放落。

设计时某些零件的主要尺寸是通过理论计算确定的,其它结构尺寸则是根据经验公式或制造工艺决定的,必要时才进行强度验算。 设计的原始数据是:最大起重量F(kN)和最大提升高度H(mm)。 螺旋千斤顶的设计步骤如下: 计算及说明结果1. 螺杆的设计与计算 1.1 螺杆螺纹类型的选择 螺纹有矩形、梯形与锯齿形,常用的是梯形螺纹。 梯形螺纹牙型为等腰梯形,牙形角α=30o,梯形螺纹的内外螺纹 以锥面贴紧不易松动,工艺性好,牙根强度高,对中性好,所以选择 梯形螺纹,基本牙形按GB/T5796.1—2005的规定。 1.2 选取螺杆材料 螺杆材料选择45号钢,σs = 355MPa,根据主教材表2.8,选计算得: mm d64 . 30 2 查表得:

标准斜齿圆柱齿轮螺旋角β的测定齿轮模数

标准斜齿圆柱齿轮螺旋角β的测定齿轮模数摘要齿轮基本参数测定准确与否,会直接影响修后齿轮的正确安装、可靠使用和机床的正常运转。标准斜齿圆柱齿轮螺旋角β的测定是基本参数中难以测定的内容。标准斜齿圆柱齿轮螺旋角β的测定方法较多,下面笔者介绍两种用测得的其它参数来计算螺旋角β的方法,此方法更适合于小企业、一般修理车间,而且简单实用。已知齿数z,测定螺旋角β;已知齿数z1和z2,法面模数mn、中心距a、齿顶距B,测定螺旋角β。 关键词斜齿轮;螺旋角;测定 TH13A1673-9671-(xx)041-0144-01 在机床的修理过程中,经常会面临许多零件被磨损、损坏后,需要修复或重新更换的情况,如果没有需要更换零件的原设计图纸,便要有关技术人员对其进行测绘、计算,其中尤以齿轮的测绘、计算为复杂。遇上测绘、计算直齿圆柱齿轮的时候较多,但由于斜齿圆柱齿轮与直齿圆柱齿轮相比,传动比较平稳、承载能力强、所产生的冲击、震动和噪声均较小,被广泛应用于高速、重载的传动中,因此斜齿圆柱齿轮的测绘、计算时不时的也会碰上。齿轮基本参数测定准确与否,

会直接影响修后齿轮的可靠使用和机床的正常运转。标准斜齿圆柱齿轮分度圆螺旋角β的测定是基本参数中难以测定的内容。 1两种测定斜齿圆柱齿轮螺旋角β的方法 把斜齿轮的分度圆柱面展开成一个长方形,如图1所示,其中影 线部分表示轮齿被分度圆柱面所截的断面,空白部分表示齿间。设斜 齿轮的宽度为b,分度圆周长为πd。分度圆柱面与轮齿齿面相贯所得的螺旋线,在将分度圆柱面展成平面后便成为一条斜直线,它与轴线 的夹角β就是斜齿轮分度圆柱面上的螺旋角。通常用螺旋角β来表示斜齿轮轮齿的倾斜程度。 对于要求精度不高的斜齿轮,要测定螺旋角β,通常采用在齿顶 圆上均匀地涂上少许印泥或墨水,然后在纸上滚印的方法;对于要求 测绘精确的斜齿轮,要测定螺旋角β,可用专用的齿向仪、工具显微镜、三坐标测量仪等直接测得,也可在铣床和滚齿机上测定螺旋角β。下 面笔者介绍两种用测得的其它参数来计算螺旋角β的方法,此方法更 适合于小企业、一般修理车间,而且简单实用。 1.1已知齿数z,测定螺旋角β 1.1.1齿数为偶数时

