考研数学积分的巧妙解决办法
一些特殊定积分的解题技巧

一些特殊定积分的解题技巧
特殊定积分指的是在解题中使用一些特殊的技巧和方法来求解定积分。
这些技巧可以帮助我们简化计算过程,提高解题效率。
下面列举了一些常见的特殊定积分的解题技巧。
1. 有理函数的积分:有理函数的积分可以通过分解成部分分式的形式来求解。
具体的方法是将有理函数表示为多项式的除法,然后将多项式分解成部分分式,再对每一个部分分式进行求积分。
2. 三角函数的积分:三角函数的积分可以通过一些特殊换元和恒等变形来求解。
对于一些三角函数的积分,可以将其转化为指数函数的积分,然后再应用指数函数的积分公式进行求解。
4. 分部积分法:分部积分法是求解一些乘积形式的积分时常用的方法。
其核心思想是将一个积分转化为两个函数的乘积的积分,然后再进行求解。
6. 特殊函数的积分:特殊函数的积分常常使用特殊的方法来求解。
对于一些常见的特殊函数,如高斯函数、伽玛函数和贝塞尔函数等,可以利用其特定的性质和公式来进行求解。
7. 对称性的应用:在一些具有对称性的积分中,可以利用对称性来简化计算过程。
对于奇函数和偶函数的积分,可以利用对称性将积分化简为较简单的形式。
8. 积分限的变换:在一些积分中,可以通过改变积分限的顺序来简化计算过程。
通过改变积分限的顺序可以将一个积分化简成一个已知的积分形式。
考研数学-专题10 不定积分和定积分的方法和技巧

∫ ∫ a −a
f
( x) d
x
=
⎪⎧0, ⎪⎩⎨2
a 0
f
( x) d
x,
f (x) 为奇函数时, f (x) 为偶函数时.
(2) 设 f (x) 是以T 为周期的连续函数,则对任给数 a ,总有
5)利用公式
∫ ∫ a+T
T
f (x)d x = f (x) d x.
a
0
6
∫ ∫ (1)
π
2 sinn x d x =
x
= A + Bx + C
x3 − x2 + x −1 x −1 x2 +1
则 x ≡ A(x2 + 1) + (Bx + C)(x −1)
由此解得 A = 1 , B = − 1 ,C = 1 .
2
22
∫
x3
−
x x2 +
x
dx −1
=
1 2
∫
dx x −1
−
1 2
∫
x −1
x
2
+
dx 1
= 1 ln x −1 − 1 ln(x2 + 1) + 1 arctan x + C
0
∫=
2
[(x −1) +1]
1− (x −1)2 dx
0
【例 3】
∫= 2 2x − x2 dx = π (几何意义)
0
2
∫π x
cos2 x − cos4 xdx = __________ .
0
∫ ∫ 【解】
原式 = π
π cos2 x − cos4 xdx = π
考研数学定积分的应用

考研数学定积分的应用一、引言数学定积分是高等数学中的重要概念之一,它在实际生活中有着广泛的应用。
本文将从几个具体的应用案例入手,探讨考研数学定积分的应用。
二、面积计算数学定积分最基本的应用之一就是计算曲线与坐标轴所围成的面积。
例如,在工程测量中,我们经常需要计算某个区域的面积,如果该区域的边界曲线可以用函数表示,那么可以通过定积分来求解。
通过将曲线分割成无穷多个微小的矩形,计算每个矩形的面积并进行累加,最终得到所需的面积。
三、物体体积计算除了计算面积,数学定积分还可以用于计算物体的体积。
在工程设计中,经常需要计算复杂形状物体的体积,例如水库的容量、建筑物的体积等。
如果物体的截面可以用函数表示,那么可以通过定积分来求解。
同样地,将截面分割成无穷多个微小的面元,计算每个面元的体积并进行累加,最终得到所需的体积。
四、质心计算质心是物体在空间中的重心,对于复杂形状的物体,质心的计算可以通过数学定积分来实现。
首先,将物体分割成无穷多个微小的体积元,计算每个体积元的质量并与其质心坐标乘积,然后进行累加,最后将总质量除以总体积,即可得到质心的坐标。
五、弯曲杆件的弯矩计算在工程力学中,常常需要计算弯曲杆件的弯矩分布,以确定结构的稳定性和安全性。
通过数学定积分,可以将杆件分割成无穷多个微小的弯曲段,计算每个弯曲段的弯矩,并进行累加,最终得到整个杆件的弯矩分布。
六、概率密度函数计算概率密度函数是概率论与数理统计中的重要概念,用于描述随机变量的概率分布。
数学定积分可以用于计算概率密度函数的各种性质,例如求解期望值、方差以及其他统计指标。
通过对概率密度函数进行定积分,可以得到具体的数值,从而进行概率分析和决策。
七、总结本文简要介绍了考研数学定积分的几个应用,包括面积计算、物体体积计算、质心计算、弯曲杆件的弯矩计算以及概率密度函数的计算。
这些应用充分展示了数学定积分在实际生活和工程领域中的重要性和广泛应用。
通过学习和掌握数学定积分的应用技巧,可以更好地理解和应用数学知识,提高问题解决能力。
一道积分题目求解答题技巧

一道积分题目求解答题技巧答题技巧就是通过一系列的方法和技巧来解决积分题目,以下是关于解决积分题目的一些建议和技巧:1. 熟练掌握基本积分公式:熟练掌握常见的基本积分公式,例如幂函数、指数函数、三角函数、对数函数等的积分公式。
这些公式是解决积分题目的基础,能够直接利用这些公式进行积分运算,减少计算量和错误率。
