圆锥曲线(椭圆,双曲线,抛物线)的定义、方程和性质知识总结
高考数学中的常见圆锥曲线

高考数学中的常见圆锥曲线圆锥曲线是高中数学中重要的一章内容,也是高考中经常出现的考点之一。
圆锥曲线是平面解析几何的基础,对于学习解析几何和进一步学习微积分等数学课程具有重要的意义。
在高考数学中,常见的圆锥曲线有椭圆、双曲线和抛物线。
接下来,我们将对每种圆锥曲线进行详细的介绍。
一、椭圆椭圆是圆锥曲线中的一种,其定义为到定点F1和F2的距离之和等于定长2a的点P的轨迹。
其中,F1和F2是称为焦点的点,2a称为椭圆的长轴。
椭圆的其他要素有:1. 焦距:定义为焦点之间的距离,记作2c。
2. 离心率:定义为焦距与长轴之比,记作e。
在椭圆中,离心率小于1。
3. 扁压比:定义为短轴与长轴之比,记作b/a。
在椭圆中,扁压比小于1。
椭圆的方程可以通过坐标系中点P(x,y)到焦点F1、F2的距离之和等于定长2a来表示。
椭圆的标准方程为:(x-x0)^2/a^2 + (y-y0)^2/b^2 = 1在高考中,关于椭圆的考点主要包括椭圆的性质和椭圆的方程与图像等方面的题目。
二、双曲线双曲线是圆锥曲线中的另一种,其定义为到定点F1和F2的距离之差等于定常2a的点P的轨迹。
其中,F1和F2是称为焦点的点,2a称为双曲线的距。
双曲线的其他要素有:1. 焦距:定义为焦点之间的距离,记作2c。
2. 离心率:定义为焦距与距之比,记作e。
在双曲线中,离心率大于1。
3. 长半轴:定义为从顶点到较远焦点的距离,记作a。
4. 短半轴:定义为从顶点到双曲线与x轴或y轴的交点的距离,记作b。
在双曲线中,短半轴小于距。
双曲线的标准方程为:(x-x0)^2/a^2 - (y-y0)^2/b^2 = 1在高考中,关于双曲线的考点主要包括双曲线的性质和双曲线的方程与图像等方面的题目。
三、抛物线抛物线是圆锥曲线中的最后一种,其定义为点P到定直线(直矩)的距离等于点P到定直线(焦准)的距离。
抛物线的定直线称为准线,定直线的焦点称为焦点,焦距的两倍称为抛物线的焦距。
(完整版)高中数学圆锥曲线知识点总结

高中数学知识点大全—圆锥曲线一、考点(限考)概要:1、椭圆:(1)轨迹定义:①定义一:在平面内到两定点的距离之和等于定长的点的轨迹是椭圆,两定点是焦点,两定点间距离是焦距,且定长2a大于焦距2c。
用集合表示为:;②定义二:在平面内到定点的距离和它到一条定直线的距离之比是个常数e,那么这个点的轨迹叫做椭圆。
其中定点叫焦点,定直线叫准线,常数是离心率用集合表示为:;(2)标准方程和性质:注意:当没有明确焦点在个坐标轴上时,所求的标准方程应有两个。
(3)参数方程:(θ为参数);3、双曲线:(1)轨迹定义:①定义一:在平面内到两定点的距离之差的绝对值等于定长的点的轨迹是双曲线,两定点是焦点,两定点间距离是焦距。
用集合表示为:②定义二:到定点的距离和它到一条定直线的距离之比是个常数e,那么这个点的轨迹叫做双曲线。
其中定点叫焦点,定直线叫准线,常数e是离心率。
用集合表示为:(2)标准方程和性质:注意:当没有明确焦点在个坐标轴上时,所求的标准方程应有两个。
4、抛物线:(1)轨迹定义:在平面内到定点和定直线的距离相等的点的轨迹是抛物线,定点是焦点,定直线是准线,定点与定直线间的距离叫焦参数p。
用集合表示为:(2)标准方程和性质:①焦点坐标的符号与方程符号一致,与准线方程的符号相反;②标准方程中一次项的字母与对称轴和准线方程的字母一致;③标准方程的顶点在原点,对称轴是坐标轴,有别于一元二次函数的图像;二、复习点睛:1、平面解析几何的知识结构:2、椭圆各参数间的关系请记熟“六点六线,一个三角形”,即六点:四个顶点,两个焦点;六线:两条准线,长轴短轴,焦点线和垂线PQ;三角形:焦点三角形。
则椭圆的各性质(除切线外)均可在这个图中找到。
3、椭圆形状与e的关系:当e→0,c→0,椭圆→圆,直至成为极限位置的圆,则认为圆是椭圆在e=0时的特例。
当e→1,c→a椭圆变扁,直至成为极限位置的线段,此时也可认为是椭圆在e=1时的特例。
2023年高考数学复习:圆锥曲线的方程与性质

3 考点三 抛物线的几何性质
PART THREE
核心提炼
抛物线的焦点弦的几个常见结论:
设AB是过抛物线y2=2px(p>0)的焦点F的弦,
若A(x1,y1),B(x2,y2),α是弦AB的倾斜角,则 (1)x1x2=p42,y1y2=-p2. (2)|AB|=x1+x2+p=si2np2α . (3)|F1A|+|F1B|=2p. (4)以线段 AB 为直径的圆与准线 x=-p2相切.
