人教版数学七年级下册 第十章 统计图的综合应用 同步练习题
人教版数学七年级下册同步训练: 10.1《统计调查》

人教版数学七年级下册同步训练: 10.1《统计调查》姓名:________ 班级:________ 成绩:________一、选择题: (共15题;共30分)1. (2分)下列调查中,适宜采用抽样方式的是()A . 调查我省初中学生每天体育锻炼的时间B . 调查奥运会参赛队员兴奋剂的使用情况C . 调查一架隐形战斗机所有零部件的质量D . 调查某班学生对“新闻联播”的知晓率2. (2分) (2020七下·厦门期末) 某初中校学生会为了解本校学生年人均课外阅读量,计划开展抽样调查,下列抽样调查方案中最合适的是()A . 到学校图书馆调查学生借阅量B . 对全校学生暑假课外阅读量进行调查C . 对九年级学生的课外阅读量进行调查D . 在三个年级的学生中分别随机抽取一半学生进行课外阅读量的调查3. (2分)在端午节到来之前,儿童福利院对全体小朋友爱吃哪几种粽子作调查,以决定最终买哪种粽子.下面的调查数据中最值得关注的是()A . 方差B . 平均数C . 中位数D . 众数4. (2分)有40个数据,其中最大值为35,最小值为12,若取组距为4,则应分为()A . 4组B . 5组C . 6组D . 7组5. (2分)已知数据:25,24,27,25,21,23,25,29,27,28,25,24,26,28,26,27,30,22,26,25.在列频数分布表时,如果取组距为2,那么落在24.5~26.5这一组的频率是()A . 0.3B . 0.4C . 0.5D . 0.66. (2分) (2020七上·南山期末) 北京海淀区某中学经过食堂装修后重新营业,同学们很高兴品尝各种美食菜品某同学想要得到本校食堂最受同学欢迎的菜品,以下是排乱的统计步骤:①从扇形图中分析出最受学生欢迎的菜品;②去食堂收集同学吃饭选择的菜品名称和人数;③绘制扇形图来表示各个种类产品所占的百分比;④整理所收集的数据,并绘制频数分布表;正确统计步骤的顺序是()A . ②→③→①→④B . ②→④→③→①C . ①→②→④→③D . ③→④→①→②7. (2分)(2017·石家庄模拟) 小华班上比赛投篮,每人5次,如图是班上所有学生的投篮进球数的扇形统计图,则下列关于班上所有学生投进球数的统计量正确的是()A . 中位数是3个B . 中位数是2.5个C . 众数是2个D . 众数是5个8. (2分) (2020七下·孟村期末) 为了了解我市参加中考的75000名学生的视力情况,抽查了1000名学生的视力进行统计分析.下面四个判断正确的是()A . 75000名学生是总体B . 1000学生的视力是总体的一个样本C . 每名学生是总体的一个个体D . 上述调查是普查9. (2分) (2021七上·兴庆期末) 在下列调查方式中,较为合适的是()A . 为了解石家庄市中小学生的视力情况,采用普查的方式B . 为了解正定县中小学生的课外阅读习惯情况,采用普查的方式C . 为了解某校七年级(2)班学生期末考试数学成绩情况,采用抽样调查方式D . 为了解我市市民对消防安全知识的了解情况,采用抽样调查的方式10. (2分) (2020七下·防城港期末) 下列调查中,调查方式选择最合理的是()A . 为了解广西中学生的课外阅读情况,选择全面调查B . 调查七年级某班学生打网络游戏的情况,选择抽样调查C . 为确保第55颗北斗卫星成功发射,应对零部件进行全面调查D . 为了解一批袋装食品是否含有防腐剂,选择全面调查11. (2分) (2016七下·兰陵期末) 要了解某校初中学生的课外作业负担情况,若采用抽样调查的方法进行调查,则下面哪种调查方式具有代表性()A . 调查全体女生B . 调查全体男生C . 调查七、八、九年级各100名学生D . 调查九年级全体学生12. (2分)要了解一批电视机的使用寿命,从中任意抽取40台电视机进行试验,在这个问题中,样本是()A . 每台电视机的使用寿命B . 40台电视机C . 40台电视机的使用寿命D . 4013. (2分) (2018七下·中山期末) 为了了解某校2000名学生的身高情况,随机抽取了该校200名学生测量身高.在这个问题中,样本容量是()A . 2000名学生B . 2000C . 200名学生D . 20014. (2分) (2020八上·淮阳期末) 元旦联欢会上,王老师购买的香蕉苹果、香梨的总千克数之比为,若制成一个如图所示的扇形统计图,则表示香梨千克数的扇形的圆心角度数为()A .B .C .D .15. (2分)某市社会调查队对城区内一个社区居民的家庭经济状况进行调查。
【3套精选】人教版七年级数学下册第十章数据的收集、整理与描述题单元综合练习题(解析版)

人教版七年级数学下册:第10章单元检测题一、选择题(每小题3分,共30分)1.下列调查中,最适合用全面调查方式的是(B)A.调查一批电视机的使用寿命情况B.调查某中学九年级一班学生的视力情况C.调查某市初中学生每天锻炼所用的时间情况D.调查某市初中学生利用网络媒体自主学习的情况2.下列统计图能够显示数据变化趋势的是(C)A.条形图B.扇形图C.折线图D.直方图3.今年我市有4万名学生参加中考,为了了解这些考生的数学成绩,从中抽取2000名考生的数学成绩进行统计分析.在这个问题中,下列说法:①这4万名考生的数学中考成绩的全体是总体;②每个考生是个体;③2000名考生是总体的一个样本;④样本容量是2000.其中说法正确的有(C)A.4个B.3个C.2个D.1个4.一组数据中的最小值是31,最大值是101,若取组距为9,则组数为(B)A.7 B.8C.9 D.7或8均可5.某学校教研组对七年级360名学生就“分组合作学习”方式的支持程度进行了调查,随机抽取了若干名学生进行调查,并制作统计图,据此统计图估计该校七年级支持“分组合作学习”方式的学生约为(含非常喜欢和喜欢两种情况)(B)A.216 B.252C.288 D.3246.某中学开展“阳光体育一小时”活动,根据学校实际情况,决定开设“A:踢毽子;B:篮球;C:跳绳;D:乒乓球.”四项运动项目(每位同学必须选择一项),为了解学生最喜欢哪一项运动项目,随机抽取了一部分学生进行调查,并将调查结果绘制成如图所示的统计图,则参加调查的学生中最喜欢跳绳运动项目的学生数为(D)A.240 B.120 C.80 D.407.为了解某一路口某一时段的汽车流量,小明同学10天中在同一时段统计通过该路口的汽车数量(单位:辆),将统计结果绘制成如图所示的折线统计图.由此估计一个月(30天)该时段通过该路口的汽车数量超过200辆的天数为(C)A.9 B.10 C.12 D.158.为了了解某校学生对篮球、足球、羽毛球、乒乓球、网球等五类的喜爱,小李采用了抽样调查,在绘制扇形图时,由于时间仓促,还有足球、网球等信息还没有绘制完成,如图,根据图中的信息,这批被抽样调查的学生最喜欢足球的人数不可能是(D) A.100人B.200人C.260人D.400人,第8题图),第9题图) 9.将一次知识竞赛成绩(整数)进行整理后,分成五组,绘成频数分布直方图,如图中从左到右的前四组的百分比分别是4%,12%,40%,28%,最后一组的频数是8,则:①第五组的百分比为16%;②该班有50名同学参赛;③成绩在70.5~80.5的人数最多;④80分以上(不含80分)的学生共有22名.其中正确的有(A)A.4个B.3个C.2个D.1个10.为了解学生课外阅读的喜好,某校从八年级随机抽取部分学生进行问卷调查,调查要求每人只选取一种喜欢的书籍,如果没有喜欢的书籍,则作“其他”类统计,如图所示是整理数据后绘制的两幅不完整的统计图.以下结论不正确的是(C)A.由这两个统计图可知喜欢“科普常识”的学生有90人B.若该年级共有1200名学生,则由这两个统计图可估计喜爱“科普常识”的学生约有360人C.由这两个统计图不能确定喜欢“小说”的人数D.在扇形统计图中,“漫画”所在扇形的圆心角为72°二、填空题(每小题3分,共24分)11.要了解一批炮弹的杀伤力,适合采用抽样调查;检查一枚即将发射的运载火箭的各零部件,适合采用全面调查.12.我市某校40名学生参加全国数学竞赛,把他们的成绩分为6组,第一组到第四组的频数分别为10,5,7,6,第五组的人数所占百分比是20%,则第六组人数所占百分比是10%.13.某校在一次期末考试中,随机抽取八年级30名学生的数学成绩进行分析,其中3名学生的数学成绩达108分以上,据此估计该校八年级630名学生中期末考试数学成绩达108分以上的学生约有63名.14.一家电脑生产厂家在某城市三个经销本厂产品的大商场调查,产品的销量占这三个大商场同类产品销量的40%.由此在广告中宣传,他们的产品占国内同类产品销售量的40%.请你根据所学的统计知识,判断该广告宣传中的数据不可靠(填“可靠”或“不可靠”),理由是调查不具有代表性.15.某校报名参加甲、乙、丙、丁四个兴趣小组的学生人数如图所示,如果参加丁组的学生占所有报名人数的20%,那么报名参加甲组和丙组的人数之和占所有报名人数的百分比为40%.,第15题图),第16题图) 16.某学校“你最喜爱的球类运动”调查中,随机调查了若干名学生(每个学生分别选了一项球类运动),并根据调查结果绘制了如图所示的扇形统计图.已知其中最喜欢羽毛球的人数比最喜欢乒乓球的人数少6人,则该校被调查的学生总人数为60名.17.为了了解我校七年级的数学教学情况,从中抽取了若干名学生参加测试,其得分情况如图,且四个小长方形的高之比为2∶4∶3∶1,则参加测试的学生共有100人.18.七(1)班同学为了解某小区家庭月均用水情况,随机调查了该小区部分家庭,并将调查数据整理如下表(部分):560户.三、解答题(共66分)19.(9分)某校为了解七年级新生入学时的数学水平,随机抽取若干名学生的数学成绩调查统计,整理后绘制成如图所示的频数分布直方图(每组含最小值,不含最大值),观察图形回答下列问题:(1)本次随机抽查的学生人数是多少?(2)若80分及以上的成绩为良好,试估计该校550名七年级新生中数学成绩良好的有多少人?解:(1)由频数分布直方图可知,随机抽查的学生人数为1+2+3+8+10+14+6=44(人)(2)550×14+644=250(人)20.(9分)某学校要了解学生上学交通情况,选取九年级全体学生进行调查.根据调查结果,画出扇形统计图(如图),图中“公交车”对应的扇形圆心角为60°,“自行车”对应的扇形圆心角为120°.已知九年级乘公交车上学的人数为50人.(1)九年级学生中,骑自行车和乘公交车上学哪个更多?多多少人?(2)如果全校有学生2000人,学校准备的400个自行车停车位是否足够?解:(1)骑自行车的学生更多,多50人 (2)∵2000×120360≈666>400,∴学校准备的400个自行车停车位不够21.(12分)“中国梦”是中华民族每一个人的梦,也是每一个中小学生的梦,各中小学开展经典诵读活动七年级数学下册 数据收集与整理 解答题 专项练习1、某地区教育部门为了解初中数学课堂中学生参与情况,并按“主动质疑、独立思考、专注听讲、讲解题目”四个项目进行评价.检测小组随机抽查部分学校若干名学生,并将抽查学生的课堂参与情况绘制成如图所示的扇形统计图和条形统计图(均不完整).请根据统计图中的信息解答下列问题:(1)本次抽查的样本容量是;(2)在扇形统计图中,“主动质疑”对应的圆心角为度;(3)将条形统计图补充完整;(4)如果该地区初中学生共有60000名,那么在课堂中能“独立思考”的学生约有多少人?2、我市中小学全面开展“阳光体育”活动,某校在大课间中开设了A:体操,B:跑操,C:舞蹈,D:健美操四项活动,为了解学生最喜欢哪一项活动,随机抽取了部分学生进行调查,并将调查结果绘制成了如下两幅不完整的统计图,请根据统计图回答下列问题:(1)这次被调查的学生共有人.(2)请将统计图2补充完整.(3)统计图1中B项目对应的扇形的圆心角是度.(4)已知该校共有学生3600人,请根据调查结果估计该校喜欢健美操的学生人数.3、某中学改革学生的学习模式,变“老师要学生学习”为“学生自主学习”,培养了学生自主学习的能力.