2. 分部积分法:分部积分法是解决含有积分的乘积函数的积分运算的常用方法。
根据分部积分法的公式:∫u dv = uv - ∫v du,通过选择合适的函数进行分解和积分,从而简化原积分问题。
3. 换元积分法:换元积分法是将复杂的函数进行代换,转化为简单的函数进行积分运算的方法。
通过选择合适的变量变换关系,将原函数进行变量替换,从而将原积分问题简化为标准的积分形式。
4. 配凑法:配凑法常用于分数型的积分问题,通过将积分式中的分母进行配凑(如分解因式、有理化等),从而将原积分问题转化为可以直接求解的标准积分形式。
5. 对称性:有些积分问题具有对称性,通过充分利用对称性可以简化积分的计算过程。
例如,通过利用奇偶性、周期性等对称性质,可以将积分区间缩小,简化积分计算。
6. 利用几何意义:对于一些几何题目,可以通过将积分函数进行几何解释和几何意义的分析,从而简化积分问题。
例如,将曲线积分问题转化为计算曲线所围面积或曲线长度等几何量的问题,可以直接利用几何定理和公式进行计算。
7. 利用对称性和周期性:如果被积函数具有对称性或周期性,可以利用这些性质简化积分计算。
例如,如果被积函数为奇函数,则可通过对称性得到积分值为0;如果被积函数是周期函数,则可将积分区间缩小到一个周期内进行计算。
8. 拆分分式:对于分式型的积分问题,可以通过拆分分式为部分分式,然后利用基本积分公式进行求解。
9. 极坐标变换:对于涉及到圆、圆环、扇形等几何问题的积分计算,可以考虑使用极坐标变换,将复杂的积分问题转化为简单的极坐标积分。
10. 求导反推法:对于一些特殊的积分问题,可以通过求导反推的方法,先对积分结果进行求导,得到原函数的表达式,然后再通过已知条件反推积分值。
2011考研高数组合积分法对几类积分进行求解(求积分的捷径,不得不看)

2011考研:高数组合积分法对几类积分进行求解0 引言及定义积分在微积分中占有极为重要的地位,它与微分比较,难度大,方法灵活,掌握积分的基本方法(如换元法,分部积分法等)是十分必要的,但这是远远不够的,还必须掌握一些特殊的积分方法,以便能顺利、快速、准备地计算出函数的积分来.组合积分法是一种全新的积分方法,它能顺利解决用传统积分法很难求解甚至不能求解的各类函数有理式的积分问题.华罗庚教授在他的著作《高等数学引论》一书中,举出了这样一个求不定积分的例子:求 dx x b x a x T ⎰+=sin cos sin 1,dx xb x a xT ⎰+=sin cos cos 2 .我们可以用代换2tan xt =,分别求出1T 与2T ,但还有更简单的方法,即)2(,sin cos ln )sin cos ()sin cos (sin cos cos sin )1(,221121C x b x a x b x a x b x a d dx x b x a x b x a bT aT C x dx aT bT ++=++=++-=+-+==+⎰⎰⎰由此可得,,]sin cos ln [1221C x b x a a bx b a T ++-+=,]sin cos ln [1'222C x b x a b ax ba T ++++= 华教授的解法为什么可以简化运算呢?在这里,他巧妙地两个结构相似的积分 组合在一起,成为一个以所求积分为变量的 1T ,2T 的二元方程组,解此方程组,即得所求不定积分,像这样用解方程组求解问题的方法称为组合法,用组合法求积分的方法称为组合积分法.用组合法求解积分问题的关键,是在式(2)中利用了凑微分公式(-asinx+bcosx)dx=d(acosx+bsinx).下面给出一些定义:定义1 设函数()f x 与()g x 为可导函数,如果'()()f x g x α=,且'()()g x f x α=,( α为任意常数),那么称()f x 与()g x 为互导函数,若'()()f x g x α=, 且'()()g x f x α=,则称()f x 与()g x 为相反互导函数,α为互导系数.定义 2 设函数()y f x =为可导函数,如果'()()f x f x ω=( ω为任意常数),那么,称函数()y f x =为自导函数,ω为自导系数.组合积分法分为两大类型,即参元组合法与分解组合法.在求一个积分I 时,找出另一个与I 结构相似的积分J,然后将两个积分组合起来,通过解I 与J 的方程组求解积分的方法叫做参元组合法.将一个积分分为两个结构相似的积分为I 与J,将I 与J 组成一个方程组,解方程组即得积分I 与J,最后将I 与J 联合成所要求的积分,这种求积分的方法叫做分解组合法.1 三角函数有理式的积分1.1 含有 ()nx b x a cos sin +的积分对于分母含有()nx b x a cos sin +的三角函数有理式的积分,可考虑使用组合积分法,先证明两个递推公式.定理1 设)arctan ,1(,)cos sin (a bk x n x b x a dx J nn -≠>+=⎰π则 ])cos sin (cos sin )2[())(1(11122--+-+-+-=n n n x b x a xa xb J n b a n J . 