规律 方法
(1)在“焦点三角形”中,常利用正弦定理、余弦定理,结合椭圆
(或双曲线)的定义,运用平方的方法,建立与|PF1|·|PF2|的联系. (2)确定椭圆和双曲线的离心率的值及范围,其关键就是确立一个关 于a,b,c的等量关系或不等关系,然后用a,c代换b,进而求 ac 的值. (3)求双曲线渐近线方程的关键在于求ba或ab的值,也可将双曲线方程 中等号右边的“1”变为“0”,然后因式分解得到.
考向1 椭圆、双曲线的几何性质
例 2 (1)已知椭圆 C:ax22+by22=1(a>b>0)的左、右焦点分别为 F1,F2, 短轴长为 2,O 为坐标原点,点 P 在 C 上且|OP|=c(c 为椭圆 C 的半焦
距),直线 PF2 与 C 交于另一个点 Q,若 tan∠F1QF2=34,则椭圆 C 的长 轴长为
(2)(2021·全国乙卷)设 B 是椭圆 C:ax22+by22=1(a>b>0)的上顶点,若 C 上的
任意一点 P 都满足|PB|≤2b,则 C 的离心率的取值范围是
A.
22,1
B.12,1
√
C.0,
2
2
D.0,12
圆锥曲线知识点整理

圆锥曲线知识点整理圆锥曲线是高中数学中的重要内容,包括椭圆、双曲线和抛物线。
下面我们来详细整理一下圆锥曲线的相关知识点。
一、椭圆1、定义平面内与两个定点 F₁、F₂的距离之和等于常数(大于|F₁F₂|)的点的轨迹叫做椭圆。
这两个定点叫做椭圆的焦点,两焦点间的距离叫做焦距。
2、标准方程焦点在 x 轴上:\(\frac{x^2}{a^2} +\frac{y^2}{b^2} =1\)(\(a > b > 0\)),其中\(a\)为长半轴长,\(b\)为短半轴长,\(c\)为半焦距,满足\(c^2 = a^2 b^2\)。
焦点在y 轴上:\(\frac{y^2}{a^2} +\frac{x^2}{b^2} =1\)(\(a > b > 0\))3、椭圆的性质(1)范围:对于焦点在 x 轴上的椭圆,\(a \leq x \leq a\),\(b \leq y \leq b\);对于焦点在 y 轴上的椭圆,\(b \leq x \leq b\),\(a \leq y \leq a\)。
(2)对称性:椭圆关于 x 轴、y 轴和原点对称。
(3)顶点:椭圆有四个顶点,焦点在 x 轴上时,顶点坐标为\((\pm a, 0)\),\((0, \pm b)\);焦点在 y 轴上时,顶点坐标为\((0, \pm a)\),\((\pm b, 0)\)。
(4)离心率:椭圆的离心率\(e =\frac{c}{a}\),\(0 < e < 1\),\(e\)越接近 0,椭圆越接近于圆;\(e\)越接近 1,椭圆越扁。
二、双曲线1、定义平面内与两个定点 F₁、F₂的距离之差的绝对值等于常数(小于|F₁F₂|)的点的轨迹叫做双曲线。
这两个定点叫做双曲线的焦点,两焦点间的距离叫做焦距。
2、标准方程焦点在 x 轴上:\(\frac{x^2}{a^2} \frac{y^2}{b^2} = 1\),其中\(a > 0\),\(b > 0\),\(c^2 = a^2 + b^2\)。
圆锥曲线知识点总结

圆锥曲线知识点总结圆锥曲线是高中数学中的重要内容,包括椭圆、双曲线和抛物线。
掌握圆锥曲线的相关知识对于解决数学问题和理解数学的应用具有重要意义。
一、椭圆1、定义平面内与两个定点 F1、F2 的距离之和等于常数(大于|F1F2|)的点的轨迹叫做椭圆。
这两个定点叫做椭圆的焦点,两焦点间的距离叫做焦距。
2、标准方程(1)焦点在 x 轴上:\(\frac{x^2}{a^2} +\frac{y^2}{b^2} = 1\)(\(a > b > 0\)),其中\(a\)为长半轴长,\(b\)为短半轴长,\(c\)为半焦距,满足\(c^2 = a^2 b^2\)。
