渣油加氢处理催化剂及工艺技术

渣油加氢处理催化剂及工艺技术
渣油加氢处理催化剂及工艺技术

渣油加氢处理催化剂及工艺技术

一、渣油加氢处理技术概况

当今世界,石油资源逐渐变劣、变重,使轻质油品收率下降,而世界经济的快速发展对轻质油品的需求却日益增长。如何合理利用和深度加工劣质或重质原油,是炼油工业面临的一个迫切需要解决的难题。在国内,原油资源满足不了我国国民经济快速发展的需要,进口中东原油以增加我国的能源供给势在必行。

中东原油加工的主要技术难点是高硫原油的合理利用,从当今炼油技术水平来看,渣油固定床加氢处理是合理利用含硫渣油的最为有效的手段之一。抚顺石油化工研究院从1986年开始进行渣油加氢催化剂及工艺技术的开发,迄今已成功地开发了S-RHT工艺技术及FZC-XX系列和FZC-XXX系列渣油加氢处理催化剂,并且先后在国内三套渣油加氢处理装置上成功应用,技术居于国内领先水平。

二、渣油加氢处理过程的化学反应及催化剂

?渣油加氢处理过程的化学反应

在重油加氢处理过程中,主要的化学反应有:

加氢脱金属(HDM);

加氢脱硫(HDS);

加氢脱氮(HDN);

加氢裂化(HC);

不饱和键的加氢(如芳烃饱和-HDA)等。

针对这些反应,渣油加氢处理催化剂主要包括渣油加氢保护剂,脱金属催化剂,脱硫催化剂和脱氮催化剂四大类。

FRIPP1986年开始进行渣油加氢处理催化剂和工艺技术的研究工作,现已开发成功S-RHT 工艺技术及其相关的FZC-XX系列和FZC-XXX系列渣油加氢处理催化剂,分述如下:

?减压渣油加氢处理系列催化剂(FZC-XX系列)

该系列催化剂自1986年开始研制以来,现已研究开发成功四大类共十六个牌号的催化剂。研究开发过程中共申请国内外专利六十余项,有效地保护了我国自力更生开发的渣油固定床加氢处理技术(简称S-RHT技术)。

该系列催化剂继1995年在齐鲁石化公司VRDS装置成功应用之后,1999年12月又在茂名石化公司由我国自行设计的200万吨/年S-RHT工业装置上进行应用。应用结果表明,FRIPP 研究开发成功的FZC-XX系列催化剂达到国际先进水平。

FZC-XX系列催化剂特点和作用

常压渣油加氢处理系列催化剂(FZC-XXX系列)

FRIPP根据国家对环境友好技术的迫切需要,在中国石油化工集团公司的统一部署下,于1995年开始针对进口高硫原油开展了常压渣油加氢处理系列催化剂的研究开发工作。

本项目包括三大类(加氢脱硫,加氢脱金属和保护)催化剂的开发,1998年底完成全部实验室研制和工业放大工作,先后申请专利12项。该系列催化剂于1999年11月在大连西太平洋石油化工有限公司AGDS装置上进行工业应用试验。试验结果表明,FZC-XXX系列催化剂达到国际先进水平,填补了国内空白。

FZC-XXX系列催化剂特点和作用

三、S-RHT渣油固定床加氢处理技术的工业应用

减压渣油加氢处理

茂名石化公司200万吨/年处理量的S-RHT装置是我国自行设计建设的。该装置采用的是FRIPP开发的具有自主知识产权的S-RHT渣油固定床加氢处理技术,催化剂使用的是FZC-XX 系列减压渣油加氢处理催化剂。

S-RHT工业装置所用主要催化剂物化性质

渣油加氢工业装置典型结果

S-RHT工业装置有效地脱除了渣油中的硫、氮、金属等杂质,除生产少量石脑油和部分优质低硫轻柴油外,收率90%左右的加氢常渣是合格的RFCC进料,有效地实现了含硫渣油的全转化。

常压渣油加氢处理

S-RHT渣油固定床加氢处理技术,于1999年11月在大连西太平洋石油化工有限公司VRDS 装置上进行了工业应用试验。该装置有A、B两列反应器,A列装填国外进口催化剂,B列装填的是FRIPP开发的FZC-XXX系列常压渣油加氢处理催化剂。两列反应器所进原料油及工艺

条件相同。

FZC-XXX催化剂理化性质

常渣加氢工业装置典型原料油性质、工艺条件

常渣加氢工业装置典型的结果

工业结果表明,装填FZC-XXX系列国产催化剂的B列反应器的HDS、HDN、HDCCR性能均优于A列反应器,HDM性能两列反应器相当。

加氢催化剂的研究进展2详解

加氢催化剂的研究进展 化工12-4 金贞顺 06122533 摘要 综述石油工业中各类加氢催化剂的研究进展,包括汽、柴油加氢催化剂,加氢裂化、加氢异构催化剂, 重油加氢催化剂等。以及加氢过程的各种基本反应(如加氢脱氮、加氢脱硫、烯烃加氢和芳烃饱和等)的热力学研究、基本反应动力学及与催化剂组成及结构特征间的关系、活性组分与载体间的相互作用、反应物分子平均扩散半径与催化剂空间结构的匹配、结焦失活的机理及其抑制措施等。 关键词: 加氢催化剂结焦失活载体 引言 随着环保法规和清洁柴油标准的日益严格,清洁油品的生产将是全球需要解决的重要问题。现有炼油工艺不断改进,创新并开发出一些先进技术以满足生产清洁柴油的需求。加氢裂化技术具有原料适应性强、产品方案灵活、液体产品收率高、产品质量好等诸多优点,催化剂则是加氢裂化技术的核心。重油加氢裂化分散型催化剂主要分为3大类:固体粉末添加剂、有机金属化合物及无机化合物。本文分别对加氢催化剂及载体的研究进展进行简要介绍。 1、汽柴油加氢催化剂研究进展 随着原油的劣质化和环保法规的日益严格,我国在清洁柴油生产方面面临着十分严峻的局面,所以迫切需要研制具有高效加氢精制的催化剂来满足油品深度加氢处理的要求[1-3]。日益提高的环境保护要求促进了柴油标准的不断升级。文中综述了国外炼油企业在柴油加氢催化剂方面的技术进展。 刘笑等综述了国内外有关FCC汽油中硫的存在形态、加氢脱硫反应原理及其催化剂的研究进展。一般认为,FC C汽油中的硫化物形态主要为嚷吩类化合物,且主要集中在重馏分中,汽油的加氢脱硫反应原理的研究也都集中在嚷吩