齿轮螺旋角计算方式审批稿

齿轮螺旋角计算方式 YKK standardization office【 YKK5AB- YKK08- YKK2C- YKK18】

齿轮计算方式 已知中心距128,Z1=41 Z2=20 .怎么求斜齿轮法向模数、螺旋角 标准中心距 a = Mt ( Z1 + Z2 ) / 2 = Mt (41+20)/2=128, 所以,齿轮端面模数Mt=4. ; 根据齿轮知识、Mt 的数值,选取标准法面模数4; 法面模数Mn = Mt cos β , 所以,cos β = 4 / 4.; β = °=17°36′45″ 外啮合变位,已知变位系数,求中心距: 1.先算未变位时中心距 a=m (z1+z2)/2 2.再求变为后的啮合角 invα′=2(x1+x2)×tanα/(z1+z2)+invα 3.计算变位后的中心距 a′=a×cosα/cosα′ 如果是斜齿轮,那么: a=m (z1+z2)/(2cosβ) invαt′=2(xn1+xn2)×tanαn/(z1+z2)+invαt a′=a×cosαt/cosαt ′ 例: 已知中心距=450, Z 1=65, Z 2=33 18367347.949 450t 450 2/)6533(===+M Mt 根据齿轮知识、Mt 的数值,选取标准法面模数9。 法面模数Mn = Mt cos β , cos β=9/9.= Β=11°28′42″ d=ZMt=ZMn/cos β=65*9/=596.=d1 d=ZMt=ZMn/cos β=33*9/==d2 例: 已知中心距=430, Z 1=100, Z 2=21

螺纹加工之切削计算公式

螺纹加工之切削计算公式 什么是螺纹? 螺纹是从外部或内部切入工件的螺旋线。螺纹的主要功能是: ?通过组合内螺纹产品和外螺纹产品形成机械连接。 ?通过将旋转运动转换为线性运动传递运动,反之亦然。 ?得到机械优点。 螺纹牙型和术语 螺纹牙型确定螺纹的几何形状,包括工件直径 (大径、中径和小径);螺纹牙型角; 螺距和螺旋角。 螺纹术语 1.牙底–连接两个相邻螺纹牙侧的底部表面。 2.牙侧–连接牙顶和牙底的螺纹侧表面。 3.牙顶–连接两个牙侧的顶部表面。 P = 螺距,mm或每英寸螺纹数 (t.p.i.)

? = 牙型角 ? = 螺纹螺旋升角 d = 外螺纹大径 D = 内螺纹大径 d1 = 外螺纹小径 D1 = 内螺纹小径 d2 = 外螺纹中径 D2 = 内螺纹中径 中径,d2 / D2 螺纹的有效直径。大约在大径和小径之间一半的位置处。 螺纹的几何形状基于螺纹中径 (d, D) 和螺距 (P) :工件上沿着螺纹从牙型上的一点到相应的下一点的轴向距离。这也可以看作是从工件绕开的一个三角形。 定义

vc = 切削速度 (m/min) ap = 总的螺纹深度 (mm) nap = 总的螺纹深度 (mm) t.p.i. = 每英寸螺纹数 进给量 = 螺距 普通螺纹牙型 适用于机械工业所有领域的一般性用途 V型60° V型55°

公制 (MM) UN 燃气、水和污水的管道配件和连接件 惠氏螺纹 (WH) NPT (NT) 蒸汽、燃气和水管的管螺纹

BSPT (PT) NPTF (NF) 食品和消防行业的管连接件 圆形 (RN) 航天航空用螺纹 MJ UNJ (NJ) 传动装置的螺纹

螺纹受力计算公式

一、矩形螺纹(牙型角α=0) 螺纹副中,螺母所受到的轴向载荷Q 是沿螺纹各圈分布的,为便于分析,用集中载荷Q 代替,并设Q 作用于中径d 2圆周的一点上。这样,当螺母相对于螺杆等速旋转时,可看作为一滑块(螺母)沿着以螺纹中径d 2展开,斜度为螺纹升角l 的斜面上等速滑动。 匀速拧紧螺母时,相当于以水平力推力F 推动滑块沿斜面等速向上滑动。设法向反力为N ,则摩擦力为f N ,f 为摩擦系数,ρ 为摩擦角,ρ = arctan f 。由于滑块沿斜面上升时,摩擦力向下,故总反力R 与Q 的的夹角为λ+ρ 。由力的平衡条件可知,R 、F 和Q 三力组成力封闭三角形,由图可得: Q ψ d F 使滑块等速运动所需要的水平力 等速上升: Ft=Qtan(ф+ρ) 等速上升所需力矩: T= Ftd 2/2= Qtan(ф+ρ)d 2/2 等速下降: Ft=Qtan(ф—ρ) 等速下降所需力矩: T= Ftd 2/2= Qtan(ф—ρ)d 2/2 二、非矩形螺纹 螺纹的牙型角α≠0时的螺纹为非矩形螺纹。非矩形螺纹的螺杆和螺母相对转动时,可看成楔形滑块沿楔形斜面移动; 平面时法向反力N=Q; 平面时摩擦力F f =fN =fQ; 楔形面时法向反力N /=Q/cosβ;楔形面摩擦力F f ! =f N / =fQ/ cosβ; 令f / =f/ cosβ称当量摩擦系数。F f ! =f /Q;楔形面和矩形螺纹的摩擦力相比,与当量摩擦系数对应的摩擦角称为当量摩擦角,用ρV 表示。拧紧螺母时所需的水平推力及转矩:由于矩形螺纹与非矩形螺纹的运动关系相同,将ρV 代替ρ后可得: 使滑块等速运动所需要的水平力