证 由()nn n n n n n n n J n dx x b x a b a n x b x a x a x b dx x b x a x a x b n x b x a x a x b x b x a d x a x b x b x a xa xb x b x a x a x b d x b x a dxx b x a J )1()cos sin ()()1()cos sin (cos sin )cos sin ()cos sin ()1()cos sin (cos sin )cos sin ()cos sin ()cos sin (cos sin )cos sin ()cos sin (cos sin )cos sin (2221221111+++++-+-=+-+-+-=+--+-=+-=++=⎰⎰⎰⎰⎰++++++++所以有1222)cos sin (cos sin ))(1(+++--++=n n n x b x a xa xb J b a n nJ 将n-2代替式中的n,得,)cos sin (cos sin ))(1()2(1222--+--+-=-n n n x b x a xa xb J b a n J n故得递推公式].)cos sin (cos sin )2[())(1(11222--+-+-+-=n n n x b x a xa xb J n b a n J 定理2 设,)cos sin (⎰+=nn x b x a dxJ ,2211b a bb aa A ++= 2211b a ba ab B +-= 则 ).arctan ,1.(,)cos sin (11)cos sin (cos sin 1111a bk x n x b x a n B AJ dx x b x a x b x a I n n n -≠>+--=++=--⎰π 证 用组合积分法来证明.令,)cos sin (sin 1dx x b x a x I n⎰+= ,)cos sin (cos 21dx x b x a x I n ⎰+= 则 121)cos sin (111)cos sin ()cos sin (-+--=++=+-⎰n n x b x a n x b x a x b x a d aI bI 所以有,)cos sin (1111221221--+-+++=n n x b x a n b a b J b a a I .)cos sin (1111221222--+-+-+=n n x b x a n b a a J b a b I 于是有.)cos sin (11)cos sin (1111112211122112111----+--=+-+--++=+=n n n n x b x a n B AJ x b x a n b a ba ab J b a bb aa I b I a I要记住这两个递推公式不是一件容易的事情,实际上只需记住递推公式的证明思路,直接用组合积分法求解即可.1.2 含有a+bsinx 与c+dcosx 的积分例1 求⎰+.sin 1sin dx xx解法1 令=I ⎰+.sin 1sin dx x x ⎰-=.sin 1sin dx xxJ 则 x x dx x dx x dx xxJ I x dx xx dx x x J I 2tan 2)1(sec 2tan 2sin 1sin 2,cos 2cos sin 2.sin 1sin 22222222+-=--=-=--=-==-=+⎰⎰⎰⎰⎰所以有 I=C x x x++-tan cos 1解法2 C x x x dx x x x dx x x ++-=-=+⎰⎰tan cos 1cos sin sin .sin 1sin 22 解法3 用代换 ,2tanu x = ,12sin 2u u x += ,122u dudx += 所以有 .)1)(1(41212112.sin 1sin 22222du u u u u du u u u u dx x x ⎰⎰⎰++=++++=+ 显然以上解法太繁,不宜采用.事实上,将原积分化为,sin 1.)sin 111(⎰⎰⎰+-=+-xdxdx dx x 再对后一积分做代换,2tan u x = ,12sin 2u u x +=,122u dudx += 则有 .2tan 1212)1(2121211sin 1222xu u du u du uu xdx+-=+-=+=+++=+⎰⎰⎰ 所以有 .2tan12sin 1sin C x x dx xx+++=+⎰显然用解法2较简单,但较复杂的情形用解法1较好. 例2 求⎰++=dx xd c xb a I cos cos 11 (dc >)解 设 ⎰+=,cos 1x d c dx I ,cos 2⎰-=xd c dxI 则x dxd x c c xd c dx c I I 222222221cos sec 12cos 2⎰⎰-=-=+ ,tan arctan 2)tan ()tan (22222222dc x cd c x c d c x c d --=+-=⎰),(sin sin 2cos cos 2222222221x d x d d c d dx xd c x d I I ⎰⎰+--=--=- 2222sin arctan2dc xd dc ---=所以有 )sin arctantan (arctan1222221dc xd dc x c dc I --++=22222222sin tan 1sin tan arctan1d c x d d c x c d c xd x c d c --+---=,cos sin arctan12222xc d xd c dc +--=上述结果与查表求得的结果一致,可见用组合积分法能顺利地求出积分表中较难的积分公式.