的加氢脱硫反应上。传统的HDS催化剂由于烯烃饱和率过高不适于FCC汽油的加氢脱硫,可通过改变催化剂的酸性来调整其HDS/HYD选择性。发展高活性、高选择性的催化剂仍是现今研究的热点,同时还应足够重视硫醇的二次生成而影响脱硫深度的问题。 赵西明综述了裂解汽油一段加氢把基催化剂的研究进展。提出在裂解原料劣化的形势下,把基催化剂的研究重点是制备和选择孔容较大、孔分布合理、酸性弱、比表面积适中的载体,并添加助催化剂。从控制拟薄水铝石的制备过程和后处理方法以及添加扩孔剂等角度出发,评述了近年来大、中孔容Alt及其前驱物拟薄水铝石的制备方法。任志鹏等[4]介绍了裂解汽油一段选择加氢催化剂的工业应用现状及发展趋势,综述了新型裂解汽油一段选择加氢Ni系催化剂的研究进展。提出在贵金属价格上涨和裂解原料劣化的形势下,Ni系催化剂是未来裂解汽油一段加氢催化剂的重点发展方向。而Ni系催化剂的研究重点是制备和选择比表面积适中、酸性低、孔体积大、孔分布合理的载体,选择合适的Ni盐前体及浸渍方法,添加第二种金属助剂以及开展硫化和再生方法的研究。 孙利民等介绍了镍基裂解汽油一段加氢催化剂的工业应用状况及研究进展,指出了提高裂解汽油一段镍基催化剂加氢性能的途径及该领域最新发展趋势。文献[5-6]介绍了柴油加氢精制催化剂的研究进展,近年来,随着柴油需求量增加、原油劣化程度加深和环保要求的日益严格,满足特定需求的超低硫柴油仍存在很大挑战,柴油加氢精制催化剂的研制和开发取得较大进展。介绍了载体、活性组分、助剂和制备方法(液相浸渍法、沉淀法和溶胶一凝胶法)等因素对催化剂活性的影响,结果表明,溶胶一凝胶法较其它方法有较优的一面。具体探讨了溶胶一凝胶法的制备条件对催化剂活性的影响,也为设计、开发高活性加氢精制催化剂积累了经验。 马金丽等介绍了柴油加氢脱硫催化剂研究进展。降低柴油中硫含量对于减少汽车尾气排放从而保护环境具有十分重要的意义。介绍了加氢脱硫催化剂的研究进展。张坤等介绍了中国石化抚顺石油化工研究院开发的最大柴油十六烷值改进技术(MCI)、和中国石化石油化工科学研究院研发的提高柴油十六烷值和

国内外渣油加氢工艺区别(DOC)

文/李立权中石化洛阳工程有限公司 渣油加氢技术包含固定床渣油加氢处理、切换床渣油加氢处理、移动床渣油加氢处理、沸腾床渣油加氢处理、沸腾床渣油加氢裂化、悬浮床渣油加氢裂化、渣油加氢一体化技术及相应的组合工艺技术。随着原油的重质化及劣质化、分子炼油技术的发展、环境保护要求的日益严格、市场对轻质油品需求、石油产品清洁化和石化企业面临的激烈竞争,各种渣油加氢技术将快速发展。 1国内外渣油加氢工程化技术应用现状 我国渣油加氢工程化技术起步较晚,1999年12月我国开发的首套2.0Mt/a固定床渣油加氢技术实现了工程化;2000年1月世界首套上流式渣油加氢反应器在我国某企业1.5Mt/a渣油加氢装置改造工程中实现工程化;2004年8月我国开发的50kt/a悬浮床渣油加氢技术进行了工业示范;2014年2月我国开发的50kt/a沸腾床渣油加氢工业示范装置建成中交;2014年45kt/a油煤共炼的重油加氢装置建成;目前引进的一套2.5Mt/a沸腾床渣油加氢装置正在建设中。截止到2011年底我国投产的渣油加氢装置处理能力仅13.35Mt/a,而2012—2014年10月投产的渣油加氢装置处理能力就达到了19.3Mt/a;正在规划、设计和建设的渣油加氢装置处理能力超过30Mt/a。 中国石油化工股份有限公司石油化工科学研究院(RIPP)开发的固定床渣油加氢处理重油催化裂化双向组合RICP技术2006年工程化应用,将RFCC装置自身回炼的重循环油(HCO)改为输送到渣油加氢装置作为渣油加氢进料稀释油,和渣油一起加氢处理后再一同回到RFCC装置进行转化,同时有利于渣油加氢和催化裂化装置,工艺流程示意见图1。

加氢催化剂及其设备制作方法和应用与相关技术

本技术提供了一种加氢催化剂及其制备方法和应用。所述催化剂制备方法包括将成型的载体先负载活性金属镍得到载体S1,再负载磷源得到载体S2,然后将载体S2在氢氛围下活化得到含有金属磷化物NixPy的加氢催化剂,其中x:y为1:31:7;载体占所述加氢催化剂总重量的60%80%。该催化剂适用于缓和条件下柴油的加氢脱硫和加氢脱氮反应,其主要特点是在反应过程中具有较高的直接脱硫和/或脱氮选择性。 权利要求书 1.一种加氢催化剂的制备方法,其中,所述方法包括将成型的载体先负载活性金属镍得到载体S-1,再负载磷源得到载体S-2,然后将载体S-2在氢氛围下活化得到含有金属磷化物NixPy 的加氢催化剂,其中x:y为1:3-1:7;在制备得到的加氢催化剂中,载体占所述加氢催化剂总重量的60%-80%;优选负载活性金属镍和磷源时所用的镍原子与磷原子摩尔比为1:3-1:7。 2.根据权利要求1所述的制备方法,其中,所述方法中负载活性金属镍的步骤包括,将镍的前驱体与水配制成溶液A,通过等体积浸渍方法将镍负载到载体上,干燥后得到负载了活性金属镍的载体S-1;其中优选是在80-120℃下干燥;其中还优选干燥3-7h;优选通过等体积浸渍将镍负载到载体后,先室温放置8-16h,再干燥得到载体S-1。 3.根据权利要求1所述的制备方法,其中,所述方法中负载磷源的步骤包括,将磷的前驱体与水配制成溶液B,通过等体积浸渍方法将磷负载到载体S-1上,干燥后得到负载了磷的载体S-2;其中优选是在80-120℃下干燥;其中还优选干燥3-7h。 4.根据权利要求1所述的制备方法,其中,所述方法中活化的步骤包括,先将载体S-2在氢气气氛中,在750-900℃下活化,活化结束后降温至室温,在2%的O2/N2条件下钝化得到所述的加氢催化剂;优选氢气体积空速为600-3000h-1;优选载体S-2在氢气气氛中,以10℃/min 升温至300℃,保温30min后,再以1-10℃/min的速度升温至750-900℃进行活化;优选钝化的持续时间为3h。

