高中数学人教A版选修2-1课时作业:1.1.2 四种命题

合集下载

人教A版高中数学选修2-1课件:1.1.2四种命题

人教A版高中数学选修2-1课件:1.1.2四种命题
逆命题: 若一个数的平方是正数,则它是负数; 否命题:
若一个数不是负数,则它的平方不是正数;
•逆否命题:
若一个数的平方不是正数,则它不是负数.
第十四页,编辑于星期日:六点 十四分。
(2)正方形的四条边相等.
• 原命题可以写成:若一个四边形是正方形,
则它的四条边相等.
逆命题:
若一个四边形的四条边相等,则它是正方形;
结论:两直线平行.
它的否命题: 同位角不相等,两直线不平行.
第七页,编辑于星期日:六点 十四分。
探究
1.请举出一些互否命题的例子,并判断原 命题与否命题的真假.
2.如果原命题是真命题,那么它的否命题 一定是真命题吗?
第八页,编辑于星期日:六点 十四分。
定义
如果一个命题的条件和结论恰好是另 一个命题的结论的否定和条件的否定,那 么把这样的两个命题叫互为逆否命题.如果
第十六页,编辑于星期日:六点 十四分。
小结
• 若p为原命题的条件,q为原命题的结论,则 原命题:若p,则q 逆命题:若q,则p 否命题:若p,则q 逆否命题:若q,则p
第十七页,编辑于星期日:六点 十四分。
课后作业
课本:P8 习题1.1A组 2
第十八页,编辑于星期日:六点 十四分。
1.1.2 四种命题
第一页,编辑于星期日:六点 十四分。
思考
下列四个命题中,命题(1)与命题(2)(3)(4) 的条件和结论之间分别有什么关系? (1)若f(x)是正弦函数,则f(x)是周期函数; (2)若f(x)是周期函数,则f(x)是正弦函数; (3)若f(x)不是正弦函数,则f(x)不是周期函 数; (4)若f(x)不是周期函数,则f(x)不是正弦函数.
探究

【金版优课】高三数学人教A版选修2-1课时作业:1.1.2 四种命题 Word版含解析

【金版优课】高三数学人教A版选修2-1课时作业:1.1.2 四种命题 Word版含解析

第一章 1.1 课时作业2一、选择题1.[2013·江西九江一模]命题“若x2>y2,则x>y”的逆否命题是( )A. “若x<y,则x2<y2”B. “若x>y,则x2>y2”C. “若x≤y,则x2≤y2”D. “若x≥y,则x2≥y2”解析:根据原命题和逆否命题的条件和结论的关系得命题“若x2>y2,则x>y”的逆否命题是“若x≤y,则x2≤y2”.答案:C 2.命题“若函数f(x)=log a x(a>0,a≠1)在其定义域内是减函数,则log a2<0”的逆否命题是( )A.若log a2≥0,则函数f(x)=log a x(a>0,a≠1)在其定义域内不是减函数B.若log a2<0,则函数f(x)=log a x(a>0,a≠1)在其定义域内不是减函数C.若log a2≥0,则函数f(x)=log a x(a>0,a≠1)在其定义域内是减函数D.若log a2<0,则函数f(x)=log a x(a>0,a≠1)在其定义域内是减函数解析:由互为逆否命题的关系可知,原命题的逆否命题为:若log a2≥0,则函数f(x)=log a x(a>0,a≠1)在其定义域内不是减函数.答案:A 3.命题“若f(x)是奇函数,则f(-x)是奇函数”的否命题是( )A.若f(x)是偶函数,则f(-x)是偶函数B.若f(x)不是奇函数,则f(-x)不是奇函数C.若f(-x)是奇函数,则f(x)是奇函数D.若f(-x)不是奇函数,则f(x)不是奇函数解析:命题“若p,则q”的否命题为“若綈p,则綈q”,而“是”的否定是“不是”,故选B.答案:B 4.命题“当AB=AC时,△ABC为等腰三角形”与它的逆命题、否命题、逆否命题中,真命题的个数是( )A.4 B.3C.2 D.0解析:原命题和它的逆否命题为真命题.答案:C 二、填空题5.命题“若x>y,则x3>y3-1”的否命题是________.答案:若x≤y,则x3≤y3-1,将条件、结论分别否定即可.6.[2014·江西省临川一中月考]命题“若实数a满足a≤2,则a2<4”的否命题是________命题.(填“真”或“假”)解析:本题考查否命题及命题真假性的判断.原命题的否命题是“若实数a满足a>2,则a2≥4”,这是一个真命题.答案:真7.已知命题“若m-1<x<m+1,则1<x<2”的逆命题为真命题,则m的取值范围是________.解析:由已知得,若1<x<2成立,则m-1<x<m+1也成立,∴Error!∴1≤m≤2.答案:[1,2]三、解答题8.把下列命题写成“若p,则q”的形式,并写出它们的逆命题、否命题与逆否命题.(1)正数的平方根不等于0;(2)当x=2时,x2+x-6=0;(3)对顶角相等.解:(1)原命题:“若a是正数,则a的平方根不等于0”.逆命题:“若a的平方根不等于0,则a是正数”.否命题:“若a不是正数,则a的平方根等于0”.逆否命题:“若a的平方根等于0,则a不是正数”.(2)原命题:“若x=2,则x2+x-6=0”.逆命题:“若x2+x-6=0,则x=2”.否命题:“若x≠2,则x2+x-6≠0”.逆否命题:“若x2+x-6≠0,则x≠2”.(3)原命题:“若两个角是对顶角,则它们相等”.逆命题:“若两个角相等,则它们是对顶角”.否命题:“若两个角不是对顶角,则它们不相等”.逆否命题:“若两个角不相等,则它们不是对顶角”.9.写出下列命题的逆命题、否命题和逆否命题,并判断命题的真假.(1)垂直于同一个平面的两直线平行.(2)若m·n<0,则方程mx2-x+n=0有实根.(3)若ab=0,则a=0或b=0.解:(1)逆命题:如果两条直线平行,那么这两条直线垂直于同一个平面;假命题.否命题:如果两条直线不垂直于同一平面,那么这两条直线不平行;假命题.逆否命题:如果两条直线不平行,那么这两条直线不垂直于同一平面;真命题.(2)逆命题:若方程mx2-x+n=0有实数根,则m·n<0;假命题.否命题:若m·n≥0,则方程mx2-x+n=0没有实数根;假命题.逆否命题:若方程mx2-x+n=0没有实数根,则m·n≥0;真命题.(3)逆命题:若a=0或b=0,则ab=0;真命题.否命题:若ab≠0,则a≠0且b≠0;真命题.逆否命题:若a≠0且b≠0,则ab≠0;真命题.。