此公式如用万能代换,令 来求出,将是比较困难的. 1.3 有a+bsinxcosx 的积分例3 求 ⎰+=.cos sin 1cos dx xx xI 解 这里如果用万能代换,设,2tan u x=,则,11cos 22uu x +-= ,12sin 2u u x += ,122u du dx += 原积分可变为.1222)1(2)1(2)1()1(212111211123422222222222⎰⎰⎰+++--=-++-=++-+++-=u u u u du u u u u du u u du u u u u u u I 以上有理函数的积分,要求出开相当困难,如果改用组合积分法将能很快地求出.令 ⎰+=,cos sin 1sin dx x x xJ 则有 ⎰⎰⎰---=+-=++=+2)cos (sin 3)cos (sin 2cos sin 22)cos (sin 2cos sin 1cos sin x x x x d x x x x d dx x x x x J I ,cos sin 3cos sin 3ln31xx x x +--+=⎰⎰⎰+++=++=+-=-,)cos (sin 1)cos (sin 2cos sin 22)cos (sin 2cos sin 1sin cos 2x x x x d x x x x d dx x x x x J I ).cos arctan(sin 2x x +=所以Cx x xx x x J C x x x x x x I ++-+--+=++++--+=)]cos arctan(sin 2cos sin 3cos sin 3ln 31[21.)]cos arctan(sin 2cos sin 3cos sin 3ln 31[21还有许多含有asecx+btanx 、acscx+bcotx 、b+atanx 、atanx+bcotx 等形式的积分可化为以上类型进行积分计算2 指数函数有理式的积分指数函数 x e 与x a 具有自导性,x e 与x e -、x a 与x a -的代数和具有互导性,这就为凑微分提供条件,这里主要用到以下的凑微分公式: ),()(x x x x e e d e e ---=+),()(x x x x e e d e e --+=-一般的指数函数x a 与)1,0(≠>-a a a x 也有类似的凑微分公式:),(ln 1)(x x x x a a d a a a ---=+ ),(ln 1)(x x x x a a d aa a --+=- 这就为使用组合积分法提供了保证.2.1 有 n x x be ae )(-+ 积分.对于分母n x x be ae )(-+ 的指数函数有理式的积分,也和三角函数有理式的积分一样,可以考虑使用组合积分法求解.证明两个递推公式 定理1 设⎰-+=nx x n be ae dxJ )(, )0,1(≠>ab n 则 ],)()2[()1(4112----+-+--=n x x xx n n be ae be ae J n n ab J 证 因为 ⎰⎰+---+-=+=1)()()(n x x x x n x x n be ae be ae d be ae dx J dx be ae be ae n be ae be ae n x x x x n x x x x ⎰+--+--+-+++-=221)()()1()( = n n x x x x x x n x x x x J n dx be ae ae ae be ae n be ae be ae )1()()()()1()(2221++++--+++-⎰+---+--=n n x x n x x x x J n dx be ae abdxn be ae be ae )1()(4)1()(21++++-+-⎰+-+-- 所以有 12)()1(4+--++--+=n x x xx n n be ae be ae J n ab nJ 用n-2代替上式中的n,得12)()1(4)2(----+---=-n x x xx n n be ae be ae J n ab J n 故得递推公式])()2[()1(4112----+-+--=n x x xx n n be ae be ae J n n ab J 定理2 设 ⎰-+=nx x n be ae dxJ )(, ab ba ab B ab ab ba A 2,21111-=+= 则 ).0,,1(,)(11)(1111≠∈>+-+=++=-----⎰ab N n n be ae n B AJ dx be ae e b e a I n x x n n x x x x 证 令 ,)(,)(21⎰⎰---+=+=nx x x n x x x be e a dxe I be ae dx e I则有 ,121-=+n J bI aI.)