烟气余热回收的总结与体验

烟气余热回收的总结与体验
烟气余热回收的总结与体验

烟气余热回收的体验与总结

关摘要:选用热管式余热回收设备理由、安装位置和运行数据、规划。

键词:烟气余热回收;热管式余热回收设备;运行数据;体验;规划。

一、前言:

烟气余热回收对企业的节能降耗至关重要。烟气余热回收搞得好,既可以降低产品成本,因排放物减少又利于环境保护,它的社会效益也不可估量。

烟气余热回收采用何种方案和何种余热回收设备,是关乎余热回收能否取得成功的重要因素。

二、公司烟气余热回收的过程。

烟气余热回收利用,我公司于2006年度就开始了,当时使用的余热回收设备是“烟管式”余热回收设备。

因企业产品的特点:灰尘多、并且是细粉漂浮物状态。因此、使用该结构形式的余热回收设备,每天清灰次数多、劳动强度大,稍不清灰,就要堵塞换热管,它既影响生产,余热回收效果也不理想。因此,使用不到半年时间,该设备拆除、停用了。经我们深入调查、实地考察,最终选用了热管式余热回收设备。

我们选用热管式余热回收设备的理由是:

1、它们烟气的走向方式不同。

烟管式余热回收设备,烟气走管内,而热管式的烟气走管间,这样利于清灰。

2、清灰的方法不同。

烟管式余热回收设备在清灰时,用细铁棒在前面固定铁毛刷,每天(或半天)在每只换热管内进行刷灰,因管子数量较多、较长(七米左右),刷

灰的劳动强度较大、时间长。而热管式余热回收设备它可用“中压水或蒸汽及压缩气体”,在管间进行吹清灰,清灰的次数较少且时间较短。方便,劳动强度较低。

3、换热的原理不同。

烟管式余热回收设备的换热管是:纯对流换热的传热方式。它烟气走管内,软水在管间。热管式余热回收设备的传热元件是“封闭的两相、处于真空状态”传热元件—热管。传热方式是“汽化潜热—对流换热”。它的传热速度是以当地的音速来传递,传热速度快。由它组成的设备,重量轻、占地面积少。

热管传递的热量是指管内从沸腾段液体吸热变为蒸汽的汽化潜热到凝结段蒸汽又变为液体放出的潜热量,这种吸收或放出的潜热量是相当大的,比不是靠相变吸收或放出潜热方式传热量的元件要大得多。

如图示:铜棒在100℃温差下才能传递30W的热量,而热管在几度的温度下就可以传递上百瓦的热量。热管传递热量的强度约为良导体的103倍,有时可达106倍左右。特别适合在玻璃窑炉烟气热复符量较少的工况上使用。

4、它们的结构形式不同。

热管余热回收设备的结构和烟管式余热回收设备的结构形式如

(图示1、2):

图示1:热管式余热回收设备

图示2:烟管式余热回收设备

因结构形式的不同,烟管式余热回收设备的清灰是用钢毛刷刷灰,刷灰的次数比较频繁,久而久之,传热管的管壁就被刷薄和破裂而出现漏水的现象,传热管因热膨胀原因也会出现弯曲断裂现象,就得停车堵漏和修复,设备的周期使用率低,较之使用寿命较低。

热管式余热回收设备的清灰是吹灰形式,因结构的特点,两种换热介质,各走各的通路,即使个别热管在烟气侧损坏,两种换热介质也不会相混,不用停车检修,设备还可以照常使用。热管是单支点密封连接,在热膨胀现象中,两端可以自由伸缩,不会出现弯曲断裂。,设备的周期使用率

高,较之使用寿命也长。

三、我公司使用热管式余热回收设备的情况。

1、安装位置形式。

借用原安装烟管式余热回收设备的位置,安装了热管式余热回收设备。

图示:

2、所用主要设备的型号、性能。

3、余热回收的运行数据。

4、余热回收的效益分析。

说明:用外供汽时,大锅炉每年多耗碎煤600t左右,使用热管式余热锅炉自发汽,每年节约碎煤600t左右。

四、总结。

1、对于高效节能型窑炉低温烟气的余热利用,热管式余热回收设备较之其他形式的余热回收设备能够取得更高的余热利用率,更能充份回收利用余热,充分达到节能的目的。

2、企业根据需要因地制宜的来选择余热回收设备。

3、热管式余热回收设备,可以充分回收利用窑炉烟气的余热,减少烟气排放量有利保护环境。随着环境保护标准的提高,不仅要求降低烟气中SO2的排放浓度,同时要求烟气的总排放量也要减少,这是因为烟气中CO2的大量排放将影响全球的大气质量。回收烟气余热可在总供热量不变的情况下减少燃料的供给量,亦即减少了烟气的生成量和排放量。回收的热量越多,则烟气排放量越少,对环境保护的意义就更大。社会效益不可估量。