高二数学上:选修2-1答案

高二数学上:选修2-1答案

高二数学上:选修2-1答案答案:选修2-1 §1.1.1 命题 §1.1.2 四种命题1.B2.B3.B4.B5.略6.若 $a^2>9$,则 $a>3$。

假。

7.若 $AB \neq B$,则 $AB \neq A$,真;8.3;9.原命题是真命题,则它的逆否命题是真命题。

10.略。

11.原命题真;逆命题:“已知 $\alpha,\beta \in \{x|x\neqk\pi+\pi,k\in Z\}$,若 $\tan\alpha=\tan\beta$,则 $\alpha=\beta$”假;否命题:“已知 $\alpha,\beta \in \{x|x\neq k\pi+\pi,k\in Z\}$,若 $\alpha\neq\beta$,则 $\tan\alpha\neq\tan\beta$”假;逆否命题:“已知 $\alpha,\beta \in \{x|x\neq k\pi+\pi,k\in Z\}$,若$\tan\alpha\neq\tan\beta$,则 $\alpha\neq\beta$”真。

改写:选修2-1 §1.1.1 命题 §1.1.2 四种命题1.B2.B3.B4.B5.略6.若 $a^2>9$,则 $a>3$。

这是错误的。

7.若 $AB \neq B$,则 $AB \neq A$,这是正确的;8.3;9.原命题是真命题,则它的逆否命题也是真命题。

10.略。

11.原命题是真命题;逆命题:“已知 $\alpha,\beta \in\{x|x\neq k\pi+\pi,k\in Z\}$,若 $\tan\alpha=\tan\beta$,则$\alpha=\beta$”是错误的;否命题:“已知 $\alpha,\beta \in\{x|x\neq k\pi+\pi,k\in Z\}$,若 $\alpha\neq\beta$,则$\tan\alpha\neq\tan\beta$”是错误的;逆否命题:“已知$\alpha,\beta \in \{x|x\neq k\pi+\pi,k\in Z\}$,若$\tan\alpha\neq\tan\beta$,则 $\alpha\neq\beta$”是正确的。

人教A版数学选修2—11.1.1——1.1.2命题及四种命题

人教A版数学选修2—11.1.1——1.1.2命题及四种命题
(7)x+3>0. (1)(3)(7)不是命题,(2)(4)(5)(6)是命题。
“若p则q”情势的命题
命题“若整数a是素数,则a是奇数。”具
有“若p则q”的情势。 p
q
通常,我们把这种情势的命题中的p叫做命题的条 件,q叫做命题的结论。
“若p则q”情势的命题是命题的一种情势而不是 唯一的情势,也可写成“如果p,那么q” “只要p,就有 q”等情势。
┐p
┐q
为书写简便,常把条件p的否定和结论q的否定分别记作
“┐p” “┐q”
互否命题 原命题 (原命题的)否命题
原命题:若p,则q 否命题:若┐p,则┐q
例位如角,不命相题等“,同两位直角线相不等平,行两”直。线平行”的否原命否命题存命的在题题真相与是假关其“是性否同
呢?
视察命题(1)与命题(4)的条件和结论之间 分别有什么关系?
不是(疑问句) 不是(疑问句) 不是(感叹句) 是(否定陈说句) 是(肯定陈说句) 不是(开语句)
例1 判断下面的语句是否为命题?若是命题, 指出它的真假。
(1) 空集是任何集合的子集. (是,真) (2)若整数a是素数,则a是奇数(. 是,假) (3)指数函数是增函数吗?(不是命题)
(4)若平面上两条直线不相交,
问题1
思考?
下列语句的表述情势有什么特点?你能判断
它们的真假吗?
• (1) 若直线a//b,则直线a和直线b无公共点;
• (2) 2+4=7
语句都是陈说句,
• (3)垂直于同一条直线的两个平面平行;
• (4)若x2=1,则x=1; 并且可以判断真假。
• (5)两个全等三角形的面积相等;
• (6)3能被2整除.

高中数学 1.1.2四种命题课时作业 新人教A版选修21 (1)

高中数学 1.1.2四种命题课时作业 新人教A版选修21 (1)