小华与小明同学就“你最喜欢哪种学习方式”随机调查了他们周围的一些同学,根据收集到的数据绘制了以下两个不完整的统计图(如图).请根据上面两个不完整的统计图回答以下4个问题:(1)这次抽样调查中,共调查了名学生.(2)补全条形统计图中的缺项.(3)在扇形统计图中,选择教师传授的占%,选择小组合作学习的占%.(4)根据调查结果,估算该校1800名学生中大约有人选择小组合作学习模式.4、2017年3月27日是全国中小学生安全教育日,某校为加强学生的安全意识,组织了全校学生参加安全知识竞赛,从中抽取了部分学生成绩(得分取正整致,满分为10分)进行统计,绘制了图中两幅不完整的统计图.(1)a= ,n= ;(2)补全频数直方图;(3)该校共有2000名学生.若成绩在70分以下(含70分)的学生安全意识不强,有待进一步加强安全教育,则该校安全意识不强的学生约有多少人?5、为了促进学生多样化发展,某校组织开展了社团活动,分别设置了体育类、艺术类、文学类及其它类社团(要求人人参与社团,每人只能选择一项).为了解学生喜爱哪种社团活动,学校做了一次抽样调查.根据收集到的数据,绘制成如下两幅不完整的统计图,请根据图中提供的信息,完成下列问题:(1)此次共调查了多少人?(2)求文学社团在扇形统计图中所占圆心角的度数;(3)请将条形统计图补充完整;(4)若该校有1500名学生,请估计喜欢体育类社团的学生有多少人?6、某校举行“汉字听写”比赛,每位学生听写汉字39个,比赛结束后随机抽查部分学生的听写结果,以下是根据抽查结果绘制的统计图的一部分.根据以上信息解决下列问题:(1)在统计表中,m= ,n= .(2)扇形统计图中“C组”所对应的圆心角的度数是.(3)若该校共有900名学生,如果听写正确的个数少于24个定为不合格,请你估计这所学校本次比赛听写不合格的学生人数.7、某校为了解九年级1 000名学生的身体健康情况,从该年级随机抽取了若干名学生,将他们按体重(均为整数,单位:kg)分成五组(A:39.5~46.5;B:46.5~53.5;C:53.5~60.5;D:60.5~67.5;E:67.5~74.5),并依据统计数据绘制了如下两种尚不完整的统计图.解答下列问题:(1) 这次抽样调查的样本容量是________,并补全频数分布直方图;(2) C组学生的频率为________,在扇形统计图中D组的圆心角是________度;(3) 请你估计该校九年级体重超过60 kg的学生大约有多少名.8、某市为了增强学生体质,全面实施“学生饮用奶”营养工程.某品牌牛奶供应商提供了原味、草莓味、菠萝味、香橙味、核桃味五种口味的牛奶提供学生饮用.浠马中学为了了解学生对不同口味牛奶的喜好,对全校订购牛奶的学生进行了随机调查(每盒各种口味牛奶的体积相同),绘制了如图两张不完整的人数统计图:(1)本次被调查的学生有________名;(2)补全上面的条形统计图1,并计算出喜好“菠萝味”牛奶的学生人数在扇形统计图中所占圆心角的度数;(3)该校共有1200名学生订购了该品牌的牛奶,牛奶供应商每天只为每名订购牛奶的学生配送一盒牛奶.要使学生每天都喝到自己喜好的口味的牛奶,牛奶供应商每天送往该校的牛奶中,草莓味要比原味多送多少盒?9、初三年级教师对试卷讲评课中学生参与的深度与广度进行评价调查,其评价项目为主动质疑、独立思考、专注听讲、讲解题目四项.评价组随机抽取了若干名初中学生的参与情况,绘制成如图所示的频数分布直方图和扇形统计图(均不完整),请根据图中所给信息解答下列问题:(1)在这次评价中,一共抽查了名学生;(2)在扇形统计图中,项目“主动质疑”所在的扇形的圆心角的度数为度;(3)请将频数分布直方图补充完整;(4)如果全市有6000名初三学生,那么在试卷评讲课中,“独立思考”的初三学生约有多少人?10、某中学为了搞好对“传统文化学习”的宣传活动,对本校部分学生(随机抽查)进行了一次相关知识了解程度的调查测试(成绩分为A、B、C、D、E五个组,x表示测试成绩).通过对测试成绩的分析,得到如图所示的两幅不完整的统计图.请你根据图中提供的信息解答以下问题:(1)参加调查测试的学生为________人;(2)将条形统计图补充完整;(3)本次调查测试成绩中的中位数落在________组内;(4)若测试成绩在80分以上(含80分)为优秀,该中学共有学生2600人,请你根据样本数据估计全校学生测试成绩为优秀的总人数.参考答案1、解:(1)本次调查的样本容量为224÷40%=560(人),故答案是:560;(2)“主动质疑”所在的扇形的圆心角的度数是:360°×=54°,故答案是:54;(3)“讲解题目”的人数是:560﹣84﹣168﹣224=84(人).(4)60000×=18000(人),答:在试卷评讲课中,“独立思考”的初三学生约有18000人.2、解:(1)140÷28%=500(人),故答案为:500;(2)A的人数:500﹣75﹣140﹣245=40(人);补全条形图如图:(3)75÷500×100%=15%,360°×15%=54°,故答案为:54;(4)245÷500×100%=49%,3600×49%=1764(人).3、解:(1)由题意可得,本次调查的学生有:300÷60%=500(名),故答案为:500;(2)由题意可得,教师传授的学生有:500﹣300﹣150=50(名),补全的条形统计图如右图所示;(3)由题意可得,选择教师传授的占: =10%,选择小组合作学习的占: =30%,故答案为:10,30;(4)由题意可得,该校1800名学生中选择合作学习的有:1800×30%=540(名),故答案为:540.4、解:(1)∵本次调查的总人数为30÷10%=300(人),∴a=300×25%=75,D组所占百分比为×100%=30%,所以E组的百分比为1﹣10%﹣20%﹣25%﹣30%=15%,则n=360°×15%=54°,故答案为:75、54;(2)B组人数为300×20%=60(人),补全频数分布直方图如下:(3)2000×(10%+20%)=600,答:该校安全意识不强的学生约有600人.5、解:(1)80÷40%=200(人).∴此次共调查200人.(2).∴文学社团在扇形统计图中所占圆心角的度数为108°.(3)补全如图.(4)1500×40%=600(人).∴估计该校喜欢体育类社团的学生有600人6、(1)m=30,n=20;(2)90°(3)“听写正确的个数少于24个”的人数有:10+15+25=50 (人).900×=450 (人).答:这所学校本次比赛听写不合格的学生人数约为450人.7、(1) 样本容量是4÷8%=50;B组的频数为12,补全频数分布直方图如图所示。
人教版七年级数学下册第十章数据的收集、整理与描述综合复习试题(含答案) (9)

人教版七年级数学下册第十章数据的收集、整理与描述综合复习与测试题(含答案)某校冬季会把课间操改为跑步,但是发现部分学生没有穿运动鞋的习惯,为保证学生的安全,学校准备购买一批运动鞋供学生借用,现从各年级随机抽取了部分学生的鞋号,绘制出如下两幅不完整的统计图,请根据相关信息,解答下列问题.(I)本次接受随机抽样调查的学生人数为_____;(Ⅱ)在条形统计图中,请把空缺部分补充完整;(Ⅲ)求本次调查获取的样本数据的众数与中位数.【答案】(Ⅰ)40;(Ⅱ)见解析;(Ⅲ)见解析.【解析】【分析】(Ⅰ)用38号人数除以其所占百分比可得总人数;(Ⅱ)根据各鞋号人数之和等于总认识求得37号的人数即可补全图形;(Ⅲ)找出出现次数最多的即为众数,将数据按照从小到大顺序排列,求出中位数即可.【详解】(Ⅰ)本次接受随机抽样调查的学生人数为4÷10%=40,故答案为:40;(Ⅱ)37号的人数为40﹣(6+12+10+4)=8人,补全图形如下:(Ⅲ)∵在这组样本数据中,35出现了12次,出现次数最多,∴这组样本数据的众数为35;∵将这组样本数据从小到大得顺序排列,其中处于中间的两个数都为36,∴中位数为=36.【点睛】此题考查了条形统计图,扇形统计图,以及用样本估计总体,弄清题意是解本题的关键.82.为了了解某市课改实验区学生对新教材的喜欢程度,课改调研组从该市实验区60000名学生中随机抽查了360名学生进行了问卷调查,并绘制出了如图所示的频数分布直方图.(1)根据直方图中的数据制作扇形统计图(要求在图中注明各部分的百分比).(2)根据该调查结果,估计该市实验区约有多少名学生喜欢新教材?【答案】(1)见解析;(2)21000人.【解析】【分析】根据条形统计图得出三种人数和所占的比例,求出对应的扇形的圆心角的度数.画出扇形统计图,再由该市实验区人数乘以学生喜欢的比例求得学生喜欢新教材的人数.【详解】解:(1)从条形统计图中得出喜欢的有126人,一般的有162人,不喜欢的有72人,喜欢的人数占的比例12636035%=÷=,对应的在扇形统计图中的扇形的圆心角36035%126=⨯=一般的人数占的比例16236045%=÷=,对应的在扇形统计图中的扇形的圆心角3605%162=⨯=不喜欢的人数占的比例7236020%=÷=,对应的在扇形统计图中的扇形的圆心角36020%72=⨯=(2)全市喜欢新教材的人数约为:()6000035%45%21000⨯+=(人)【点睛】扇形统计图是用整个圆表示总数用圆内各个扇形的大小表示各部分数量占总数的百分数.通过扇形统计图可以很清楚的表示出各部分数量同总数之间的关系.83.某市青少年健康研究中心随机抽取了本市1000名小学生和若干名中学生,对他们的视力状况进行了调查,并把调查结果绘制成如下统计图.(近视程度分为轻度、中度、高度三种)(1)求这1000名小学生患近视的百分比.(2)求本次抽查的中学生人数.(3)该市有中学生8万人,小学生10万人.分别估计该市的中学生与小学生患“中度近视”的人数.【答案】(1)这1000名小学生患近视的百分比为38%. (2)本次抽查的中学生有1000人. (3)该市中学生患“中度近视”的约有2.08万人,患“中度近视”的约有1.04万人.【解析】【分析】(1)这1000名小学生患近视的百分比=小学生近视的人数÷总人数×100﹪(2)调查中学生总人数=中学生近视的人数÷中学生患近视的百分比(3)用样本估计总体,该市中学生患“中度近视”的人数=8万×1000名中学生患中度近视的百分比;该市小学生患“中度近视”的人数=10万×1000名小学生患中度近视的百分比【详解】解:(1)∵(252+104+24)÷1000=38%,∵这1000名小学生患近视的百分比为38%.(2)∵(263+260+37)÷56%=1000(人),∵本次抽查的中学生有1000人.(3)∵8×2601000=2.08(万人),∵该市中学生患“中度近视”的约有2.08万人.∵10×1041000=1.04(万人),∵该市小学生患“中度近视”的约有1.04万人.84.为了解学生的课余生活情况,某中学在全校范围内随机抽取部分学生进行问卷调查. 问卷中请学生选择最喜欢的课余生活种类(每人只选一类),选项有音乐类、美术类、体育类及其他共四类,调查后将数据绘制成扇形统计图和条形统计图(如图所示).1.请根据所给的扇形图和条形图,填写出扇形图中缺失的数据,并把条形图补充完整;2.如果该学校有500名学生,请你估计该学校中最喜欢体育运动的学生约有多少名?【答案】% 200【解析】(1)根据扇形统计图所给的数据,直接进行相减即可求出体育所占的百分比,再根据抽取体育的人数,即可求出抽取的总人数,再根据其他类所占的比例,即可求出答案.(2)根据学生中最喜欢体育运动的学生所占的百分比,再乘以总数即可求出答案.解:(1)根据题意得:体育所占的百分比是:1-32%-12%-16%=40%,抽取的总人数是:10÷40%=25(人),其他类的人数是:25×32%=8(人).如图所示:(2)根据题意可得:该年级中最喜欢体育运动的学生约有500×40%=200(名).答:该学校中最喜欢体育运动的学生约有200名85.春季流感爆发,某校为了解全体学生患流感情况,随机抽取部分班级对患流感人数的进行调查,发现被抽查各班级患流感人数只有1名、2名、3名、4名、5名、6名这六种情况,并制成如下两幅不完整的统计图:(1)抽查了个班级,并将该条形统计图补充完整;(2)如图1中患流感人数为4名所在扇形的圆心角的度数为;(3)若该校有90个班级,请估计该校此次患流感的人数.