渣油加氢工艺流程

第一节工艺技术路线及特点 一、工艺技术路线 300×104t/a渣油加氢脱硫装置采用CLG公司的固定床渣油加氢脱硫工艺技术,该工艺技术满足操作周期8000h、柴油产品硫含量不大于500ppm、加氢常渣产品硫含量不大于0.35w%、残炭不大于5.5w%、Ni+V不大于15ppm的要求。 二、工艺技术特点 1、反应部分设置两个系列,每个系列可以单开单停(单开单停是指装置二个系列分别进行正常生产和停工更换催化剂)。由于渣油加氢脱硫装置的设计操作周期与其它主要生产装置不一致,从全厂生产安排的角度,单开单停可以有效解决原料储存、催化裂化装置进料量等问题,并使全厂油品调配更灵活。 2、反应部分采用热高分工艺流程,减少反应流出物冷却负荷;优化换热流程,充分回收热量,降低能耗。 3、反应部分高压换热器采用双壳、双弓型式,强化传热效果,提高传热效率。 4、反应器为单床层设置,易于催化剂装卸,尤其是便于卸催化剂。 5、采用原料油自动反冲洗过滤器系统,滤除大于25μm以上杂质,减缓反应器压降增大速度,延长装置操作周期。 6、原料油换热系统设置注阻垢剂设施,延长操作周期,降低能耗,而且在停工换剂期间可减少换热器和其它设备的检修工作。 7、原料油缓冲罐采用氮气覆盖措施,以防止原料油与空气接触从而减轻高温部位的结焦程度。 8、采用炉前混氢流程,避免进料加热炉炉管结焦。 9、第一台反应器入口温度通过调节加热炉燃料和高压换热器旁路量来控制,其他反应器入口温度通过调节急冷氢量来控制。 10、在热高分气空冷器入口处设注水设施,避免铵盐在低温部位的沉积。 11、循环氢脱硫塔前设高压离心式分离器除去携带的液体烃类,减少循环氢脱硫塔的起泡倾向,有利于循环氢脱硫的正常操作。 12、设置高压膜分离系统,保证反应氢分压。 13、冷低压闪蒸罐的富氢气体去加氢裂化装置脱硫后去PSA回收氢气。 14、新氢压缩机采用二开一备,每台50%负荷,单机负荷较小,方便制造,且装置有备机。 15、分馏部分采用主汽提塔+分馏塔流程,在汽提塔除去轻烃和硫化氢,降低分馏塔材质要求。 分馏塔设侧线柴油汽提塔及中段回流加热原料油,降低塔顶冷却负荷,提高能量利用率,减小分馏塔塔径。 16、利用常渣产品发生部分低压蒸汽。通过对装置换热流程的优化,把富裕热量集中在温位较高的常渣产品,发生低压蒸汽。 17、考虑到全厂能量综合利用,正常生产时常渣在150℃送至催化裂化装置。在催化裂化装置事故状态下,将常渣冷却至90℃送至工厂罐区。 18、催化剂预硫化按液相预硫化方式设置。 三、工艺流程说明 (一)工艺流程简述 1、反应部分 原料油自进装置后至冷低压分离器(V-1812)前的流程分为两个系列,以下是一个系列的流程叙述: 原料油在液位和流量的串级控制下进入滤前原料油缓冲罐(V-1801)。原料从V-1801底部出来由原料油增压泵(P1801/S)升压,经中段回流油/原料油换热器(E-1801AB)、常渣/原料油换热器(E-1802AB、E-1803AB)分别与中段回流油和常渣换热,然后进入原料油过滤器(S-1801)以除去原料油于25μm的杂质。过滤后的原料油进入滤后原料油缓冲罐(V-1802),原料油从V-1802底部出来后由加氢进料泵(P1802/S)升压,升压后的原料油在流量控制下进入反应系统。 原料油和经热高分气/混合氢换热器(E-1805AB)预热后的混合氢混合,混合进料经反应流出物/反应进料换热器(E-1804)预热后进入反应进料加热炉(F-1801)加热至反应所需温度进入第一台加氢反应器(R-1801),R-1801的入口温度通过调节F-1801的燃料量和E-1804的副线量来控制,R-1801底部物流依次通过其它三台反应器(R-1802、R-1803、R-1804),各反应器的入口温度通过调节反应器入口管线上注入的冷氢量来控制。从R-1804出来的反应产物经过E-1804换热后进入热高压分离器(V-1803)进行气液分离, V-1803底部出来的热高分液分别在液位控制下减压后,进入热低压分离器(V-1804)进行气液分离,V-1803顶部出来的热高分气分别经热高分气/混合氢换热器、热高分气蒸汽发生器(E-1806)换热后进入热高分气空冷器(E-1807),冷却到52℃进入冷高压分离器(V-1806)进行气、油、水三相分离。 为了防止铵盐在低温位析出堵塞管路,在热高分气空冷器前注入经注水泵(P-1803/S)升压后的脱硫净化水等以溶解铵盐。 从V-1806顶部出来的冷高分气体(循环氢)进入高压离心分离器(V-1807)除去携带的液体烃类,减少循环氢脱硫塔(C-1801)的起泡倾向。自V-1807顶部出来的气体进入C-1801底部,与贫胺液在塔逆向接触,脱除H2S,脱硫溶剂采用甲基二乙醇胺(MDEA),贫胺液从贫胺液缓冲罐(V-1809)抽出经贫溶剂泵(P-1804/S)升压后进入C-1801顶部,从塔底部出来的富胺液降压后进入富胺液闪蒸罐(V-1810)脱气。富液脱气后出装置去溶剂再生,气体去硫磺回收。 自C-1801顶不出来的循环氢进入循环氢压缩机入口分液罐(V-1808)除去携带的胺液,V-1808顶部出来的循环氢分成两路,一路去氢提浓(ME-1801)部分,提浓后的氢气经提浓氢压缩机(K-1804)升压后与新氢压缩机(K-1802A.B.C)出口新氢汇合,释放气去轻烃回收装置;另一路进入循环氢压缩机(K-1801)升压,升压后的循环氢分为三部分,第一部分与新氢压缩机来的新氢混合,混合氢去反应部分;第二部分作为急冷氢去控制反应器入口温度;第三部分至E-1807前作为备用冷氢和K-1801反飞动用。循环氢压缩机选用背压蒸汽透平驱动的离心式压缩机。 从两个反应系列的冷高压分离器底部出来的冷高分液分别在液位控制下减压混合后,进入冷低压分离器(V-1812)进行气液分离,冷低分液体在液位控制下从罐底排出并进入热低分气/冷低分液换热器(E-1809)、柴油/冷低分油换热器(E-1811)、常渣/冷低分油换热器(E-1812)换热后进入汽提塔(C-1803)。V-1812顶部出来的冷低分气去轻烃回收装置脱硫。 冷高压分离器底部的含H2S、NH3的酸性水进入酸性水脱气罐(V-1823)集中脱气后送出装置。 两个反应系列的热低分油在液位控制下从V-1803底部排出去分馏部分。热低分气体经E-1809换热后进入热低分气空冷器(E-1810)冷却到54℃,然后进入冷低压闪蒸罐(V-1811)进行气液分离,为了防止在低温位的地方有铵盐析出堵塞管路,在E-1810前注水以溶解铵盐。V-1811顶部出来的富氢气体直接送至加氢裂化装置进行脱硫,然后去PSA装置回收氢气;从下部出来的冷低压闪蒸液进入到冷低压分离器。 新氢从全厂氢网送入,进入新氢压缩机经三段压缩升压后分两路分别与两个系列循环氢压缩机出口的循环氢混合,混合氢气分别返回到各自的反应部分。新氢压缩机设三台,二开一备,每一台均为三级压缩,每台的一级入口设入口分液罐,级间设冷却器和分液罐。 2、分馏部分 来自反应部分的热低分油与经加热后的冷低分液一起进入汽提塔(C-1803)。塔底采用水蒸汽汽提。塔顶部气相经汽提塔顶空冷器(E-1814)冷凝冷却后进入汽提塔顶回流罐(V-1814)进行气液分离,V-1814气体与冷低分气一起出装置送至轻烃回收统一脱硫;V-1814底部出来的液体经汽提