四种命题(30分钟50分)一、选择题(每小题3分,共18分)1.(2014·长春高二检测)命题“若a∉A,则b∈B”的否命题是( )A.若a∉A,则b∉BB.若a∈A,则b∉BC.若b∈B,则a∉AD.若b∉B,则a∉A【解析】选B.命题“若p,则q”的否命题是“若p,则q”,“∈”与“∉”互为否定形式.2.下列命题的否命题为“邻补角互补”的是( )A.邻补角不互补B.互补的两个角是邻补角C.不是邻补角的两个角不互补D.不互补的两个角不是邻补角【解题指南】解答本题只需求命题“邻补角互补”的否命题,因此把所给命题的条件与结论都否定,即为所求.【解析】选C.“邻补角互补”与“不是邻补角的两个角不互补”互为否命题.【变式训练】“△ABC中,若∠C=90°,则∠B,∠A全是锐角”的否命题为( )A.△ABC中,若∠C≠90°,则∠A,∠B全不是锐角B.△ABC中,若∠C≠90°,则∠A,∠B不全是锐角C.△ABC中,若∠C≠90°,则∠A,∠B中必有一个钝角D.以上均不对【解析】选B.否命题条件与结论分别是原命题的条件与结论的否定,故选B.【误区警示】解答本题易出现选A的错误,导致出现这种错误的原因是混淆了“全是”的否定是“不全是”,而非“全不是”.3.(2014·烟台高二检测)下列命题中为真命题的是( )A.命题“若x>y,则x>|y|”的逆命题B.命题“x>1,则x2>1”的否命题C.命题“若x=1,则x2+x-2=0”的否命题D.命题“若x2>0,则x>1”的逆否命题【解析】选A.对于A:逆命题为若x>|y|,则x>y,真命题.对于B:否命题为若x≤1,则x2≤1,显然此命题为假,比如x=-2命题不成立.对于C:否命题为“若x≠1,则x2+x-2≠0”,此命题是假命题,如x=-2命题不成立.对于D:逆否命题为:若x≤1,则x2≤0,显然此命题是假命题,故选A.4.关于命题“若|a|≠|b|,则a≠b”的叙述正确的是( )A.命题的逆命题为真命题B.命题的否命题为真命题C.命题的逆否命题为真命题D.以上都正确【解析】选C.命题“若|a|≠|b|,则a≠b”的逆命题为“若a≠b,则|a|≠|b|”,是假命题.命题“若|a|≠|b|,则a≠b”的否命题为“若|a|=|b|,则a=b”,是假命题.命题“若|a|≠|b|,则a≠b”的逆否命题为“若a=b,则|a|=|b|”,是真命题.5.命题“若x2+y2=0,则x=y=0”的逆否命题是( )A.若x=y=0,则x2+y2≠0B.若x,y都不为0,则x2+y2≠0C.若x,y中至少有一个不为0,则x2+y2≠0D.若x,y中至少有一个不为0,则x2+y2=0【解析】选C.将“x=y=0”否定得“x,y中至少有一个不为0”,故原命题的逆否命题为“若x,y中至少有一个不为0,则x2+y2≠0”,故选C【误区警示】解答本题易出现选B的错误,导致出现这类错误的原因是对“x,y全为0”的否定搞不清楚所致.事实上,x,y全为0的否定为x,y中至少有一个不为0.6.命题“若α=,则tanα=1”的逆否命题是( )A.若α≠,则tanα≠1B.若α=,则tanα≠1C.若tanα≠1,则α≠D.若tanα≠1,则α=【解题指南】由逆否命题的概念知,否定原命题的条件,“α≠”作结论;否定原命题的结论,“tanα≠1”作条件.【解析】选C.原命题的逆否命题是“若tanα≠1,则α≠”,故选C.二、填空题(每小题4分,共12分)7.(2014·九江高二检测)原命题:“设a,b,c∈R,若a>b,则ac2>bc2”以及它的逆命题,否命题,逆否命题中,真命题的个数是.【解析】逆命题:若ac2>bc2,则a>b,真命题.否命题:若a≤b,则ac2≤bc2,真命题.逆否命题:若ac2≤bc2,则a≤b,假命题.答案:28.(2014·天津高二检测)请写出命题“若a+b=2,则a2+b2≥2”的否命题: .【解析】根据否命题的形式,原命题的否命题为“若a+b≠2,则a2+b2<2”.答案:若a+b≠2,则a2+b2<29.“不是等差数列的数列不是常数列”的逆否命题是命题(填真、假).【解析】命题“不是等差数列的数列不是常数列”的逆否命题为“常数列是等差数列”,是真命题.答案:真三、解答题(每小题10分,共20分)10.(2014·武汉高二检测)设命题p:若m<0,则关于x的方程x2+x+m=0(m∈R)有实根.(1)写出命题p的逆命题、否命题、逆否命题.(2)判断命题p及其逆命题、否命题、逆否命题的真假.(直接写出结论)【解析】(1)p的逆命题:若关于x的方程x2+x+m=0(m∈R)有实根,则m<0.p的否命题:若m≥0,则关于x的方程x2+x+m=0(m∈R)无实根.p的逆否命题:若关于x的方程x2+x+m=0(m∈R)无实根,则m≥0.(2)命题p及其逆否命题是真命题,命题p的逆命题和否命题是假命题.11.判断下列命题的真假:(1)“若x∈A∪B,则x∈B”的逆命题与逆否命题.(2)“若自然数能被6整除,则自然数能被2整除”的逆命题.【解析】(1)逆命题:若x∈B,则x∈A∪B.根据集合“并”的定义,逆命题为真.逆否命题:若x∉B,则x∉A∪B.逆否命题为假.如2∉{1,5}=B,A={2,3},但2∈A∪B.(2)逆命题:若自然数能被2整除,则自然数能被6整除.逆命题为假.反例:2,4,14,22等都不能被6整除.(30分钟50分)一、选择题(每小题4分,共16分)1.(2014·重庆高二检测)已知直线l1:x+ay+1=0,直线l2:ax+y+2=0,则命题“若a=1或a=-1,则直线l1与l2平行”的否命题为( )A.若a≠1且a≠-1,则直线l1与l2不平行B.若a≠1或a≠-1,则直线l1与l2不平行C.若a=1或a=-1,则直线l1与l2不平行D.若a≠1或a≠-1,则直线l1与l2平行【解析】选A.命题“若A,则B”的否命题为“若A,则B”,显然“a=1或a=-1”的否定为“a≠1且a≠-1”,“直线l1与l2平行”的否定为“直线l1与l2不平行”,所以选A.【举一反三】若本题中条件不变,则原命题的逆命题是.【解析】将原命题中,条件与结论交换即可.即逆命题为“若直线l1与l2平行,则a=1或a=-1”.答案:若直线l1与l2平行,则a=1或a=-12.下列四个命题:①“若x+y=0,则x,y互为相反数”的否命题;②“若a>b,则a2>b2”的逆否命题;③“若x≤-3,则x2-x-6>0”的否命题;④“同位角相等”的逆命题.其中真命题的个数是( )A.0B.1C.2D.3【解析】选B.①否命题:若x+y≠0,则x,y不互为相反数,真命题.②逆否命题:若a2≤b2,则a≤b,假命题.③否命题:若x>-3,则x2-x-6≤0,假命题.④逆命题:相等的两个角是同位角,假命题.3.给出命题:若函数y=f(x)是幂函数,则函数y=f(x)的图象不过第四象限.在它的逆命题、否命题、逆否命题三个命题中,真命题的个数是( )A.3B.2C.1D.0【解析】选C.逆命题与否命题错误,逆否命题正确,故选C.4.命题“若-1<x<1,则x2<1”的逆否命题是( )A.若x≥1或x≤-1,则x2≥1B.若x2<1,则-1<x<1C.若x2>1,则x>1或x<-1D.若x2≥1,则x≥1或x≤-1【解析】选D.若原命题是“若p,则q”,则逆否命题为“若q,则p”,故此命题的逆否命题是“若x2≥1,则x≥1或x≤-1”.二、填空题(每小题5分,共10分)5.(2014·广州高二检测)下列四个命题中:①“等边三角形的三个内角均为60°”的逆命题;②“若k>0,则方程x2+2x-k=0有实根”的逆否命题;③“全等三角形的面积相等”的否命题;④“若ab≠0,则a≠0”的否命题.其中真命题的序号是.【解析】①逆命题为“若一个三角形的三内角均为60°,则这个三角形为等边三角形”,是真命题;②Δ=4+4k,当k>0时,Δ>0,所以原命题为真命题,其逆否命题是真命题;③不全等的两个三角形面积也有可能相等,所以③是假命题;④否命题为“若ab=0,则a=0”,是假命题.综上可知,真命题是①②.答案:①②【变式训练】有下列四个命题,其中真命题是__________.①“若xy=1,则x,y互为倒数”的逆命题;②“相似三角形的周长相等”的否命题;③“若b≤0,则方程x2-2bx+b2+b=0有实根”的逆否命题;④“若A∪B=B,则A⊇B”的逆否命题.【解析】①逆命题是:“若x,y互为倒数,则xy=1”,是真命题;②逆命题是:“若两三角形的周长相等,则它们相似”,是假命题,所以原命题的否命题也是假命题;③由b≤0得Δ=4b2-4(b2+b)≥0,所以③是真命题,其逆否命题也是真命题;④若A∪B=B,则A⊆B,所以原命题是假命题,其逆否命题也是假命题,所以④是假命题.综上可知①③为真命题.答案:①③6.(2014·成都高二检测)给出下列三个命题:①若x2-3x+2=0,则x=1或x=2;②若-2≤x<3,则(x+2)(x-3)≤0;③若x,y∈N+,x+y是奇数,则x,y中一个是奇数,一个是偶数,其中逆命题为真命题是.【解析】①③逆命题为真,②逆命题为假.答案:①③三、解答题(每小题12分,共24分)7.写出命题:若x+y=5,则x=3且y=2的逆命题、否命题与逆否命题,并判断它们的真假.【解析】逆命题:若x=3且y=2,则x+y=5,是真命题.否命题:若x+y≠5,则x≠3或y≠2,是真命题.逆否命题:若x≠3或y≠2,则x+y≠5,是假命题.【变式训练】写出下列命题的逆命题、否命题、逆否命题,并判断其真假.(1)实数的平方是非负数.(2)等底等高的两个三角形是全等三角形.(3)弦的垂直平分线经过圆心,并平分弦所对的弧.【解析】(1)逆命题:若一个数的平方是非负数,则这个数是实数,真命题.否命题:若一个数不是实数,则它的平方不是非负数,真命题.逆否命题:若一个数的平方不是非负数,则这个数不是实数,真命题.(2)逆命题:若两个三角形全等,则这两个三角形等底等高,真命题.否命题:若两个三角形不等底或不等高,则这两个三角形不全等,真命题.逆否命题:若两个三角形不全等,则这两个三角形不等底或不等高,假命题.(3)逆命题:若一条直线经过圆心,且平分弦所对的弧,则这条直线是弦的垂直平分线,真命题.否命题:若一条直线不是弦的垂直平分线,则这条直线不过圆心或不平分弦所对的弧,真命题.逆否命题:若一条直线不经过圆心或不平分弦所对的弧,则这条直线不是弦的垂直平分线.真命题.8.(2014·苏州高二检测)在公比为q的等比数列{a n}中,前n项的和为S n,若S m,S m+2,S m+1成等差数列,则a m,a m+2,a m+1成等差数列.(1)写出这个命题的逆命题.(2)判断公比q为何值时,逆命题为真?公比q为何值时,逆命题为假?【解题指南】解答本题首先需根据逆命题的概念正确写出逆命题,然后根据等差数列的性质判断何时为真命题,何时为假命题.【解析】(1)逆命题:在公比为q的等比数列{a n}中,前n项和为S n,若a m,a m+2,a m+1成等差数列,则S m,S m+2,S m+1成等差数列.(2)由{a n}为等比数列,所以a n≠0,q≠0.由a m,a m+2,a m+1成等差数列,得2a m+2=a m+a m+1,所以2a m·q2=a m+a m·q,所以2q2-q-1=0.解得q=-或q=1.当q=1时,a n=a1(n=1,2,…),所以S m+2=(m+2)a1,S m=ma1,S m+1=(m+1)a1, 因为2(m+2)a1≠ma1+(m+1)a1,即2S m+2≠S m+S m+1,所以S m,S m+2,S m+1不成等差数列.即q=1时,原命题的逆命题为假命题. 当q=-时,2S m+2=2·,S m+1=,S m=,所以2S m+2=S m+1+S m,所以S m,S m+2,S m+1成等差数列.即q=-时,原命题的逆命题为真命题.。