(2)焦点在 y 轴上:\(\frac{y^2}{a^2} +\frac{x^2}{b^2} = 1\)(\(a > b > 0\))。
3、椭圆的性质(1)对称性:椭圆关于 x 轴、y 轴和原点对称。
(2)范围:\(a \leq x \leq a\),\(b \leq y \leq b\)。
点为\((\pm a, 0)\),\((0, \pm b)\);焦点在 y 轴上时,顶点为\((0, \pm a)\),\((\pm b, 0)\)。
(4)离心率:椭圆的离心率\(e =\frac{c}{a}\)(\(0 < e < 1\)),它反映了椭圆的扁平程度,\(e\)越接近 0,椭圆越接近于圆;\(e\)越接近 1,椭圆越扁。
二、双曲线1、定义平面内与两个定点 F1、F2 的距离之差的绝对值等于常数(小于|F1F2|)的点的轨迹叫做双曲线。
这两个定点叫做双曲线的焦点,两焦点间的距离叫做焦距。
2、标准方程(1)焦点在 x 轴上:\(\frac{x^2}{a^2} \frac{y^2}{b^2} =1\),其中\(a\)为实半轴长,\(b\)为虚半轴长,\(c\)为半焦距,满足\(c^2 = a^2 + b^2\)。
(2)焦点在 y 轴上:\(\frac{y^2}{a^2} \frac{x^2}{b^2} =1\)。
高中数学圆锥曲线知识点总结及公式大全

高中数学圆锥曲线知识点总结及公式大全一、圆锥曲线的基本概念圆锥曲线包括椭圆、双曲线和抛物线,它们是高中数学中重要的知识点之一。
圆锥曲线是由平面与圆锥的交线所形成的曲线,其基本概念包括焦点、准线和离心率等。
1. 焦点:圆锥曲线的焦点是到曲线的两个顶点距离相等的点,焦点到曲线的顶点的距离称为焦距。
椭圆和双曲线的焦点位于其对称轴上,而抛物线的焦点则位于其准轴上。
2. 准线:圆锥曲线的准线是与焦点垂直的直线,准线与曲线有两个交点。
在椭圆和双曲线中,准线是与主轴垂直的直线,而在抛物线中,准线是与主轴平行的直线。
3. 离心率:圆锥曲线的离心率是焦点到顶点的距离与准线到顶点的距离之比,离心率的大小可以反映曲线的形状。
椭圆的离心率在0和1之间,双曲线的离心率大于1,抛物线的离心率等于1。
二、圆锥曲线的公式1. 椭圆的标准方程及性质标准方程:$\frac{x^{2}}{a^{2}} + \frac{y^{2}}{b^{2}} = 1$ (a>b>0)性质:椭圆的范围、对称性、顶点、焦点、离心率等性质可以参照教材或辅导书。
2. 双曲线的标准方程及性质标准方程:$\frac{x^{2}}{a^{2}} - \frac{y^{2}}{b^{2}} =1$ (a>0, b>0)性质:双曲线的范围、对称性、顶点、焦点、离心率等性质可以参照教材或辅导书。
3. 抛物线的标准方程及性质标准方程:$y^{2} = 2px$ ($p > 0$)或$x^{2} = 2py$ ($p > 0$) 性质:抛物线的范围、对称性、顶点、焦点、离心率等性质可以参照教材或辅导书。
三、圆锥曲线的应用1. 椭圆的应用:椭圆在光学、机械、工程等领域有着广泛的应用。
例如,椭圆镜片可以纠正近视和远视,椭圆形状的机械零件可以减少振动和提高稳定性。
2. 双曲线应用:双曲线在热学、光学、工程等领域有着广泛的应用。
例如,双曲线冷却塔可以优化散热效果,双曲线形状的桥梁可以增强承受能力。
(完整版)圆锥曲线知识点归纳总结

完整版)圆锥曲线知识点归纳总结1.圆锥曲线的定义和构造圆锥曲线是在平面上由一个固定点(焦点)和一个固定直线(准线)决定的点集。
三种经典的圆锥曲线分别为椭圆、抛物线和双曲线。
构造圆锥曲线需要确定焦点和准线的位置以及确定参数值。
2.椭圆的特性椭圆是圆锥曲线中最常见的一种形式,由两个焦点和一个大于等于焦距的参数决定。
椭圆的离心率小于1,且离心率等于焦点到准线的距离除以准线长度。