【答案】(1)20,2名的班级有2个;(2)72°;(3)360人.【解析】试题分析:(1)根据患流感人数有6名的班级有4个,占20%,可求得抽查的班级数,用求得的班级数再减去其它班级数,即可补全条形统计图;(2)用患流感人数为4名的班级数4个除以抽查的班级数,再乘以360°即可;(3)先求出该校平均每班患流感的人数,再利用样本估计总体的思想,用这个平均数乘以90即可.试题解析:(1)根据患流感人数有6名的班级有4个,占20%,可求得抽查的班级数,抽查的班级个数为4÷20%=20(个),则患流感人数只有2名的班级个数为:20﹣(2+3+4+5+4)=2(个),补图如下:(2)用患流感人数为4名的班级数4个除以抽查的班级数,再乘以360°:×360°=72°,所以患流感人数为4名所在扇形的圆心角的度数为72°;(3)先求出该校平均每班患流感的人数,∵该校平均每班患流感的人数为(1×2+2×2+3×3+4×4+5×5+6×4)÷20=4,∵若该校有90个班级,则此次患流感的人数为:4×90=360(人).考点:1.条形统计图;2.用样本估计总体;3.扇形统计图.86.《中学生体质健康标准》规定学生体质健康等级标准为:90分及以上为优秀;80分~89分为良好;60分~79分为及格;59分及以下为不及格. 某校从九年级学生中随机抽取了10%的学生进行了体质测试,得分情况如下图.(1)在抽取的学生中不及格人数所占的百分比是,它的圆心角度数为度.(2)小明按以下方法计算出抽取的学生平均得分是:()+++÷=. 根据所学的统计知识判断小明的计算是否正确,若不94847250475正确,请计算正确结果.【答案】(1)5%;18 ;(2)不正确,详见解析【解析】【分析】(1)根据各组的百分比之和为1,计算即可.(2)利用加权平均数公式计算即可.【详解】(1)不及格人数所占的百分比=1-25%-20%-50%=5%,它的圆心角=360°×5%=18°,故答案为5%,18.(2)不正确,平均分=94×20%+84×25%+72×50%+50×5%=78.3(分).【点睛】考查条形统计图,扇形统计图,加权平均数等知识,解题的关键是熟练掌握基本知识.87.萧山区垃圾分类掀起“绿色革命”为调查居民对垃圾分类的了解情况,调查小组对某小区进行抽样调查并将调查结果绘制成了统计图(如图).已知调查中“基本了解”的人数占调查人数的60%.(1)计算此次调查人数,并补全统计图;(2)若该小区有住户1000人,请估计该小区对垃圾分类“基本了解”的人数.【答案】(1)此次调查40人,补图见解析;(2)600人.【解析】【分析】(1)根据了解和不了解的所占的百分比和频数求得总人数,然后求得基本了解的频数后补充完整统计图即可;(2)用总人数乘以基本了解所占的百分比即可.【详解】(1)∵基本了解的占60%,∴了解和不了解的共占40%,∵了解和不了解的共有14+2=16人,∴调查的总人数为:16÷40%=40人,∴基本了解的有40﹣14﹣2=24人,统计图为:(2)该小区对垃圾分类“基本了解”的人数为1000×60%=600人.【点睛】本题考查的是条形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.88.阅读下列材料:改革开放以来,我国建筑业在坚持和完善公有制为主体、多种所有制经济共同发展的基本经济制度的指引下,企业所有制呈现多元化发展,极大激发了市场活力.建国初期,建筑业企业基本是清一色的国营建筑公司,而如今,建筑业企业类型涵盖了国有、集体、股份制、私营等内资企业,以及港澳台商投资企业、外商投资企业等多种所有制形式.根据2018年国家统计局发布的数据显示:2017年,建筑业企业中,国有企业2187个,占全部企业比重仅为2.5%,比1996年减少6922个,占比下降19.5个百分点;年末从业人员183.0万人,占全部企业比重3.3%,比1996年减少672.9万人,占比下降37个百分点.股份制企业32894个,占全部企业比重达到37.3%,比1996年增加31293个,占比提高33.4个百分点;年末从业人员2828万人,占全部企业比重51.1%,比1996年增加2768万人,占比提高48.2个百分点.私营企业49645个,占全部企业比重达到56.4%,比1996年增加49110个,占比提高55.1个百分点;年末从业人员2340万人,占全部企业比重42.3%,比1996年增加2331万人,占比提高41.9个百分点.外商投资企业218个,占全部企业比重达到0.2%,比1996年减少170个,占比下降0.7个百分点;年末从业人员8万人,占全部企业比重0.1%,比1996年减少1万人,占比下降0.3个百分点.根据以上材料回答下列问题:(1)1996年私营企业有______个,占全部企业比重为______.(2)请你选择统计表或统计图,将1996年和2017年国有企业、股份制企业、私营企业、外商投资企业所占全部企业比重表示出来.(3)请你根据以上统计表或统计图,给出一个合理的结论并说明理由.【答案】(1)535;1.3%;(2)见解析;(3)见解析【解析】【分析】(1)根据2017年私营企业49645个,比1996年增加49110个,可求出1996年私营企业的数量;根据2017年私营企业占全部企业比重达到56.4%,比1996年占比提高55.1个百分点可得出结果;(2)根据2017年国有企业、股份制企业、私营企业、外商投资企业所占全部企业比重,以及与1996年对应关系,求出1996年各种企业所占比重,可制成统计表即可;(3)根据占比变化情况,提出合理的结论即可.【详解】解:(1)根据题意得,1996年私营企业为:49645-49110=535(个),1996年私营企业占全部企业比重为:56.4%-55.1%=1.3%;故答案为:535;1.3%;(2)答案不唯一,如利用统计表表示如下:建筑企业中1996年和2017年国有企业、股份制企业、私营企业、外商投资企业所占全部企业比重情况统计表(3)答案不唯一,合理即可,如:改革开放以来,股份制企业、私营企业发展迅速,占比增长很快,而国有企业和外商投资企业则占比下降,发展出现负增长.说明国家积极鼓励和发展股份制企业、私营企业,政策向股份制企业和私营企业倾斜.【点睛】本题考查了用统计图或统计表反映一组数据的发展趋势,并从中得出合理化的意见和建议,达到搜集和整理数据的目的.89.2015年是中国人民抗日战争暨世界反法西斯胜利70周年,9月3日全国各地将举行有关纪念活动.为了解初中学生对二战历史的知晓情况,某初中课外兴趣小组在本校学生中开展了专题调查活动,随机抽取了部分学生进行问卷调查,根据学生答题情况,将结果分为A、B、C、D四类,其中A类表示“非常了解”、B类表示“比较了解”、C类表示“基本了解”、D类表示“不太了解”,调查的数据经整理后形成下列尚未完成的条形统计图(如图①)和扇形统计图(如图①):(1)在这次抽样调查中,一共抽查了名学生;(2)请把图①中的条形统计图补充完整;(3)图①的扇形统计图中D类部分所对应扇形的圆心角的度数为°;(4)如果这所学校共有初中学生1500名,请你估算该校初中学生中对二战历史“非常了解”和“比较了解”的学生共有多少名?【答案】(1)200;(2)详见解析;(3)36;(4)900.【解析】【分析】(1)利用A类的人数除以A类人数所占的百分比即可得这次调查的总人数;(2)用总人数乘C类人数所占的百分比即可求得C类的人数,在条形统计图上画出即可;(3)用D类的人数除以总人数再乘以360°即可得D类部分所对应扇形的圆心角的度数;(4)利用对二战历史“非常了解”和“比较了解”的学生人数除以这次抽查的人数,先计算出对二战历史“非常了解”和“比较了解”的学生所占的比例,再用总人数乘以这个比例即可得校初中学生中对二战历史“非常了解”和“比较了解”的学生的人数.【详解】解:(1)30÷15%=200,故答案为:200;(2)200×30%=60如图所示:(3)20÷200=0.1=10%,360°×10%=36°,故答案为:36;(4)30901500900200+⨯= 答:该校初中学生中对二战历史“非常了解”和“比较了解”的学生估计有900名.【点睛】此题考查了扇形统计图和频数(率)分布表,关键是正确从扇形统计图和表中得到所用的信息.90.为参加学校举办的演讲比赛,每班选拔一名学生参赛.八年级(2)班有甲、乙、丙三名候选人参加班内预赛,对他们的稿件质量成绩和口试成绩(单位:分)分别用两种方式进行了统计,如表和图①:(1)请将表和图①中的空缺部分补充完整;(2)选拔的最后一个程序是由本班的50名同学进行投票,三名候选人的得票情况如图②(没有弃权票,每名学生只能推荐一人),请计算每人的得票数;(3)若每票计1分,班委会将稿件质量、口试、得票三项测试得分按4:3:3的比例确定最后成绩,请计算三名学生的最后成绩,并根据成绩判断谁能当选.【答案】(1)如图所示:(2)甲20票、乙20票、丙10票;(3)甲67分、乙68分、丙64.5分,乙当选.【解析】试题分析:(1)仔细分析统计表及统计图中的数据即可得到结果;(2)根据扇形统计图的特征即可求得结果;(3)分别根据加权平均数的计算方法求得三名学生的最后成绩,再比较即可作出判断.(1)如图所示:(2)由题意得甲票、乙票、丙票;(3)由题意得甲的最后成绩分乙的最后成绩分丙的最后成绩分∵∵乙能当选.考点:统计的应用点评:本题是统计的基础应用题,重要考查学生对统计知识的熟练掌握程度,在中考中比较常见.。
人教版七年级下册数学10.2统计图同步测试(无答案)

10.2统计图一、选择题1.已知一组数据:18 21 29 23 18 20 22 19 23 24 21 19 24 22 17 22 23 19 21 17 对这些数据适当分组,其中17~19这一组的频数和频率分别为()A. 5,25%B. 6,30%C. 8,40%D. 7,35%2.体育老师对九年级(1)班学生“你最喜欢的体育项目是什么(只写一项)?”的问题进行了调查,把所得数据绘制成频数分布直方图(如图).由图可知,最喜欢篮球的学生的人数是()A. 8B. 12C. 16D. 203.已知一个样本:26,28,25,29,31,27,30,32,28,26,32,29,28,24,26,27,30,那么下列哪一组的频数为3()A. 24.5~26.5B. 26.5~28.5C. 28.5~30.5D. 30.5~32.54.一个容量为80的样本,最大值是141,最小值是50,取组距为10,则可以分成()A. 9组B. 10组C. 11组D. 12组5.如图是抽样检测后的产品净重(单位:克)数据绘制的频率分布直方图,其中产品净重的范围是[96,106],样本数据分组为[96,98),[98,100),[100,102),[102,104),[104,106],已知样本中产品净重小于100克的个数是36,则样本中净重大于或等于98克并且小于104克的产品的个数是()A. 90B. 108C. 60D. 456.现将100个数据分成了①﹣⑧,如表所示,则第⑤组的频率为()A. 11B. 12C. 0.11D. 0.127.共2000辆汽车通过某一段公路时的时速的频率分布直方图如下图所示,时速大于等于50且小于60的汽车大约有()A. 30辆B. 60辆C. 300辆D. 600辆8.如图是初一某班全体50位同学身高情况的频数分布直方图,则身高在160﹣165厘米的人数的频率是()A. 0.36B. 0.46C. 0.56D. 0.69.A校女生占全校总人数的40%,B校女生占全校总人数的55%,则女生人数()A. A校多于B校B. A校与B校一样多C. A校少于B校D. 不能确定10.如图是某班同学在一次体检中每分钟心跳的频数分布直方图(次数均为整数).已知该班只有5位同学的心跳每分钟75次,请观察图示,指出下列说法不一定正确的是()A. 数据75落在第二小组B. 第四小组的频率为0.1C. 