圆柱螺旋压缩(拉伸)弹簧的设计计算

圆柱螺旋压缩(拉伸)弹簧的设计计算 (一)几何参数计算普通圆柱螺旋弹簧的主要几何尺寸有:外径D、中径D2、内径D1、节距p、螺旋升角α及弹簧丝直径d。由下图圆柱螺旋弹簧的几何尺寸参数图可知,它们的关系为: 式中弹簧的螺旋升角α,对圆柱螺旋压缩弹簧一般应在5°~9°范围内选取。弹簧的旋向可以是右旋或左旋,但无特殊要求时,一般都用右旋。 圆柱螺旋弹簧的几何尺寸参数 普通圆柱螺旋压缩及拉伸弹簧的结构尺寸计算公式见表([color=#0000ff 普通圆柱螺旋压缩及拉伸弹簧的结构尺寸(mm)计算公式)。

普通圆柱螺旋压缩及拉伸弹簧的结构尺寸(mm)计算公式 参数名称及代号 计算公式 备注压缩弹簧拉伸弹簧 中径D2D2=Cd 按普通圆柱螺旋弹簧尺寸系列表取标准值 内径D1D1=D2-d 外径D D=D2+d 旋绕比C C=D2/d 压缩弹簧长细比 b b=H0/D2 b在1~5.3的范 围内选取 自由高度或长度 H0H0≈pn+(1.5~2)d (两端并紧,磨平) H0≈pn+(3~3.5)d (两端并紧,不磨 H0=nd+钩环轴向长 度

平) 工作高度或长度 H1,H2,…,H n H n=H0-λn H n=H0+λnλn--工作变形量有效圈数n根据要求变形量按式(16-11)计算n≥2 总圈数n1n1=n+(2~2.5)(冷 卷) n1=n+(1.5~2) (YII型热卷) n1=n 拉伸弹簧n1尾数 为1/4,1/2,3/4整 圈。推荐用1/2圈 节距p p=(0.28~0.5)D2p=d 轴向间距δδ=p-d 展开长度L L=πD2n1/cosα L≈πD2n+钩环展 开长度 螺旋角αα=arct g(p/πD2) 对压缩螺旋弹簧,推荐α=5°~ 9°

梯形丝杠的计算公式

梯形丝杠的计算公式 标注:Tr-螺距*头数-旋向 牙型角α=30? 螺距P 由螺纹标准确定 牙顶间隙ac P=1.5,5 ac=0.25;P=6,12 ac=0.5;P=14,44 ac=1 外螺纹 大径d 公称直径 中径d2=d-0.5P 小径d1=d-2h3 牙高h3=0.5P+ac 内螺纹 大径D4=d+2ac 中径D2=d2 小径D1=d-P 牙高H4=h3 牙顶宽f=0.366P 牙槽底宽w=0.366P-0.563ac 螺纹升角ψ tgψ=P/πd2 梯形丝杠的计算公式 螺纹的一种,牙型为等腰梯形,牙型角为30。 内外螺纹以锥面贴紧不易松动。 与矩形螺纹相比,传动效率略低,但工艺性好,牙根强度高,对中性好。如用剖分螺母,还可以调整间隙。梯形螺纹是最常用的传动螺纹。

