椭圆性质92条及其证明

椭圆性质92条及其证明
椭圆性质92条及其证明

椭圆的特殊性质

一、椭圆的几何性质(以22a x +22 b y =1(a ﹥b ﹥0)为例) 1、焦点⊿PF 1F 2中: (1)S ⊿PF1F2=2 tan 2θ?b (2)(S ⊿PF1F2)max = bc (3)当P 在短轴上时,∠F 1PF 2最大 2、 过点F 1作⊿PF 1F 2的∠P 的外角平分线的垂线,垂足为M ,则M 的轨迹是x 2+y 2=a 2 证明:延长1F M 交2F P 于F , 连接OM 由已知有1PF FP =, M 为1F F 中点 ∴212OM FF ==()121 2 PF PF +=a 所以M 的轨迹方程为 222 x y a +=。 3、以椭圆的任意焦半径为直径的圆,都与圆x 2+y 2=a 2内切 4、过焦点F 的弦AB , )(2112定值b a BF AF =+ 5、AB 是椭圆的任意一弦,P 是AB 中点,则22 a b K K OP AB -=?(定值) 证明:令()()1122,,,A x y B x y ,()00,P x y 则()1202 x x x += ()1202 y y y += x x

22 1122 22 222211x y a b x y a b ?+=????+=?? ()()()()1212121222 ..0x x x x y y y y a b +-+-?+= ∵ ()()1212AB y y k x x -=-,00OP y k x =, ∴ 2 2A B O P b k k a ?=-。 6、椭圆的长轴端点为A 1、A 2,P 是椭圆上任一点,连结A 1P 、A 2P 并延长,交一准线于N 、M 两点,则M 、N 与对应准线的焦点张角为900 证明:令()221200,,,,,a a M y N y P x y c c ???? ? ????? ,()1,0A a -,()2,0A a ∴()()100200,,,,A P x a y A P x a y =+=-uuu r uuu r 221122,,,a a A M a y A N a y c c ???? =+=- ? ????? uuuu r uuu u r ∵ 由于1A 、P 、M 共线 ,∴ 2 0001210() a y a x a y c y a y x a a c ?++=?=++ ∵ 由于2,,A P N 共线 ,∴ 2 0002220() a y a x a y c y a y x a a c ?--=?=-- ∴ 22 242200012222 000()() a a y a y a y a a c c c y y x a x a x a c ?-?+-==?-+-, ∵ 2222 0002222201x y y b a b x a a +=?=-- ∴ 2422 1222 b a a c y y a c -=-?42b c =-, ∵ 2122,,a F M c y c a F N c y c ? ??=-? ???????? =- ?? ??? uuu r uuu r 4 122b FM FN y y c ??=+uuu r uuu r ∴ 0FM FN ?=u u u r u u u r , ∴ M 、N 与对应准线的焦点张角为900 7、圆锥曲线如椭圆上任意一点P 做相互垂直的直线交圆锥曲线于AB ,则AB 必过定 x

高考数学椭圆与双曲线的经典性质50条经典法则

椭圆与双曲线的对偶性质--(必背的经典结论) 高三数学备课组 椭 圆 1. 点P 处的切线PT 平分△PF 1F 2在点P 处的外角. 2. PT 平分△PF 1F 2在点P 处的外角,则焦点在直线PT 上的射影H 点的轨迹是以长轴为直径的圆,除去长轴的两个端点. 3. 以焦点弦PQ 为直径的圆必与对应准线相离. 4. 以焦点半径PF 1为直径的圆必与以长轴为直径的圆内切. 5. 若000(,)P x y 在椭圆22221x y a b +=上,则过0P 的椭圆的切线方程是00221x x y y a b +=. 6. 若000(,)P x y 在椭圆22221x y a b +=外 ,则过Po 作椭圆的两条切线切点为P 1、P 2,则切点弦P 1P 2的直线方程是00221x x y y a b +=. 7. 椭圆22 221x y a b += (a >b >0)的左右焦点分别为F 1,F 2,点P 为椭圆上任意一点12F PF γ∠=,则椭圆的焦点角形的面积 为122 tan 2 F PF S b γ ?=. 8. 椭圆22 221x y a b +=(a >b >0)的焦半径公式:10||MF a ex =+,20||MF a ex =-(1(,0)F c - , 2(,0)F c 00(,)M x y ). 9. 设过椭圆焦点F 作直线与椭圆相交 P 、Q 两点,A 为椭圆长轴上一个顶点,连结AP 和AQ 分别交相应于焦点F 的椭圆 准线于M 、N 两点,则MF ⊥NF. 10. 过椭圆一个焦点F 的直线与椭圆交于两点P 、Q, A 1、A 2为椭圆长轴上的顶点,A 1P 和A 2Q 交于点M ,A 2P 和A 1Q 交于 点N ,则MF ⊥NF. 11. AB 是椭圆22221x y a b +=的不平行于对称轴的弦,M ),(00y x 为AB 的中点,则2 2OM AB b k k a ?=-,即0 202y a x b K AB -=。 12. 若000(,)P x y 在椭圆22 221x y a b +=内,则被Po 所平分的中点弦的方程是2200002222x x y y x y a b a b +=+. 13. 若000(,)P x y 在椭圆22221x y a b +=内,则过Po 的弦中点的轨迹方程是22002222x x y y x y a b a b +=+. 双曲线 1. 点P 处的切线PT 平分△PF 1F 2在点P 处的内角. 2. PT 平分△PF 1F 2在点P 处的内角,则焦点在直线PT 上的射影H 点的轨迹是以长轴为直径的圆,除去长轴的两个端 点. 3. 以焦点弦PQ 为直径的圆必与对应准线相交. 4. 以焦点半径PF 1为直径的圆必与以实轴为直径的圆相切.(内切:P 在右支;外切:P 在左支) 5. 若000(,)P x y 在双曲线22221x y a b -=(a >0,b >0)上,则过0P 的双曲线的切线方程是00221x x y y a b -=. 6. 若000(,)P x y 在双曲线22 221x y a b -=(a >0,b >0)外 ,则过Po 作双曲线的两条切线切点为P 1、P 2,则切点弦P 1P 2 的直线方程是00221x x y y a b -=. 7. 双曲线22 221x y a b -=(a >0,b >o )的左右焦点分别为F 1,F 2,点P 为双曲线上任意一点12F PF γ∠=,则双曲线的焦 点角形的面积为122 t 2 F PF S b co γ ?=. 8. 双曲线22 221x y a b -=(a >0,b >o )的焦半径公式:(1(,0)F c - , 2(,0)F c 当00(,)M x y 在右支上时,10||MF ex a =+,20||MF ex a =-. 当00(,)M x y 在左支上时,10||MF ex a =-+,20||MF ex a =-- 9. 设过双曲线焦点F 作直线与双曲线相交 P 、Q 两点,A 为双曲线长轴上一个顶点,连结AP 和AQ 分别交相应于焦 点F 的双曲线准线于M 、N 两点,则MF ⊥NF. 10. 过双曲线一个焦点F 的直线与双曲线交于两点P 、Q, A 1、A 2为双曲线实轴上的顶点,A 1P 和A 2Q 交于点M ,A 2P 和 A 1Q 交于点N ,则MF ⊥NF.