椭圆的焦缩比为焦点到椭圆上某一点的距离与该点到准线的距离的比值。
重要公式:椭圆的标准方程为(x^2/a^2) + (y^2/b^2) = 1;焦缩比为e = c/a,其中c^2 = a^2 – b^2.3.抛物线的特性抛物线是圆锥曲线中的一种形式,由一个焦点和一个参数决定。
抛物线的离心率为1,焦缩比为1.抛物线的轴是准线,顶点是焦点和准线的交点。
重要公式:抛物线的标准方程为(x^2/4a) = y。
4.双曲线的特性双曲线是圆锥曲线中的一种形式,由两个焦点和一个焦距决定。
双曲线的离心率大于1,离心率等于焦点到准线的距离除以准线长度。
双曲线的焦缩比为c^2 = a^2 + b^2.重要公式:双曲线的标准方程为(x^2/a^2) – (y^2/b^2) = 1.5.圆锥曲线的应用圆锥曲线在数学和物理学中都有广泛的应用。
椭圆的应用包括轨道运动、天体力学以及密码学等领域。
抛物线的应用包括抛物面反射器、人工卫星的轨道设计等。
双曲线的应用包括电磁波的传播、双曲线钟的标定等。
6.圆锥曲线的性质圆锥曲线有许多共同的性质,如对称性、切线性质和焦点性质等。
对称性:椭圆和双曲线关于x轴和y轴都有对称性,抛物线关于y轴有对称性。
切线性质:圆锥曲线上任意一点的切线与焦点到该点的连线垂直。
焦点性质:圆锥曲线上的任意一点到焦点的距离与焦缩比成正比。
此文档总结了圆锥曲线的定义、特性、应用和性质等重要知识点,并提供了相关公式和图示。
熟悉了这些知识后,我们可以更加深入地理解和应用圆锥曲线的概念。
圆锥曲线的定义与性质高考资料高考复习资料中考资料

圆锥曲线的定义与性质曲线名称圆(Circle)椭圆(Ellipse)双曲线(Hyperbola)抛物线(Parabola)标准方程x2+y2=r2(r>0)x y22221+=(a>b>0)a bx y22221-=(a,b>0)y2=2px(p>0)a bP P A抛物线的切点弦性质PF1+PF2=2a P PF1-PF2=2a抛物线的切点弦中点与极定义AF1BF2F1F2(2a>F F)12F1F2(0<2a<F F)12P M2M1B点连线的中点在抛物线上;特别地,若切点弦过抛物线体系PF1PF2=l( l>0且 l¹1)焦点三角形面积qS=b2tan△PF F122焦点三角形面积qS=b2cot△PF F122焦点 F,则ÐAPB为直角且PF^AB一P光学性质O切线方程x x+y y=r200F1F2切线方程x x y y002+2=1a bF1F2F切线方程x x y y02021-=a b切线方程y y=p x+x()00从一个焦点射出的光线的反射光线过另一个从一个焦点射出的光线的反射光线的反向延从圆心射出的光线的反射光线仍经过从焦点射出的光线的反射光线与对称轴平行焦点长线经过另一个焦点圆心P等张角线极坐标方程r=ep1-ecosq体系二对线段 AB张角相同的点的轨迹HlP PFPH=e PlHPFPH=eHlPA B PF=PH通径长F FF通径长通径长d=2p 2b2d==2epa2b2d==2epa体系BO定义1k×k=-PAPBAPAOPBk×k=-PAPBb2a2AOPBk×k=PAPBb2a2直线与圆锥曲线弦长公式!l=1+k x-x=1+m y-y=n×t-t22121212面积公式三垂径定理AMOBk×k=-1OMABAMOBba22k×k=-OM AB1AOM Bk×k=OMABb2a211212S=底×高 =水平宽×铅直高=l lsinq212位置关系椭圆的等效判别式 D=a2A2+b2B2-C2双曲线的等效判别式2(2222)D=C-a A-b