我国标准规定30?梯形螺纹代号用“Tr”及公称直径×螺距表示,左旋螺纹需在尺寸规 格之后加注“LH”,右旋则不注出。例如Tr36×6;Tr44×8LH等。 各基本尺寸名称,代号及计算公式如下: 牙型角α,30? 螺距P 由螺纹标准确定 牙顶间隙ac P=1.5,5 ac=0.25;P=6,12 ac=0.5;P=14,44 ac=1 外螺纹:大径d 公称直径 中径d2=d-0.5P 小径d1=d-2h3 牙高h3=0.5P+ac 内螺纹:大径D4=d+2ac 中径D2=d2 小径D1=d-P 牙高H4=h3 牙顶宽f=0.366P 牙槽底宽w=0.366P-0.563ac 螺纹升角ψ tgψ=P/π 非精确等速传动场合可以套用以下公式计算: T1=(Ta+Tpmax+Tu) 其中 T1:等速时的驱动扭矩; Ta=(Fa*I)/(2*3.14*n1); Fa:轴向负载N; Fa=F+μmg F:丝杠的轴向切削力等N; μ:导向面摩擦系数; m:移动物体重量(工作台+工件)kg; g:9.8 Tpmax:丝杠的动态摩擦扭矩上限N.cm; Tu:支撑轴承等的摩擦扭矩N.cm

圆柱螺旋弹簧设计计算

圆柱螺旋弹簧设计计算 一.弹簧的参数名称及代号 GB/T 1239.6-93 二.基本计算公式 弹簧的强度和变形的基本计算公式 1.材料切应力:P d c k P d D 2388ππτ==. 2.弹簧变形量:P Gd n c P Gd n D F 34 388==

3.弹簧的刚度:n c GD n D Gd F P P 434' 88=== 4.弹簧变形量:2 22 'F D PF U == 5.弹簧材料直径:] [6 .1τKPC d = 6.弹簧的中径:D=Cd 7.弹簧的有效圈数:P c GD P D F Gd n 4 3488== 8.曲度系数:c c c K 615.04414+--= 9.弹簧特性:为了保证指定的负荷,弹簧变形量应在试验负荷下变形量Fs 的 20%~80%之间: 0.2Fs ≤F 1,2,3~n ≤0.8Fs 10.在特殊需要保证刚度时,其刚度按试验负荷下变形量Fs 的30%~70%之间,由两负荷点的负荷差之比来确定:1 21 2F F P P P ,--= 11.试验负荷Ps 为测定弹簧特性时,弹簧允许承受的最大负荷,其值可按其曲度系数K=1,导出: s D d Ps τπ83 = 式中τs 为试验切应力,其最大值取表3和 表4中的Ⅲ类负荷下的许用切应力值。 12.压并负荷Pb 为弹簧压并时的理论负荷,对应的压并变量为Fb 。切变模量G 值按弹簧常用材料表查取,当工作温度超过60度时,就对常温下的G 值进行修正:Gt=KtG 。 Kt 温度修正系数表 13.弹簧中径:2)(21D D D += 14弹簧内径:D 1=D -d 15.弹簧外径:D 2=D+d a .当弹簧两端固定时,从自由高度到并紧时,中径增大为: D D d t D )05.0(2 2 2-=?

螺纹测量的方法

螺纹测量的方法 1.用螺纹环(塞)规及卡板测量 对于一般标准螺纹,都采用螺纹环规或塞规来测量如图(a)示。在测量外螺纹时,如果螺纹“过端”环规正好旋进,而“止端”环规旋不进,则说明所加工的螺纹符合要求,反之就不合格。测量内螺纹时,采用螺纹塞规,以相同的方法进行测量。 图(a) 图(b) 图(c) 在使用螺纹环规或塞规时,应注意不能用力过大或用扳手硬旋,在测量一些特殊螺纹时,须自制螺纹环(塞)规,但应保证其精度。对于直径较大的螺纹工件,可采用螺纹牙形卡板来进行测量、