椭圆的几何性质知识点归纳及典型例题及练习(付答案)

(一)椭圆的定义: 1、椭圆的定义:平面内与两个定点1F 、2F 的距离之和等于定长(大于12||F F )的点的轨迹叫做椭圆。这两个定点 1F 、2F 叫做椭圆的焦点,两焦点的距离12||F F 叫做椭圆的焦距。 对椭圆定义的几点说明: (1)“在平面内”是前提,否则得不到平面图形(去掉这个条件,我们将得到一个椭球面); (2)“两个定点”的设定不同于圆的定义中的“一个定点”,学习时注意区分; (3)作为到这两个定点的距离的和的“常数”,必须满足大于| F 1F 2|这个条件。若不然,当这个“常数”等于| F 1F 2|时,我们得到的是线段F 1F 2;当这个“常数”小于| F 1F 2|时,无轨迹。这两种特殊情况,同学们必须注意。 (4)下面我们对椭圆进行进一步观察,发现它本身具备对称性,有两条对称轴和一个对称中心,我们把它的两条对称轴与椭圆的交点记为A 1, A 2, B 1, B 2,于是我们易得| A 1A 2|的值就是那个“常数”,且|B 2F 2|+|B 2F 1|、|B 1F 2|+|B 1F 1|也等于那个“常数”。同学们想一想其中的道理。 (5)中心在原点、焦点分别在x 轴上,y 轴上的椭圆标准方程分别为: 22 22 2222 x y y x 1(a b 0),1(a b 0),a b a b +=>>+=>> 相同点是:形状相同、大小相同;都有 a > b > 0 ,2 2 2 a c b =+。 不同点是:两种椭圆相对于坐标系的位置不同,它们的焦点坐标也不同(第一个椭圆的焦点坐标为(-c ,0)和(c ,0),第二个椭圆的焦点坐标为(0,-c )和(0,c )。椭圆的 焦点在 x 轴上?标准方程中x 2项的分母较大;椭圆的焦点在 y 轴上?标准方程中y 2 项的分母较大。 (二)椭圆的几何性质: 椭圆的几何性质可分为两类:一类是与坐标系有关的性质,如顶点、焦点、中心坐标;一类是与坐标系无关的本身固有性质,如长、短轴长、焦距、离心率.对于第一类性质,只 要22 22x y 1(a b 0)a b +=>>的有关性质中横坐标x 和纵坐标y 互换,就可以得出2222 y x 1(a b 0)a b +=>>的有关性质。总结如下:

高考数学椭圆与双曲线重要规律定理

椭圆与双曲线性质--(重要结论) 清华附中高三数学备课组 椭 圆 1. 点P 处的切线PT 平分△PF 1F 2在点P 处的外角. 2. PT 平分△PF 1F 2在点P 处的外角,则焦点在直线PT 上的射影H 点的轨迹是以长轴为直径的圆,除去长轴的 两个端点. 3. 以焦点弦PQ 为直径的圆必与对应准线相离. 4. 以焦点半径PF 1为直径的圆必与以长轴为直径的圆内切. 5. 若000(,)P x y 在椭圆22221x y a b +=上,则过0P 的椭圆的切线方程是 002 2 1x x y y a b + =. 6. 若000(,)P x y 在椭圆 222 2 1x y a b + =外 ,则过Po 作椭圆的两条切线切点为P 1、P 2,则切点弦P 1P 2的直线方程 是 002 2 1x x y y a b + =. 7. 椭圆 222 2 1x y a b + = (a >b >0)的左右焦点分别为F 1,F 2,点P 为椭圆上任意一点12F PF γ∠=,则椭圆的焦点 角形的面积为1 2 2 tan 2 F P F S b γ ?=. 8. 椭圆 2 2 22 1x y a b + =(a >b >0)的焦半径公式: 10||M F a ex =+,20||M F a ex =-(1(,0)F c - , 2(,0)F c 00(,)M x y ). 9. 设过椭圆焦点F 作直线与椭圆相交 P 、Q 两点,A 为椭圆长轴上一个顶点,连结AP 和AQ 分别交相应于焦 点F 的椭圆准线于M 、N 两点,则MF ⊥NF. 10. 过椭圆一个焦点F 的直线与椭圆交于两点P 、Q, A 1、A 2为椭圆长轴上的顶点,A 1P 和A 2Q 交于点M ,A 2P 和A 1Q 交于点N ,则MF ⊥NF. 11. AB 是椭圆 222 2 1x y a b + =的不平行于对称轴的弦,M ),(00y x 为AB 的中点,则22 O M AB b k k a ?=- , 即0 2 02 y a x b K AB - =。 12. 若000(,)P x y 在椭圆222 2 1x y a b +=内,则被Po 所平分的中点弦的方程是 2 2 00002 2 2 2 x x y y x y a b a b + = + . 13. 若000(,)P x y 在椭圆 222 2 1x y a b +=内,则过Po 的弦中点的轨迹方程是22002 2 2 2 x x y y x y a b a b + = + . 双曲线 1. 点P 处的切线PT 平分△PF 1F 2在点P 处的内角. 2. PT 平分△PF 1F 2在点P 处的内角,则焦点在直线PT 上的射影H 点的轨迹是以长轴为直径的圆,除去长 轴的两个端点. 3. 以焦点弦PQ 为直径的圆必与对应准线相交. 4. 以焦点半径PF 1为直径的圆必与以实轴为直径的圆相切.(内切:P 在右支;外切:P 在左支) 5. 若000(,)P x y 在双曲线22221x y a b -=(a >0,b >0)上,则过0P 的双曲线的切线方程是 002 2 1x x y y a b - =. 6. 若000(,)P x y 在双曲线 222 2 1x y a b - =(a >0,b >0)外 ,则过Po 作双曲线的两条切线切点为P 1、P 2,则切点弦P 1P 2的直线方程是002 2 1x x y y a b -=. 7. 双曲线 222 2 1x y a b - =(a >0,b >o )的左右焦点分别为F 1,F 2,点P 为双曲线上任意一点12F PF γ∠=, 则双曲线的焦点角形的面积为1 2 2 t 2 F P F S b co γ ?=. 8. 双曲线 2 2 221x y a b -=(a >0,b >o )的焦半径公式:(1(,0)F c - , 2(,0)F c 当00(,)M x y 在右支上时,10||M F ex a =+,20||M F ex a =-. 当00(,)M x y 在左支上时,10||M F ex a =-+,20||M F ex a =-- 9. 设过双曲线焦点F 作直线与双曲线相交 P 、Q 两点,A 为双曲线长轴上一个顶点,连结AP 和AQ 分别 交相应于焦点F 的双曲线准线于M 、N 两点,则MF ⊥NF. 10. 过双曲线一个焦点F 的直线与双曲线交于两点P 、Q, A 1、A 2为双曲线实轴上的顶点,A 1P 和A 2Q 交于 点M ,A 2P 和A 1Q 交于点N ,则MF ⊥NF. 11. AB 是双曲线 222 2 1x y a b - =(a >0,b >0)的不平行于对称轴的弦,M ),(00y x 为AB 的中点,则 2 02y a x b K K AB OM = ?,即0 2 02 y a x b K AB = 。 12. 若000(,)P x y 在双曲线 222 2 1x y a b - =(a >0,b >0)内,则被Po 所平分的中点弦的方程是 2 2 00002 2 2 2 x x y y x y a b a b - = - . 13. 若000(,)P x y 在双曲线 222 2 1x y a b - =(a >0,b >0)内,则过Po 的弦中点的轨迹方程是 22002 2 2 2 x x y y x y a b a b - = - .

高考数学椭圆与双曲线的经典性质技巧归纳总结

椭圆的定义、性质及标准方程 高三数学备课组 刘岩老师 1. 椭圆的定义: ⑴第一定义:平面内与两个定点12F F 、的距离之和等于常数(大于12F F )的点的轨迹叫做椭圆。这两个定点叫做椭圆的焦点,两焦点的距离叫做椭圆的焦距。 ⑵第二定义:动点M 到定点F 的距离和它到定直线l 的距离之比等于常数 )10(<>=+b a b y a x 中心在原点,焦点在x 轴上 )0(12 2 22>>=+b a b x a y 中心在原点,焦点在y 轴上 图形 范围 x a y b ≤≤, x b y a ≤≤, 顶点 ()()()() 12120000A a A a B b B b --,、,,、, ()()()() 12120000A a A a B b B b --,、,,、, 对称轴 x 轴、y 轴; 长轴长2a ,短轴长2b ; 焦点在长轴上 x 轴、y 轴; 长轴长2a ,短轴长2b ; 焦点在长轴上 焦点 ()()1200F c F c -,、, ()()1200F c F c -,、, 焦距 )0(221>=c c F F )0(221>=c c F F 离心率 )10(<<= e a c e )10(<<= e a c e 准线 2 a x c =± 2 a y c =±

