抛物线的几何性质2
3.2.2抛物线的简单几何性质-北师大版高中数学选修2-1课件

6、 焦半径
连接抛物线任意一点与焦点的线段叫做抛物
线的焦半径。
y
焦半径公式:
p/2 x0 P
|PF|=x0+p/2
OF
x
焦半径及焦半径公式 抛物线上一点到焦点的距离
P(x0,y0)在y2=2px上, P(x0,y0)在y2=-2px上,
PF
PF
x0
p
2
p
2
1、范围:抛物线只位于半个坐标平面内,虽然它也可 以无限延伸,但没有渐近线;
2、对称性: 抛物线只有一条对称轴,没有对称中心;
3、顶点:抛物线只有一个顶点,一个焦点,一条准线; 4、离心率:抛物线的离心率是确定的,等于1; 5、通径: 抛物线的通径为2P, 2p越大,抛物线的张口
越大. 6、光学性质:从焦点出发的光线,通过抛物线反射就
的直线,则被抛物线截得的弦长为______1__6_
3.垂直于x轴的直线交抛物线y2=4x于A、B,
且|AB|=4 3 ,求直线AB的方程.
X=3
例5.正三角形的一个顶点位于坐标原点,另外两个点 在抛物线y2=2px(p>0)上,求这个正三角形的边长.
解:由题可设一个顶点为( 3a, a)
则由a2 2 p 3a a 2 3 p
例3.斜率为1的直线L经过抛物线 y2 = 4x 的焦点F, 且与抛物线相交于A,B两点,求线段AB的长.
解法二:由题意可知,
y
p
2,
p 2
1,
准线l
:
x
1.
A’
A
设A(x1, y1), B(x2, y2 ), A, B到
准线l的距离分别为dA, dB.
抛物线的简单几何性质

顶点
焦半径
焦
p x1 x2
(0,0)
p 2
x0
p (x1 x2 )
(0,0)
p 2
y0
p y1 y2
(0,0)
p 2
y0
p ( y1 y2 )
当 α=90°时,∣AB∣叫做抛物线的通径,
是所有焦点弦中最短的,长度为 2p。 (5)A,B 两点的横坐标之积、纵坐标之积为定值,即 x1·x2=p42,y1·y2=-p2.
知识点三 直线与抛物线的位置关系 思考 直线与抛物线的位置关系有哪些? 答案 相交 ﹑相切﹑相离
思考 直线与抛物线有且只有一个公共点,那么直线与抛物线一定相切吗? 答案 不一定,当直线平行于抛物线的对称轴时,直线与抛物线相交.
示,由抛物线的定义可知,e=1
方程 图
y2 = 2px
(p>0) y
l
y2 = -2px (p>0)
yl
x2 = 2py (p>0)
y
F
x2 = -2py (p>0)
y
l
形 范围
OF x F O x
O
x l
O F
x
x≥0 y∈R x≤0 y∈R x∈R y≥0 x∈R y≤0
对称性 关于x轴对称 关于x轴对称 关于y轴对称 关于y轴对称
2.3.2 抛物线的简单几何性质
知识点一
类比探索
抛物线的几何性质
y
F
.
o
x
结合抛物线y2=2px(p>0)的标准方程和图形,探索 其的几何性质:
(1)范围 x≥0,y∈R
(2)对称性 关于x轴对称,对称轴又叫抛物线的轴
(3)顶点 抛物线和它的轴的交点叫做抛物线的顶点. 只有一个顶点
第2课时抛物线的简单几何性质

第2课时 抛物线的简单几何性质一、抛物线的性质1.抛物线2y =2px(p>0)的简单几何性质(1)对称性:以-y 代y ,方程2y =2px(p>0)不变,因此这条抛物线是以x 轴为对称轴的轴对称图形.抛物线的对称轴叫做抛物线的轴,抛物线只有一条对称轴. (2)顶点:抛物线和它的轴的交点叫做抛物线的顶点.(3)离心率:抛物线上的点到焦点的距离和它到准线的距离的比,叫做抛物线的离心率, (4)通径:过焦点垂直于轴的弦称为抛物线的通径,其长为2p.(5)范围:由y2=2px ≥0,p>0知x ≥0,所以抛物线在y 轴的右侧;当x 的值增大时,|y|也增大,这说明抛物线向右上方和右下方无限延伸,p 值越大,它开口越开阔. 2.焦半径抛物线上一点与焦点F 连接的线段叫做焦半径,设抛物线上任一点A(x0,y0),则四种标准方程形式下的焦半径公式为3.p 表示焦点到准线的距离,p >0.p 值越大,抛物线的开口越宽;p 值越小,抛物线的开口越窄。