检查,如图(b)示。 2.用螺纹千分尺测量外螺纹中径 图1为螺纹千分尺的外形图。它的构造与外径千分尺基本相同,只是在测量砧和测量头 上装有特殊的测量头1和2,用它来直接测量外螺纹的中径。螺纹千分尺的分度值为毫米。 测量前,用尺寸样板3来调整零位。每对测量头只能测量一定螺距范围内的螺纹,使用时根 据被测螺纹的螺距大小,按螺纹千分尺附表来选择,测量时由螺纹千分尺直接读出螺纹中径 的实际尺寸。 图 1 3.用齿厚游标卡尺测量 齿厚游标卡尺由互相垂直的高卡尺和齿厚卡尺组成,如图(d)示,用来测量梯形螺纹中径牙厚和蜗杆节径齿厚。 测量时,将齿高卡尺读数调整至齿顶高(梯形螺纹等于﹡螺距t,蜗杆等于模数),随后使齿厚卡尺和蜗杆轴线大致相交成一螺纹升角β,并作少量摆动。这时所测量的最小尺寸即为蜗杆轴线节径法向齿厚S n。 蜗杆(或梯形螺纹)节径法向齿厚,可预先用下面的公式计算出来: S n =2 1 t*cosβ 基中:S n:蜗杆(或梯形螺纹)节径法向齿厚、t :蜗杆周节、β:螺纹升角 例1如何用齿厚游标卡尺对模数m n=6、头数K=2、外径d a =80mm的蜗杆进行测量解在测量时应先算出: 蜗杆周节 t =m n*π=6*= 蜗杆导程 L=t*k=*2 =

齿轮螺旋角计算方式修订稿

齿轮螺旋角计算方式 WEIHUA system office room 【WEIHUA 16H-WEIHUA WEIHUA8Q8-

齿轮计算方式 已知中心距128,Z1=41 Z2=20 .怎么求斜齿轮法向模数、螺旋角 标准中心距 a = Mt ( Z1 + Z2 ) / 2 = Mt (41+20)/2=128, 所以,齿轮端面模数Mt=4. ; 根据齿轮知识、Mt 的数值,选取标准法面模数4; 法面模数Mn = Mt cos β , 所以,cos β = 4 / 4.; β = °=17°36′45″ 外啮合变位,已知变位系数,求中心距: 1.先算未变位时中心距 a=m (z1+z2)/2 2.再求变为后的啮合角 invα′=2(x1+x2)×tanα/(z1+z2)+invα 3.计算变位后的中心距 a′=a×cosα/cosα′ 如果是斜齿轮,那么: a=m (z1+z2)/(2cosβ) invαt′=2(xn1+xn2)×tanαn/(z1+z2)+invαt a′=a×cosαt/cosαt ′ 例: 已知中心距=450, Z 1=65, Z 2=33 18367347.949 450t 450 2/)6533(===+M Mt 根据齿轮知识、Mt 的数值,选取标准法面模数9。 法面模数Mn = Mt cos β , cos β=9/9.= Β=11°28′42″ d=ZMt=ZMn/cos β=65*9/=596.=d1 d=ZMt=ZMn/cos β=33*9/==d2 例: 已知中心距=430, Z 1=100, Z 2=21

斜齿轮齿廓任意圆螺旋角计算公式的推导

斜齿轮齿廓任意圆螺旋角计算公式的推导 -CAL-FENGHAI.-(YICAI)-Company One1

附录(5) 斜齿轮齿廓上任意圆螺旋角计算公式的推导 周万峰 大家知道,所谓斜齿轮的螺旋角是指斜齿轮分度圆上的螺旋角。而分度圆以上圆的螺旋角都大于分度圆螺旋角,分度圆以下圆的螺旋角都小于分度圆螺旋角。那么不在分度圆上的螺旋角怎样计算呢也就是说,斜齿轮齿廓上任意圆的螺旋角的计算方法是怎样的呢它的计算公式是这样的: ββtg d d tg k k = (1) k β——斜齿轮齿廓上任意圆的螺旋角; k d ——斜齿轮齿廓上任意圆直径; d ——斜齿轮分度圆直径; β——斜齿轮分度圆螺旋角。 教材、手册上从未见过这个公式,而且一般也极少计算这个k β的值。不过有时为了验算变位斜齿轮的齿宽能否进行公法线长度的测量还必须计算这个值,即用公式(1)计算。那么公式(1)是怎么来的呢 笔者认为它应该是这样推导出来的:众所周知,斜齿轮的螺旋角是这样形成的:即圆柱体绕自己的轴线作等速转动,圆柱面上有一动点沿素线作等速直线运动,此动点的轨迹就是圆柱面上的螺旋线。将圆柱面展开,则螺旋线展成一条斜直线,如图1所示。圆柱转动一圈,动点沿素线移动的距离叫做导程,用T 表示。圆柱展开面上的斜直线1AA (或21A A )与轴线或母线(圆柱面上平行轴线的线)的夹角叫做螺旋角, 用β表示。 图 1 显然由图1知,