最新椭圆标准方程及其性质知识点大全

【专题七】椭圆标准方程及其性质知识点大 (一)椭圆的定义及椭圆的标准方程: ?椭圆定义:平面内一个动点P 到两个定点F 1、 F 2的距离之和等于常数 (二)椭圆的简单几何性: ?标准方程是指中心在原点,坐标轴为对称轴的标准位置的椭圆方程。 2 2 x 2 y 2 =1 (a b O) a b (PF 1 + PF 2 =2a ■ F1F 2),这个动点P 的轨迹叫椭圆?这两个定点叫椭圆的 焦 点,两焦点的距离叫作椭圆的 焦距. 注意:①若(PF 1 + |PF 2 |=F I F 2),则动点P 的轨迹为线段F 1F 2 ; ②若(PF 1 + PF ^<|F 1F 2 ),则动点P 的轨迹无图形 2 2 y 2 X 2 =1 (a ■ b ■ O) a b 图形 性质 焦占 八焦距 范围 F i (-c,O),F 2(C ,0) F I (O,-C ),F 2(0,C ) F 1F 2 =2C F 1 F 2 = 2c x^b, | y| 对称性 关于x 轴、y 轴和原点对称 标准方程 (_a,0) , (0,-b) (0,-a), (_b,0) 顶点

?椭圆标准方程为 =1 (a b - 0),椭圆焦点三角形: 设P 为椭圆上任意一点, F i ,F 2为焦点且/ F 1PF 2 ?,则△ F i PF 2为焦点三角形,其面积为 轴长 长轴长 AA 2, AAj =2a ,短轴长 BB 2, EB 2 =2b 离心率 ① e = C (0cec1),② e =』1—(b )2 ③ c 2 = a 2_b 2 a V a (离心率越大,椭圆越扁) 【说明】: 1?方程中的两个参数a 与b ,确定椭圆的形状和大小,是椭圆的定型条件,焦点 F i ,F 2的位置,是椭圆的定位条件,它决定椭圆标准方程的类型,常数 a ,b ,c 都大于零,其中 a 最大且 a 2 = b 2+ c 2. 2 2 2.方程Ax By 二C 表示椭圆的充要条件是:ABC 工0,且A ,B ,C 同号,A 2 2 S PF I F 2 = b 2 tan 。 2 (四)通径:如图:通径长 2 2 ?椭圆标准方程:笃? — =1 a 2 b 2 (五)点与椭圆的位置关系: C 1) 点 P(x o ,y o )在椭圆外= a b a b x =1;

椭圆与双曲线的对偶性质92条

椭圆与双曲线的对偶性质92条 椭 圆 1.12||||2PF PF a += 2.标准方程:22 221x y a b += 3.11 || 1PF e d =< 4.点P 处的切线PT 平分△PF 1F 2在点P 处的外角. 5.PT 平分△PF 1F 2在点P 处的外角,则焦点在直线PT 上的射影H 点的轨迹是以长轴为直径的圆,除去长轴的两个端点. 6.以焦点弦PQ 为直径的圆必与对应准线相离. 7.以焦点半径PF 1为直径的圆必与以长轴为直径的圆切. 8.设A 1、A 2为椭圆的左、右顶点,则△PF 1F 2在边PF 2(或PF 1)上的旁切圆,必与A 1A 2所在的直线切于A 2(或A 1). 9.椭圆22 221x y a b +=(a >b >o )的两个顶点为1(,0)A a -,2(,0)A a ,与y 轴平行的直线交椭 圆于P 1、P 2时A 1P 1与A 2P 2交点的轨迹方程是22 221x y a b -=. 10.若000(,)P x y 在椭圆22 221x y a b +=上,则过0P 的椭圆的切线方程是00221x x y y a b +=. 11.若000(,)P x y 在椭圆22 221x y a b +=外 ,则过Po 作椭圆的两条切线切点为P 1、P 2,则切点弦 P 1P 2的直线方程是00221x x y y a b +=. 12.AB 是椭圆22 221x y a b +=的不平行于对称轴且过原点的弦,M 为AB 的中点,则 2 2OM AB b k k a ?=-. 13.若000(,)P x y 在椭圆22 221x y a b +=,则被Po 所平分的中点弦的方程是 22 00002222x x y y x y a b a b +=+. 14.若000(,)P x y 在椭圆22 221x y a b +=,则过Po 的弦中点的轨迹方程是22002222x x y y x y a b a b +=+. 15.若PQ 是椭圆22 221x y a b +=(a >b >0)上对中心直角的弦,则 122222 121111(||,||)r OP r OQ r r a b +=+==. 16.若椭圆22 221x y a b +=(a >b >0)上中心直角的弦L 所在直线方程为1Ax By +=(0)AB ≠,