高中数学选修2-1课时作业11:1.1.2 四种命题

高中数学选修2-1课时作业11:1.1.2    四种命题

1.1.2 四种命题1..命题“a、b都是偶数,则a+b是偶数”的逆否命题是2..与命题“能被6整除的整数,一定能被3整除”等价的命题是3.已知命题甲:p⇒q,命题乙:q⇒p,命题丙:¬p⇒¬q,命题丁:¬q⇒¬p.(1)若甲真则乙为真;(2)若乙真则丙为真;(3)若丙真则丁为真;(4)若丁真则甲为真.说法正确的是4.命题“当AB=AC时,△ABC为等腰三角形”与它的逆命题、否命题、逆否命题中真命题的个数是5.命题“若x≤-3,则x2+x-6>0”的否命题是____________________.6.原命题:在空间中,若四点不共面,则这四个点中任何三点都不共线.其逆命题为________(真、假).7.命题“若A∪B=B,则A⊆B”的否命题是________,逆否命题是________.8.设原命题为“已知a、b是实数,若a+b是无理数,则a、b都是无理数”.写出它的逆命题、否命题和逆否命题,并分别说明它们的真假.9.证明:对任意非正数c,若有a≤b+c成立,则a≤b.10..命题“如果m>0,则x2+x-m=0有实根”的逆否命题是真命题吗?证明你的结论.[答案]1.a +b 不是偶数,则a 、b 不都是偶数2..不能被3整除的整数,一定不能被6整除3.(2)(4)4. 25. 若x >-3,则x 2+x -6≤06. 假7. 若A ∪B ≠B ,则A B 若A B ,则A ∪B ≠B8.[答案] 逆命题:已知a 、b 为实数,若a 、b 都是无理数,则a +b 是无理数. 如a =2,b =-2,a +b =0为有理数,故为假命题.否命题:已知a 、b 是实数,若a +b 不是无理数,则a 、b 不都是无理数.由逆命题为假知,否命题为假.逆否命题:已知a 、b 是实数,若a 、b 不都是无理数,则a +b 不是无理数. 如a =2,b =2,则a +b =2+2是无理数,故逆否命题为假9.[答案] 若a >b ,由c ≤0知b ≥b +c ,∴a >b +c .∴原命题的逆否命题为真命题,从而原命题为真命题,即对任意c ≤0,若有a ≤b +c 成立,则a ≤b .10.[答案] 解法1:是真命题.∵m >0,∴Δ=1+4m >0.∴方程x 2+x -m =0有实根,故原命题“如果m >0,则x 2+x -m =0有实根”是真命题. 又因原命题与它的逆否命题等价.∴命题“如果m >0,则x 2+x -m =0有实根”的逆否命题也是真命题.解法2:是真命题.原命题“如果m >0,则x 2+x -m =0有实根”的逆否命题为“如果x 2+x -m =0无实根,则m ≤0”.∵x 2+x -m =0无实根,∴Δ=1+4m <0,m <-14≤0,故原命题的逆否命题为真命题.。