T R tg 2πβ= (2) 由公式(2)知,当导程T 一定时,圆柱半径R 越大,则螺旋角β越大;当圆柱体半径R 一定时,导程T 越大,则螺旋角越小。 图2 是斜齿轮齿顶圆展开图,a β是齿顶圆螺旋角。图3是斜齿轮分度圆展开图,β是分度圆螺旋角。对同一个斜齿轮而言,分度圆上的导程,齿顶圆上的导程以及齿面上各点的导程都是相同的;但分度圆直径小于齿顶圆直径,故齿顶圆螺旋角大于分度圆螺旋角。所以,齿顶圆螺旋角的计算公式为T D tg a πβ=,而分度圆螺旋角计算公式为, d tg πβ=所以βπtg d =T ,将T 代入齿顶圆螺旋角计算式,则 ββtg d D tg a = (3) 这就是齿顶圆螺旋角的计算公式。如将公式(3)中的D 换成k d ,将a β换成k β则公式(3)就成为了公式(1)。这就是斜齿轮齿廓上任意圆螺旋角的计算公式。总之,只要将k d 换成齿廓上哪个圆的直径,则k β即为哪个圆上的螺旋角。比如计算基圆螺旋角,则将k d 换成b d (b d 为基圆直径)。如将k d 换成分度圆d ,则ββ=k 。如此而已。 图2

螺纹计算

第二章螺纹联接 第一节螺纹 一、螺纹的类型和应用 螺纹有内螺纹和外螺纹,二者共同组成螺旋副。 分类: (1)按作用分为联接螺纹和传动螺纹。 (2)按采用标准分为米制(公制)α=60°、英制α=55°(我国只有管 螺纹采用英制)。 (3)按照母体的形状分为圆柱螺纹和圆锥螺纹。 (4)按牙型分为三角形螺纹、矩形螺纹、梯形螺纹和锯齿形螺纹。 (5)根据螺纹螺旋线方向,分为左旋和右旋螺纹。 此外螺纹还有单线和多线之分。三角形螺纹主要用于联接,而矩形、梯形和锯齿形螺纹主要用于传动,其中除矩形外均已标准化。标准螺纹的基本尺寸可查阅有关标准。常用螺纹有多种,按其用途可分为以下两大类: 1.联接螺纹 联接螺纹的牙形为三角形如图2-1,其特点是当量摩擦角大、自锁性较好、强度高,常用的种类有普通螺纹、管螺纹等。 图2-1 联接螺纹 (1)普通螺纹(图4-1a)的牙型角α=60°,用途最多。 内、外螺纹旋合后留有径向间隙。对同一公称直径的普通螺纹,按螺距大小的不同分为粗牙普通螺纹与细牙普通螺纹。后者螺距小、升角小、自锁性更好、强度高,但不耐磨,容易滑扣。一般联接多用粗牙普通螺纹。细牙普通螺纹常用于切制粗牙螺纹对强度影响较大的零件(如轴、管状零件)或受冲击振动和变载荷的联接中,也可用作微调机构的调节螺纹。 (2)管螺纹的牙型角α=55°。 牙顶有较大的圆角,内、外螺纹旋合后无径向间隙,以保证旋合的紧密性。管螺纹可分为圆柱管螺纹和圆锥管螺纹(图2-1b,c),最常用的是圆柱管螺纹,但圆锥管螺纹可制成自密封管螺纹,不用任何填料而靠牙的变形来保证螺纹副的密封性。管螺纹一般用于管道联接。 2.传动螺纹 与联接螺纹相比,传动螺纹的牙型角α较小,因此其传动效率较高。按牙型的不同,传动螺纹的种类有矩形螺纹、梯形螺纹和锯齿形螺纹。(图4-2) 图2-2 传动螺纹

相关文档
最新文档