椭圆及其性质

第十章 圆锥曲线 本章知识结构图 第一节 椭圆及其性质 考纲解读 1. 了解圆锥曲线的实际背景及其在刻画现实世界和解决实际问题中的作用. 2. 掌握椭圆的定义,标准方程,几何图形及其简单性质 3. 了解椭圆的简单应用 4. 理解数形结合的思想 命题趋势研究 椭圆是圆锥曲线的重要内容,高考主要考查椭圆的基本性质,椭圆方程的求法,椭圆定义的运用和椭圆中各个量的计算,尤其是对离心率的求解,更是高考的热点问题,在各种题型中均有题型 预测2019年高考对本节考查内容为: (1) 利用标准方程研究几何性质,尤其是离心率的求值及取值范围问题. (2) 利用已知条件求出椭圆的方程,特别是与向量结合求方程更是重点.椭圆的定义,标 准方程和几何性质及直线相交问题的考查以中档题目为主,每年高考分值大多保持在5分. 知识点精讲 曲线与方程 轨迹方程的求法:直接法、定义法、相关点法 圆锥曲线 椭圆 双曲线 抛物线 定义及标准方程 性质 范围、对称性、顶点、焦点、长轴(实轴)、短轴(虚轴)、渐近线(双曲线)、准线(只要求抛物线) 离心率 对称性问题 中心对称 轴对称 点(x 1,y 1) ───────→关于点(a ,b )对称点(2a -x 1,2b -y 1 ) 曲线f (x ,y ) ───────→ 关于点(a ,b )对称曲线f (2a -x ,2b -y ) ? ????A ·x 1+x 22+B ·y 1+y 2 2+C =0y 2-y 1x 2-x 1·(-A B )=-1 特殊对称轴 x ±y +C =0 直接代入法 点(x 1,y 1)与点(x 2,y 2)关于 直线Ax +By +C =0对称

椭圆的基本性质

课题:12.4椭圆的基本性质(二课时) 教学目标: 1、掌握椭圆的对称性,顶点,范围等几何性质. 2、能根据椭圆的几何性质对椭圆方程进行讨论,在此基础上会画椭圆的图形. 3、学会判断直线与椭圆的位置,能够解决直线与椭圆相交时的弦长问题,中点问题等. 4、在对椭圆几何性质的讨论中,注意数与形的结合与转化,学会分类讨论、数形结合等数学思想和探究能力的培养;培养探究新事物的欲望,获得成功的体验,树立学好数学的信心. 教学重点:椭圆的几何性质及初步运用 教学难点:直线与椭圆相交时的弦长问题和中点问题 教学过程: 一.课前准备: 1、 知识回忆 (1) 椭圆和圆的概念 (2) 椭圆的标准方程 2、课前练习 1) 圆的定义: 到一定点的距离等于______的图形的轨迹。 椭圆的定义: _______________________________的图形的轨迹。 2) 椭圆的标准方程: 1。焦点在x 轴上____________( ) 2。焦点在y 轴上____________( ) 若125 162 2=+y x ,则椭圆的长轴长________短半轴长__________,焦点为____________,顶点坐标为__________,焦距为______________ 二.教学过程设计 一、引入课题 “曲线与方程”是解析几何中最重要最基本的内容其中有两类基本问题:一是由曲线求方程,二是由方程画曲线.前面由椭圆定义推导出椭圆的标准方程属于第一类问题,本节课将研究第二类问题,由椭圆方程画椭圆图形,为使列表描点更准确,避免盲目性,有必要先对椭圆的范围、对称性、顶点进行讨论. 二、讲授新课 (一) 对称性 问题1:观察椭圆标准方程的特点,利用方程研究椭圆曲线的对称性? x -代x 后方程不变,说明椭圆关于y 轴对称; y -代y 后方程不变,说明椭圆曲线关于x 轴对称; x -、y -代x ,y 后方程不变,说明椭圆曲线关于原点对称; 问题2:从对称性的本质上入手,如何探究曲线的对称性? 以把x 换成-x 为例,如图在曲线的方程中,把x 换

椭圆性质及详细证明

椭圆性质的证明与证明: 性质1、 椭圆上一点P 处的切线平分焦点三角形外角的证明: 题目:已知12,F F 为椭圆22 221(0)x y a b a b +=>>的焦点,P 为椭圆上一点。求证:点P 处的切线PT 必 平分12PF F ?在P 处的外角.在解答此题之后,我们还得到一个重要的定理. 证法1 设1200(,0),(,0),(,)F c F c P x y -. 对椭圆方程22221x y a b +=两边求导得,22 22.0x y y a b ' += ∴ 22b x y a y '=- ∴ 0020(,) 20 pT x y b x k k y a y '===- 又1010pF y k k x c == +,20 20pF y k k x c ==-, 由到角公式知 2002002 2002 200tan 211. b x y a y x c k k b x y kk a y x c ----∠== +-- 22222 000222 000 () ()b cx b x a y a b x y a cy -+=-- 222222 00222000000()()b cx a b b cx a b c x y a cy cy cx a cy --=== --, 同理200 22 0012 00 10 200 tan 111.y b x x c a y k k b y b x k k cy x c a y ++-∠===+-+. ∵ 1,2(0,)π∠∠∈, ∴ 12∠=∠, 又14∠=∠, ∴ 24∠=∠

证法2 设1(,0)F c -,2(,0)F c ,00(,)P x y ,如图1,过1F 、2F 作切线PT 的垂线,垂足分别为M 、N. ∵ 切线PT 的方程为 00221x x y y a b +=,则点1F 、2F 到PT 的距离为 1F M = , 2F N = ∴ 0 22 012 01021 1cx cx a F M a cx F N cx a a ----==-- 001002ex a a ex PF ex a a ex PF --+===-- ∴ 1PMF ?∽2PNF ? ∴ 12∠=∠, 又∵14∠=∠ ∵ 24∠=∠. 两种证法都是由12∠=∠导出,如图,设PD 为法线(即PD ⊥切线PT ),则PD 平分12F PF ∠,故得如下重要定理. 定理 在椭圆上任意一点P 的法线,平分该点两条焦半径的夹角. (到角公式) 把直线L1依逆时针方向旋转到与L2重合时所转的角,叫做L1到L2的角,简称到角.tan θ=(k2-k1)/(1+k1·k2) 性质2.椭圆焦点三角形定义及面积公式推导 (1)定义:如图1,椭圆上一点与椭圆的两个焦点12,F F 构成的三角形12PF F 称之为椭圆焦点三角形. (2)面积公式推导 解:在12PF F ?中,设12F PF α∠=,11PF r =,22PF r =,由余弦定理得