【人教A版】高中选修2-1数学:1.1.2-四种命题-教学课件

在两个命题中,如果第一个命题的条件是第二个命题的结论, 且第一个命题的结论是第二个命题的条件,那么这两个命题叫 做互为逆命题.
思考2
除了命题与逆命题之外,是否还有其它形式的命题? 答案 有.
梳理
名称
阐释
对于两个命题,如果一个命题的条件和结论分别是另一个命题 互逆 的 结论和条件,那么我们把这样的两个命题叫做互逆命题.其中
4.反证法与逆否证法的区别 (1)目的不同:反证法否定结论的目的是推出矛盾,而逆否证法否定结论 的目的是推出“綈p”(即否定条件); (2)本质不同:逆否证法实质是证明一个新命题(逆否命题)成立,而反证 法是把否定的结论作为新的条件连同原有的条件进行逻辑推理,直至推 出矛盾,பைடு நூலகம்而肯定原命题的结论.
反思与感悟
若原命题为真命题,则它的逆命题、否命题可能为真命题,也可能为假 命题. 原命题与逆否命题互为逆否命题,否命题与逆命题互为逆否命题.互为逆 否命题的两个命题的真假性相同. 在原命题及其逆命题、否命题、逆否命题中,真命题的个数要么是0, 要么是2,要么是4.
跟踪训练2 下列命题中为真命题的是 答案 解析
反思与感悟
由原命题写出其他三种命题的关键是找到原命题的条件和结论,根据其 他三种命题的定义,确定所写命题的条件和结论.
跟踪训练1 写出下列命题的逆命题、否命题、逆否命题. (1)实数的平方是非负数; 解答
逆命题:若一个数的平方是非负数,则这个数是实数. 否命题:若一个数不是实数,则它的平方不是非负数. 逆否命题:若一个数的平方不是非负数,则这个数不是实数.
类型三 反证法的应用
证明
反思与感悟
(1)求解此类含有“至少”“至多”等命题,常利用反证法来证明.用反 证法证明命题的一般步骤:①假设命题的结论不成立,即假设结论的反 面成立;②从这个假设出发,经过推理论证,得出矛盾;③由矛盾得出 假设不正确,从而肯定命题的结论正确. (2)常见的一些词语和它们的否定词语对照如下:

人教版数学选修2—1作业本答案与提示

人教版数学选修2—1作业本答案与提示第一章常用逻辑用语1.1.命题及其关系1.1.1命题1.1.2 四种命题1.C 2.C 3.D 4.若A不是B的子集,则A∪B≠B5.①6.逆7.(1)若一个数为一个实数的平方,则这个数为非负数.真命题(2)若两个三角形等底等高,则这两个三角形全等.假命题8.原命题:在平面中,若两条直线平行,则这两条直线不相交.逆命题:在平面中,若两条直线不相交,则这两条直线平行.否命题:在平面中,若两条直线不平行,则这两条直线相交.逆否命题:在平面中?若两条直线相交,则这两条直线不平行。

以上均为真命题9.若ab≠0,则a,b都不为零.真命题10.逆否命题:已知函数f(x)在R上为增函数,a,b∈R,若f(a)+f(b)<f(-a)+f(-b),则a+b <0,真命题.证明略11.甲1.1.3 四种命题间的相互关系1.C 2.D 3.B 4.0个、2个或4个5.原命题和逆否命题6.若a+b是奇数,则a,b至少有一个是偶数;真7.逆命题:若a^2=b^2,则a=b.假命题.否命题:若a≠b,则a^2≠b^2.假命题.逆否命题:若a^2≠b^2,则a≠b.真命题8.用原命题与逆否命题的等价性来证.假设a,b,c都是奇数,则a^2,b^2,c2也都是奇数,又a^2+b^2=c^2,则两个奇数之和为奇数,这显然不可能,所以假设不成立,即a,b,c不可能都是奇数9.否命题:若a^2+b^2≠0,则a≠0或b≠0.真命题.逆否命题:若a≠0,或b≠0,则a2+b2≠0.真命题10.真┌(4a)2一4(一4a+3)<0,11.三个方程都没有实数根的情况为┤(a-1)2一4a2<0,=>-3/2<a<-l└4a2+8a<0所以实数a的取值范围a≥一l,或a≤-3/21.2 充分条件与必要条件1.2.1 充分条件与必要条件1.A 2.B 3.A 4.(1) ≠> (2) ≠> (3) ≠> (4)≠>5.充分不必要6.必要不充分7.“c≤d”是“e≤f”的充分条件8.充分条件,理由略9.一元二次方程ax^2+2x+l=0 (a≠0)有一个正根和一个负根的充要条件为a<0 10.m≥911.是1.2.2 充要条件1.C 2.B 3.D 4.假;真5.C和D 6.λ+μ=17.略8.a=-39.a≤l10.略11.q=-1,证明略1.3 简单的逻辑联结词1.3.1 且(and)1.3.2 或(or)1.3.3 非(not)1.A 2.C 3.C 4.真5.①③6.必要不充分7.(1)p:2<3或q:2=3;真(2)p:1是质数或q:1是合数;假(3)非p,p:0∈φ;真(4)p:菱形对角线互相垂直且q:菱形对角线互相平分;真8,(1)p∧q:5既是奇数又是偶数,假;p∨q:5是奇数或偶数,真;┑p:5不是偶数,真(2)p∧q:4>6且4+6≠10,假;p∨q:4>6或4+6≠10,假;┑p:4≤6,真9.甲的否定形式:x∈A,且x∈B;乙的否命题:若(x-1)(x-2)=0,则x=1,或x=2 10.m<-l 11.(5/2,+∞)1.4 全称量词与存在量词1.4.1 全称量词1.4.2 存在量词1.D 2.C 3.(1)真(2)真4,③5.所有的直角三角形的三边都满足斜边的平方等于两直角边的平方和6.若一个四边形为正方形,则这个四边形是矩形;全称;真7.(1)x,x^2≤0(2)对x,若6|x则3|x (3)正方形都是平行四边形8.(1)全称;假(2)特称;假(3)全称;真(4)全称;假9.p∧q:有些实数的绝对值是正数且所有的质数都是奇数,假;p∨q:有些实数的绝对值是正数或所有的质数都是奇数,真;┑p:所有实数的绝对值都不是正数,假10.(1)存在,只需m>一4即可(2)(4,+∞)11.a≥一21.4.3 含有一个量词的命题的否定1.C 2.A 3.C 4.存在一个正方形不是菱形5.假6.所有的三角形内角和都不大于180°7.(1)全称;┑p假(2)全称;┑p假(3)全称;┑p真8.(1)┑p:存在平方和为0的两个实数,它们不都为0(至少一个不为0);假⑵┑p: 所有的质数都是偶数;假(3)┑p:存在乘积为0的三个实数都不为0;假9.(1)假(2)真(3)假(4)真10.a≥311.(一√2,2)单元练习1.B 2.B 3.B 4.B 5.B 6.D 7.B 8.D 9.C 10.D11.5既是17的约数,又是15的约数:假12.[1,2)13.在△ABC中,若∠C≠90°,则∠A,∠B不都是锐角14.充要;充要;必要15.b≥0 16.既不充分也不必要17.①③④18.a≥319.逆命题:两个三角形相似,则这两个三角形全等;假;否命题:两个三角形不全等,则这两个三角形不相似;假;逆否命题:两个三角形不相似,则这两个三角形不全等;真;命题的否定:存在两个全等三角形不相似;假20.充分不必要条件21.令f(x) = x^2+(2k一1)x+k^2,方程有两个大于1的实数根┌ △=(2k2-1)-4k2≥0,<=>┤->1,即是k<-2,所以其充要条件为k<-2.└ f (1)>0,22.(-3,2]10.a√3/3。