关于渣油加氢处理催化剂及工艺技术

关于渣油加氢处理催化剂及工艺技术 一、渣油加氢处理技术概况 当今世界,石油资源逐渐变劣、变重,使轻质油品收率下降,而世界经济的快速发展对轻质油品的需求却日益增长。如何合理利用和深度加工劣质或重质原油,是炼油工业面临的一个迫切需要解决的难题。在国内,原油资源满足不了我国国民经济快速发展的需要,进口中东原油以增加我国的能源供给势在必行。 中东原油加工的主要技术难点是高硫原油的合理利用,从当今炼油技术水平来看, 渣油固定床加氢处理是合理利用含硫渣油的最为有效的手段之一 二、渣油加氢处理过程的化学反应及催化剂 1、渣油加氢处理过程的化学反应 在重油加氢处理过程中,主要的化学反应有: 加氢脱金属(HDM); 加氢脱硫(HDS); 加氢脱氮(HDN); 加氢裂化(HC); 不饱和键的加氢(如芳烃饱和—HDA)等。 针对这些反应,渣油加氢处理催化剂主要包括渣油加氢保护剂,脱金属催化剂,脱硫催化剂和脱氮催化剂四大类。 2、减压渣油加氢处理系列催化剂(FZC —XX系列) 该系列催化剂自1986年开始研制以来,现已研究开发成功四大类共十六个牌号的催化剂。研究开发过程中共申请国内外专利六十余项,有效地保护了我国自力更生开发的渣油固定床加氢处理技术(简称S-RHT技术)。

3、常压渣油加氢处理系列催化剂(FZC-XXX系列) 1995年我国开始针对进口高硫原油开展了常压渣油加氢处理系列催化剂的研究开发工作。

本项目包括三大类(加氢脱硫,加氢脱金属和保护)催化剂的开发,1998年底完成全部实验室研制和工业放大工作,先后申请专利12项。试验结果表明,FZC-XXX系列催化剂达到国际先进水平,填补了国内空白。 三、S-RHT渣油固定床加氢处理技术的工业应用 1、减压渣油加氢处理 S-RHT工业装置所用主要催化剂物化性质

加氢催化剂及其设备制作方法和应用与制作流程

本技术提供了一种加氢催化剂及其制备方法和应用。所述方法包括将成型的载体先负载活性金属镍得到载体S1,再负载磷源得到载体S2,然后将载体S2在氢氛围下活化得到含有金属磷化物NixPy的加氢催化剂,其中x:y为1:31:7;载体占所述加氢催化剂总重量的 60%80%;优选负载活性金属镍和磷源时所用的镍原子与磷原子摩尔比为1:31:7。该催化剂适用于缓和条件下柴油的加氢脱硫和加氢脱氮反应,其主要特点是在反应过程中具有较高的直接脱硫和/或脱氮选择性。 权利要求书 1.一种加氢催化剂的制备方法,其中,所述方法包括将成型的载体先负载活性金属镍得到载体S-1,再负载磷源得到载体S-2,然后将载体S-2在氢气氛围下活化得到含有金属磷化物NixPy的加氢催化剂,其中x:y为(1:3)-(1:7);在制备得到的加氢催化剂中,载体占所述加氢催化剂总重量的60%-80%;(优选负载活性金属镍和磷源时所用的镍原子与磷原子摩尔比为1:3-1:7)。 2.根据权利要求1所述的制备方法,其中,所述方法中负载活性金属镍的步骤包括,将镍的前驱体与水配制成溶液A,通过等体积浸渍方法将镍负载到载体上,干燥后得到负载了活性金属镍的载体S-1;其中优选是在80-120℃下干燥;其中还优选干燥3-7h;优选通过等体积浸渍将镍负载到载体后,先室温放置8-16h,再干燥得到载体S-1。 3.根据权利要求1所述的制备方法,其中,所述方法中负载磷源的步骤包括,将磷的前驱体与水配制成溶液B,通过等体积浸渍方法将磷负载到载体S-1上,干燥后得到负载了磷的载体S-2;其中优选是在80-120℃下干燥;其中还优选干燥3-7h。 4.根据权利要求1所述的制备方法,其中,所述方法中活化的步骤包括,先将载体S-2在氢气气氛中,在750-900℃下活化,活化结束后降温至室温,在2%的O2/N2条件下钝化得到所述的加氢催化剂;优选氢气体积空速为600-3000h-1;优选载体S-2在氢气气氛中,以1-10℃/min