椭圆和双曲线的方程、性质(学生)

第二讲椭圆和双曲线的方程、性质 教学目标:熟练运用椭圆、双曲线定义和性质解题。 1.一圆形纸片的圆心为O ,点Q 是圆内异于O 的一点,点A 在圆周上.把纸片折叠使点 A 与点Q 重合,然后抹平纸片,折痕CD 与OA 交于P 点,当点A 运动时,点P 的轨迹 是 ( ). 2.已知椭圆22 22:1(0)x y E a b a b +=>>的右焦点为(3,0)F ,过点F 的直线交椭圆于,A B 两点.若AB 的中点坐标为(1,1)-,则E 的方程为 ( ) A . 2214536x y += B .2213627x y += C .2212718x y += D .22 1189x y += 3.椭圆22 :143 x y C +=的左、右顶点分别为12,A A ,点P 在C 上且直线2PA 的斜率的取值范围是[]2,1--,那么直线1PA 斜率的取值范围是( ) A .1324 ??????, B .3384??????, C .112??????, D .314?? ???? , 4.若椭圆1C :1212212=+b y a x (011>>b a )和椭圆2C :122 2 222=+b y a x (022>>b a )的焦 点相同且12a a >.给出如下四个结论: ① 椭圆1C 和椭圆2C 一定没有公共点; ② 11 22 a b a b >; ③ 2 2212221b b a a -=-; ④1212a a b b -<-. 其中,所有正确结论的序号是( ) A.①③ B①③④ C .①②④ D .②③④ 5.过椭圆14 162 2=+y x 上一点P 作圆222=+y x 的两条切线,切点为B A ,,过B A ,的直线与两坐标轴的交点为N M ,,则MON ?的面积的最小值为( ) A. 23 B. 32 C. 2 1 D. 2 6.已知双曲线22 221(0,0)x y a b a b -=>>的两条渐近线与抛物线22(0)px p y =>的准 线分别交于A , B 两点, O 为原点. 若双曲线的离心率为2, △AOB 的面积

椭圆常见性质

椭圆常见性质 1. 11 || 1PF e d =< 2.PT 平分12PF F ?在点P 处的外角,则焦点在直线PT 上的射影H 点的轨迹是以长轴为直径的圆,除去长轴的两个端点. 3.以焦点弦PQ 为直径的圆必与对应准线相离. 4.以焦点半径1PF 为直径的圆必与长轴为直径的圆内切. 5.设12,A A 为椭圆的左,右顶点,则12PF F ?在边2PF (或1PF )上的旁切圆,必与12A A 所在的直线切与2A (或1A ). 6.椭圆焦点三角形的旁切圆必切长轴于非焦顶点同侧的长轴端点. 7.椭圆两焦点到椭圆焦点三角形旁切圆的切线长为定值a+c 与a-c . 8.椭圆焦点三角形的非焦顶点到其内切圆的切线长为定值a-c . 9.椭圆焦点三角形中,内心将内点与非焦顶点连线段分成定比c . 10.椭圆焦点三角形中,过任一焦点向非焦顶点的外角平分线引垂线,则椭圆中心与垂足连线必与另一焦半径所在直线平行. 11.椭圆焦三角形中,过任一焦点向非焦顶点的外角引垂线,则椭圆中心与垂足的距离为椭圆长半轴的长. 12.椭圆焦三角形中,过任一焦点向非焦顶点的外角引垂线,垂足就是垂足同侧焦半径为直径的圆的和椭圆长轴为直径的圆的切点. 13.椭圆22 221(0)x y a b a b +=>>的焦半径公式: 1020||,||.PF a ex PF a ex =+=-(0x 是P 点横坐标). 14.设P 点是椭圆22 221(0)x y a b a b +=>>上异于长轴端点的任一点,12,F F 为其焦点.记 12F PF θ∠=,则1222122(1)||||;(2)tan .1cos 2 PF F b PF PF S b θ θ?= =+ 15.若P 为椭圆22 221(0)x y a b a b +=>>上异于长轴端点的任一点, 12,F F 为其焦点, 1221,PF F PF F αβ∠=∠=,则 tan tan .22 a c a c αβ -=+ 16.设椭圆22 221(0)x y a b a b +=>>的两个焦点为12,F F ,P(异于长轴端点)为椭圆上任意一点,

椭圆标准方程及其性质知识点大全(供参考)

【专题七】椭圆标准方程及其性质知识点大全 (一)椭圆的定义及椭圆的标准方程: ●椭圆定义:平面内一个动点P 到两个定点1F 、2F 的距离之和等于常数 )2(2121F F a PF PF >=+ , 这个动点P 的轨迹叫椭圆.这两个定点叫椭圆的焦 点,两焦点的距离叫作椭圆的焦距. 注意:①若)(2121F F PF PF =+,则动点P 的轨迹为线段21F F ; ②若)(2121 F F PF PF <+,则动点P 的轨迹无图形 (二)椭圆的简单几何性: 标准方程 图形 性质 焦点 )0,(1c F -,)0,(2c F ),0(1c F -,),0(2c F 焦距 范围 a x ≤,b y ≤ b x ≤,a y ≤ 对称性 关于x 轴、y 轴和原点对称 顶点 )0,(a ±,),0(b ± ),0(a ±,)0,(b ± 轴长 长轴长12A A ,12A A =a 2,短轴长12B B ,12B B =b 2 离心率 ①(01)c e e a = << ,②21()b e a =-③2 22b a c -= (离心率越大,椭圆越扁) 1.方程中的两个参数a 与b ,确定椭圆的形状和大小,是椭圆的定型条件,焦点F 1,F 2的位置,是椭圆的定位条件,它决定椭圆标准方程的类型,常数a ,b ,c 都大于零,其中 a 最大且a 2= b 2+ c 2.