4.焦点弦问题如图所示:AB 是抛物线y 2=2px (p >0)过焦点F 的一条弦,设A (x 1,y 1)、B (x 2,y 2),AB 的中点M (x 0,y 0),抛物线的准线为l .(1)以AB 为直径的圆必与准线l 相切; (2)|AB |=2(x 0+p2)=x 1+x 2+p ;(3)A 、B 两点的横坐标之积、纵坐标之积为定值,即x 1·x 2=42p ,y 1·y 2=2p.题型一、抛物线的对称性例1、正三角形的一个顶点位于坐标原点,另外两个顶点在抛物线y 2=2px (p >0)上,求这个正三角形的边长.[解析] 如图,设正三角形OAB 的顶点A 、B 在抛物线上,且它们坐标分别为(x 1,y 1)和(x 2,y 2)则:y 21=2px 1,y 22=2px 2.又|OA |=|OB |,∴x 21+y 21=x 22+y 22,即x 21-x 22+2px 1-2px 2=0,∴(x 1-x 2)(x 1+x 2+2p )=0. ∵x 1>0,x 2>0,2p >0,∴x 1=x 2, 由此可得|y 1|=|y 2|, 即线段AB 关于x 轴对称.由于AB 垂直于x 轴,且∠AOx =30°.∴y 1x 1=tan30°=33,而y 21=2px 1,∴ y 1=23p . 于是|AB |=2y 1=43p . 例2、等腰Rt △ABO 内接于抛物线2y =2px(p>0),O 为抛物线的顶点,OA ⊥OB ,则△ABO 的面积是()A .82pB .42p C .22pD .2p[答案] B题型二、抛物线焦点弦的性质例3、斜率为2的直线经过抛物线y 2=4x 的焦点,与抛物线相交于两点A 、B ,求线段AB 的长. 解∴|AB|=|AF|+|BF|=x1+x2+2=3+2=5. 例4、过抛物线2y =8x 的焦点作直线l ,交抛物线于A 、B 两点,若线段AB 中点的横坐标为3,则|AB|的值为_____________.[答案] 10 题型三、最值问题例5、设P 是抛物线y 2=4x 上的一个动点,F 为抛物线焦点.(1)求点P 到点A (-1,1)的距离与点P 到直线x =-1的距离之和的最小值; (2)若B (3,2),求|PB |+|PF |的最小值.[解析] (1)如图,易知抛物线的焦点为F (1,0),准线方程是x =-1,由抛物线的定义知:点P 到直线x =-1的距离等于点P 到焦点F 的距离.于是,问题转化为:在曲线上求一点P ,使点P 到点A (-1,1)的距离与点P 到F (1,0)的距离之和最小.显然,连AF 交抛物线于P 点,故最小值为22+12,即 5. (2)如图把点B 的横坐标代入y 2=4x 中,得y =±12,因为12>2,所以B 在抛物线内部,自B 作BQ 垂直准线于Q ,交抛物线于P 1.此时,由抛物线定义知: |P 1Q |=|P 1F |.那么|PB |+|PF |≥|P 1B |+|P 1Q | =|BQ |=3+1=4. 即最小值为4. 例6、定点M ⎪⎭⎫⎝⎛310,3与抛物线y 2=2x 上的点P 之间的距离为d 1,P 到抛物线准线l 的距离为d 2,则d 1+d 2取最小值时,P 点坐标为( )A .(0,0)B .(1,2)C .(2,2) D.⎪⎭⎫ ⎝⎛-21,81 [答案] C例7、设抛物线C :x 2=2py 的焦点为F ,准线为l ,A 为C 上一点,已知以F 为圆心,F A 为半径的圆F 交l 于B ,D 两点.(1)若∠BFD =90°,△ABD 的面积为42,求p 的值及圆F 的方程;(2)若A 、B 、F 三点在同一直线m 上,直线n 与m 平行,且n 与C 只有一个公共点,求坐标原点到m 、n 距离的比值.[正解] (1)由已知可得△BFD 为等腰直角三角形,当p >0时,|BD |=2p ,圆F 的半径|F A |=2p ,由抛物线定义可知A 到l 的距离d =|F A |=2p . 因为△ABD 的面积为42,所以12|BD |·d =42,即12·2p ·2p =42,解得p =2,所以F (0,1),圆F 的方程为x 2+(y -1)2=8. 当p <0时,同理可得p =-2,∴F (-1,0), ∴圆F 的方程为x 2+(y +1)2=8.(2)因为A 、B 、F 三点在同一直线m 上,所以AB 为圆F 的直径,∠ADB =90°,由抛物线定义知|AD |=|F A |=12|AB |.所以∠ABD =30°,m 的斜率为33或-33. 当m 的斜率为33时,由已知可设n :y =33x +b ,代入x 2=2py 得x 2-233px -2pb =0. 