B圆锥曲线的解题常见思路关键词一般情况过定点的直线弦长面积点与曲线的位置关系★引入参数控制运动,以交点坐标★弦长公式★利用共线或平行条件进行等积★将点代入圆锥曲线方程中再将定点在y轴上时用斜截式表示定点在x轴上时用倒斜横截式表示为中间变量表示其他所有几何量★两点间距离公式变换方程改写为不等式定点不在轴上时用参数方程表示★利用直线方程消去纵(横)坐标★三角形面积公式★若方程Px2+Qx+R=0的两根提示→将直线方程代入曲线方程(联立)→通过韦达定理消去另一坐标时,两根之差为x-x=12DP★四边形的面积公式12l l sinq12★四边形的对角线往往是相关的有时也直接求解坐标★注意参数的取值范围,需要保证★面积比往往转化为共线线段比直线与圆锥曲线相交关键词直线与圆锥曲线的位置关系焦点中点定比分点共线、平行、垂直★联立直线与曲线方程后通过判★两个焦点→体系一★注意取中点构造中位线★弦所在直线过焦点时,可补对应★利用斜率或向量表示别式判断★一个焦点★中点坐标公式★共线也可以利用点在另外两点准线后构造相似三角形提示★直接利用等效判别式判断→补焦点→体系一→补准线→体系二xx+x y+y=12,12y=22★利用定比分点坐标公式或利用直线的参数方程转化.所确定的直线上表示★注意利用极坐标方程★“x=a x(a¹-1)”21Û2æx+xöx x a.=ç12÷121èøa+关键词以AB为直径的圆过C垂直平分线关于直线…对称关于原点对称的两点与原点连线相互垂直★以AB为直径的圆过C★P在AB的垂直平分线上★A、B关于l对称★有关斜率的问题→体系三★利用相关直线设直线斜率ÛÐACB=90°ÛPA=PBÛl是AB的垂直平分线★注意取中点构造中位线★化齐次联立ÛMC=MA(M为AB中点)ÛPM^AB(M为AB中点)★注意对称变换下的几何不变量提示★斜率的比值计算可以平方后用★注意“姐妹圆”圆锥曲线的方程进行整理111=+r a b222R=a+b 222关键词与定点的两连线垂直向量的运算成锐角(直角、钝角)过…与…交点的曲线其他★利用相关直线设直线斜率★向量数乘→共线★转化为向量夹角★利用交点曲线系得到曲线方程★当运动由圆锥曲线上的单点驱向量和差→平行四边形法则借助向量数量积的符号判断动时注意利用圆锥曲线的参数方程★平移坐标系转化为与原点的连向量相等→形成平行四边形★极限思想,利用切线方程得到定线相互垂直的问题向量数量积→投影长度提示点或定值的具体数据★利用仿射变换★在求形如()()x-t x-t的值时,12可以将方程整理为形如改造椭圆为圆改造斜交直线为垂直直线20A(x-t)+B(x-t)+C=的形式2。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
椭圆的定义、性质及标准方程1. 椭圆的定义:⑴第一定义:平面内与两个定点12F F 、的距离之和等于常数〔大于12F F 〕的点的轨迹叫做椭圆。
这两个定点叫做椭圆的焦点,两焦点的距离叫做椭圆的焦距。
⑵第二定义:动点M 到定点F 的距离和它到定直线l 的距离之比等于常数)10(<<e e ,那么动点M 的轨迹叫做椭圆。
定点F 是椭圆的焦点,定直线l 叫做椭圆的准线,常数e 叫做椭圆的离心率。
说明:①假设常数2a 等于2c ,那么动点轨迹是线段12F F 。
②假设常数2a 小于2c ,那么动点轨迹不存在。
2. 椭圆的标准方程、图形及几何性质:标准方程)0(12222>>=+b a by a x 中心在原点,焦点在x 轴上)0(12222>>=+b a b x a y 中心在原点,焦点在y 轴上图形范围 x a y b ≤≤,x b y a ≤≤,顶点()()()()12120000A a A a B b B b --,、,,、,()()()()12120000A a A a B b B b --,、,,、,对称轴 x 轴、y 轴;长轴长2a ,短轴长2b ; 焦点在长轴上x 轴、y 轴;长轴长2a ,短轴长2b ;焦点在长轴上焦点 ()()1200F c F c -,、, ()()1200F c F c -,、, 焦距 )0(221>=c c F F)0(221>=c c F F离心率 )10(<<=e ace )10(<<=e ace 准线2a x c=±2a y c=±参数方程与普通方程22221x y a b +=的参数方程为 ()cos sin x a y b θθθ=⎧⎨=⎩为参数 22221y x a b +=的参数方程为 ()cos sin y a x b θθθ=⎧⎨=⎩为参数3. 