2. 方程22 Ax By C +=表示椭圆的充要条件是:ABC ≠0,且A ,B ,C 同号,A ≠B 。A >B 时,焦点在y 轴上,A <B 时,焦点在x 轴上。 (三)焦点三角形的面积公式:122tan 2 PF F S b θ ?=如图: ●椭圆标准方程为:122 22=+b y a x )0(>>b a ,椭圆焦点三角形:设P 为椭圆上任意一点, 12,F F 为焦点且∠12F PF θ=,则△12F PF 为焦点三角形,其面积为122tan 2 PF F S b θ ?=。 (四)通径 :如图:通径长 2 2b MN a = ●椭圆标准方程:122 22=+b y a x )0(>>b a , (五)点与椭圆的位置关系: (1)点00(,)P x y 在椭圆外?22 00 221x y a b +>;(2)点00(,)P x y 在椭圆上?220220b y a x +=1; (3)点00(,)P x y 在椭圆内?2200 221x y a b +< (六)直线与椭圆的位置关系: ●设直线l 的方程为:Ax+By+C=0,椭圆122 22=+b y a x (a ﹥b ﹥0),联立组成方程 组,消去y(或x)利用判别式△的符号来确定: (1)相交:0?>?直线与椭圆相交;(2)相切:0?=?直线与椭圆相切; (3)相离:0?>b a 相交于两点 11(,)A x y 、22(,)B x y , 把AB 所在直线方程y=kx+b ,代入椭圆方程122 22=+b y a x 整理得:Ax 2+Bx+C=0。 ●弦长公式: ① 212212 212 4)(11x x x x k x x k AB -++=-+=a k ? +=2 1(含M N F x y

椭圆性质总结

椭圆性质总结 -标准化文件发布号:(9556-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

椭 圆 一.考试必“背” 1 椭圆的两种定义: ①平面内与两定点F 1,F 2的距离的和等于定长()212F F a >的点的轨迹,即点集M={P| |PF 1|+|PF 2|=2a ,2a >|F 1F 2|};(212F F a =时为线段21F F , 212F F a <无轨迹)。其中两定点F 1,F 2叫焦点,定点间的距离叫焦距。 ②平面内一动点到一个定点和一定直线的距离的比是小于1的正常数的点的轨迹,即点集M={P| e d PF =,0<e <1的常数 }。(1=e 为抛物线;1 >e 为双曲线) 2 标准方程: (1)焦点在x 轴上,中心在原点:122 22=+b y a x (a >b >0); 焦点F 1(-c ,0), F 2(c ,0)。其中22b a c -=(一个 ?Rt ) (2)焦点在y 轴上,中心在原点:122 22=+b x a y (a >b >0); 焦点F 1(0,-c ),F 2(0,c )。其中22b a c -= 注意:①在两种标准方程中,总有a >b >0,22b a c -=并且椭圆的焦点总 在长轴上; ②两种标准方程可用一般形式表示:Ax 2+By 2=1 (A >0,B >0,A ≠B ),当A <B 时,椭圆的焦点在x 轴上,A >B 时焦点在y 轴上。 3.参数方程 :椭圆122 22=+b y a x )0(>>b a 的参数方程 ? ??==θθ sin cos b y a x )(为参数θ 4.性质:对于焦点在x 轴上,中心在原点:122 22=+b y a x (a >b >0)有以下性 质:

椭圆性质总结

椭 圆 一.考试必“背” 1 椭圆的两种定义: ①平面内与两定点F 1,F 2的距离的和等于定长() 212F F a >的点的轨迹,即点集M={P| |PF 1|+|PF 2|=2a ,2a >|F 1F 2|};(212F F a =时为线段21F F ,212F F a <无轨迹)。其中两定点F 1,F 2叫焦点,定点间的距离叫焦距。 ②平面内一动点到一个定点和一定直线的距离的比是小于1的正常数的点的轨迹,即点集 M={P| e d PF =,0<e <1的常数 }。(1=e 为抛物线;1>e 为双曲线) 2 标准方程: (1)焦点在x 轴上,中心在原点:122 22=+b y a x (a >b >0); 焦点F 1(-c ,0), F 2(c ,0)。其中22b a c -= (一个?Rt ) (2)焦点在y 轴上,中心在原点:122 22=+b x a y (a >b >0); 焦点F 1(0,-c ),F 2(0,c )。其中22b a c -= 注意:①在两种标准方程中,总有a >b >0,22b a c -= 并且椭圆的焦点总在长轴上; ②两种标准方程可用一般形式表示:Ax 2+By 2=1 (A >0,B >0,A ≠B ),当A < B 时,椭圆的焦点在x 轴上,A >B 时焦点在y 轴上。 3.参数方程 :椭圆122 22=+b y a x )0(>>b a 的参数方程 ?? ?==θθ s i n c o s b y a x )(为参数θ 4.性质:对于焦点在x 轴上,中心在原点:12 2 22=+b y a x (a >b >0)有以下性质: 坐标系下的性质: ① 范围:|x|≤a ,|y|≤b ; ② 对称性:对称轴方程为x=0,y=0,对称中心为O (0,0); ③ 顶点:A 1(-a ,0),A 2(a ,0),B 1(0,-b ),B 2(0,b ),长轴|A 1A 2|=2a ,短轴|B 1B 2|=2b ; (a 半长轴长,b 半短轴长); ④ 准线方程:c a x 2± =;或c a y 2 ±= ⑤ 焦半径公式:P (x 0,y 0)为椭圆上任一点。|PF 1|=左r =a+ex 0,|PF 2|=右r =a-ex 0; |PF 1|=下r =a+ey 0,|PF 2|=上r =a-ey 0;c a PF c a PF -=+=min max ,