加氢催化剂再生

催化剂再生 12.1 就地催化剂再生 注意,以下规程旨在概括催化剂再生的步骤和条件。催化剂供应商提供的具体 规程可取代此概述性规程。须遵守催化剂供应商规定的临界参数,例如温度限 制。 在COLO加氢处理单元中,使用NiMo和CoMo两种催化剂,有些焦碳沉积 是不可避免的。这会引起载体的孔状结构逐渐堵塞,导致催化剂活性降低。则 必须提高苛刻度(通常通过提高反应器温度),以使产品达到技术要求,而提 高温度会加速焦碳的产生。 当达到反应系统的最高设计温度(机械或反应限)时,需要停车进行催化剂再 生或更换催化剂。在正常操作时,这种事情至少在12个月内不应发生。 o催化剂再生燃烧在正常操作期间沉积的使催化剂失活的焦碳。 o再生的主要产物是CO2、CO和SO2。 12.2 再生准备 按照与正常停车相同的步骤,但反应器无需进行冷却。反应器再生可不分先后。 仅取R-101为例。 单元状态:按照正常停车规程的要求或根据再生放空气体系统规范,反应器在 吹扫净其中的H2和烃类后被氮气填充。将R-102的压力降低至略低于随后将 使用的蒸汽的压力。T-101已关停,且E-101排放至塔。T-102可根据再生过 程的下一步骤进行全回流或启动,以便实现石脑油安全循环。 12.3 蒸汽-空气再生程序 1. 在压缩机-反应器回路中建立热氮气循环。利用B-101加热带有循环氮气 的催化剂床,使其温度以25 oC/小时的速度上升至315oC。绝不可让催化 剂床内的温度降至260oC以下,否则,随后置换氮气的蒸汽会出现冷凝, 从而要求在进行下一操作前采取干燥措施。 2. 再次检查吹扫气中的可燃物并继续进行吹扫,直至反应器出口气体中的氢 气浓度低于0.5% vol。在E-107的壳程入口和压缩机的排放侧将压缩机 和D-103系统与反应器B-101系统隔离,并关停压缩机。反应器系统此 时处于氮气条件下。进一步关闭压缩机系统。两个分隔的工段均应处于氮 气正压下,这点至关重要。 3. 将蒸汽从E-104入口引至R-102,将反应器流出物导至再生排气系统。 逐渐加快速度,同时利用B-101控制温度,将反应器入口温度升至并保 持在330-370oC。蒸汽宜为7000 kg/hr左右的速度,这高于CRI(催化 剂供应商)推荐的反应器横截面每平方米1950 kg/hr的最低速度,此最 低速度使R-101和R-102的最低流量分别达到2000 kg/hr和3700 kg/hr。 此时R-102已做好下一步的蒸汽和空气燃烧准备。 4. 启动含0.3-0.5 mole%氧气的空气流,将其导入R-102。 5. 焰锋的建立表现为催化剂床的温度上升,此后,氧气含量最大可增加至1 mole%,但焰锋温度须保持在400oC以下。根据经验,氧气含量每高于

渣油加氢工艺说明

2 P R O C -2-b 第一节 工艺技术路线及特点 一、工艺技术路线 300×104t/a 渣油加氢脱硫装置采用CLG 公司的固定床渣油加氢脱硫工艺技术,该工艺技术满足操作周期8000h 、柴油产品硫含量不大于500ppm 、加氢常渣产品硫含量不大于0.35w%、残炭不大于5.5w%、Ni+V 不大于15ppm 的要求。 二、工艺技术特点 1、反应部分设置两个系列,每个系列可以单开单停(单开单停是指装置内二个系列分别进行正常生产和停工更换催化剂)。由于渣油加氢脱硫装置的设计操作周期与其它主要生产装置不一致,从全厂生产安排的角度,单开单停可以有效解决原料储存、催化裂化装置进料量等问题,并使全厂油品调配更灵活。 2、反应部分采用热高分工艺流程,减少反应流出物冷却负荷;优化换热流程,充分回收热量,降低能耗。 3、反应部分高压换热器采用双壳、双弓型式,强化传热效果,提高传热效率。 4、反应器为单床层设置,易于催化剂装卸,尤其是便于卸催化剂。 5、采用原料油自动反冲洗过滤器系统,滤除大于25μm 以上杂质,减缓反应器压降增大速度,延长装置操作周期。 6、原料油换热系统设置注阻垢剂设施,延长操作周期,降低能耗,而且在停工换剂期间可减少换热器和其它设备的检修工作。 7、原料油缓冲罐采用氮气覆盖措施,以防止原料油与空气接触从而减轻高温部位的结焦程度。 8、采用炉前混氢流程,避免进料加热炉炉管结焦。 9、第一台反应器入口温度通过调节加热炉燃料和高压换热器旁路量来控制,其他反应器入口温度通过调节急冷氢量来控制。 10、在热高分气空冷器入口处设注水设施,避免铵盐在低温部位的沉积。

关于渣油加氢处理催化剂及工艺技术

关于渣油加氢处理催化剂及工艺技术

关于渣油加氢处理催化剂及工艺技术 一、渣油加氢处理技术概况 当今世界,石油资源逐渐变劣、变重,使轻质油品收率下降,而世界经济的快速发展对轻质油品的需求却日益增长。如何合理利用和深度加工劣质或重质原油,是炼油工业面临的一个迫切需要解决的难题。在国内,原油资源满足不了我国国民经济快速发展的需要,进口中东原油以增加我国的能源供给势在必行。中东原油加工的主要技术难点是高硫原油的合理利用,从当今炼油技术水平来看,渣油固定床加氢处理是合理利用含硫渣油的最为有效的手段之一 二、渣油加氢处理过程的化学反应及催化剂 1、渣油加氢处理过程的化学反应 在重油加氢处理过程中,主要的化学反应有: 加氢脱金属(HDM); 加氢脱硫(HDS); 加氢脱氮(HDN); 加氢裂化(HC); 不饱和键的加氢(如芳烃饱和-HDA)等。 针对这些反应,渣油加氢处理催化剂主要包括渣油加氢保护剂,脱金属催化剂,脱硫催化剂和脱氮催化剂四大类。 2、减压渣油加氢处理系列催化剂(FZC-XX系列) 该系列催化剂自1986年开始研制以来,现已研究开发成功四大类共十六个牌号的催化剂。研究开发过程中共申请国内外专利六十余项,有效地保护了我国自力更生开发的渣油固定床加氢处理技术(简称S-RHT技术)。

FZC-XX系列催化剂特点和作用 类别第一代第二代特点作用 保护剂FZC-10FZC-10Q大孔容(>1.0ml/g),大孔 径(有400nm以上大孔) 脱金属杂质及垢物,保护下游催化剂,防 止床层压力降快速升高 FZC-11FZC-11Q FZC-12FZC-12Q FZC-13FZC-13Q FZC-14FZC-14Q FZC-15FZC-10U FZC-16FZC-11U FZC-17 FZC-18 脱金属剂FZC-20FZC-23大孔容(≥0.7 ml/g),大 孔径(有100nm以上大孔) 最大限度地脱镍、钒FZC-21FZC-24 FZC-22FZC-25 FZC-26 FZC-27 脱硫剂FZC-30FZC-33较强的酸性,较小的孔径, 较大的比表面积 脱硫、部分脱氮FZC-31FZC-34 FZC-32FZC-35 FZC-36 脱 氮剂FZC-40FZC-41 强酸性,小孔径,大比表面 积,高金属含量 高活性脱氮、转化 3、常压渣油加氢处理系列催化剂(FZC-XXX系列)