心跳为每分钟75次的人数占该班体检人数的D. 心跳是65次的人数最多二、填空题11.在1000个数据中,用适当的方法抽取50个作为样本进行统计,在频数分布表中,54.5~57.5这一组的频率是0.12,那么估计总体数据落在54.5~57.5之间的约有________个.12.小明统计了他家今年5月份打电话的次数及通话时间,并列出了频数分布表:则通话时间不超过10min的频率为________ .13.统计得到一组数据,最大值时136,最小值是52,取组距为10,可以分成________组14.某中学七年级(1)班50名学生参加平均每周上网时间的调查,由调查结果绘制了频数分布直方图,根据图中信息可知a的值为________.15.李老师要对初三(1)、(2)班的考试情况进行分析,在两个班里随机抽取了30名学生的考试成绩:87、75、94、60、51、86、73、89、93、67、57、88、82、66、88、88、85、67、91、65、78、89、80、72、78、84、90、64、71、86.根据上述消息回答下列问题:(2)估计这两个班级本次考试成绩在80分及80分以上的占________ %;(4)是否一定能根据这30名学生的成绩估计全区考试成绩?答:________ .(5)80~90组的平均分为________ ,中位数为________ .16..一个样本有50个数据,分成三个组.已知第一、二组数据频率和为a,第二、三组数据频率和为b,则第二组的频率为________ .17.随着综艺节目“爸爸去哪儿”的热播,问卷调查公司为调查了解该节目在中学生中受欢迎的程度,走进某校园随机抽取部分学生就“你是否喜欢看爸爸去哪儿”进行问卷调查,并将调查结果统计后绘制成如下不完整的统计表:则a﹣b=________三、解答题18.食品安全问题已经严重影响到我们的健康.某执法部门最近就食品安全抽样调查某一家超市,从中随机抽样选取20种包装食品,并列出下表:请你根据以上信息解答下列问题:(1)这次抽样调查中,“食品质量为合格以上(含合格)”的频率为多少?(2)若这家超市经销的包装食品共有1300种,请你估计大约有多少种包装食品是“有害或有毒”的?29.某中学图书馆将图书分为自然科学、文学艺术、社会百科、哲学四类.在“读书月”活动中,为了了解图书的借阅情况,图书管理员对本月各类图书的借阅进行了统计,表和图是图书管理员通过采集数据后,绘制的两幅不完整的频率分布表与频数分布直方图.请你根据图表中提供的信息,解答以下问题:(1)表中m,n的值是多少?(2)在图中,将表示“自然科学”的部分补充完整;(3)若该学校打算采购一万册图书,请你估算“哲学”类图书应采购多少册较合适?(4)根据图表提供的信息,请你提出一条合理化的建议.。
人教版七年级数学下册第十章数据的收集、整理与描述第一节统计调查考试题(含答案) (84)

人教版七年级数学下册第十章数据的收集、整理与描述第一节统计调查考试用题(含答案)学校要统计六年级各班同学为学校、社会做好事件数的情况选用_____(①条形统计图②折线统计图)最好.【答案】①【解析】【分析】根据条形统计图和折线统计图的用途可选择出适合此题的结果.【详解】根据题意要统计六年级各班同学为学校、社会做好事件数的情况,则选择条形统计图比较合适.【点睛】本题考查了条形统计图和折线统计图,掌握两者之间的关系和区别是解决此题的关键.32.在条形统计图上,如果表示数据180的条形高4.5cm,则表示数据40的条形高____cm,高3cm的条形表示的数据是______.【答案】1 120【解析】【分析】根据条形统计图上的数据与条形高成比例来计算.【详解】设条形高xcm,18040,解得x=1cm.4.5x本题考查了条形统计图的知识,掌握条形统计图上数据与条形高的关系是解决此题的关键.33.请根据某开发区2000年至2002年年底人口总数的统计图回答下面问题:从2000年到2001年,人口增加了______,增长率是______;【答案】1万人约5.9%【解析】【分析】根据统计图中的数据进行计算即可.【详解】根据统计图易知,从2000年到2001年,人口增加了18-17=1(万人),增长率是1÷17≈5.9%.【点睛】本题考查了统计图,学会看统计图是解答本题的关键.34.统计图有折线统计图,_________和________等.【答案】条形统计图扇形统计图【解析】【分析】根据统计图的分类回答即可.统计图有折线统计图、条形统计图和扇形统计图.【点睛】本题主要考查了统计图的分类,熟记统计图有折线统计图、条形统计图和扇形统计图这个知识点是解答的关键.35.2003年中国人民银行就城镇居民对物价水平满意程度进行了抽样调查,结果如图,据此估计2003年城镇居民中对物价水平表示认可的约占____%.【答案】85.9【解析】【分析】满意和尚可接受都可视为认可,那么根据图中数据回答即可.【详解】从图中抽样调查的结果可以看出能够认可的人数约占30.2%+55.7%=85.9%,故答案是85.9.【点睛】统计的思想就是用样本的信息来估计总体的信息,本题体现了统计思想,考查了用样本估计整体.36.如图,是2001年3月至2002年2月日本失业人口占劳动力总人口的比例统计图,从图中可以看出,在这段时间内失业率最高的月份是_________,这个月份的失业率是_________,你认为2001年3月份的失业率大约是______.【答案】2001年12月 5.6% 4.7%(5%左右即可)【解析】【分析】根据统计图找出与题意相对应的答案.如这段时间内失业率最高的月份是折线的最高点.【详解】根据上图可得:这段时间内失业率最高的月份是2001年12月,这个月份的失业率5.6%,你认为2001年3月份的失业率大约是4.7%.故答案为:2001年12月,5.6%,4.7%.【点睛】本题考查了折线统计图的知识,读懂折线统计图是解题的关键.37.(株洲市)“阳光体育”运动在我市轰轰烈烈开展,为了解同学们最喜爱的阳光体育运动项目,小王对本班50名同学进行了跳绳,羽毛球,篮球,乒乓球,踢毽子等运动项目最喜爱人数的调查,并根据调查结果绘制了如上的人数分布直方图,若将其转化为扇形统计图,那么最喜爱打篮球的人数所在扇形区域的圆心角的度数为____________°【答案】144°【解析】【分析】由条形图可知最喜爱打篮球的人数是20人,再求得喜欢打篮球的人数所占的比例,乘以360°即可得解答.【详解】由条形统计图可知,最喜爱打篮球的人数是20人,∴(20÷50)×360°=144°.故答案为144°【点睛】本题考查了条形统计图及扇形统计图的相关计算.在扇形统计图中,每部分占总部分的百分比等于该部分所对应的扇形圆心角的度数与360°的比.38.在暑期社会实践活动中,小明所在小组的同学与一家玩具生产厂家联系,给该厂组装玩具,该厂同意他们组装240套玩具.这些玩具分为A、B、C 三种型号,它们的数量比例以及每人每小时组装各种型号玩具的数量如图所示:若每人组装同一种型号玩具的速度都相同,根据以上信息,完成下列填空:(1)从上述统计图可知,A 型玩具有_______套,B 型玩具有_______套,C 型玩具有____套.(2)若每人组装A 型玩具16套与组装C 型玩具12套所花的时间相同,那么a 的值为_____,每人每小时能组装C 型玩具__________套.【答案】132 48 60 4 6【解析】【分析】(1)扇形统计图中,各部分的数量=总体×所占百分比,由此即可求得各中型号的数量;(2)由题意得,1612822a =- ,解方程即可求a 的值,从而求得每人每小时能组装C 型玩具的数量.【详解】(1)240×55%=132,240×(1-55%-25%)=48,240×25%=60.(2)由题意得,1612822a =-, 16(2a-2)=12×8解之,得a=4,经检验a=4是原分式方程的解.2a-2=2×4-2=6.故答案为:(1)132;48;60;(2)4;6.【点睛】本题考查扇形图、条形图的综合运用,解题关键在于结合两个统计图,找到总数与各部分的关系.39.一个班级有48名同学,在一次联欢会主持人选举中,每名同学都投一票,没有弃权票,张明同学获得21票,李晓同学获得12票,董凌同学获得15票,则张明的得票率是____,李晓同学的得票率是______,董凌同学的得票率是_______.【答案】243.75%25%31.25%【解析】【分析】根据得票率=得票数÷总数即可解答.【详解】共有48名同学,其中张明获得21票,则其得票率是21÷48=43.75%;李晓获得12票,则其得票率是12÷48=25%;董凌获得15票,则其得票率是15÷48=31.25%.故答案为: 43.75%;25%;31.25%.【点睛】本题考查了统计中的得票率问题,掌握得票率的计算方法得票率=得票数÷总数是解决问题的关键.40.为了了解汽车在某一路口的流量,调查了10天中在每天同一时段里通过该路口的汽车辆数,结果如下:183,209,195,178,204,215,191,208,167,200,于是可以得出:在每天该时段里,平均约有________辆汽车通过这个路口.【答案】195【解析】【分析】根据在每天该时刻内,平均车辆数=调查的总车辆数,进行计算就可以解决调查天数问题.【详解】10天中调查的总车辆数为:183+209+195+178+204+215+191+208+167+200=1950=195.结合平均数的定义可知:在每天该时刻内,平均车辆数约为195010【点睛】本题考查了平均数,解题的关键是掌握平均数的概念.。
人教版七年级下册数学第十章 数据的收集、整理与描述含答案(综合题)

人教版七年级下册数学第十章数据的收集、整理与描述含答案一、单选题(共15题,共计45分)1、下列说法正确的是()A.掷一枚均匀的骰子,骰子停止转动后,6点朝上是必然事件B.甲、乙两人在相同条件下各射击10次,他们的成绩平均数相同,方差是S 2甲=0.4 C.“明天降雨的概率为”,表示明天有半天都在降雨 D.了解一批电视机的使用寿命,适合用普查的方式2、在对n个数据进行整理的频率分布表中,各组的频数与频率之和分别等于()A.n,1B.n,C.1,D.1,13、为了解全校学生的上学方式,在全校1000名学生中随机抽取了150名学生进行调查.下列说法正确的是()A.总体是全校学生B.样本容量是1000C.个体是每名学生D.样本是随机抽取的150名学生的上学方式4、为参加全市中学生足球赛.某中学从全校学生中选拔22名足球运动员组建校足球队,这22名运动员的年龄(岁)如下表所示,该足球队队员的平均年龄是()年龄(岁)12 13 14 15人数7 10 3 2C.14岁D.15岁5、下列说法正确的是()A.四个数2、3、5、4的中位数为4B.想了解郏县初三学生备战中考复习情况,应采用普查C.一组数据的方差越大,则这组数据的波动也越大D.从初三体考成绩中抽取100名学生的体考成绩,这100名考生是总体的一个样本6、下列说法正确的是()A.“品尝一勺汤,就知道一锅汤的味道“其蕴藏的数学知识是“通过样本可以估计总体”B.今年春节前4天(农历初一至初四)一位滴滴司机平均每天的纯收入为800元,则由此推算他2月份的月纯收人为56000元C.为掌握我市校外培训机构是否具备应有的资质可采用抽样调查的方式D.为了解我市市民对创建全国文明城市的知晓情况,适宜采用普查方式7、如表是某毕业班理化实验测试的分数分布,对于不同的x,下列关于分数的统计量不会发生改变的是()分数/分7 8 9 10 频数 2 9﹣x x+14 24A.众数、方差B.中位数、方差C.众数、中位数D.平均数、中位数8、在1-7月份,某种水果的每斤进价与出售价的信息如图所示,则出售该种水果每斤利润最大的月份是()A.3月份B.4月份C.5月份D.6月份9、下列说法正确的是()A.调查某班学生的身高情况,适宜采用抽样调查B.“若m、n互为相反数,则mn=0”,这一事件是必然事件C.小南抛挪两次硬币都是正面向上,说明抛掷硬币正面向上的概率是1D.“1,3,2,1的中位数一定是2”,这一件是不可能事件10、下列调查的样本具有代表性的是()A.