由于n 与C 只有一个公共点,故Δ=43p 2+8pb =0,解得b =-p 6.因为m 的截距b 1=p 2,|b 1||b |=3,所以坐标原点到m ,n 距离的比值为3. 当m 的斜率为-33时,由图形的对称性可知,坐标原点到m ,n 的距离的比值为3. 课后作业一、选择题1.过抛物线y 2=4x 的焦点作直线交抛物线于A (x 1,y 1)、B (x 2,y 2)两点,若x 1+x 2=10,则弦AB 的长度为( )A .16B .14C .12D .10[答案] C[解析] 设抛物线的焦点为F ,则|AB |=|AF |+|BF |=x 1+1+x 2+1=x 1+x 2+2=10+2=12. 2.设O 是坐标原点,F 是抛物线y 2=2px (p >0)的焦点,A 是抛物线上的一点,F A →与x 轴正向的夹角为60°,则|OA |为( )A.214pB.212pC.136p D.1336p [答案] B[解析] 设A (x 1,y 1),直线F A 的方程为y =3(x -p 2),由⎩⎪⎨⎪⎧ y 2=2px y =3(x -p 2),得⎩⎪⎨⎪⎧x 1=32p y 1=3p. ∴|OA |=x 21+y 21=94p 2+3p 2=212p . 3.过抛物线焦点F 的直线与抛物线相交于A 、B 两点,若点A 、B 在抛物线准线上的射影分别为A 1,B 1,则∠A 1FB 1为( )A .45°B .60°C .90°D .120°[答案] C[解析] 设抛物线方为y 2=2px (p >0). 如图,∵|AF |=|AA 1|,|BF |=|BB 1|, ∴∠AA 1F =∠AF A 1,∠BFB 1=∠FB 1B .又AA 1∥Ox ∥B 1B ,∴∠A 1FO =∠F A 1A ,∠B 1FO =∠FB 1B ,∴∠A 1FB 1=12∠AFB =90°.4.抛物线y 2=2x 的焦点为F ,其准线经过双曲线x 2a 2-y 2b2=1(a >0,b >0)的左顶点,点M 为这两条曲线的一个交点,且|MF |=2,则双曲线的离心率为( ) A.102B .2 C. 5 D.52[答案] A[解析] F (12,0),l :x =-12,由题意知a =12.由抛物线的定义知,x M -(-12)=2,∴x M =32,∴y 2M =3,∵点(x M ,y M )在双曲线上,∴9414-3b 2=1,∴b 2=38,∴c 2=a 2+b 2=58,∴e 2=c 2a 2=58×4=52,∴e =102. 5.已知A 、B 在抛物线y 2=2px (p >0)上,O 为坐标原点,如果|OA |=|OB |,且△AOB 的垂心恰好是此抛物线的焦点F ,则直线AB 的方程是( ) A .x -p =0 B .4x -3p =0 C .2x -5p =0D .2x -3p =0[答案] C[解析] 如图所示:∵F 为垂心,F 为焦点,OA =OB ,∴OF 垂直平分AB . ∴AB 为垂直于x 轴的直线设A 为(2pt 2,2pt )(t >0),B 为(2pt 2,-2pt ), ∵F 为垂心,∴OB ⊥AF ,∴k OB ·k AF =-1, 即-(2pt )2(2pt 2-p 2)·2pt 2=-1,解得t 2=54∴AB 的方程为x =2pt 2=52p ,∴选C.二、填空题6.已知过抛物线y 2=6x 焦点的弦长为12,则此弦所在直线的倾斜角是__________________.[答案] π4或3π4[解析] 设直线的倾斜角为θ,由题意得12=2p sin 2θ=6sin 2θ,∴sin 2θ=12,∴sin θ=±22,∵θ∈[0,π),∴θ=π4或3π4.7.设抛物线y 2=8x 的焦点为F ,准线为l ,P 为抛物线上一点,P A ⊥l ,A 为垂足.如果直线AF 的斜率为-3,那么|PF |=__________________.[答案] 8[解析] 如图,k AF =-3,∴∠AFO =60°,∵|BF |=4,∴|AB |=43, 即P 点的纵坐标为43, ∴(43)2=8x ,∴x =6, ∴|P A |=8=|PF |. 三、解答题8.如图,有一张长为8,宽为4的矩形纸片ABCD ,按如图所示的方法进行折叠,使每次折叠后点B 都落在AD 边上,此时记为B ′(注:图中EF 为折痕,点F 也可落在CD 边上).过点B ′作B ′T ∥CD 交EF 于点T ,求点T 的轨迹方程.