加氢精制催化剂安全生产要点(2021新版)

The prerequisite for vigorously developing our productivity is that we must be responsible for the safety of our company and our own lives. (安全管理) 单位:___________________ 姓名:___________________ 日期:___________________ 加氢精制催化剂安全生产要点 (2021新版)

加氢精制催化剂安全生产要点(2021新版)导语:建立和健全我们的现代企业制度,是指引我们生产劳动的方向。而大力发展我们生产力的前提,是我们必须对我们企业和我们自己的生命安全负责。可用于实体印刷或电子存档(使用前请详细阅读条款)。 1工艺简述 用于油品精制的加氢精制催化剂品种很多,性能各异,基质均为氧化铝,浸渍不同金属做活性组分。RN—1加氢精制催化剂是加工成形为三叶草条状的r—Al2O3担体,分别浸渍氟和钨镍金属制成。简要生产工艺过程是将高纯氢氧化铝粉与胶溶剂,助挤剂等混捏后挤成三叶形条状,经干燥和活炉焙烧脱水成为担体。担体经含氟盐溶液浸渍、干燥焙烧、再经含镍、钨的溶液浸渍、干燥焙烧即制成RN—1加氢精制催化剂。 生产中使用的原料有硝酸、氟盐等强氧化剂和腐蚀性物质,炼厂干气做为燃料,系易燃易爆物质。 2重点部位 2.1浸渍工序此工序有前氟盐浸渍工序和后镍、钨浸渍工序。浸渍液制备和浸渍作业均与多种有毒、有害及腐蚀性物质接触,如果设备腐蚀可靠性不足或操作防护等失误将造成严重的伤害事故。

2.2成品焙烧炉该炉系用瓦斯加热空气进行浸渍金属后的催化剂成品干燥活化的高温设备。在此设备中,如果活化温度控制不当和物料太湿或粉状物太多,可能造成局部超温而烧料;燃料系统可因泄漏、带水等原因发生着火或其他事故;还可因防护用品等操作失误造成灼烫、伤害等危害。 3安全要点 3.1浸渍定期对浸渍液制备、浸渍罐等易被腐蚀的设备进行检查鉴定,防止物料因设备腐蚀而泄漏造成事故;经常对有毒、有害作业岗位作业人员的防护措施的正确实施进行检查,纠正冒险或违章作业,防止中毒和化学灼伤。 3.2成品焙烧炉对每批进行活化的催化剂进炉前,应检查控制粉状物不能太多和太湿;检查并严格控制活化温度在480?20℃和料层超温的紧急放料措施及操作机构应灵活好用;经常对燃料系统运行情况进行严格检查,随时督促消除发现的隐患;焙烧作业中特别是活化炉放料时,应督促作业人员佩戴防烫护具,防止烫伤。 3.3其他部位 3.3.1混捏挤条机的孔板和螺栓,在运转挤条前要经仔细检查,不能有裂纹等缺陷,防止挤条时折断伤人。

催化剂的活化与再生

催化剂的活化与再生 加氢催化剂器外预硫化技术 1、Eurecat公司开发的Sulficat技术,用于再生催化剂的器外预硫化。 2、Eurecat和Akzo Nobel公司联合开发的EasyActive技术,用于新鲜催化剂的器外预硫化。3、CRI公司开发的ActiCat技术。 4、RIPP开发的RPS技术用于新鲜催化剂和再生催化剂的器外预硫化。 在推出EasyActive器外预硫化催化剂后,Eurecat和Akzo Nobel公司又进一步改进器外预硫化技术。为简化预硫化过程和减少对环境的污染,研究了水溶性硫化物生产器外预硫化催化剂以及将器外预硫化和原位预硫化结合的预硫化技术。 水溶性硫化剂有1,2,2-二亚甲基双二硫代氨基甲酸二酸盐、二巯基二氨硫杂茂、二乙醇二硫代物、二甲基二硫碳酸二甲氨和亚二硫基乙酸等。下表列举了几种水溶性硫化剂器外预硫化的催化剂的活性比较。 水溶性硫化剂进行器外预硫化的催化剂活性 可见水溶性硫化剂完全可以作为器外预硫化的硫化剂。 为了降低器外预硫化的成本和提高硫的利用率,又开发一种将S作为硫化剂的器外预硫化方法及将S与有机硫化物相结合的技术,目前多采用这一方法。

加氢催化剂器外预硫化技术 1、Eurecat公司开发的Sulficat技术,用于再生催化剂的器外预硫化。 2、Eurecat和Akzo Nobel公司联合开发的EasyActive技术,用于新鲜催化剂的器外预硫化。 3、CRI公司开发的ActiCat技术。 4、RIPP开发的RPS技术用于新鲜催化剂和再生催化剂的器外预硫化。 国外催化剂器外再生的主要工艺 目前,国外主要有三家催化剂再生公司:Eurecat、CRI和Tricat。其中Eurecat和CRI两家公司占国外废催化剂再生服务业的85%,余下的为Tricat公司和其他公司所分担。CRI公司的再生催化剂中,约60%来自加氢处理装置,15%来自加氢裂化装置,25%来自重整和石化等其他领域。 Eurecat、CRI和Tricat公司采用不同的再生工艺。Eurecat公司使用一个旋转的容器使催化剂达到缓慢烧炭的目的;CRI公司采用流化床和移动带相结合的工艺,如最新的OptiCAT 工艺;Tricat公司应用沸腾床工艺。 非贵金属废加氢催化剂的金属回收 从非贵金属废加氢催化剂中回收金属有两种方法:一种是湿法冶金,用酸或碱浸析废催化剂,然后回收可以销售的金属化合物或金属。另一种是火法(高温)冶金,用热处理(焙烧或熔炼)使金属分离。 非贵金属废加氢处理/加氢精制催化剂通常都有3~5种组分:钼、钒、镍、钴、钨、氧化铝和氧化硅。 美国有两家领先的非贵金属回收商:一家是海湾化学和冶金公司(GCMC),从1946年开始回收金属业务;另一家是Cri-met公司(Cyprus Amax矿业公司和CRI国际公司的合资公司),从1946年开始回收金属业务。有些废非贵金属加氢裂化催化剂中含有钨,回收的费用高,且数量不大。目前奥地利的Treibacher工业公司是钨的主要回收商。 另外,美国的ACI工业公司、Encycle/texas公司、Inmetco公司,法国的Eurecat公司,德国的Aura冶金公司、废催化剂循环公司,比利时的Sadaci公司,日本的太阳矿工公司、