椭圆与双曲线的经典性质100条

椭圆与双曲线的对偶性质100条 椭 圆 1.12||||2PF PF a += 2.标准方程:22 221x y a b += 3.11 || 1PF e d =< 4.点P 处的切线PT 平分△PF 1F 2在点P 处的外角. 5.PT 平分△PF 1F 2在点P 处的外角,则焦点在直线PT 上的射影H 点的轨迹是以长轴为直径的圆,除去长轴的两个端点. 6.以焦点弦PQ 为直径的圆必与对应准线相离. 7.以焦点半径PF 1为直径的圆必与以长轴为直径的圆内切. 8.设A 1、A 2为椭圆的左、右顶点,则△PF 1F 2在边PF 2(或PF 1)上的旁切圆,必与A 1A 2所在的直线切于A 2(或A 1). 9.椭圆22 221x y a b +=(a >b >o )的两个顶点为1(,0)A a -,2(,0)A a ,与y 轴平行的直线 交椭圆于P 1、P 2时A 1P 1与A 2P 2交点的轨迹方程是22 221x y a b -=. ☆ 10.若000(,)P x y 在椭圆22 221x y a b +=上,则过0P 的椭圆的切线方程是00221x x y y a b +=. ☆ 11.若000(,)P x y 在椭圆22 221x y a b +=外 ,则过Po 作椭圆的两条切线切点为P 1、P 2,则 切点弦P 1P 2的直线方程是00221x x y y a b +=. ★ 12.AB 是椭圆22 221x y a b +=的不平行于对称轴且过原点的弦,M 为AB 的中点,则 2 2OM AB b k k a ?=-. 13.若000(,)P x y 在椭圆22 221x y a b +=,则被Po 所平分的中点弦的方程是 22 00002222x x y y x y a b a b +=+. 14.若000(,)P x y 在椭圆22 221x y a b +=,则过Po 的弦中点的轨迹方程是 22002222x x y y x y a b a b +=+. 16.若椭圆22 221x y a b +=(a >b >0)上中心张直角的弦L 所在直线方程为 1Ax By +=(0)AB ≠,则(1) 22 2211A B a b +=+ ;(2) L =

椭圆与双曲线二级结论

椭 圆 1. 点P 处的切线PT 平分△PF 1F 2在点P 处的外角. 2. PT 平分△PF 1F 2在点P 处的外角,则焦点在直线PT 上的射影H 点的轨迹是以长轴为直 径的圆,除去长轴的两个端点. 3. 以焦点弦PQ 为直径的圆必与对应准线相离. 4. 以焦点半径PF 1为直径的圆必与以长轴为直径的圆内切. 5. 若000(,)P x y 在椭圆22221x y a b +=上,则过0P 的椭圆的切线方程是00221x x y y a b +=. 6. 若000(,)P x y 在椭圆22 221x y a b +=外 ,则过Po 作椭圆的两条切线切点为P 1、P 2,则切 点弦P 1P 2的直线方程是00221x x y y a b +=. 7. 椭圆22 221x y a b += (a >b >0)的左右焦点分别为F 1,F 2,点P 为椭圆上任意一点 12F PF γ∠=,则椭圆的焦点角形的面积为122tan 2 F PF S b γ ?=. 8. 椭圆22 221x y a b +=(a >b >0)的焦半径公式: 10||MF a ex =+,20||MF a ex =-(1(,0)F c - , 2(,0)F c 00(,)M x y ). 9. 设过椭圆焦点F 作直线与椭圆相交 P 、Q 两点,A 为椭圆长轴上一个顶点,连结AP 和 AQ 分别交相应于焦点F 的椭圆准线于M 、N 两点,则MF ⊥NF. 10. 过椭圆一个焦点F 的直线与椭圆交于两点P 、Q, A 1、A 2为椭圆长轴上的顶点,A 1P 和 A 2Q 交于点M ,A 2P 和A 1Q 交于点N ,则MF ⊥NF. 11. AB 是椭圆22 221x y a b +=的不平行于对称轴的弦,M ),(00y x 为AB 的中点,则 2 2OM AB b k k a ?=-, 即0 20 2y a x b K AB -=。 双曲线 1. 点P 处的切线PT 平分△PF 1F 2在点P 处的内角. 2. PT 平分△PF 1F 2在点P 处的内角,则焦点在直线PT 上的射影H 点的轨迹是以长轴 为直径的圆,除去长轴的两个端点. 3. 以焦点弦PQ 为直径的圆必与对应准线相交.

相关文档
最新文档