[解析] 如图,以边AB 的中点O 为原点,AB 所在的直线为y 轴建立平面直角坐标系,则B (0,-2).连结BT ,由折叠知|BT |=|B ′T |.∵B ′T ∥CD ,CD ⊥AD ,∴B ′T ⊥AD .根据抛物线的定义知,点T 的轨迹是以点B 为焦点,AD 所在直线为准线的抛物线的一部分.设T (x ,y ).∵|AB |=4.即定点B 到定直线AD 的距离为4,∴抛物线的方程为x 2=-8y .在折叠中,线段AB ′的长度|AB ′|在区间[0,4]内变化,而x =|AB ′|,∴0≤x ≤4,故点T 的轨迹方程为x 2=-8y (0≤x ≤4).9.定长为3的线段AB 的端点A 、B 在抛物线y 2=x 上移动,求AB 中点到y 轴距离的最小值,并求出此时AB 中点M 的坐标.[解析] 如图,设F 是抛物线y 2=x 的焦点,A 、B 两点到准线的垂线分别是AC 、BD ,M 点到准线的垂线为MN ,N 为垂足,则|MN |=12(|AC |+|BD |),根据抛物线定义得|AC |=|AF |,|BD |=|BF |,∴|MN |=12(|AF |+|BF |)≥|AB |2=32.设M 点的横坐标为x ,则|MN |=x +14,∴x =|MN |-14≥32-14=54,等号成立的条件是弦AB 过点F , 由于|AB |>2p =1,∴AB 过焦点是可能的,此时M 点到y 轴的最短距离是54,即AB 的中点横坐标为54.当F 在AB 上时,设A 、B 的纵坐标分别为y 1、 y 2,则y 1y 2=-p 2=-14,从而(y 1+y 1)2=y 21+y 22+2y 1y 2=2×54-12=2,∴y 1+y 2=±2, ∴M 点的坐标为(54,±22)时,M 到y 轴距离的最小值为54.。
2.3.2抛物线的简单几何性质

x≤0
y∈ R y≥0 (0,0) 1
x∈ R y ≤0
x∈R
y
O F
y轴
l 2 x = -2py F (0, p ) x
(p>0)
2
p y 2
例3 已知抛物线关于x轴对称,它的顶点在坐标原点,并且过点 M(2, 2 2 ),求它的标准方程. 例4 斜率为1的直线l经过抛物线 y2 = 4x的焦点F,且与抛物 线相交于A,B两点,求线段AB的长. 方法1:求出A,B两点坐标,用两点间距离公式求|AB|. 方法2:利用|AF|=dA到准线, |BF|=dB到准线,表示|AB|. 例5 已知抛物线的方程为y2=4x,直线l过定点P(-2,1),斜率为k, 当k为何值时,直线l与抛物线:只有一个公共点;有两个公共 点;没有公共点.
o
p 2
p 2.o xy源自p 0, 2 . o
y2=2px
y
x
.o
y
x
o
.
y x
.
o
y x
y2= -2px
x2=2py
x2= -2py
方 程 特 点
(1)方程的左边是二次项,等号的右边是一次项;
(2)焦点在一次项的那个轴上,坐标是一次项系数的
(3)抛物线的准线的方程是一次项系数的— (4)焦点到准线的距离为p
2.3.2 抛物线的简单几何性质
y2=2px 1.范围: x≥0,y∈R 抛物线关于x轴对称。 2.对称性: 对称轴叫做抛物线的轴。 3.顶点: (0,0) 叫做抛物线的顶点。 4.离心率:
K
d
o
﹒ F x
M
抛物线上的点M到焦点的距离和它到准线的距 离之比,叫做抛物线的离心率。e=1
抛物线的几何性质

一、抛物线的范围: y2=2px y
P(x,y)
•X 0
o
p F ( ,0 ) 2
x
•y取全体实数
二、抛物线的对称性 y2=2px
y
M(x,y)
以-y代y方程不变,所以抛物线 关于x轴对称.我们把抛物线的 对称轴叫做抛物线的轴.
o
F(
p ,0 ) 2
x
M1(x,-y)
三、抛物线的顶点 y2=2px
24cm
o
F
P
x
B
10cm
例3已知点A在平行于y轴的直线L上,且L与x轴的 交点为(4,0)。动点p满足 OA OP y 求P点的轨迹方程,并说明轨迹的形状。 分析:设P( x,y)则A(4,y) OA OP ∴ OA.OP 0
( 。 ∴ x,y) (4,y)=0 L P A
(4,0) x
请具体说出开口方向,焦点坐标,准线方程。
四种抛物线的标准方程的几何性质的对比
好好学习
Y
X
定义 :抛物线 与对称轴的交点, 叫做抛物线的顶 点,只有一个顶 点.