人教A版高中数学选修2-1课件【2】四种命题


解:(1)逆命题为若 x2-3x+2=0,则 x=2,假命题; 否命题为若 x≠2,则 x2-3x+2≠0,假命题; 逆否命题为若 x2-3x+2≠0,则 x≠2,真命题. (2)逆命题为若 x>0,则 x>8,假命题; 否命题为若 x≤8,则 x≤0,假命题; 逆否命题为若 x≤0,则 x≤8,真命题.
(2)原命题为“若 x=2,则 x2+x-6=0”; 逆命题为“若 x2+x-6=0,则 x=2”; 否命题为“若 x≠2,则 x2+x-6≠0”; 逆否命题为“若 x2+x-6≠0,则 x≠2”.
11.写出下列命题的逆命题、否命题和逆否命题,并判断真 假: (1)当 x=2 时,x2-3x+2=0; (2)若 x>8,则 x>0.
A.若 a≠b≠0(a,b∈R),则 a2+b2≠0 B.若 a=b≠0(a,b∈R),则 a2+b2≠0 C.若 a≠0 且 b≠0(a,b∈R),则 a2+b2≠0 D.若 a≠0 或 b≠0(a,b∈R),则 a2+b2≠0
解析:命题中的条件及结论的否定分别是 a2+b2≠0,a≠0 或 b≠0(a,b∈R),所以命题的逆否命题是“若 a≠0 或 b≠0(a, b∈R),则 a2+b2≠0”.
解析: 由互为逆否命题的关系可知,原命题的逆否命题为 “若 loga2≥0, 则函数 f(x)=logax(a>0, a≠1)在其定义域内不是 减函数”.
答案:A
二、填空题:每小题 5 分,共 15 分. 7.(2012· 许昌高二检测)命题“若 a>3,则 a>5”的逆命题 是__________.
若 am,am+2,am+1 成等差数列,则 a1qm 1+a1qm=2a1qm 1,
- +
即 1+q=2q2,也就是 1-q2=q2-q, a11-qm 2 a11-qm a11-q2qm 又 Sm+2-Sm= - = , 1-q 1-q 1-q