渣油加氢工艺流程

2 P R O C -2-b 第一节 工艺技术路线及特点 一、工艺技术路线 300×104t/a 渣油加氢脱硫装置采用CLG 公司的固定床渣油加氢脱硫工艺技术,该工艺技术满足操作周期8000h 、柴油产品硫含量不大于500ppm 、加氢常渣产品硫含量不大于0.35w%、残炭不大于5.5w%、Ni+V 不大于15ppm 的要求。 二、工艺技术特点 1、反应部分设置两个系列,每个系列可以单开单停(单开单停是指装置内二个系列分别进行正常生产和停工更换催化剂)。由于渣油加氢脱 硫装置的设计操作周期与其它主要生产装置不一致,从全厂生产安排的角度,单开单停可以有效解决原料储存、催化裂化装置进料量等问题,并使全厂油品调配更灵活。 2、反应部分采用热高分工艺流程,减少反应流出物冷却负荷;优化换热流程,充分回收热量,降低能耗。 3、反应部分高压换热器采用双壳、双弓型式,强化传热效果,提高传热效率。 4、反应器为单床层设置,易于催化剂装卸,尤其是便于卸催化剂。 5、采用原料油自动反冲洗过滤器系统,滤除大于25μm 以上杂质,减缓反应器压降增大速度,延长装置操作周期。 6、原料油换热系统设置注阻垢剂设施,延长操作周期,降低能耗,而且在停工换剂期间可减少换热器和其它设备的检修工作。 7、原料油缓冲罐采用氮气覆盖措施,以防止原料油与空气接触从而减轻高温部位的结焦程度。 8、采用炉前混氢流程,避免进料加热炉炉管结焦。 9、第一台反应器入口温度通过调节加热炉燃料和高压换热器旁路量来控制,其他反应器入口温度通过调节急冷氢量来控制。 10、在热高分气空冷器入口处设注水设施,避免铵盐在低温部位的沉积。 11、循环氢脱硫塔前设高压离心式分离器除去携带的液体烃类,减少循环氢脱硫塔的起泡倾向,有利于循环氢脱硫的正常操作。 12、设置高压膜分离系统,保证反应氢分压。 13、冷低压闪蒸罐的富氢气体去加氢裂化装置脱硫后去PSA 回收氢气。 14、新氢压缩机采用二开一备,每台50%负荷,单机负荷较小,方便制造,且装置有备机。 15、分馏部分采用主汽提塔+分馏塔流程,在汽提塔除去轻烃和硫化氢,降低分馏塔材质要求。 分馏塔设侧线柴油汽提塔及中段回流加热原料油,降低塔顶冷却负荷,提高能量利用率,减小分馏塔塔径。 16、利用常渣产品发生部分低压蒸汽。通过对装置换热流程的优化,把富裕热量集中在温位较高的常渣产品,发生低压蒸汽。 17、考虑到全厂能量综合利用,正常生产时常渣在150℃送至催化裂化装置。在催化裂化装置事故状态下,将常渣冷却至90℃送至工厂罐区。 18、催化剂预硫化按液相预硫化方式设置。 三、工艺流程说明 (一)工艺流程简述 1、反应部分 原料油自进装置后至冷低压分离器(V-1812)前的流程分为两个系列,以下是一个系列的流程叙述: 原料油在液位和流量的串级控制下进入滤前原料油缓冲罐(V-1801)。原料从V-1801底部出来由原料油增压泵(P1801/S )升压,经中段回流 油/原料油换热器(E-1801AB )、常渣/原料油换热器(E-1802AB 、E-1803AB )分别与中段回流油和常渣换热,然后进入原料油过滤器(S-1801)以除去原料油中大于25μm 的杂质。过滤后的原料油进入滤后原料油缓冲罐(V-1802),原料油从V-1802底部出来后由加氢进料泵(P1802/S )升压,升压后的原料油在流量控制下进入反应系统。 原料油和经热高分气/混合氢换热器(E-1805AB )预热后的混合氢混合,混合进料经反应流出物/反应进料换热器(E-1804)预热后进入反应进 料加热炉(F-1801)加热至反应所需温度进入第一台加氢反应器(R-1801),R-1801的入口温度通过调节F-1801的燃料量和E-1804的副线量来控制,R-1801底部物流依次通过其它三台反应器(R-1802、R-1803、R-1804),各反应器的入口温度通过调节反应器入口管线上注入的冷氢量来控制。从R-1804出来的反应产物经过E-1804换热后进入热高压分离器(V-1803)进行气液分离, V-1803底部出来的热高分液分别在液位控制下减压后,进入热低压分离器(V-1804)进行气液分离,V-1803顶部出来的热高分气分别经热高分气/混合氢换热器、热高分气蒸汽发生器(E-1806)换热后进入热高分气空冷器(E-1807),冷却到52℃进入冷高压分离器(V-1806)进行气、油、水三相分离。 为了防止铵盐在低温位析出堵塞管路,在热高分气空冷器前注入经注水泵(P-1803/S )升压后的脱硫净化水等以溶解铵盐。 从V-1806顶部出来的冷高分气体(循环氢)进入高压离心分离器(V-1807)除去携带的液体烃类,减少循环氢脱硫塔(C-1801)的起泡倾向。 自V-1807顶部出来的气体进入C-1801底部,与贫胺液在塔内逆向接触,脱除H 2S ,脱硫溶剂采用甲基二乙醇胺(MDEA ),贫胺液从贫胺液缓冲罐(V-1809)抽出经贫溶剂泵(P-1804/S )升压后进入C-1801顶部,从塔底部出来的富胺液降压后进入富胺液闪蒸罐(V-1810)脱气。富液脱气后出装置去溶剂再生,气体去硫磺回收。 自C-1801顶不出来的循环氢进入循环氢压缩机入口分液罐(V-1808)除去携带的胺液,V-1808顶部出来的循环氢分成两路,一路去氢提浓 (ME-1801)部分,提浓后的氢气经提浓氢压缩机(K-1804)升压后与新氢压缩机(K-1802A.B.C )出口新氢汇合,释放气去轻烃回收装置;另一路进入循环氢压缩机(K-1801)升压,升压后的循环氢分为三部分,第一部分与新氢压缩机来的新氢混合,混合氢去反应部分;第二部分作为急冷氢去控制反应器入口温度;第三部分至E-1807前作为备用冷氢和K-1801反飞动用。循环氢压缩机选用背压蒸汽透平驱动的离心式压缩机。 从两个反应系列的冷高压分离器底部出来的冷高分液分别在液位控制下减压混合后,进入冷低压分离器(V-1812)进行气液分离,冷低分液体 在液位控制下从罐底排出并进入热低分气/冷低分液换热器(E-1809)、柴油/冷低分油换热器(E-1811)、常渣/冷低分油换热器(E-1812)换热后进入汽提塔(C-1803)。V-1812顶部出来的冷低分气去轻烃回收装置脱硫。 冷高压分离器底部的含H 2S 、NH 3的酸性水进入酸性水脱气罐(V-1823)集中脱气后送出装置。 两个反应系列的热低分油在液位控制下从V-1803底部排出去分馏部分。热低分气体经E-1809换热后进入热低分气空冷器(E-1810)冷却到54℃, 然后进入冷低压闪蒸罐(V-1811)进行气液分离,为了防止在低温位的地方有铵盐析出堵塞管路,在E-1810前注水以溶解铵盐。V-1811顶部出来的富氢气体直接送至加氢裂化装置进行脱硫,然后去PSA 装置回收氢气;从下部出来的冷低压闪蒸液进入到冷低压分离器。 新氢从全厂氢网送入,进入新氢压缩机经三段压缩升压后分两路分别与两个系列循环氢压缩机出口的循环氢混合,混合氢气分别返回到各自的 反应部分。新氢压缩机设三台,二开一备,每一台均为三级压缩,每台的一级入口设入口分液罐,级间设冷却器和分液罐。