四、抛物线的离心率 y2=2px
Y
X
所有的抛物 线的离心率 都是 1
抛物线上的点与焦点的距离和它到准线的距离的 比,叫做抛物线的离心率,由抛物线的定义可知
e 1
五、焦半径
|PF|=x0+p/2
y
P
O
பைடு நூலகம்
F
x
例1:已知抛物线以x轴为轴,顶点式坐标原点且开口 向右,又抛物线经过点M 4,2 3 ,求它的标准方程。
分析:根据已知条件,可以设抛 物线的方程为
Y
3.3.2抛物线的简单几何性质课件-2022-2023学年高二上学期数学人教A版(2019)选择性必

综上可得以下结论:
(1)以AB为直径的圆必与准线l相切.
(2)以AF(或BF)为直径的圆必与y轴相切.
(3)以A1B1为直径的圆与直线AB相切,切点为F,∠A1FB1=90°.
(4)A1,O,B三点共线,B1,O,A三点共线.
(5)A,B两点的横坐标之积、纵坐标之积为定值,
即x1x2=
p2 4
,y1y2=-p2.
2. 弦长公式
一条直线被抛物线所截得的线段叫做抛物线的弦,其弦长公式与椭
圆 的 弦 长 公 式 一 样 , 设 直 线 与 抛 物 线的交点为A(x1,y1),B(x2,
y2),
则|AB|= 1 k2 · = (x1 x2)2 4x1x2 1 k2 |x1-x2|
或|AB|=
1
1 k2
·
= ( y1 y2)2 4 y1y2
图形
顶点
开口方向
右
y2=-2px (p>0)
x2=2py (p>0)
O(0,0)
左
上
x2=-2py (p>0)
下
对称轴 x的取 值范围 y的取 值范围 离心率
x轴
y轴
x≥0
x≤0
R
R
y≥0
y≤0
e=1
【特别提示】 (1)抛物线的性质与椭圆、双曲线比较起来,有较大差别.它的离心率为 定值1,只有一个焦点,一个顶点,一条对称轴,一条准线,它没有对称中 心,通常称抛物线为无心圆锥曲线,而称椭圆、双曲线为有心圆锥曲线. (2)抛物线没有渐近线,在画图时不要把抛物线画成双曲线一支的形状.
二、直线与抛物线的位置关系
1.直线与抛物线位置关系的判断 设直线l:y=kx+m,抛物线y2=2px(p>0),将直线方程与抛物线 方程联立,整理成关于x的方程k2x2+(2km-2p)x+m2=0. (1)若k≠0, 当Δ>0时,直线与抛物线相交,有两个交点; 当Δ=0时,直线与抛物线相切,有一个切点; 当Δ<0时,直线与抛物线相离,无交点.
抛物线的简单几何性质
y
1 y2
k
(x 4x
2)
Y
可得ky2 4 y 4(2k 1) 0 (1)当k 0时,由方程得 y 1.
P·
把y 1代入y2 4x,得x 1 .
O
X
4
这时,直线l与抛物线只有一个公共点(1 ,1) 4
例1 已知抛物线的方程为y²=4x,直线l过定点P(-2,1),斜率为k,k 为何值时,直线l与抛物线y²=4x:只有一个公共点;有两个公共 点;没有公共点?