(111)()()(121------+--=++=+-=-⎰⎰n x x n x x x x n x x x x be ae n be ae be ae d dx be ae be ae bI aI 所以 ],1)(111[2111-+--=--n be ae n J a I x x n ].1)(111[2112-+-+=--n be ae n J b I x x n 于是有 1111112111)(12112---+--++=+=n x x n be ae ab ba ab n J ab a b ba I b I a I 11)(11---+-+=n x x n be ae n B AJ这两个定理主要是给出用组合积分法求解此类积分问题的解题思路. 2.2 含有n x x qa pa )(-+的积分用组合积分法证明下列递推公式给出解题思路.定理1 设n 为正整数,且0,1≠>pq n ,并另⎰-+=nx x n qa pa dxJ )(,则有递推公式])(ln 1)2[()1(4112+---+-+--=n x x xx n n qa pa qa pa a J n n pq J .证 由⎰⎰+---+-=+=1)()(ln 1)(n x x x x n x x n qa pa qa pa d a qa pa dx J =])()(ln )1()([ln 1221dx qa pa qa pa a n qa pa qa pa a n x x x x n x x x x ⎰+--+--+-+++-n n x x x x x x n x x x x J n dx qa pa qa pa qa pa n qa pa qa pa a )1()()()()1()(ln 11221++++--+++-=⎰+---+-- n n x x n x x x x J n dx qa pa pqn qa pa qa pa a )1()(4)1()(ln 121++++-+-=⎰+-+-- 所以有.)(ln 1)1(412+--++--+=n x x xx n n qa pa qa pa a J n pq nJ 用n-2代替上式中的n,得.)(ln 1)1(4)2(12----+---=-n x x xx n n qa pa qa pa a J n pq J n 故得递推公式].)(ln 1)2[()1(4112+---+-+--=n x x xx n n qa pa qa pa a J n n pq J定理2 设0,,1≠∈>pq N n n ,并令 pqqa pb B pq pb qa A 2,21111-=+=则有递推公式 1211)(1ln 11)(-----+-+=++=⎰n x x n nx x x x qa pa a n B AJ dx qa pa a b a a I .证 令 ,)(,)(21dx qa pa a I dx qa pa a I nx x xn x x x ⎰⎰---+=+= 则有 ⎰⎰----++=+-=-n x x x x n x x x x qa pa qa pa d a dx qa pa qa pa qI pI )()(ln 1)(21 1)(111ln 1--+--=n x x qa pa n a 所以有 ],)(111ln 1[21111---+--=n x x n qa pa n a J p I ].)(111ln 1[21112---+-+=n x x n qa pa n a J q I 于是 1111112111)(1ln 12112---+--++=+=n x x n qa pa a pq qa pb n J pq pb qa I b I a I .)(1ln 1111---+-+=n x x n qa pa a n B AJ 3 一类无理函数的积分对一类无理式的积分,可考虑使用组合积分法求解,特别对比较复杂的情形用组合积分法更为方便,对于这类无理函数的积分,其求法如下: 三角代换或一般换元法例4 求 .12⎰-+=xb ax dx I解 设t x sin =,则dx=cosxdt,于是原积分可变为 ,cos sin cos ⎰+=tb t a tdtI再令 ,cos sin sin ⎰+=tb t a tdtJ无理函数积分三角函数的有理式积分有理式积分组合积分 法则有 ,cos sin sin cos t dt t b t a ta tb aJ bI =++=+⎰.cos sin ln cos sin )cos sin (cos sin sin cos ⎰⎰+=++=+-=-t b t a t b t a t b t a d dt t b t a t b t a bJ aI 所以有 C t b t a a bt ba I ++++=]cos sin ln [122又由sint=x, 得 ,arcsin ,1cos 2x t x t =-= 所以 C x b ax a x b ba I +-+++=]1ln arcsin [1222 例5 求 )0(,22b a a ax b ax dx I ≠>++=⎰且解 设achtdt dx ,asht x ==,则原积分可变为dt bcht asht chtdt abchtsht a acht I ⎰⎰+=+=.2 再令 ,J dt bcht asht sht⎰+= 则 ).ln()(bcht asht bcht asht bcht asht d dt bcht asht bsht acht aJ bI +=++=++=+⎰⎰解得 122])ln([1C bt bcht asht a ba I +-++=, 由,asht x = 得 221,a x sht a x a cht +==,.ln )ln(]1)(ln[222a a x x ax a x a x arsh t -++=++== 所以 1222222]ln )ln(ln )ln([b a 1I C a b a x x b a a a x b ax a +-++--++-=C a x x b a x b ax a ba +++-+++=)]ln()ln([1222222))](ln[(221ba b a a C C -++= 例6 求 )(,))((n m n b ax m b ax dxI ≠++++=⎰解 设t b ax =+,则tdt adx b t a x 2),(12=-=, 于是原积分可变为 ⎰⎰++=++=))((2))((2n t m t tdt a n t m t dta I再令 ,))((,))((21⎰⎰++=++=n t m t dtI n t m t tdt I则有 ,ln 21n t n t dt mI I +=+=+⎰ .ln 21m t m t dt nI I +=+=+⎰ 所以有 11)ln ln (1C m t m n t n mn I ++-+-= 由t b ax =+, 得 11)ln ln (1C m b ax m n b ax n mn I +++-++-= 所以 C m b ax m n b ax n m n a I a I +++-++-==)ln ln ()(221 ).2(1C a C = 4用积分法求拉普拉斯逆变换求拉普拉斯逆变换是工程数学中的难点,用组合求逆法求拉普拉斯逆变换,无须用部分分式法将像函数F(P)分解为几个分式,然后查逆变换表再分别求之.在一定程度上,这种求逆变换的方法具有较多的优越性,特别是对于比较复杂的情形更是如此.例7 求)4)(5(1)(2++=P P P F 的逆变换 解法1 令 ],)4)(5(1[)(21++=-P P L t f ])4)(5(1[)(21++=-P P L t g . 则 ,]51[])4)(5(4[)(4)(51221t e P L P P P L t f t g ---=+=+++=+ ]42[25]4[]45[])4)(5(25[)(25)(212121221+-+=+-=++-=-----P L P P L P P L P P P L t f t g .2sin 252cos t t -= 所以 )2sin 252cos (291)(5t t e t f t +-=- 为所请求的逆变换 解法2 用传统的方法.设 ,45)4)(5(122++++=++P C BP P A P P 去分母 ))(5()4(12C BP P P A ++++=,令P=-5,得 291=A .比较2P 项的系数, 得 2910-=⇒=+B B A , 比较常数项,得 ,295)2941(51054=-=⇒=+C C A 所以有 ).4551(291)4)(5(122++-++=++P P P P P故有 ]4551[291])4)(5(1[)(2121++-++=++=--P P P L P P L t f ).2sin 252cos (291]4225451[2915221t t e P P P P L t +-=+++-+=-- 比较上述两种解法,不难看出用组合积分法求逆变换比用传统的方法求逆变换要简便顺利得多.参考文献[1] 朱永银,郭文秀,朱若霞积分法[M].武汉:华中科技大学出版社.2002.10.[2] 华罗庚.高等代数引论[M].北京:科学出版社.1963.[3] 《现代数学手册》编纂委员会.现代数学手册:经典数学卷[M].武汉:华中科技大学出版社.2000.[4] [俄]吉米多维奇.数学分析习题集[M].北京:人民教育出版社.1959.[5] 朱永银,郭文秀.一种积分方法--组合积分法[J].数学通报,1992(6).32-35.[6] 《数学手册》编写组.数学手册[M].北京:人民教育出版社.1979.[7] 华中科技大学高等数学教研室.微积分学习题课教程[M].武汉:华中科技大学出版社.2003.9.[8] 单立波,张主梵.微积分习题集[M].天津:南开大学出版社.2004.3.[9] 刘书田.微积分[M].北京:高等教育出版社.2004.6.[10] Wilfred Kaplan.Advanced Calculus,Fifth Edition[M].北京:电子工业出版社.2004.4.[11] Fitzpatrick,P.M.Advanced Calculus:A Cource in Mathematics Analysis[M].北京:机械工业出版社.2003.5.[12] 华东师范大学数学系.数学分析[M].北京:高等教育出版社.1980.9.[13] 裴礼文.数学分析中的典型问题与方法[M].北京:高等教育出版社.1993.5.[14] Bronson.R.微分方程[M].北京:高等教育出版社.2000.7.[15] R.布朗森.微分方程(第二版)[M].北京:科学出版社.2002.1.[16] 东北师范大学数学系微分方程教研室.常微分方程[M].北京:高等教育出版社.1982.10.。