利用当地的七月份的日平均最高气温值估计当地全年的日最高气温B.在农村调查市民的平均寿命C.利用一块实验水稻田的产量估水稻的实际产量D.为了了解一批洗衣粉的质量情况,从仓库中任意抽取100袋进行检验11、小明在选举班委时得了28票,下列说法错误的是()A.不管小明所在的班级有多少学生,所有选票中选小明的选票频率不变B.不管小明所在的班级有多少学生,所有选票中选小明的选票频数不变C.小明所在班级的学生人数不少于28人D.小明的选票的频率不能大于112、为了描述玉林市某一天气温变化情况,应选择()A.扇形统计图B.折线统计图C.条形统计图D.直方图13、某数学兴趣小组根据温州气象部门发布的有关数据,制作了PM2.5来源统计图,根据该统计图,下列判断正确的是()A.表示汽车尾气污染的圆心角约为72°B.表示建筑扬尘的约占6% C.汽车尾气污染约为建筑扬尘的5倍 D.煤炭以及其他燃料排放占所有PM2.5污染源的14、新区四月份第一周连续七天的空气质量指数(AQI)分别为:118,96,60,82,56,69,86.则这七天空气质量变化情况最适合用哪种统计图描述()A.条形统计图B.扇形统计图C.折线统计图D.以上都不对15、下列说法中正确的是( )A.“打开电视,正在播放《新闻联播》”是必然事件;B.某次抽奖活动中奖的概率为,说明每买100张奖券,一定有一次中奖;C.数据1,1,2,2,3的众数是3; D.想了解台州市城镇居民人均年收入水平,宜采用抽样调查.二、填空题(共10题,共计30分)16、为丰富学生的课余生活,某中学开展了手工制作比赛,如图是该校八年级进入了校决赛的15名学生制作手工作品所需时间(单位:分钟)的统计图,则这15名学生制作手工作品所需时间的众数是________.17、有一组样本容量为20的数据,分别是:7、10、8、14、9、7、12、11、10、8、13、10、8、11、10、9、12、9、13、11,那么该样本数据落在范围8.5~10.5内的频率是________.18、近期,某区与某技术支持单位合作,组织策划了该区“低碳先锋行动”,开展低碳测量和排行活动.根据调查数据制作了频数分布直方图和扇形统计图,图(1)中从左到右各矩形的高度之比为2 : 8 : 9 : 7 : 3 : 1,那么在下图(2)中碳排放值5≤x<7(kg/平方米·月)部分的圆心角为________度.19、调查50个学生时,发现身高为164至168cm的学生有12人,这部分学生占50个学生的百分比为________,该部分对应的扇形的圆心角是________.20、某校八年级共四个班,各班寒假外出旅游的学生人数如图所示,那么三班外出旅游学生人数占全年级外出旅游学生人数的百分比为________21、如图是七年级(21)班学生上学的不同方式的扇形统计图,若步行人数所占的圆心角的度数为72°,坐车的人数占40%,骑车人数为20人,则该班人数为________人.22、首都国际机场连续五年排名全球最繁忙机场第二位,该机场2012﹣客流量统计结果如表:年份2012 2013 2014 2015 2016客流量(万人次)8192 8371 8613 8994 9400根据统计表中提供的信息,预估首都国际机场客流量约________万人次,你的预估理由是________.23、九年级(3)班共有50名同学,如图是该班一次体育模拟测试成绩的频数分布直方图(满分为30分,成绩均为整数).若将不低于23分的成绩评为合格,则该班此次成绩达到合格的同学占全班人数的百分比是________ .24、根据某商场四个季度的营业额绘制成如图所示的扇形统计图,其中二季度的营业额为1000万元,则该商场全年的营业额为________万元.25、一个圆被分成四个扇形,若各个扇形的面积之比为4:2:1:3,则最小的扇形的圆心角的度数为________°.三、解答题(共6题,共计25分)26、为了了解某校七年级男生的体能情况,从该校七年级抽取50名男生进行1分钟跳绳测试,把所得数据整理后,画出频数分布直方图.已知图中从左到右第一、第二、第三、第四小组的频数的比为1:3:4:2.(1)总体是多少,个体是多少?,样本容量是多少?(2)求第四小组的频数和频率;(3)求所抽取的50名男生中,1分钟跳绳次数在100次以上(含100次)的人数占所抽取的男生人数的百分比.27、随机抽取某城市30天的空气质量状况统计如下:40 70 90 110 120 140污染指数(w)天数(t) 3 5 10 7 4 1其中,w≤50时,空气质量为优;50<w≤100时,空气质量为良;100<w≤150时,空气质量为轻微污染.估计该城市一年(以365天计)中有多少天空气质量达到良以上.28、如图,已知甲、乙、丙三个扇形的面积比为3:4:5,分别求出它们圆心角的度数.29、某厂生产一种产品,图①是该厂第一季度三个月产量的统计图,图②是这三个月的产量与第一季度总产量的比例分布统计图,统计员在制作图①,图②时漏填了部分数据.根据上述信息,回答下列问题:(1)求该厂一月份产量占第一季度总产量的百分比?(2)该厂第一季度的总产量是多少?并在图①中补完直方图.(3)该厂质检科从第一季度各月的产品中随机抽样,抽检结果发现样品在一月、二月、三月的合格率分别为95%、97%、98%.请你估计:该厂第一季度大约生产了多少件合格的产品?30、在期末评选优秀班干部的投票选举中,小华、小颖、小亮、小聪每人得到赞成票数如下,在表中填写每人获得的赞成总票数.参考答案一、单选题(共15题,共计45分)1、B2、A3、D4、B5、C6、A7、C9、D10、D11、A12、B13、C14、C15、D二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、25、三、解答题(共6题,共计25分)27、28、30、。
2022年人教版初中数学七年级下册第十章数据的收集、整理与描述综合测评试题(含答案解析)
初中数学七年级下册第十章数据的收集、整理与描述综合测评(2021-2022学年考试时间:90分钟,总分100分)班级:__________ 姓名:__________ 总分:__________一、单选题(10小题,每小题3分,共计30分)1、某校九年级(3)班团支部为了让同学们进一步了解中国科技的发展,给班上同学布置了一项课外作业,从选出的以下五个内容中任选部分内容进行手抄报的制作:A、“北斗卫星”;B、“5G时代”;C、“智轨快运系统”;D、“东风快递”;E、“高铁”,统计同学们所选内容的频数,绘制如图所示的折线统计图,则选择“5G时代”的频率是()A.0.25 B.0.3 C.2 D.302、如图,有100名学生参加两次科技知识测试,条形图显示两次测试的分数分布情况.根据条形图提供的信息可知,两次测试最低分在第______ 次测试中,第____次测试较容易()A .一,二B .二,一C .一,一D .二,二3、某运动品牌经销商对鞋码大小进行抽样调查,经销商最感兴趣的数据是( )A .中位数B .平均数C .众数D .方差4、已知一组数据8,6,10,10,13,11,8,10,12,12,9,8,7,12,9,11,9,10,11,10.那么频率是0.2的一组数据的范围是( )A .68x ≤<B .810x ≤<C .1012x ≤<D .1214x ≤<5、中学生骑电动车上学给交通安全带来隐患,为了了解某中学2500个学生家长对“中学生骑电动车上学”的态度,从中随机调查400个家长,结果有360个家长持反对态度,则下列说法正确的是( )A .调查方式是普查B .该校只是360个家长持反对态度C .样本是360个家长D .该校约有90%的家长持反对态度6、某公司的生产量在1﹣7月份的增长变化情况如图所示,从图上看,下列结论正确的是( )A.1月份生产量最大B.这七个月中,每月的生产量不断增加C.1﹣6月生产量逐月减少D.这七个月中,生产量有增加有减少7、下列调查中,最适合采用全面调查的是()A.疫情防控阶段进出某小区人员的体温检测 B.调查湖北省七年级学生的身高C.检测一批手持测温仪的使用寿命D.端午节期间市场上粽子质量8、下列调查适合作抽样调查的是()A.了解义乌电视台“同年哥讲新闻”栏目的收视率B.了解某甲型H1N1确诊病人同机乘客的健康状况C.了解某班每个学生家庭电脑的数量D.“神七”载人飞船发射前对重要零部件的检查9、七年级若干名学生参加歌唱比赛,其预赛成绩(分数为整数)的频数分布直方图如图,成绩80分以上(不含80分)的进入决赛,则进入决赛的学生的频数和频率分别是()A.14,0.7 B.14,0.4 C.8,0.7 D.8,0.410、如下条形图、扇形图分别是甲、乙两户居民家庭全年支出费用的统计图.根据统计图,对两户“教育”支出占全年总支出的百分比所作出的判断中,正确的是()A.甲比乙多B.乙比甲多C.甲、乙一样多D.无法确定哪一户多二、填空题(5小题,每小题4分,共计20分)1、为了考察我市5000名七年级学生数学知识与能力测试的成绩,从中抽取100份试卷进行分析,那么样本容量是_____.2、去年某市有9万名初中毕业生参加升学考试,为了了解这9万名考生的数学成绩,从中取2000名考生数学成绩进行统计分析.在这个抽样中,总体是________,个体是________,样本是________,样本容量是________.3、甲、乙两公司经营同种产品,近年的销售量如图所示销量增速较快的是__公司.4、在对某班的一次数学测验成绩进行统计分析中,各分数段的人数如图所示.由图可知:(1)该班有________名学生;(2)69.5~79.5这一组的频数是________,频率是________.5、2020年末,我国完成了第7次人口普查,国家统计局采取的调查方式是_______.(填“全面调查”“抽样调查”)三、解答题(5小题,每小题10分,共计50分)1、某音像制品店某一天的销售的情况如图:(1)从条形统计图看,民歌类唱片与流行歌曲唱片销售量之比大约是多少?从扇形统计图看呢?(2)要使读者清楚地看出各类音像制品的销售量之比,条形统计图应做怎样的改动?2、在“迎新年,庆元旦”期间,某商场推出A、B、C、D四种不同类型礼盒共1000盒进行销售,在图1中是各类型礼盒所占数的百分比,已知四类礼盒一共已经销售了50%,各类礼盒的销售数量如图2所示:(1)商场推出的C类礼盒有盒;(2)在扇形统计图中,C部分所对应的圆心角等于度;(3)请将条形统计图补充完整;(4)你觉得哪一类礼盒销售最快,请说明理由.3、一个面粉批发商统计了前48个星期的销售量(单位:t):请将数据适当分组,列出频数分布表,画出频数分布直方图,并分析这个面粉批发商每星期进面粉多少吨比较合适.4、学校为了了解全校1600名学生对“初中学生带手机上学”现象的看法,在全校随机抽取了若干名学生进行问卷调查.问卷给出了四种看法供学生选择,每人只能选一种,且不能不选.将调查结果整理后,绘制成如图①、图②所示的条形统计图与扇形统计图(均不完整).(1)在这次调查中,一共抽取了多少名学生?(2)补全条形统计图和扇形统计图;(3)估计全校有多少名学生对“初中学生带手机上学”现象持“不赞同”的看法.5、为引导学生知史爱党、知史爱国,某中学组织全校学生进行“党史知识”竞赛,该校德育处随机抽取部分学生的竞赛成绩进行统计,将成绩分为四个等级:优秀、良好、一般、不合格,并绘制成两幅不完整的统计图.根据以上信息,解答下列问题:(1)德育处一共随机抽取了______名学生的竞赛成绩;在扇形统计图中,表示“一般”的扇形圆心角的度数为_______;(2)将条形统计图补充完整;(3)该校共有1400名学生,估计该校大约有多少名学生在这次竞赛中成绩优秀?---------参考答案-----------一、单选题1、B【解析】【分析】先计算出九年级(3)班的全体人数,然后用选择“5G时代”的人数除以九年级(3)班的全体人数即可.【详解】由图知,九年级(3)班的全体人数为:25+30+10+20+15=100(人),选择“5G时代”的人数为:30人,∴选择“5G时代”的频率是:30100=0.3;故选:B.