焦半径公式:椭圆上的任一点和焦点连结的线段长称为焦半径。
焦半径公式:椭圆焦点在x 轴上时,设12F F 、分别是椭圆的左、右焦点,()00P x y ,是椭圆上任一点,那么10PF a ex =+,20PF a ex =-。
推导过程:由第二定义得11PF e d =〔1d 为点P 到左准线的距离〕, 那么211000a PF ed e x ex a a ex c ⎛⎫==+=+=+ ⎪⎝⎭;同理得20PF a ex =-。
简记为:左“+〞右“-〞。
由此可见,过焦点的弦的弦长是一个仅与它的中点的横坐标有关的数。
22221x y a b +=;假设焦点在y 轴上,那么为22221y x a b+=。
有时为了运算方便,设),0(122n m m ny mx ≠>=+。
双曲线的定义、方程和性质知识要点:1. 定义〔1〕第一定义:平面内到两定点F 1、F 2的距离之差的绝对值等于定长2a 〔小于|F 1F 2|〕的点的轨迹叫双曲线。
说明:①||PF 1|-|PF 2||=2a 〔2a <|F 1F 2|〕是双曲线;假设2a=|F 1F 2|,轨迹是以F 1、F 2为端点的射线;2a >|F 1F 2|时无轨迹。
②设M 是双曲线上任意一点,假设M 点在双曲线右边一支上,那么|MF 1|>|MF 2|,|MF 1|-|MF 2|=2a ;假设M 在双曲线的左支上,那么|MF 1|<|MF 2|,|MF 1|-|MF 2|=-2a ,故|MF 1|-|MF 2|=±2a ,这是与椭圆不同的地方。
〔2〕第二定义:平面内动点到定点F 的距离与到定直线L 的距离之比是常数e 〔e>1〕的点的轨迹叫双曲线,定点叫焦点,定直线L 叫相应的准线。
3. 几个概念 (1) 等轴双曲线:实、虚轴相等的双曲线。
等轴双曲线的渐近线为y=±x ,离心率为2。
(2)共轴双曲线:以双曲线的实轴为虚轴,虚轴为实轴的双曲线叫原双曲线的共轴双曲线,例:12222=-by a x 的共轴双曲线是12222-=-b y a x 。
① 双曲线及其共轴双曲线有共同的渐近线。
但有共同的渐近线的两双曲线,不一定是共轴双曲线;②双曲线和它的共轴双曲线的四个焦点在同一个圆周上。
抛物线标准方程与几何性质一、抛物线定义的理解平面内与一个定点F 和一条定直线l 的距离相等的点的轨迹叫做抛物线,定点F 为抛物线的焦点,定直线l 为抛物线的准线。
注:① 定义可归结为“一动三定〞:一个动点设为M ;一定点F 〔即焦点〕;一定直线l 〔即准线〕;一定值1〔即动点M 到定点F 的距离与它到定直线l 的距离之比1〕② 定义中的隐含条件:焦点F 不在准线l 上。
假设F 在l 上,抛物线退化为过F 且垂直于l 的一条直线③ 圆锥曲线的统一定义:平面内与一定点F 和定直线l 的距离之比为常数e 的点的轨迹,当10<<e 时,表示椭圆;当1>e 时,表示双曲线;当1=e 时,表示抛物线。
④ 抛物线定义建立了抛物线上的点、焦点、准线三者之间的距离关系,在解题中常将抛物线上的动点到焦点距离〔称焦半径〕与动点到准线距离互化,与抛物线的定义联系起来,通过这种转化使问题简单化。
二、抛物线标准方程1.抛物线标准方程建系特点:以抛物线的顶点为坐标原点,对称轴为一条坐标轴建立直角坐标系,这样使标准方程不仅具有对称性,而且曲线过原点,方程不含常数项,形式更为简单,便于应用。