考研数学中二重积分的计算方法与技巧

考研数学中二重积分的计算方法与技巧顾 贞 洪 港 高恒嵩高等数学作为大多数专业研究生考试的必考科目,其有自己固有的特点,大纲几乎不变,注重基本知识点的考察,注重学生的综合应用能力,也考察学生解题的技巧.二重积分作为考研数学必考的知识点,在解题方面有一定的技巧可循,本文针对研究生考试中二重积分的考察给出具有参考性的解题技巧.二重积分的一般计算步骤如下:(1) 画出积分区域D 的草图;(2) 根据积分区域D 以及被积函数的特点确定合适的坐标系;(3) 在相应坐标系下确定积分次序,化为二次积分; (4) 确定二次积分的上、下限,做定积分运算.但是在历年考试题中,越来越多的题目注重解题技巧的考查,考题经常以下列几种情况出现:1分段函数的二重积分如果被积函数中含有函数关系min max,以及绝对值函数,则需要对二重积分进行分区域积分.例1:(2008年试题)计算⎰⎰Ddxdy xy }1,max{,其中}20,20),({≤≤≤≤=y x y x D .解:积分区域如图1所示:因为⎩⎨⎧>≤=111}1,max{xy xy xy xy ,所以有:max{,1}Dxy dxdy ⎰⎰1122222111022x xdx dy dx dy dx xydy=++⎰⎰⎰⎰⎰⎰2ln 419)ln 21(21ln 2ln 2212212+=-+-+⨯=x x2交换二重积分的次序交换积分次序的步骤如下: (1) 先验证二次积分是否是二重积分的二次积分(积分下限小于上限)(2) 由所给二次积分的上、下限写出积分区域D 的不等式组(3) 依据不等式组画出积分区域D 的草图(4) 根据积分区域D 的草图写出另一种积分次序下的二次积分。
例2:计算dy e dx xy ⎰⎰-222解:积分区域如图2所示:因为⎰-22xy dy e 不可积,所以交换二重积分次序,则有:)1(214022022222-----===⎰⎰⎰⎰⎰⎰e dx dy e dx e dy dy e dx yy yy xy图1 图2 图3 图43利用积分区域的对称性计算二重积分(1)利用积分区域的对称性,被积函数的奇偶性计算 设()y x f ,在积分区域D 上连续,D 关于y 轴对称,1D 为D 中0≥x 的部分.则有:()()⎰⎰⎰⎰⎪⎩⎪⎨⎧-=-=-=DD y x f y x f y x f y x f d y x f d y x f ),(),(0),(),(,2,1σσ设()y x f ,在积分区域D 上连续,D 关于x 轴对称,1D 为D 中0≥y 的部分.则有:()()⎰⎰⎰⎰⎪⎩⎪⎨⎧-=-=-=D D y x f y x f y x f y x f d y x f d y x f ),(),(0),(),(,2,1σσ 例3:(2017年试题)已知平面区域22{(,)2}D x y x y y =+≤,计算二重积分2(1).Dx dxdy +⎰⎰解析:积分区域具有对称性如图3,首先考虑使用奇偶性,其次,因为积分区域为圆域,需要使用极坐标进行求解。
2015考研数学高斯公式计算曲面积分的技巧

解析:(用高斯公式) ,其中
,
,
,
由于被积函数及其偏导数在点(0,0,0)处不连续,在 内作封闭曲面 (外侧)
,由高斯公式可得 ,
上面就是考研数学(一)中的关于利用高斯公式计算曲面积分的方法之分析总结,供考生们参考借鉴。在以后的时间里,老师还会陆续向考生们介绍考研数学中其它知识点和重要题型的分析,希望各位考生留意查看。最后预祝各位学子在2015考研中取得佳绩,成功实现自己的人生梦想。
注:2005年数一(4)
解析:本题 是封闭曲面且取外侧,自然想到用高斯公式转化为三重积分,再用球面(或柱面)坐标进行计算即可.
=
或者 .
例2.设曲面 是 的上侧,则
注:2008年数一(12)
解析:(用高斯公式)作辅助面 ,取下侧。则由高斯公式得
.
由对称性得 , ,
故 .
例3.计算曲面积分 ,其中 是曲面 的外侧。
2015考研数学:高斯公式计算曲面积分的技巧
来源:文都教育
在考研数学中,曲面积分是数学(一)的重要考点之一,在往年的考试中经常出题;曲面积分也是考试难点之一,因为曲面积分的计算涉及到空间图形及其上的三重积分和曲面积分计算,这往往是很多考生感到困惑的地方。为了使大家掌握好这种方法,下面蔡老师对曲面积分计算中的一种重要方法——利用高斯公式计算曲面积分做一些分析总结,供各位考生参考。
注:每个“洞”的内侧,对于区域 而言就是外侧(“洞”的内侧是在 之外),如同平面上有“洞”的有界闭区域的边界曲线上的方向,在内部的“洞”的边界上是顺时针方向,而在区域的最外层的边界上是逆时针方向,二者方向正相反。
二、高斯公式使用方法