(0,0)
e=1
x2 2 py ( p 0)
y 0, xR
关于y 轴 对称,无 对称中心
(0,0)
e=1
x2 2 py y 0,
关于y 轴 对称,无
(0,0) e=1
( p 0) x R 对称中心
例3 已知抛物线关于x轴对称,它的顶点在坐标原点, 并且经过点(2,2 2),求它的标准方程。
(5)一次项系数的绝对值越大,开口越大
课堂小结
(1)抛物线的简单几何性质 (2)抛物线与椭圆、双曲线几何性质的不同点 (3)应用性质求标准方程的方法和步骤
小结:
1、抛物线的定义,标准方程类型与图象的对应 关系以及判断方法
2、抛物线的定义、标准方程和它 的焦点、准线、方程
3、注重数形结合的思想。
例5 过抛物线焦点F的直线交抛物线于A,B两点,通过点A和抛物线顶点的 直线交抛物线的准线于点D,求证:直线DB平行于抛物线的对称轴。
证明:以抛物线的对称轴为x轴,它的顶点为原点,
建立直角坐标系。设抛物线的方程为y2 2 px,
点A的坐标为(
y02 2p
,
y0
),则直线OA的方程为y
抛物线的准线是x p
抛物线标准方程及其几何性质
教学内容知识梳理1抛物线的定义:平面内与一个定点F 和一条定直线l 的距离相等的点的轨迹叫做抛物线,定点F 叫做抛物线的焦点,定直线l 叫做抛物线的准线. 2抛物线的图形和性质:①顶点是焦点向准线所作垂线段中点。
②焦准距:FK p =③通径:过焦点垂直于轴的弦长为2p 。
④顶点平分焦点到准线的垂线段:2p OF OK ==。
⑤焦半径为半径的圆:以P 为圆心、FP 为半径的圆必与准线相切。
所有这样的圆过定点F 、准线是公切线。
⑥焦半径为直径的圆:以焦半径 FP 为直径的圆必与过顶点垂直于轴的直线相切。
所有这样的圆过定点F 、过顶点垂直于轴的直线是公切线。
⑦焦点弦为直径的圆:以焦点弦PQ 为直径的圆必与准线相切。
所有这样的圆的公切线是准线。
3抛物线标准方程的四种形式:,,px y px y 2222-==。
,py x py x 2222-== 4抛物线px y 22=的图像和性质:①焦点坐标是:⎪⎭⎫⎝⎛02,p , ②准线方程是:2px -=。
③焦半径公式:若点),(00y x P 是抛物线px y 22=上一点,则该点到抛物线C NM 1QM 2K FPoM 1QM 2KF Poyx的焦点的距离(称为焦半径)是:02p PF x =+, ④焦点弦长公式:过焦点弦长121222p pPQ x x x x p =+++=++ ⑤抛物线px y 22=上的动点可设为P ),2(2y py或2(2,2)P pt pt 或P px y y x 2),(2=其中5一般情况归纳:方程 图象 焦点 准线 定义特征 y 2=kxk>0时开口向右 (k/4,0)x=─k/4到焦点(k/4,0)的距离等于到准线x= ─k/4的距离k<0时开口向左 x 2=kyk>0时开口向上 (0,k/4)y=─k/4到焦点(0,k/4)的距离等于到准线y=─k/4的距离k<0时开口向下例题讲解例1设抛物线的顶点在原点,准线方程为x =-2,则抛物线的方程是( ) A .y2=-8x B .y2=8x C .y2=-4xD .y2=4x例2坐标平面内到定点F(-1,0)的距离和到定直线l :x =1的距离相等的点的轨迹方程是( ) A .y2=2xB .y2=-2xC .y2=4xD .y2=-4x例3已知F 是抛物线y 2=x 的焦点,A ,B 是该抛物线上的两点,|AF |+|BF |=3,则线段AB 的中点到y 轴的距离为( )A.34 B .1 C.54 D.74例4拋物线y2=4x 上一点M 到焦点的距离为2,则M 到y 轴的距离为________. 例5已知过抛物线y2=4x 的焦点F 的直线交该抛物线于A 、B 两点,|AF|=2,则|BF|=________.例6根据下列条件求拋物线的标准方程.(1)拋物线的焦点是双曲线16x2-9y2=144的左顶点;(2)拋物线焦点在x 轴上,直线y =-3与拋物线交于点A ,|AF|=5.例7已知抛物线y2=2x 的焦点是F ,点P 是抛物线上的动点,又有点A(3,2),求|PA|+|PF|的最小值,并求出取最小值时P 点的坐标. 变式练习.(1)将本例中A (3,2)改为A ⎝ ⎛⎭⎪⎫3,103,试求|P A |+|PF |的最小值及此时P 点的坐标.(2)本例条件不变,求点P 到点B ⎝⎛⎭⎪⎫-12,1的距离与点P 到直线x =-12的距离之和的最小值.例7.已知探照灯的轴截面是抛物线y 2=x ,如图所示,平行于对称轴y=0的光线于此抛物线上入射点,反射点分别为P 、Q ,设点P 的纵坐标为a(a>0),当a 取何值时,从入射光线P 到反射点Q 的光线路径最短?例8已知拋物线C :y 2=2px (p >0)过点A (1,-2).(1)求拋物线C 的方程,并求其准线方程;y oFPQ(2)是否存在平行于OA (O 为坐标原点)的直线l ,使得直线l 与拋物线C 有公共点,且直线OA 与l 的距离等于55?若存在,求出直线l 的方程;若不存在,说明理由.课内练习1.以抛物线)0(22>=p px y 的焦半径PF 为直径的圆与y 轴位置关系为( )A、 相交 B、 相离 C、 相切 D、 不确定 2.