2019-2020人教A版数学选修2-1 第1章 1.1.2 四种命题 1.1.3 四种命题间的相互关系

1.1.2四种命题1.1.3四种命题间的相互关系1.四种命题的概念及表示形式(1)四种命题之间的关系(2)四种命题间的真假关系①两个命题互为逆否命题,它们有相同的真假性;②两个命题为互逆命题或互否命题,它们的真假性没有关系.思考:(1)“a=b=c=0”的否定是什么?(2)在原命题,逆命题、否命题和逆否命题四个命题中.真命题的个数会是奇数吗?[提示](1)“a=b=c=0”的否定是“a,b,c至少有一个不等于0”.(2)真命题的个数只能是0,2,4,不会是奇数.1.命题“若一个数是负数,则它的相反数是正数”的逆命题是()A.“若一个数是负数,则它的相反数不是正数”B.“若一个数的相反数是正数,则它是负数”C.“若一个数不是负数,则它的相反数不是正数”D.“若一个数的相反数不是正数,则它不是负数”B[根据逆命题的定义知,选B.]2.命题“若m=10,则m2=100”与其逆命题、否命题、逆否命题这四个命题中,真命题是()A.原命题、否命题B.原命题、逆命题C.原命题、逆否命题D.逆命题、否命题C[原命题正确,则逆否命题正确,逆命题不正确,从而否命题不正确.故选C.]3.命题“若f(x)是奇函数,则f(-x)是奇函数”的否命题是()A.若f(x)是偶函数,则f(-x)是偶函数B.若f(x)不是奇函数,则f(-x)不是奇函数C.若f(-x)是奇函数,则f(x)是奇函数D.若f(-x)不是奇函数,则f(x)不是奇函数B[原命题的条件是f(x)是奇函数,结论是f(-x)是奇函数,同时否定条件和结论即得否命题,即:若f(x)不是奇函数,则f(-x)不是奇函数.] 4.命题“若ab=0,则a=0”与命题“若a=0,则ab=0”是________命题.(填“互逆”“互否”“互为逆否”)互逆[两个命题的条件和结论交换了,满足互逆命题的概念.]否命题和逆否命题.(1)相似三角形对应的角相等;(2)当x>3时,x2-4x+3>0;(3)正方形的对角线互相平分.[解](1)原命题:若两个三角形相似,则这两个三角形的三个角对应相等;逆命题:若两个三角形的三个角对应相等,则这两个三角形相似;否命题:若两个三角形不相似,则这两个三角形的三个角对应不相等;逆否命题:若两个三角形的三个角对应不相等,则这两个三角形不相似.(2)原命题:若x>3,则x2-4x+3>0;逆命题:若x2-4x+3>0,则x>3;否命题:若x≤3,则x2-4x+3≤0;逆否命题:若x2-4x+3≤0,则x≤3.(3)原命题:若一个四边形是正方形,则它的对角线互相平分;逆命题:若一个四边形对角线互相平分,则它是正方形;否命题:若一个四边形不是正方形,则它的对角线不互相平分;逆否命题:若一个四边形对角线不互相平分,则它不是正方形.1.写出一个命题的逆命题,否命题,逆否命题的方法(1)写命题的四种形式时,首先要找出命题的条件和结论,然后写出命题的条件的否定和结论的否定,再根据四种命题的结构写出所求命题.(2)在写命题时,为了使句子更通顺,可以适当地添加一些词语,但不能改变条件和结论.2.写否命题时应注意一些否定词语,列表如下:1.(1)命题“若y=kx,则x与y成正比例关系”的否命题是()A.若y≠kx,则x与y成正比例关系B.若y≠kx,则x与y成反比例关系C.若x与y不成正比例关系,则y≠kxD.若y≠kx,则x与y不成正比例关系D[条件的否定为y≠kx,结论的否定为x与y不成正比例关系,故选D.](2)命题“若ab≠0,则a,b都不为零”的逆否命题是________.若a,b至少有一个为零,则ab=0[“ab≠0”的否定是“ab=0”,“a,b 都不为零”的否定是“a,b中至少有一个为零”,因此逆否命题为“若a,b至少有一个为零,则ab=0”.]它的逆命题、否命题、逆否命题,在这4个命题中,真命题的个数为() A.0个B.1个C.2个D.4个(2)判断命题“若a≥0,则x2+x-a=0有实根”的逆否命题的真假.思路探究:(1)只需判断原命题和逆命题的真假即可.(1)C[当c=0时,ac2>bc2不成立,故原命题是假命题,从而其逆否命题也是假命题;原命题的逆命题为“若ac2>bc2,则a>b”是真命题,从而其否命题也是真命题,故选C.](2)解:法一:原命题的逆否命题:若x2+x-a=0无实根,则a<0.∵x2+x-a=0无实根,∴Δ=1+4a<0,解得a<-14<0,∴原命题的逆否命题为真命题.法二:∵a≥0,∴4a≥0,∴对于方程x2+x-a=0,根的判别式Δ=1+4a>0,∴方程x2+x-a=0有实根,故原命题为真命题.∵原命题与其逆否命题等价,∴原命题的逆否命题为真命题.判断命题真假的方法(1)解决此类问题的关键是牢记四种命题的概念,正确地写出所涉及的命题,判定为真的命题需要简单的证明,判定为假的命题要举出反例加以验证.(2)原命题与它的逆否命题同真同假,原命题的否命题与它的逆命题同真同假,故二者只判断一个即可.2.判断下列四个命题的真假,并说明理由.(1)“若x+y=0,则x,y互为相反数”的否命题;(2)“若x>y,则x2>y2”的逆否命题;(3)“若x≤3,则x2-x-6>0”的否命题;(4)“对顶角相等”的逆命题.[解](1)命题“若x+y=0,则x,y互为相反数”的逆命题为“若x,y互为相反数,则x+y=0”,则逆命题为真命题,因为原命题的逆命题和否命题具有相同的真假性,所以“若x+y=0,则x,y互为相反数”的否命题是真命题.(2)令x=1,y=-2,满足x>y,但x2<y2,所以“若x>y,则x2>y2”是假命题,因为原命题与其逆否命题具有相同的真假性,所以“若x>y,则x2>y2”的逆否命题也是假命题.(3)该命题的否命题为“若x>3,则x2-x-6≤0”,令x=4,满足x>3,但x2-x-6=6>0,不满足x2-x-6≤0,则该否命题是假命题.(4)该命题的逆命题为“相等的角是对顶角”是假命题,如等边三角形的任意两个内角都相等,但它们不是对顶角.1.当一个命题的条件与结论以否定形式出现时,为了研究方便,我们可以研究哪一个命题?[提示]一个命题与其逆否命题等价,我们可研究其逆否命题.2.在证明“若m2+n2=2,则m+n≤2”时,我们也可以证明哪个命题成立.[提示]根据一个命题与其逆否命题等价,我们也可以证明“若m+n>2,则m2+n2≠2”成立.【例3】(1)命题“对任意x∈R,ax2-2ax-3>0不成立”是真命题,则实数a的取值范围是________.(2)证明:已知函数f(x)是(-∞,+∞)上的增函数,a,b∈R,若f(a)+f(b)≥f(-a)+f(-b),则a+b≥0.思路探究:(1)根据其逆否命题求解.(2)证明其逆否命题成立.(1)[-3,0][∵命题“对任意x∈R,ax2-2ax-3>0不成立”等价于“对任意x ∈R ,ax 2-2ax -3≤0恒成立”,若a =0,则-3≤0恒成立,∴a =0符合题意. 若a ≠0,由题意知⎩⎨⎧a <0,Δ=4a 2+12a ≤0,即⎩⎨⎧a <0,-3≤a ≤0, ∴-3≤a <0,综上知,a 的取值范围是[-3,0].](2)证明:原命题的逆否命题为“已知函数f (x )是(-∞,+∞)上的增函数,a ,b ∈R ,若a +b <0,则f (a )+f (b )<f (-a )+f (-b )”.若a +b <0,则a <-b ,b <-a .又∵f (x )在(-∞,+∞)上是增函数, ∴f (a )<f (-b ),f (b )<f (-a ), ∴f (a )+f (b )<f (-a )+f (-b ). 