五、今后需改进方面。

1、因产品的原料原因,烟气含尘量较多,且还是细粉和漂浮状态,极易附着热管表面,久而久之,影响换热效率,因此建议热管表面不用波纹形式为好。

2、烟气余热回收设备是有一定阻力的,烟气量相对少些,选用风机应以风压为主,流量为辅。建议今后选用Y8-39或Y9-38型号的引风机,它比Y4-73型号的风压大。

3、烟气余热回收设备在运行中,最好不用引风机和微开引风机,降低运行成本。

设备阻力的大小,关系到设备的运行成本的高低和余热回收率。阻力和烟气流速的平方成正比关系,烟气的流速和传热系数也是正比关系,它直接关联到设备的成本的高低。作为用户不能一味的强调设备的重量和价格,应该是在保证性能的前提下,设备的阻力越小越好即运行成本越低越好。我们不能选用的设备是,当时价格相对较低,而运行动力电机功率较高(相对),动力消耗费用抵消了余热回收的效益。这样的余热回收从经济角度讲是得不赏识的,不划算的。

六、公司今后余热回收的规划与方案。

我公司大小窑炉共五座,目前只有一座窑炉的烟气余热进行了回收。公司规划陆续要将其它窑炉的烟气余热也要回收,彻底停开外供蒸汽锅炉,降低能耗,达到增收节支的目的。为企业为社会作出贡献。

参考文献:

1、机械工业部设计研究院王秉铨主编《工业炉设计手册》第2版,机械工业出版社,2000.6

2、孙承绪、陈润生、孙晋涛、等。《玻璃窑炉热工设计及计算》。中国建筑工出版社,1983

3、徐占发、张玉萍、等,《热工基础》。中国建筑工业出版社,2005.10

烟气余热回收技术方案样本

烟气余热回收技术 方案

烟气余热回收利用改造项目 技术方案 ***节能科技有限公司 二O一二年

一、运行现状 锅炉房配备2.1MW锅炉2台(一用一备),供热面积5万m2;**炉配备2.1MW锅炉2台(一用一备),供热面积4.5万m2。经监测,**锅炉房2台锅炉正常运行排烟温度在150--170℃,平均热效率在89%,**锅炉房2台锅炉正常运行排烟温度在160-180℃,平均热效率在88%,(标准应不高于160℃)。锅炉系统运行进出水温差较小,排烟热损失较大,同时影响锅炉热效率的提高,回收利用潜力明显。 二、技术介绍 烟气冷凝回收利用技术是国家第一批特种设备节能技术推荐目录中的成熟技术。有着显著的节能效益。主要原理:1m3天然气燃烧后会放出9450kcal的热量,其中显热为8500kcal,水蒸气含有的热量(潜热)为950kcal。对于传统燃气锅炉可利用的热能就是8500kcal的显热,供热行业中常规计算天然气热值一般以8500kcal/nm3为基础计算。这样,天然气的实际总发热量9450kcal与天然气的显热8500kcal比例关系以百分数表示就为:111%,其中显热部分占100%,潜热部分占11%,因此对于传统燃气锅炉来说还是有很多热量白白浪费掉。 普通天然气锅炉的排烟温度一般在120--250℃,这些烟气含有8%--15%的显热和11%的水蒸气潜热。加装烟气冷凝器的主要

目的就是经过冷凝器把烟气中的水蒸气变成凝结水,最大限度地回收烟气中含有的潜热和显热,使回收热量后排烟温度可降至100℃左右,同时烟气冷却后产生的凝结水得到及时有效地排出(1 nm3天然气完全燃烧后,可产生1.66kg水),而且大大减少了co2、co、nox等有害物质向大气的排放,起到了明显的节能、降耗、减排及保护锅炉设备的作用。从而达到节能增效的目的。 三、改造方案 3.1、设备选型 烟气余热回收器选用瑞典爱瑞科(AIREC)板式烟气热回收器。 瑞典AIREC公司是世界上唯一一家 钎焊式模块化非对称流量板式换热器的 专业生产制造商,凭借独到的设计理 念,雄厚的产品开发能力和多年行业丰 富的实践经验使AIREC成为在非对称流量换热领域的真正领导者。 irCross21由多块板片重叠冲压在一起,在真空和高温的环境下,板片用铜或镍焊接在一起,具有很高的机械强度,更大的传热面积,更高的效率,更轻便小巧。AIREC经过继承CBE(钎焊式换热器)的技术特点,独特的换热器设计板纹,气体/液体应用