渣油加氢技术应用现状与发展

渣油加氢技术应用现状与发展 摘要:综述了国内外首套不同类型渣油加氢技术的特点及应用现状,介绍了待工程化的渣油加氢技术研发现状及工业示范试验进展。指出我国渣油加氢技术开发要从反应器类型、大型 化、一体化组合技术研究方向发展。 关键词:渣油加氢转化率现状分析 1 前言 渣油加氢技术包含固定床渣油加氢处理、切换床(活动床)渣油加氢处理、移动床渣油加氢处理、沸腾床渣油加氢处理、沸腾床渣油加氢裂化、悬浮床渣油加氢裂化、渣油加氢一体化技术及相应的组合工艺技术。随着原油的重质化及劣质化、分子炼油技术的发展、环境保护要求的日益严格、市场对轻质油品需求、石油产品清洁化和石化企业面临的激烈竞争,各种渣油加氢技术将快速发展。 2 国内外已工程化渣油加氢技术应用现状 我国渣油加氢工程化技术起步较晚。1999年12月我国开发的首套2.0 Mt/a固定床渣油加氢技术实现工程化;2000年1月世界首套上流式渣油加氢反应器在我国某企业1.5 Mt/a 渣油加氢装置改造中实现工程化;2004年8月我国开发的50 kt/a悬浮床渣油加氢技术进行了工业示范;2014年2月我国开发的50 kt/a沸腾床渣油加氢工业示范装置建成中交;2014年45 kt/a油煤共炼的重油加氢装置建成;目前引进的一套2.5 Mt/a沸腾床渣油加氢装置正在建设中。2012~2014年10月投产的渣油加氢装置处理能力达到19.3 Mt/a,正在规划、设计和建设的渣油加氢处理能力超过30 Mt/a。 RIPP开发的固定床渣油加氢处理-重油催化裂化双向组合RICP技术于2006年工程化应用,将RFCC装置自身回炼的重循环油(HCO)改为输送到渣油加氢装置作为渣油加氢进料稀释油,和渣油一起加氢处理后再一同回到RFCC装置进行转化,同时有利于渣油加氢和催化裂化装置。 国外渣油加氢工程化技术起步较早。1963年首套沸腾床渣油加氢技术实现工程化;1967年着套固定床渣油加氢技术实现工程化;1977年首套可自动切换积垢催化剂床层的固定床渣油加氢技术实现工程化;1989年可更换催化剂的料斗式移动床+固定床渣油加氢技术实现工程化;1992年催化剂在线加入和排出的移动床+固定床渣油加氢技术实现工程化;1993年切换反应器的移动床+固定床渣油加氢技术实现工程化;2000年上流式反应器+固定床渣油加氢技术实现工程化。各种技术工业应用后都经过了不断的技术改进及完善,见下表1。 表1 首套渣油加氢技术应用特点及改进

浅谈石油加氢精制催化剂用高纯三氧化钼的制备原理及生产工艺

浅谈石油加氢精制催化剂用高纯三氧化钼 的制备原理及生产工艺 马孝飞技术中心 摘要:对催化剂用高纯三氧化钼的制备原理以及生产工艺做了简单的分析,提出了生产过程中需要解决和避免的问题。 关键词:热解、晶型、温度、通风、溶解 Abstract :Of high purity molybdenum trioxide catalyst preparation principle and the production process to do a simple analysis, the production process need to address and avoid problems. Key words :pyrolysis, crystal, temperature, exhaust ,dissolved, 一、前言 金属钼是一种不可再生的矿产资源,我国钼资源储量居世界第二。钼具有优异的性能,可应用于化工、钢铁、生物、电子、医药和农业等领域。随着工业化水平的发展,钼的应用领域不断扩大。其中钼系催化剂已在石油、医药等工业领域广泛应用。 钼系列催化剂的特点是:具有不易中毒,使用寿命长;在催化反应过程中具有很高的活性、好的选择性和机械强度;不仅可处理一般原油,而且对品质低劣的重质油也很有效。因此,石油化工生产离不开催化剂,催化剂是炼油和石油化工技术的核心,在催化剂领域含钼催化剂占据着十分重要的地位,特别是石油加氢精制、加氢脱硫催化剂,需要在特定浸渍体系、浸渍条件下中具有高溶性的高纯三氧化钼(MoO3),其在催化剂中所占比例可达20%以上,因此三氧化钼

(MoO3)其及其化合物是石油化工和化学工业中一类非常重要且用量较大的的原料,发挥着愈来愈重要的作用。 二、生产原理 高纯三氧化钼可以分为两种,一种为催化剂用高纯三氧化钼,颜色为蓝灰色,另外一种为深加工用高纯三氧化钼,颜色为淡黄色。制备方法主要体现在热分解温度的不同。 高纯三氧化钼可以利用热分解钼酸铵来制取,钼酸铵在空气中加热焙解,使钼酸铵失去结晶水和氨转变为三氧化钼。 反应式为:MS A 加热MoO3 + NH3↑+ H2O↑ 由于钼酸铵转变为三氧化钼是热解过程,在不同的温度段存在着不同的相变过程。

相关文档
最新文档