抛物线方程为7x +8y 2=0,则焦点坐标为( ) A .(716 ,0) B .(-732 ,0) C .(0,- 732 ) D .(0,- 716 )3.抛物线y=-x 2上的点到直线4x +3y -8=0距离的最小值是 ( ) A .43 B .75 C .85 D .34.设O 为坐标原点,F 为抛物线y 2=4x 的焦点,A 为抛物线上一点,若OA → ·AF → =-4,则A 点坐标为 ( ) A .(2,±2 2 ) B .(1,±2) C .(1,2) D .(2,2 2 )5.抛物线y 2=-2px(p >0)上一点横坐标为-9,它到焦点的距离为10,这点的坐标为 . 6.过抛物线x y =2的焦点F 的直线m 的倾斜角m ,4πθ≥交抛物线于A 、B 两点,且A 点在x 轴上方,则|FA|的取值范围是 .7.一动圆M和直线:4l x =-相切,并且经过点(4,0)F ,则圆心M的轨迹方程是 . 8.直线l 过抛物线)0(22>=p px y 的焦点且与x 轴垂直,若l 被抛物线截得的线段长为6,求p 的值.9.已知直线l :y= 3 x +4被抛物线x 2=2p y(p >0)截得的弦长为4 3 . (1)求抛物线的方程;(2)在该抛物线上位于直线l 下方的部分中,求一点M ,使M 到l 的距离最远.10.已知抛物线y 2=4ax(a >0)的焦点为A ,以B (a+4,0)为圆心,|AB|长为半径画圆,在x 轴上方交抛物线于M 、N 不同的两点,若P 为MN 的中点.(1)求a 的取值范围; (2)求|AM|+|AN|的值;(3)问是否存在这样的a 值,使|AM|、|AP|、|AN|成等差数列?课后作业1.顶点为原点,抛物线对称轴为y轴,且过点(-4,5),则抛物线的准线方程为()A.y=-45B.y=45C.x=-45D.x=452.已知点P是抛物线22y x=上的动点,点P在y轴上的射影是M,点A的坐标是7(,4)2A,则||||PA PM+的最小值是()A.112B.4 C.92D.53.过点(-1,0)作抛物线y=x2+x+1的切线,则其中一条切线为()A.2x+y+2=0 B.3x-y+3=0 C.x+y+1=0 D.x-y+1=04.抛物线型拱桥的顶点距水面2m时,水面宽8m,若水面升1m,此时水面宽为.5.过抛物线y2=4x焦点的直线交抛物线于A,B两点,已知|AB|=10,O为坐标原点,则△OAB的重心的坐标为.6.求以原点为顶点,坐标轴为对称轴,且过点P(2,-4)的抛物线的方程.7.已知抛物线C 的顶点在原点,焦点F 在x 轴正半轴上,设A ,B 是抛物线C 上的两个动点(AB 不垂直于x 轴),且|AF|+|BF|=8,线段AB 的垂直平分线恒经过定点Q (6,0),求此抛物线方程.8.已知抛物线x y 22=及定点),0,1(),1,1(-B A M 是抛物线上的点,设直线BM AM ,与抛物线的另一交点分别为21,M M .求证:当点M 在抛物线上变动时(只要21,M M 存在且1M 与2M 是不同两点),直线21M M 恒过一定点,并求出定点的坐标B 组1.抛物线24y x =上的一点M 到焦点的距离为1,则点M 的纵坐标是( )A .1716B .1516C .78D .02.已知两点M (-2,0),N (2,0),点P 为坐标平面内的动点,满足|MN → |·|MP → |+MN → ·NP → =0,则动点P (x,y )的轨迹方程是 ( ) A .y 2=8x B .y 2=-8x C .y 2=4x D .y 2=-4x3.已知P 是抛物线y=2x 2+1上的动点,定点A (0,―1),点M 分P A → 所成的比为2,则点M 的轨迹方程是( )A 、y=6x 2―31B 、x=6y 2-31 C 、y=3x 2+31 D 、y=―3x 2―14.有一个正三角形的两个顶点在抛物线y 2=2 3 x 上,另一个顶点在原点,则这个三角形的边长是 .5.对正整数n ,设抛物线x n y )12(22+=,过)0,2(n P 任作直线l 交抛物线于n n B A ,两点,则数列⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧+⋅)1(2n OB OA n n 的前n 项和公式是 .6.焦点在x 轴上的抛物线被直线y=2x +1截得的弦长为15 ,求抛物线的标准方程.7.定长为3的线段AB 的两个端点在抛物线y 2=x 上移动,AB 的中点为M ,求点M 到y 轴的最短距离,并求出点M 的坐标.8.在直角坐标系中,已知点⎪⎭⎫⎝⎛0,2p F (p>0), 设点F 关于原点的对称点为B ,以线段FA为直径的圆与y 轴相切.(1)点A 的轨迹C 的方程;(2)PQ 为过F 点且平行于y 轴的曲线C 的弦,试判断PB 与QB 与曲线C 的位置关系.21M M 是曲线C 的平行于y 轴的任意一条弦,若直线FM1与BM2的交点为M ,试证明点M 在曲线C 上.。
17-18版:2.4.2 抛物线的几何性质
解析
因为y=4x2与y=4x-5不相交,设与y=4x-5平行的直线方程为
y=4x+m.