【点睛】本题考查了频数分布折线图,及相应频率的计算,熟知以上知识是解题的关键.2、A【解析】【分析】根据条形统计图,发现最低分显然在第一次测验中;因为第二次测验的高分人数较多,所以第二次测验较容易.【详解】解:根据条形统计图,发现最低分在第一次测验中;因为第二次测验的高分人数较多,所以第二次测验较容易.故选A.【点睛】条形统计图能清楚地表示出每个项目的数据,能够根据条形统计图读懂两者分别表示的意义是关键.3、C【解析】【分析】经销商最感兴趣的是这组鞋号中销售量最大的尺码,即这组鞋号的众数.【详解】解:由于众数是数据中出现次数最多的数.经销商最感兴趣的是这组鞋号中销售量最大的尺码,故应关注众数的大小.故选:C.【点睛】本题主要考查学生对统计量的意义的理解与运用,要求学生对统计量进行合理的选择和恰当的运用.4、D【解析】【分析】首先知共有20个数据,根据公式:频数=频率×总数,知要使其频率为0.2,其频数应为4,然后观察选项中哪组数据包含样本中的数据有4个即可求解.【详解】解:这组数据共20个,要使其频率为0.2,则频数为:20×0.2=4个,选项A中包含的数据有:6和7,其频数为2;选项B中包含的数据有:8,8,8,9,9,9,其频数为6;选项C中包含的数据有:10,10,10,10,10,11,11,11,其频数为8;选项D中包含的数据有:12,12,12,13,其频数为4,故选:D.【点睛】本题考查了频数与频率的概率,掌握公式“频数=频率×总数”是解决本题的关键.5、D【解析】【分析】根据抽查与普查的定义以及用样本估计总体解答即可.【详解】解:A.共2500个学生家长,从中随机调查400个家长,调查方式是抽样调查,故本项错误,不符合题意;B.在调查的400个家长中,有360个家长持反对态度,该校只有36025002250400⨯=个家长持反对态度,故本项错误,不符合题意;C.样本是360个家长对“中学生骑电动车上学”的态度,故本项错误,不符合题意;D.该校约有90%的家长持反对态度,本项正确,符合题意,故选:D.【点睛】本题考查了抽查与普查的定义以及用样本估计总体,解题的关键是掌握这些是基础知识.6、B【解析】【分析】根据折线图的特点判断即可.【详解】解:观察折线图可知,这七个月中,每月的生产量不断增加,故B正确,C,D错误;每月的生产量不断增加,故7月份的生产量最大,A错误;故选:B.【点睛】本题考查折线统计图,增长率等知识,解题的关键是理解题意,灵活运用所学知识解决问题.7、A【解析】【分析】根据调查对象的特点,结合普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果接近准确数值,从而可得答案.【详解】解:A 疫情防控阶段进出某小区人员的体温检测,适合采用全面调查方式,故本选项符合题意;B 调查湖北省七年级学生的身高,适合采用抽样调查,故本选项不合题意;C 检测一批手持测温仪的使用寿命,适合采用抽样调查,故本选项不合题意;D 调查端午节期间市场上粽子质量,适合采用抽样调查,故本选项不合题意.故选:A.【点睛】本题考查的是抽样调查和全面调查,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.8、A【解析】【分析】根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似判断即可.【详解】解:A、了解义乌电视台“同年哥讲新闻”栏目的收视率,应采用抽样调查的方式,故本选项符合题意;B、了解某甲型H1N1确诊病人同机乘客的健康状况,应采用全面调查,故本选项不符合题意;C、了解某班每个学生家庭电脑的数量,应采用全面调查,故本选项不符合题意;D、“神七”载人飞船发射前对重要零部件的检查,应采用全面调查,故本选项不符合题意;故选:A.【点睛】本题考查的是抽样调查和全面调查的区别,熟练掌握选择普查还是抽样调查要根据所要考查的对象的特征灵活选用是解题的关键.一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.9、D【解析】【分析】根据题意,成绩分式为整数,则大于80.5的频数为5+3=8,根据频率等于频数除以总数即可求得【详解】依题意,成绩分式为整数,则大于80.5的频数为5+3=8,学生总数为2465320++++=.则频率为80.420=. 故选D .【点睛】本题考查了频数分布直方图,根据题意求频数和频率,读懂题意以及统计图是解题的关键.10、B【解析】【分析】根据条形统计图求得教育支出的具体数,进而求得甲居民家庭教育支出所占百分比,结合扇形统计图进行比较即可【详解】1200100%20%1200200012001600⨯=+++, 根据扇形统计图可知乙居民家庭教育支出所占百分比为25%,∴乙比甲多,故选B .【点睛】本题主要考查了条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.二、填空题1、100【解析】【分析】直接利用样本容量的定义分析得出答案.解:∵从中抽取100份试卷进行分析,∴样本容量是:100.故答案为:100.【点睛】本题考查了总体、个体、样本、样本容量的知识,属于基础题,解答本题的关键是分清具体问题中的总体、个体与样本.2、 9万名考生的数学成绩每名考生的数学成绩被抽出的2000名考生的数学成绩2000【解析】【分析】根据抽样中总体、个体、样本以及样本容量的概念解答即可.【详解】根据题意,在这个抽样中,总体是9万名考生的数学成绩,个体是每名考生的数学成绩,样本是被抽出的2000名考生的数学成绩,样本容量是2000.故答案为:9万名考生的数学成绩;每名考生的数学成绩;被抽出的2000名考生的数学成绩;2000.【点睛】本题主要考查了对抽样中总体、个体、样本以及样本容量的理解,属于基础题,掌握总体、个体、样本以及样本容量的概念是解题关键.3、乙【分析】根据两个统计图中数据的变化情况进行判断.【详解】解:甲公司2016年至2019年,销售量从4万件增加到7万件,而乙公司2016年至2019年,销售量从4万件增加到约8.2万件,因此乙公司增速较快,故答案为:乙.【点睛】本题考查折线统计图的意义,掌握折线统计图中数量的变化情况是正确判断的前提.4、 60 18 0.3【解析】【分析】(1)根据直方图的意义,将各组频数之和相加可得答案;(2)由直方图可以看出:频数为18,又已知总人数,相除可得其频率.【详解】解:(1)根据直方图的意义,总人数为各组频数之和=6+8+10+18+16+2=60(人),故答案是:60;(2)读图可得:69.5~79.5这一组的频数是18,频率=18÷60=0.3,故答案是:18,0.3.【点睛】本题主要考查频率和频数,频数直方图,读图时要全面细致,关键要充分运用数形结合思想来解决由统计图形式给出的数学实际问题.5、全面调查【解析】【分析】根据全面调查和抽样调查的概念判断即可.【详解】解:为了全面的、可靠的得到我国人口信息,所以国家统计局采取的调查方式是全面调查,故答案为:全面调查.【点睛】本题考查的是全面调查和抽样调查,解题的关键是掌握通过普查可以直接得到较为全面、可靠的信息,但花费的时间较长,耗费大,且一些调查项目并不适合普查.其一,调查者能力有限,不能进行普查,其二,调查过程带有破坏性,其三,有些被调查的对象无法进行普查.三、解答题1、(1)从条形统计图直观地看,民歌类唱片与流行歌曲唱片销售量之比约为2:3;从扇形统计图看,它们的比为2: 3;(2)应将0作为纵轴上销售量的起始值.【分析】(1)用民歌类唱片销售量除以流行歌曲唱片销售量即可.(2)根据条形统计图的特点回答即可.【详解】解:(1)从条形统计图看,民歌类唱片销售量为:80(张),流行歌曲唱片销售量为:120(张),∴民歌类唱片与流行歌曲唱片销售量之比约为80:120=2:3;从扇形统计图看,民歌类唱片与流行歌曲唱片销售量之比约为80:120=2:3;(2)要使读者清楚地看出各类音像制品的销售量之比,应将0作为纵轴上销售量的起始值.【点睛】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.2、(1)200;(2)72;(3)见解析;(4)A类礼盒销售最快,见解析.【分析】(1)求出C类礼盒所占的百分比即可计算其数量;(2)C类礼盒相应圆心角的度数为360°乘以所占的百分比即可;(3)求出销售的C类礼盒的数量,即可补全条形统计图;(4)比较四类礼盒销售的数量即可得出答案.【详解】解:(1)1000×(1﹣35%﹣25%﹣20%)=200(盒),故答案为:200;(2)360°×(1﹣35%﹣25%﹣20%)=72°,故答案为:72;(3)1000×50%﹣168﹣80﹣150=102(盒),补全条形统计图如图所示:(4)在相同的时间内,A类礼盒共销售168盒,B类礼盒共销售80盒,C类礼盒共销售102盒,A类礼盒共销售150盒,因此,A类礼盒销售最快.【点睛】本题考查了条形统计图、扇形统计图的意义和制作方法,理解统计图中各个数量之间的关系是解决问题的关键.3、见解析【分析】先算出数据最大值与最小值之差,取组距进行分组即可得频数分布表,频数分布直方图;【详解】解:计算最大值与最小值的差:数据的最小值是18.5t,最大值是24.4t,24.418.5 5.9-=(t),决定组距与组数:取组距为1t,则分成6组,设每星期销售面粉x t,则可分为:x≤≤,20.521.5≤≤,18.519.5xx≤≤,19.520.5x≤≤≤≤,23.524.5≤≤,22.523.5x21.522.5x频数分布表:正正频数分布直方图:∵这组数据的中位数在21.522.5≤≤,x∴这批面粉批发商每星期进22吨面粉比较合适.【点睛】本题考查了频数分布表,频数分布直方图,解题的关键是将熟练掌握绘制频数分布表的方法.4、(1)200名;(2)见解析;(3)720名【分析】(1)根据对“初中学生带手机上学”现象赞同的学生数除以所占的百分比即可求出调查的学生总数;(2)根据学生总数求出“无所谓”的学生数,补全条形统计图,再根据“无所谓”,“赞同”,“不赞同”的百分比求出“很赞同”的百分比,补全扇形统计图即可;(3)利用“不赞同”学生数所占的百分比,乘以1600即可得到结果;【详解】解:()1由题意可得,÷=名),这次调查的学生有:5025%200(即在这次调查中,一共抽取了200名学生;()2无所谓的学生有:20020509040(---=名),很赞同所占的百分比为:120%25%45%10%---=,补全的条形统计图和扇形统计图如图所示,()3160045%720(⨯=名),【点睛】本题考查了扇形统计图和条形统计图的综合,解答此类题目,要善于发现二者之间的关联点,即两个统计图都知道了哪个量的数据,从而用条形统计图中的具体数量除以扇形统计图中占的百分比,求出样本容量,进而求解其它未知的量.5、(1)40,108°;(2)见解析;(3)估计该校大约有350名学生在这次竞赛中成绩优秀.【分析】(1)由成绩“良好”的学生人数除以所占百分比求出德育处一共随机抽取的学生人数,即可解决问题;(2)把条形统计图补充完整即可;(3)由该校共有学生人数乘以在这次竞赛中成绩优秀的学生所占的比例即可.【详解】解:(1)德育处一共随机抽取的学生人数为:16÷40%=40(名),则在条形统计图中,成绩“一般”的学生人数为:40-10-16-2=12(名),∴在扇形统计图中,成绩“一般”的扇形圆心角的度数为:360°×1240=108°,故答案为:40,108°;(2)把条形统计图补充完整如下:(3)1400×1040=350(名),即估计该校大约有350名学生在这次竞赛中成绩优秀.【点睛】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.。
新人教版数学七年级下《10.1统计调查》课时练习含答案解析