2.四种标准方程的联系与区别:由于选取坐标系时,该坐标轴有四种不同的方向,因此抛物线的标准方程有四种不同的形式。
抛物线标准方程的四种形式为:()022>±=p px y ,()022>±=p py x ,其中:① 参数p 的几何意义:焦参数p 是焦点到准线的距离,所以p 恒为正值;p 值越大,张口越大;2p等于焦点到抛物线顶点的距离。
②标准方程的特点:方程的左边是某变量的平方项,右边是另一变量的一次项,方程右边一次项的变量与焦点所在坐标轴的名称相同,一次项系数的符号决定抛物线的开口方向,即对称轴为x 轴时,方程中的一次项变量就是x , 假设x 的一次项前符号为正,那么开口向右,假设x 的一次项前符号为负,那么开口向左;假设对称轴为y 轴时,方程中的一次项变量就是y , 当y 的一次项前符号为正,那么开口向上,假设y 的一次项前符号为负,那么开口向下。
三、求抛物线标准方程求抛物线方程时,要依据题设条件,弄清抛物线的对称轴和开口方向,正确地选择抛物线标准方程.① 待定系数法:因抛物线标准方程有四种形式,假设能确定抛物线的形式,需一个条件就能解出待定系数p ,因此要做到“先定位,再定值〞。
注:当求顶点在原点,对称轴为坐标轴的抛物线时,假设不知开口方向,可设为ax y =2或ay x =2,这样可防止讨论。
② 抛物线轨迹法:假设由得抛物线是标准形式,可直接设其标准式;假设不确定是否是标准式,由条件可知曲线的动点的规律,一般用轨迹法求之。
注:① 焦点的非零坐标是一次项系数的4; ② 对于不同形式的抛物线,位置不同,其性质也有所不同,应弄清它们的异同点,数形结合,掌握方程与有关特征量,有关性质间的对应关系,从整体上认识抛物线及其性质。
五、直线与抛物线有关问题1.直线与抛物线的位置关系的判断:直线与抛物线方程联立方程组,消去x 或y 化得形如02=++c bx ax 〔*〕的式子:① 当0=a 时,〔*〕式方程只有一解,即直线与抛物线只有一个交点,此时直线与抛物线不是相切,而是与抛物线对称轴平行或重合;② 当0≠a 时,假设△>0⇔〔*〕式方程有两组不同的实数解⇔ 直线与抛物线相交; 假设△=0 ⇔〔*〕式方程有两组相同的实数解⇔ 直线与抛物线相切;假设△<0⇔〔*〕式方程无实数解⇔ 直线与抛物线相离.2.直线与抛物线相交的弦长问题① 弦长公式:设直线交抛物线于()()2211,,,y x B y x A ,那么B A AB x x k AB -⋅+=21或B A y y k AB -⋅+=211. ② 假设直线与抛物线相交所得弦为焦点弦时,借助于焦半径公式处理: 抛物线()022>±=p px y 上一点()00,y x M 的焦半径长是20px MF +±=,抛物线()022>±=p py x 上一点()00,y x M 的焦半径长是20p y MF +±=六、抛物线焦点弦的几个常用结论设AB 为过抛物线()022>±=p px y 焦点的弦,设()()2211,,,y x B y x A ,直线AB 的倾斜角为θ,那么① 221221,4p y y p x x -==; ② θ2sin 2pAB =p x x ++=21;③以AB 为直径的圆与准线相切;④弦两端点与顶点所成三角形的面积θsin 22p S AOB =∆; ⑤pFB FA 211=+ ; ⑥ 焦点F 对A 、B 在准线上射影的张角为900;七、抛物线有关考前须知1.凡涉及抛物线的弦长、弦的中点、弦的斜率问题时要注意利用韦达定理,采用“设而不求〞或“点差法〞等方法,能防止求交点坐标的复杂运算.同时在解决直线与抛物线相交问题时不能无视0>∆这个条件。
2.解决与抛物线的焦半径、焦点弦有关问题时,多从抛物线的定义出发,实现抛物线上任一点到焦点的距离和这点到准线的距离之间的相互转化,并应注意焦点弦的几何性质.。