2 y = 4 x , 则 ⇒4x2-4x-m=0. y=4x+m,
①
设此直线与抛物线相切,此时有Δ=0, 即Δ=16+16m=0,∴m=-1. 1 将 m=-1 代入①式,x=2,y=1, 1 故所求点的坐标为(2,1).
所以,所求抛物线的标准方程为 y2=8 2x,其准线方程为 x=-2 2.
反思与感悟
解析答案
跟踪训练1
已知抛物线的对称轴在坐标轴上,以原点为顶点,且经过
点M(1,-2).求抛物线的标准方程和准线方程.
解析答案
题型二 抛物线的焦点弦问题 已知抛物线方程为 y2 =2px(p>0),过此抛物线的焦点的直线与抛 5 物线交于A,B两点,且AB= p,求AB所在的直线方程. 2 例2
解析 由题意知,点P到焦点F的距离等于它到顶点O的距离, 1 因此点P在线段OF的垂直平分线上, 而 F(4,0), 1 2 所以的 P 的横坐标为8,代入抛物线方程得 y=± 4 , 1 2 故点 P 的坐标为(8,± 4 ).
解析答案
1
2
3
4
5
1 ( ,1) 3.抛物线y=4x2上一点到直线y=4x-5的距离最短,则该点坐标为 2 .
解析 设抛物线y2=2px或y2=-2px(p>0),
p 依题意得 x=2,代入 y2=2px 或 y2=-2px 得|y|=p, ∴2|y|=2p=8,p=4.
解析答案
1
2
3
4
5
2.若抛物线y2=x上一点P到准线的距离等于它到顶点的距离,则点P的
1 2 (8,± 4 ) 坐标为_____________.
2020高中数学 1 抛物线的几何性质(二)(含解析)2-1
课时分层作业(十六)抛物线的几何性质(二)(建议用时:60分钟)[基础达标练]一、选择题1.过抛物线y2=4x的焦点F的直线交抛物线于A,B两点,点O是坐标原点,则|AF|·|BF|的最小值是()A.2 B.错误!C.4 D.2错误!C [设直线AB的倾斜角为θ,可得|AF|=错误!,|BF|=错误!,则|AF|·|BF|=错误!×错误!=错误!≥4。
]2.已知抛物线x2=ay与直线y=2x-2相交于M,N两点,若MN中点的横坐标为3,则此抛物线方程为( )A.x2=错误!y B.x2=6yC.x2=-3y D.x2=3yD [设点M(x1,y1),N(x2,y2).由错误!消去y,得x2-2ax+2a =0,所以错误!=错误!=3,即a=3,因此所求的抛物线方程是x2=3y.]3.已知抛物线y2=2x的弦AB的中点的横坐标为错误!,则|AB|的最大值为()A.1 B.2 C.3 D.4D [设A(x1,y1),B(x2,y2),则x1+x2=3,利用抛物线的定义可知,|AF|+|BF|=x1+x2+1=4,由图可知|AF|+|BF|≥|AB|⇒|AB|≤4,当且仅当直线AB过焦点F时,|AB|取得最大值4。
]4.直线4kx-4y-k=0与抛物线y2=x交于A,B两点,若|AB|=4,则弦AB的中点到直线x+错误!=0的距离等于( )A。
错误!B.2 C。
错误!D.4C [易知直线4kx-4y-k=0过抛物线y2=x的焦点错误!,∴|AB|为焦点弦.设A(x1,y1),B(x2,y2),则AB中点N错误!,∴|AB|=x1+x2+p=4.∴错误!=错误!。
∴AB中点到直线x+错误!=0的距离为错误!+错误!=错误!.]5.已知抛物线的顶点在坐标原点,对称轴为x轴,且与圆x2+y2=4相交的公共弦长等于2错误!,则抛物线的方程为( )A.y2=3x或y2=-3x B.y2=-3xC.y2=6x D.y2=6x或y2=-6xA[设所求抛物线的方程为y2=2mx(m≠0),设交点A(x1,y1),B(x2,y2)(y1>0,y2<0),则|y1|+|y2|=2错误!,即y1-y2=2错误!,由对称性知y2=-y1,∴y1=错误!。