高斯公式的使用条件和方法:
1)如果曲面 必须是分片光滑的有界闭区域,并且 在 上无奇点(连续可偏导),则可以直接运用高斯公式;
考研高等数学重要知识点解析定积分的应用

考研高等数学重要知识点解析定积分的应用开城研究生训练营,引导学生,服务学生!高等数学考研重点知识点分析:定积分考研即将到来,不到50天,考研复习将进入冲刺阶段考生基本上已经了解了高分的总数,也许许多考点只是粗略的回顾,并不深入。
没关系。
这里的研究生入学考试导师帮助考生分析定积分的应用命题规则,并对定积分的应用进行深入分析。
定积分的应用主要是基于微分单元法,而微分单元法是基于定积分的定义。
因此,划分、逼近、总结和取极限是计算某些几何量和物理量的指导思想多年来,定积分及其应用在真问题的研究中有多种形式。
它们可以以客观问题的形式或问题的解决方式出现。
他们经常结合其他知识点来考察,如极限、导数、微分中值定理、极值等知识点来给出问题。
在这部分中,需要掌握用微元法计算的平面图形面积、平面曲线弧长、旋转体体积和侧向面积,以及已知的立体体积、功、重力、压力、质心和平行截面面积的质心。
对于三个,只需要计算平面图形的面积和旋转体的体积。
其中,旋转体体积的求解和微积分在几何中的应用与最大值问题相结合是常见试题的关键类型,应得到大多数考生的充分重视。
对于定积分的应用,首先需要掌握微元法在过去的几年里,有大量真正的研究生入学考试([微博)的试题使用微元法求解方程,而微元法的巧妙应用是写作试题的教师青睐的知识点之一。
然而,由于微元法本身思维的飞跃,灵活有效的方法只有通过充分的练习才能真正实现。
本文将功能图像与微元方法的相应核心类型相结合,总结出三种常见的微元方法:,第1页,共1页开城研究生训练营,指导学生,服务学生!2。
煎饼第2页共2页启成研究生入学考试训练营,指导学生,为他们服务!第3页,共3页开城考研训练营,指导学生,服务学生!第4页第4页第4页开城研究生训练营,指导学生,为他们服务!第5页共5页开城考研训练营指导学生并为他们服务!通过以上三个例子谈了一点对微元法特点的认识这种方法的灵活应用只能通过自助解决问题的经验来实现,因为表面上有些逻辑不符合常规思维,但这也许就是为什么研究生入学考试老师喜欢微元方法的原因。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
考研数学积分的巧妙解决办法
一、不定积分
不定积分的计算是整个积分运算的基础,定积分、重积分的计算都是依赖于此。
因此掌握不定积分的计算方法和思路非常重要。
不定积分计算的根本是最基本的积分公式,我们将这些公式分为两种,一种是基本初等函数的积分公式,一种是在计算积分的过程中得到的一些公式,例如:
这些公式在今后的计算中经常用到,所以也总结在基本积分公式中,需要同学们记忆并熟练应用。
在基本公式的基础之上,掌握常见的积分法即可正确解题,需要清楚的是,不管是何种积分方法,最终都是转化为用基本积分公式解题。
常见的积分法:第一类换元积分,又称为凑微分法,用来解决被积函数中同时存在原函数与导函数的情况,基本思想是
第二类换元积分是与第一类换元法相反的思路,在计算过程中应用得很频繁,基本思想是
分部积分法主要解决两类不同类型的函数的乘积形式的积分,尤其是含有反三角函数、对数函数时的积分,基本思想是
关键点是u、v的选取。
常见的基本题型包括:有理函数的积分;可化为有理函数的积分(包括:三角有理式、指数有理式);根式的处理;分部积分法的使用等。
二、定积分
定积分的计算包含两方面:一、基本思路是牛莱公式,利用不定积分的解题方法来计算;二、利用对称区间及函数的基本性质来解题,主要是运用函数的奇偶性。
1、利用不定积分的计算方法
1)换元法
2)分部积分法
2、对称区间上函数定积分的计算
1)利用奇偶性
2)被积函数本身无奇偶性,直接计算积分又难算时考虑变量代换,令x=-u。
三、二重积分
计算二重积分的基本思路是将其化作累次积分(也即两次定积分),要把二重积分化为累次积分,有两个主要的方式:一是直接使用直角坐标,二是使用极坐标。
这是我们计算二重积分的两个主要的武器。
首先,对直角坐标来说,主要考点有两个:一是积分次序的选择,基本原则有两个:一是看区域,选择的积分次序一定要便于定限,说得更具体一点,也就是要尽量避免分类讨论;二是看函数,要尽量使第一步的积分简单,选择积分次序的最终目的肯定是希望是积分尽可能地好算一些,实践表明,大多数时候,只要让二重积分第一步的积分尽可能简单,那整个积分过程也会比较简洁,所以我们在拿到一个二重积分之后,可以根据它的被积函数考虑一下第一步把哪个变量看成常数更有利于计算,从而确定积分次序。
二是定限,完成定限之后,二重积分就被化为了两次定积分,就可以直接计算了。
以上是我们计算二重积分的主体思路,在此基础之上,我们还可以利用对称性,它在二重积分的计算中虽然属于辅助性的技能,但如果恰当使用的话,还是可以明显地简化计算。
二重积分中的对称性分为两种:一是奇偶性,二是轮换对称性。
一般来说,对称性应该使用在拿到一个二重积分之后的第一步,只要积分区域关于某坐标轴是对称的,就要先检验被积函数是否具有相应的对称性,尤其要注意有没有奇函数,以尽可能地简化计算。