新人教版数学七年级下册第十章第一节统计调查练习一、选择题:1.以下调查中适合做普查的是()A.值日老师调查各班学生的出勤情况B.调查长江水的污染情况C.调查某种钢笔的使用情况D.中央电视台调查某节目的收视率答案:A知识点:全面调查与抽样调查解析:解答:A.工作量小,没有破坏性,适合普查;B、D范围广,工作量大,不宜采取普查,只能采取抽样调查;C调查具有破坏性,适宜抽样调查.分析:有普查得到的调查结果比较准确,但所费人力、物、时间较多;一般来说,对于具有破坏性的调查,或无法进行普查时,应选择抽样调查.2.为了了解某县30~50岁成人的健康状况,采取了抽样调查方式获得结果,下面所采取的抽样合理的是( )A.抽查了该县30~50岁的男性公民B.抽查了该县城区30~50岁的成人20名C.抽查了该县所有30~50岁的工人D.随机抽查了该县所有30~50岁成人400名答案:D知识点:抽样调查的可靠性解析:解答:A、没有抽查到女性公民,不具有普遍性;B、抽查范围小,不具有普遍性;C、只抽查了工人,没有抽查其他职业的劳动者所以不具有普遍性.故选D分析:采取抽样调查时,应保证被抽中的调查样本在总体中的合理、均匀分布,调查出现倾向性的偏差是极小的,样本对总体的代表性是很强的。
3.想表示某种品牌奶粉中蛋白质、钙、维生素、糖、其它物质的含量的百分比,应该利用( ):A.条形统计图B.扇形统计图C.折线统计图D.以上都可以答案:B知识点:统计图的选择解析:解答:解:由题意得,想反映某种品牌奶粉中蛋白质、钙、维生素、糖、其它物质的含量的百分比,应该利用扇形统计图.故选B分析:根据扇形统计图表示的是部分在总体中所占的百分比,即可进行选择.4.考察50名学生的年龄,列频数分布表时,这些学生的年龄落在5个小组中,第一、二、三、五组的数据个数分别是2,8,15,5,则第四组的频率是()A.20B.0.4C.0.6D.30答案:B知识点:频数(率)分布表解析:解答:解:∵第一、二、三、五组的数据个数分别是2,8,15,5∴第四组的频数=50-(2+8+15+5)=20∴第四组的频率==0.4故选B分析:∵∴根据题意可得,第四组的频数=50-(2+8+15+5)=20,再带入公式即可。
10.1人教版七年级下第十章第一节统计调查练习题
10.1人教版七年级下第十章第一节统计调查练习题一、单选题1.下列调查中适合采用普查方式的是()A.了解一大批炮弹的杀伤半径B.调查全国初中学生的上网情况C.旅客登机前的安检D.了解成都市中小学生环保意识2.为了测算一块600亩试验田里新培育的杂交水稻的产量,随机对其中的10亩杂交水稻的产量进行了检测,在这个问题中,数字10是()A.个体B.总体C.样本容量D.总体的样本3.王大伯为了估计他家鱼塘里有多少条鱼,从鱼塘里捞出150条鱼,将它们作上标记,然后放回鱼塘.经过一段时间后,再从中随机捕捞300条鱼,其中有标记的鱼有30条,请估计鱼塘里鱼的数量大约有()A.1500条B.1600条C.1700条D.3000条4.在武汉市举办的“读好书、讲礼仪”活动中,某学校积极行动,各班图书角的新书、好书不断增多,除学校购买外,还有师生捐献的图书.下面是七年级(1)班全体同学捐献图书的情况统计图,根据图中信息,该班平均每人捐书的册数是()A.3B.3.2C.4D.4.55.请指出下列抽样调查中,样本缺乏代表性的是()①在某大城市调查我国的扫盲情况;②在十个城市的十所中学里调查我国学生的视力情况;③在一个鱼塘里随机捕了十条鱼,了解鱼塘里鱼的生长情况;④在某一农村小学里抽查100名学生,调查我国小学生的健康状况.A.①②B.①④C.②④D.②③6.5G网络是第五代移动通信网络,它将推动我国数字经济发展迈上新台阶.据预测,2020年到2030年中国5G直接经济产出和间接经济产出的情况如下图所示.根据上图提供的信息,下列推断不合理的是()A.2030年5G间接经济产出比5G直接经济产出多4.2万亿元B.2020年到2030年,5G直接经济产出和5G间接经济产出都是逐年增长C.2030年5G直接经济产出约为2020年5G直接经济产出的13倍D.2022年到2023年与2023年到2024年5G间接经济产出的增长率相同7.要反映武汉市某月每天的最低气温的变化趋势,宜采用()A.条形统计图B.折线统计图C.扇形统计图D.频数分布统计图8.下列调查适合用查阅资料的方法收集数据的是( )A.在NBA明星中,谁进球最多B.本班学生最喜爱的体育项目C.班级推选形象大使D.本校学生的到校时间9.今年刷爆朋友圈的一句小诗:“苔花如米小,也学牡丹开”是央视一台《经典咏流传》节目中的内容.该节目已夺得本年度文化类节目全国网最高的收视率1.33%.下列说法正确的是()A.这个收视率是通过普查获得的B.这个收视率是对北京市用等距抽样调查获得的C.从全国随机抽取10000户约有133户看了《经典咏流传》D.全国平均每10000户约有133户看了《经典咏流传》10.下列调查中,样本最具有代表性的是()A.在重点中学调查全市高一学生的数学水平B.调查七年级中的两位同学,以了解全校学生的课外辅导用书拥有量C.为了了解武汉市老人的身体健康状况,选取公园内锻炼的100位老人作调查D.了解班上学生的睡眠时间,调查班上学号为双的学生的睡眠时间二、填空题11.为了了解某地区45000名九年级学生的睡眠情况,运用所学统计知识解决上述问题所要经历的几个主要步骤:①抽样调查;①设计调查问卷;①用样本估计总体;①整理数据;①分析数据,按操作的先后进行排序为____.(只写序号)12.空气是由多种气体混合而成的,为了直观地介绍空气各成分的百分比,最适合使用的统计图是_____(从“条形图,扇形图,折线图和直方图”中选一个)13.在抽取样本的过程中,总体中的每一个个体都有相等的机会被抽到,像这样的抽样方法是一种__________抽样,通常样本容量越大,估计精度就会越_________(填“高”或“低”).14.从编号为1~50的总体中抽取10个个体组成一个样本,下列抽样最能够反映总体特征的是________(填序号).①选取1~10组成样本;②选取41~50组成样本;③选取末尾是0和5的组成样本;④随机地选取10个个体组成样本.三、解答题15.为了增强学生的环保意识,某校组织了一次全校2000名学生都参加的“环保知识”考试,考题共10题.考试结束后,学校团委随机抽查部分考生的考卷,对考生答题情况进行分析统计,发现所抽查的考卷中答对题量最少为6题,并且绘制了如下两幅不完整的统计图.请根据统计图提供的信息解答以下问题:(1).本次抽查的样本容量是;在扇形统计图中,m=,n=,“答对8题”所对应扇形的圆心角为度;(2).将条形统计图补充完整;(3).请根据以上调查结果,估算出该校答对不少于8题的学生人数.16.我校学生会准备调查七年级学生参加“武术类”、“书画类”、“棋牌类”、“器乐类”四类校本课程的人数:(1).确定调查方式时,甲同学说:“我到七年级(1)班去调查全体同学”;乙同学说:“放学时我到校门口随机调查部分同学”;丙同学说:“我到七年级每个班随机调查一定数量的同学”。
选择合适的统计图(练习)七年级数学下册同步精品课堂(人教版)(解析版)
第十章数据的收集、整理与描述10.1.2选择合适的统计图精选练习答案一.选择题(共10小题)1.下列统计图中,最宜反映气温变化的是()A.折线统计图B.条形统计图C.扇形统计图D.频数分布直方图【解答】解:可以直观地反映出数据变化的趋势的统计图是折线统计图,故选:A.2.反映偃师市某一周每天的最高气温的变化趋势,宜采用()A.折线统计图B.扇形统计图C.条形统计图D.统计表【解答】解:根据题意,要求直观反映偃师市某一周每天的最高气温的变化趋势,结合统计图各自的特点,应选择折线统计图.故选:A.3.要反映我市某脱贫户2016年至2020年人均纯收入的变化趋势,最适合使用的统计图表是()A.折线统计图B.条形统计图C.扇形统计图D.统计表【解答】解:根据统计图的特点,要反映我市某脱贫户2016年至2020年人均纯收入的变化趋势,最适合使用的统计图表是折线统计图.故选:A.4.某班共有60位同学,班长把全班同学秋游地点的普查情况绘制成扇形统计图,得知想去“湖心岛“秋游的人数所占扇形的圆心角为60°,则下列说法正确的是()A.想去“湖心岛”的人数占全班同学的60%B.想去“湖心岛”的同学有36人C.想去“湖心岛”的人数肯定最多D.想去“湖心岛”的人数占全班同学的【解答】解:由想去“湖心岛“秋游的人数所占扇形的圆心角为60°知,想去“湖心岛”的人数占全班同学的×100%=16.67%,故A选项不符合题意;想去“湖心岛”的同学有60×=10(人),故B选项不符合题意;想去“湖心岛”的人数不一定是最多的,故C选项不符合题意;想去“湖心岛”的人数占全班同学的=,故D选项符合题意;故选:D.5.某地区经过一年的新农村建设,农村的经济收入增加了一倍.实现翻番.为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例.得到如下饼图:则下面结论中不正确的是()A.新农村建设后,种植收入减少B.新农村建设后,其他收入增加了一倍以上C.新农村建设后,养殖收入增加了一倍D.新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半【解答】解:设新农村建设前农村经济收入为a,可得新农村建设后农村的经济收入为2a,则新农村建设前,农村的种植收入为0.6a,其他收入为0.04a,养殖收入为0.3a,第三产业收入为0.06a,新农村建设后,农村的种植收入为0.74a,其他收入为0.1a,养殖收入为0.6a,第三产业收入为0.56a,对于A,新农村建设后,种植收入增加,故选项A错误;对于B,新农村建设后,其他收入增加了1倍,故选项B正确;对于C,新农村建设后,养殖收入增加了一倍,故选项C正确;对于D,新农村建设后,养殖收入与第三产业收入的总和点总收入的比例为30%+28%=58%>0.5,超过经济收入的一半,D正确;故选:A.6.如图是根据《居民家庭亲子阅读消费调查报告》中的相关数据制成扇形统计图,由图可知,下列说法错误的是()A.扇形统计图能反映各部分在总体中所占的百分比B.每天阅读30分钟以上的居民家庭孩子超过50%C.每天阅读30分钟至1小时的居民家庭孩子对应扇形的圆心角是108°D.每天阅读1小时以上的居民家庭孩子占20%【解答】解:A.扇形统计图能反映各部分在总体中所占的百分比,说法正确,故本选项不合题意;B.每天阅读30分钟以上的居民家庭孩子超过50%,说法正确,故本选项不合题意;C.每天阅读30分钟至1小时的居民家庭孩子对应扇形的圆心角是:360°×(1﹣10%﹣40%﹣20%)=108°,故本选项不合题意;D.每天阅读1小时以上的居民家庭孩子占:20%+10%=30%,此选项符合题意;故选:D.7.某工厂对自己生产的产品质量进行检查,下面是抽查的50件产品质量的条形统计图,若要根据条形统计图中的数据画出扇形统计图,则在画出的扇形统计图中,表示质量中等的产品的扇形圆心角的度数是()A.20°B.36°C.72°D.144°【解答】解:根据题意得:×360°=72°,则在画出的扇形统计图中,表示质量中等的产品的扇形圆心角的度数是72°.故选:C.8.某中学七(1)班为了了解全班学生喜欢球类活动的情况,采取全面调查的方法,从足球、乒乓球、篮球、排球等四个方面调查了全班学生的兴趣爱好,根据调查的结果组建了4个兴趣小组,并绘制成如图所示的两幅不完整的统计图(如图,要求每位学生只能选择一种自己喜欢的球类),下列说法错误的是()A.七(1)班的学生人数为40B.表示“足球”的扇形的圆心角是70°C.m的值为10D.n的值为20【解答】解:A、七(1)班的学生人数为,说法正确;B、表示“足球”的扇形的圆心角是,说法错误;C、m%=×100%=10%,即m=10,说法正确;D、n=100﹣40﹣30﹣10=20,说法正确;故选:B.9.读书能积累语言,丰富知识,陶冶情操,提高文化底蕴.某中学八年级一班统计今年1~8月“书香校园”读书活动中全班同学的课外阅读数量(单位:本),并绘制了如图所示的折线统计图,下列说法正确的是()A.课外阅读数量最少的月份是1月份B.课外阅读数量比前一个月增加的月份共有4个月C.平均每月课外阅读数量大于58本D.