即原命题的逆否命题为真命题. ∴原命题为真命题.1.若一个命题的条件或结论含有否定词时,直接判断命题的真假较为困难,这时可以转化为判断它的逆否命题.2.当证明一个命题有困难时,可尝试证明其逆否命题成立.3.证明:若a 2-4b 2-2a +1≠0,则a ≠2b +1.[证明] “若a 2-4b 2-2a +1≠0,则a ≠2b +1”的逆否命题为“若a =2b +1,则a 2-4b 2-2a +1=0”.∵a =2b +1,∴a 2-4b 2-2a +1 =(2b +1)2-4b 2-2(2b +1)+1 =4b 2+1+4b -4b 2-4b -2+1=0.∴命题“若a =2b +1,则a 2-4b 2-2a +1=0”为真命题. 由原命题与逆否命题具有相同的真假性可知,原命题得证.1.“命题”的三个关注点(1)我们研究四种命题,一般只研究“若p,则q”形式的命题;有些命题虽然不是这种形式,但可以化为“若p,则q”的形式.(2)对“命题的逆命题、否命题与逆否命题”只要求作一般性的了解,定位在具体、简单的数学命题,重点是四种命题的构成形式及其真假判断.(3)四种命题是相对的,一个命题是什么命题不是固定不变的,但只要我们事先规定好哪个命题是原命题,那么它的其他形式的命题就确定了.2.“互逆命题”“互否命题”“互为逆否命题”与“逆命题”“否命题”“逆否命题”的区别两者具有不同的含义,具体区分如下:前者说的是两个命题的关系,同时涉及两个命题;后者是指与确定的原命题为“互逆”“互否”“互为逆否”关系的那一个命题.1.命题“若a A,则b∈B”的逆命题是()A.若a A,则b B B.若a∈A,则b BC.若b∈B,则a A D.若b B,则a AC[“若p,则q”的逆命题是“若q,则p”,所以本题的逆命题是“若b∈B,则a A”.]2.已知a,b,c∈R,命题“若a+b+c=3,则a2+b2+c2≥3”的否命题是()A.若a+b+c≠3,则a2+b2+c2<3B.若a+b+c=3,则a2+b2+c2<3C.若a+b+c≠3,则a2+b2+c2≥3D.若a2+b2+c2≥3,则a+b+c=3A[同时否定命题的条件与结论,所得命题就是原命题的否命题,故选A.] 3.命题“若a>-3,则a>-6”以及它的逆命题、否命题、逆否命题中,真命题的个数为()A.1B.2C.3 D.4B[原命题是真命题,从而其逆否命题是真命题,其逆命题是“若a>-6,则a>-3”,是假命题,从而其否命题也是假命题,故真命题的个数是2.] 4.命题“若m>1,则mx2-2x+1=0无实根”的等价命题是________.若mx2-2x+1=0有实根,则m≤1[原命题的等价命题是其逆否命题,由定义可知其逆否命题为:“若mx2-2x+1=0有实根,则m≤1”.]。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章 1.1课时作业2
一、选择题
1.[2013·江西九江一模]命题“若x2>y2,则x>y”的逆否命题是()
A. “若x<y,则x2<y2”
B. “若x>y,则x2>y2”
C. “若x≤y,则x2≤y2”
D. “若x≥y,则x2≥y2”
解析:根据原命题和逆否命题的条件和结论的关系得命题“若x2>y2,则x>y”的逆否命题是“若x≤y,则x2≤y2”.
答案:C
2.命题“若函数f(x)=log a x(a>0,a≠1)在其定义域内是减函数,则log a2<0”的逆否命题是()
A.若log a2≥0,则函数f(x)=log a x(a>0,a≠1)在其定义域内不是减函数
B.若log a2<0,则函数f(x)=log a x(a>0,a≠1)在其定义域内不是减函数
C.若log a2≥0,则函数f(x)=log a x(a>0,a≠1)在其定义域内是减函数
D.若log a2<0,则函数f(x)=log a x(a>0,a≠1)在其定义域内是减函数
解析:由互为逆否命题的关系可知,原命题的逆否命题为:若log a2≥0,则函数f(x)=log a x(a>0,a≠1)在其定义域内不是减函数.
答案:A
3.命题“若f(x)是奇函数,则f(-x)是奇函数”的否命题是()
A.若f(x)是偶函数,则f(-x)是偶函数
B.若f(x)不是奇函数,则f(-x)不是奇函数
C.若f(-x)是奇函数,则f(x)是奇函数
D.若f(-x)不是奇函数,则f(x)不是奇函数
解析:命题“若p,则q”的否命题为“若綈p,则綈q”,而“是”的否定是“不是”,故选B.
答案:B
4.命题“当AB=AC时,△ABC为等腰三角形”与它的逆命题、否命题、逆否命题中,真命题的个数是()
A.4B.3
C .2
D .0
解析:原命题和它的逆否命题为真命题.
答案:C
二、填空题
5.命题“若x >y ,则x 3>y 3-1”的否命题是________.
答案:若x ≤y ,则x 3≤y 3-1,将条件、结论分别否定即可.
6.[2014·江西省临川一中月考]命题“若实数a 满足a ≤2,则a 2<4”的否命题是________命题.(填“真”或“假”)
解析:本题考查否命题及命题真假性的判断.原命题的否命题是“若实数a 满足a >2,则a 2≥4”,这是一个真命题.
答案:真
7.已知命题“若m -1<x <m +1,则1<x <2”的逆命题为真命题,则m 的取值范围是________.
解析:由已知得,若1<x <2成立,
则m -1<x <m +1也成立,
∴⎩⎪⎨⎪⎧
m -1≤1,m +1≥2.∴1≤m ≤2. 答案:[1,2]
三、解答题
8.把下列命题写成“若p ,则q ”的形式,并写出它们的逆命题、否命题与逆否命题.
(1)正数的平方根不等于0;
(2)当x =2时,x 2+x -6=0;
(3)对顶角相等.
解:(1)原命题:“若a 是正数,则a 的平方根不等于0”.
逆命题:“若a 的平方根不等于0,则a 是正数”.
否命题:“若a 不是正数,则a 的平方根等于0”.
逆否命题:“若a 的平方根等于0,则a 不是正数”.
(2)原命题:“若x =2,则x 2+x -6=0”.
逆命题:“若x 2+x -6=0,则x =2”.
否命题:“若x ≠2,则x 2+x -6≠0”.
逆否命题:“若x 2+x -6≠0,则x ≠2”.
(3)原命题:“若两个角是对顶角,则它们相等”.
逆命题:“若两个角相等,则它们是对顶角”.
否命题:“若两个角不是对顶角,则它们不相等”.
逆否命题:“若两个角不相等,则它们不是对顶角”.
9.写出下列命题的逆命题、否命题和逆否命题,并判断命题的真假.
(1)垂直于同一个平面的两直线平行.
(2)若m·n<0,则方程mx2-x+n=0有实根.
(3)若ab=0,则a=0或b=0.
解:(1)逆命题:如果两条直线平行,那么这两条直线垂直于同一个平面;假命题.否命题:如果两条直线不垂直于同一平面,那么这两条直线不平行;假命题.逆否命题:如果两条直线不平行,那么这两条直线不垂直于同一平面;真命题.
(2)逆命题:若方程mx2-x+n=0有实数根,则m·n<0;假命题.
否命题:若m·n≥0,则方程mx2-x+n=0没有实数根;假命题.
逆否命题:若方程mx2-x+n=0没有实数根,则m·n≥0;真命题.
(3)逆命题:若a=0或b=0,则ab=0;真命题.
否命题:若ab≠0,则a≠0且b≠0;真命题.
逆否命题:若a≠0且b≠0,则ab≠0;真命题.。

相关文档
最新文档