阅读数量超过45本的月份共有4个月【解答】解:由图可得:课外阅读数量最少的月份是6月份,是28本,故A选项说法错误,不符合题意;课外阅读数量比前一个月增加的月份共有4个月,故B选项说法正确,符合题意;平均每月课外阅读数量为:=56.25本,小于58本,故C 选项说法错误,不符合题意;阅读数量超过45本的月份共有5个月,故D选项说法错误,不符合题意;故选:B.10.当今,大数据、云计算、人工智能等互联网新技术正在全方位改写中国社会,习近平总书记倡导的构建网络空间命运共同体的“五点主张”,已成为国际社会的广泛共识.而5G 应用将是推动互联网这个“最大变量”变成“最大增量”的新引擎,5G的出现将改变中国的经济格局,据预测,2020年到2030年中国5G直接经济产出和间接经济产出的情况如图所示,根据图提供的信息,下列推断不合理的是()A.2020年到2030年,5G直接经济产出和5G间接经济产出都是逐年增长B.2023年到2024年与2028年到2029年5G间接经济产出的增长率相同C.2027年5G间接经济产出比5G直接经济产出多3.4万亿D.2028年5G直接经济产出为2020年5G直接经济产出的9倍【解答】解:根据折线统计图,可知:A.2020年到2030年,5G直接经济产出和5G间接经济产出都是逐年增长,故此项不合题意;B.2023年到2024年5G间接经济产出的增长率为:(6﹣5)÷5=20%,2028年到2029年5G间接经济产出的增长率为:(9﹣8)÷8=12.5%,故2023年到2024年与2028年到2029年5G间接经济产出的增长率不相同,故此项符合题意;C.2027年5G间接经济产出比5G直接经济产出多:7.6﹣4.2=3.4(万亿),故此项不合题意;D.4.5÷0.5=9,故2028年5G直接经济产出为2020年5G直接经济产出的9倍,故此项不合题意.故选:B.二.填空题(共5小题)11.如图是初中七年级某班学生一周课外阅读时间的扇形统计图,已知阅读4小时以下与阅读10小时以上的人数相同,则阅读4小时以下所对应的扇形圆心角为72°.【解答】解:∵阅读4小时以下与阅读10小时以上的人数相同,∴阅读4小时以下与阅读10小时以上的人数所占的百分比都是(1﹣36%﹣24%)÷2=20%,∴阅读4小时以下所对应的扇形圆心角为:360°×20%=72°,故答案为:72.12.据统计2021年前三季度某省GDP值为43400亿元,其中,第一、第二、第三产业所占比例如图所示.根据图中数据可知,今年前三个季度第二产业的GDP值为4340亿元.【解答】解:今年前三个季度第二产业的GDP值为:43400×(1﹣48.8%﹣41.2%)=4340(亿元).故答案为:4340.13.已知某校学生来自A、B、C三个地区,这三个地区的学生人数比是1:3:2,如图所示的扇形图表示上述分布情况,则代表C地区的扇形圆心角是120°.【解答】解:代表C地区扇形圆心角的度数为360°×=120°.故答案为:120.14.抗击“新冠肺炎”线上学习期间,某校为了解学校1000名七年级学生一周体育锻炼时间的情况,随机调查了50名七年级学生,并绘制成如图所示的条形统计图.根据图中数据,估计该校1000名七年级学生一周的体育锻炼时间多于7小时的人数是100人.【解答】解:根据题意得:1000×=100(人),答:该校1000名七年级学生一周的体育锻炼时间多于7小时的人数是100人;故答案为:100.15.如图是根据一,二两组同学最近5次体育测试的平均成绩分别绘制成的折线统计图,由统计图可知,二组同学进步更大.(选填“一“或“二”)【解答】解:一组的成绩变化从70到85,二组的成绩变化是从70到90,所以二组进步更大.故答案为:二.三.解答题(共2小题)16.学校举办新年游艺晚会,“竞技园”中设有“投圈”、“钓鱼”、“扔沙包”、“猜谜语”、“射击”5项活动,每个同学只准参加其中的一项活动,报名参加“竞技园”活动的有600名,小刚根据报名情况画出了下面的统计图.请根据统计图回答:(1)参加“钓鱼”和“射击”活动的同学各有多少名?(2)参加“投圈”和“扔沙包”活动的同学人数分别占参加“竞技园”活动总人数的百分之几?(3)在统计图中,表示“猜谜语”活动的扇形的圆心角为多少度?【解答】解:(1)参加“钓鱼”的人数为:600×30%=180(名);参加“射击”活动的人数为:600×12%=72(名),答:参加钓鱼180名,射击72名;(2)“投圈”占参加“竞技园”活动总人数的百分比为:=25%;参加“扔沙包”的人数为:600﹣180﹣72﹣60﹣150=138(名),“扔沙包”活动的同学占参加“竞技园”活动总人数的百分比为:;答:参加“投圈”活动的同学人数占参加“竞技园”活动总人数的25%,参加“扔沙包”的同学人数占参加“竞技园”活动总人数的23%;(3)=36°,答:表示“猜谜语”活动的扇形的圆心角为36°.17.某校在八年级开展环保知识问卷调查活动,问卷共10道题,每题10分,八年级(三)班的问卷得分情况统计图如图所示:(1)扇形统计图中,a的值为14%.(2)根据以上统计图中的信息,求问卷得分的众数和中位数分别是多少分?(3)若该校八年级共有学生600人,请估计问卷得分在80分以上(含80分)的学生约有多少人?【解答】解:(1)a=1﹣20%﹣30%﹣20%﹣16%=14%;故答案为:14%;(2)90分所占的比例最大,故问卷得分的众数是90分,问卷调查的总人数有:7+8+10+15+10=50(人),中位数是按从小到大的顺序排列后的第25、26个数的平均数,则问卷得分的中位数是=85(分);(3)600×(20%+30%+20%)=420(人),答:该校八年级600名学生中达到80分以上(含80分)的学生约有420人.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
统计图的综合应用
1.条形统计图的特点:反映每组中的具体数据;易于比较数据之间的差别。
2.折线统计图的特点:反映数据的变化趋势。
3.扇形统计图的特点:反映部分在总体中所占百分比。
4.频数分布直方图的特点:频数和频率都能够反映每个对象出现的频繁程度;频数分布表、频数分布直方图和频数折线图都能直观、清楚地反映数据在各个小范围内的分布情况。
【例1】荆州古城是闻名遐迩的历史文化名城,“五一”期间相关部门对到荆州观光游客的出行方式进行了随机抽样调查,整理后绘制了两幅统计图(尚不完整)。
根据图中信息,下列结论错误的是()
A.本次抽样调查的样本容量是5000
B.扇形统计图中的m为10%
C.样本中选择公共交通出行的有2500人
D.若“五一”期间到荆州观光的游客有50万人,则选择自驾方式出行的有25万人【例2】为了掌握八年级数学试卷的命题质量与难度系数,命题组教师赴外地选取一个水平相当的八年级班级进行预测,将考试成绩分布情况进行处理分析,制成频数分布表如下(成绩得分均为整数):
根据表中提供的信息解答下列问题:
(1)频数分布表中的a ,b ,c ,
(2)已知全区八年级共有200个班(平均每班40人),用这份试卷检测,108分及以
上为优秀,预计优秀的人数约为,72分及以上为及格,预计及格的人数约为,
及格的百分比约为。
(3)补全完整频数分布直方图
1.某校七(2)班班长统计了今年1~8月“书香校园”活动中全班同学的课外阅读数量(单位:本),绘制了折线统计图,下列说法错误的是()
A.阅读量最多的是8月份
B.阅读量最少的是6月份
C.3月份和5月份的阅读量相等
D.每月阅读量超过40本的有5个月
2.某中学为了了解学生每周在校体育锻炼时间,在本校随机抽取了若干名学生进行调查,并依据调查结果绘制了以下不完整的统计图表,请根据图表信息解答下列问题:
(1)表中的a,b;
(2)请将数分布直方图补全;
(3)若该校共有1200名学生,试估计全校每周在校参加体育锻炼时间至少有4小时的学生约为多少名?
2.为了解九年级学生的体能情况,学校组织了一次体能测人数随机选取50名学生的成绩进行统计,得出相关统计表和统计图(其中部分数据不慎丢失,暂用字母m,n表示)
请根据图表所提供的信息回答下列问题
(1)统计表中的m= ,n= ;并补全频数
分布直方图;
(2)若该校九年级有500名学生,请据此估计该校九年级学生体能良好及以上的学生有多少人?
(3)根据以往经验,经过一段时间训练后,有60%的学生成绩可以上升一个等级,请估计经过训练后九年级学生体能达标率(成绩在良好及以上)
统计图的综合应用参考答案
1.条形统计图的特点:反映每组中的具体数据;易于比较数据之间的差别。
2.折线统计图的特点:反映数据的变化趋势。
3.扇形统计图的特点:反映部分在总体中所占百分比。
4.频数分布直方图的特点:频数和频率都能够反映每个对象出现的频繁程度;频数分布表、频数分布直方图和频数折线图都能直观、清楚地反映数据在各个小范围内的分布情况。
【例1】荆州古城是闻名遐迩的历史文化名城,“五一”期间相关部门对到荆州观光游客的出行方式进行了随机抽样调查,整理后绘制了两幅统计图(尚不完整)。
根据图中信息,下列结论错误的是(D)
A.本次抽样调查的样本容量是5000
B.扇形统计图中的m为10%
C.样本中选择公共交通出行的有2500人
D.若“五一”期间到荆州观光的游客有50万人,则选择自驾方式出行的有25万人
【例2】为了掌握八年级数学试卷的命题质量与难度系数,命题组教师赴外地选取一个水平相当的八年级班级进行预测,将考试成绩分布情况进行处理分析,制成频数分布表如下(成绩得分均为整数):
根据表中提供的信息解答下列问题:
(1)频数分布表中的a ,b ,c ,
(2)已知全区八年级共有200个班(平均每班40人),用这份试卷检测,108分及以上为优秀,预计优秀的人数约为,72分及以上为及格,预计及格的人数约为,
及格的百分比约为。
(3)补全完整频数分布直方图
【解答】(1)∵被调查的总人数为2÷0.05=40人,
∴a=40×0.2=8,b=40﹣(2+4+8+10+6)=10,c=10÷40=0.25,故答案为:8,10,0.25;(2)∵全区八年级学生总人数为200×40=8000人,
∴预计优秀的人数约为8000×0.15=1200人,预计及格的人数约为8000×
(0.20+0.25+0.25+0.15)=6800人,及格的百分比约为810106
100
40
+++
⨯%=85%,故答
案为:1200人,6800人,
(3)补全频数分布直方图略
1.某校七(2)班班长统计了今年1~8月“书香校园”活动中全班同学的课外阅读数量(单位:本),绘制了折线统计图,下列说法错误的是(D)
A.阅读量最多的是8月份
B.阅读量最少的是6月份
C.3月份和5月份的阅读量相等
D.每月阅读量超过40本的有5个月
2.某中学为了了解学生每周在校体育锻炼时间,在本校随机抽取了若干名学生进行调查,并依据调查结果绘制了以下不完整的统计图表,请根据图表信息解答下列问题:
(1)表中的a ,b ;
(2)请将数分布直方图补全;
(3)若该校共有1200名学生,试估计全校每周在校参加体育锻炼时间至少有4小时的学生约为多少名?
【解答】(1)6,0.2
(2)补全频数分布直方图略;
(3)由题意得,估计全校每周在校参加体育锻炼时间至少有4小时的学生约为1200×(0.15+0.2+0.3)=780名
2.为了解九年级学生的体能情况,学校组织了一次体能测人数随机选取50名学生的成绩进行统计,得出相关统计表和统计图(其中部分数据不慎丢失,暂用字母m ,n 表示)
请根据图表所提供的信息回答下列问题
(1)统计表中的m= ,n= ;并补全频数
分布直方图;
(2)若该校九年级有500名学生,请据此估计该校九年级学生体能良好及以上的学生有多少人?
(3)根据以往经验,经过一段时间训练后,有60%的学生成绩可以上升一个等级,请估计经过训练后九年级学生体能达标率(成绩在良好及以上)
【解答】(1)根据条形图可以得到:m=5,n=50﹣5-30﹣5=10(人),补全频数分布直方图略;
故答案为:5,10;
(2)估计该校九年级学生体能良好以上的学生有500×30550
=350(人) (3)(35+10×60%)÷50=82%
答:估计经过训练后九年级学生体能达标率为82%。