科技项目技术方案烟气余热回收

中国华电集团公司科技工程技术方案

一、工程背景 自电力企业改革后,从体制上根本打破了电力企业集发、输、配、售于一体的局面,火电厂在新的经营模式下面临着日渐

严峻的考验。尤其是近年来煤炭市场放开后,电煤价格的持续上涨,而电、热价格则一路平行。煤炭价格的上涨,使得火电厂的生产成本急剧上升,导致我厂电热价格与成本倒挂问题越发突出,加剧了火电厂的经营困境。在这种情况下,企业如何扭转负债经营的不利局面,成为当务之急,用新技术、新工艺、新方法,挖潜改造,提高机炉热效率、节能减排势在必行。 现锅炉排烟温度按照经典的控制酸露腐蚀条件的设计规范 设计,计算排烟温度已经留有设备保护的余地。目前设计条件下的排烟温度高于酸露点温度的15-18度,实际上排烟温度的计算方面也因为招标对经济指标要求而存在潜在的上 升空间。以国内300MW机组的实际运行的负荷、排烟温度状况,几乎没有一家能够按照设计指标运行。造成排烟温度升高的原因是多方面的。随着运行时间的延长,排烟温度因空预器设备的末端腐蚀而局部积灰、系统阻力增加、过量空气系数增加、排烟温度升高;空气预热器漏风、夏季空气温度升高、煤种变化也使得锅炉远离校核煤种等因素都会引发排烟温度升高。 排烟损失是影响锅炉效率的主要因素,电站锅炉的排烟温度为120~140℃,每降低排烟温度16-20℃,可提高锅炉热效率1%。对于一台300MW的发电机组,平均每年可节约标煤约6000吨。

另外,利用烟气余热提高空预前空气温度和脱硫塔后烟温,可减轻空预器和烟道腐蚀;降低脱硫塔前烟温还可减少脱硫工艺前的喷水量。 要回收低温烟气的余热,就必须有经济和可靠的技术。 国内较早就开始了烟气余热回收技术的开发,并有些技术相继成熟得到应用,但这些技术多停留在早期粗放的阶段,在系统可靠性和余热回收经济性方面都存在明显的不足。 通过合金、陶瓷或塑料等抗低温腐蚀材料做换热材料来进行余热回收的优点是可以将排烟温度降低到烟气酸露点以下,但由于这些材料的导热系数、造价和使用寿命等限制,余热回收的经济性不佳。另外,当换热材料表面发生酸露凝结时,设备表面会形成导热系数更差的粘性灰垢,该类致密的粘性积灰与换热材料表面结合力很强,较难通过吹灰系统清除,甚至使系统堵灰严重而无法正常运行。 传统低温省煤器技术较简单、成熟,但其不仅余热回收的效益低,而且只适于回收排烟温度较高的余热,否则受热面腐蚀和堵灰问题会很严重。该系统如果设计不当,还有发生凝结水汽化的风险。 相变式低温省煤器是为了控制烟道换热器的低温腐蚀而开发,其通过控制中间传热介质(水-汽)的相变参数来控制传热量和烟道换热器壁温,从而提高了系统的可靠性,并可自动将排烟温度降低到最佳的温度。

烟气余热回收换热器具体分析

烟气余热回收热换热器具体分析 随着我国经济的快速发展,能源的价格在日益上涨,能源库存也在日益减少,我们不断在发掘新型能源。工业锅炉是我国主要的热能动力设备,针对工业锅炉的使用特点(排烟余热回收潜力大的特点),烟气余热回收换热器应运而生。 电站锅炉排烟温度一般在110℃到160℃;大中型锅炉在正常运行时,排烟损失占到锅炉燃料输入热量的4%到8%;排烟温度每降15℃—20℃,可提高锅炉效率1%左右;排烟温度是锅炉热损失中最大的一项。 影响排烟温度的因素: (1)燃料的性质 (2)受热面积的状况(积灰、结垢、结焦等等) (3)过量空气系数、漏风率 (4)低温腐蚀因素 那么在降低排烟温度方面有什么措施呢,经过研究发现,降低排烟温度的方法是使用烟气余热换热器,在锅炉尾部烟道适当的位置增加烟气余热回收换热装置。根据不同需求可以在不同工序位置安装烟气回收装置(除尘前、除尘后、垂直烟道、水平烟道等)。 烟气余热回收换热器的优势有哪些? (1)提高锅炉的循环效率,降低煤耗; (2)改善除尘效率(烟气余热回收装置在除尘前安装时) (3)减少脱硫塔蒸发量,节约用水。 值得注意的是,在安装烟气余热换热器后,会带来一些问题,如:低温腐蚀、磨损、积灰、烟气阻力等等。 一、低温腐蚀 烟气水露点:烟气中水蒸气含量一般为10%—15%,分压为0.01到0.012MPa,水蒸气的露点温度为45—54℃。 酸露点:当烟气中有SO3存在并与水蒸气发生作用生成硫酸蒸汽时,烟气中硫酸蒸汽的露点温度称为酸露点或烟气露点。它比水露点高很多,通常在90—130℃,对于高硫煤产生的烟气或富氧燃烧,酸露点甚至能达到140—160℃。

发电厂烟气余热利用热经济性分析与计算

发电厂烟气余热利用热经济性分析与计算摘要面对我国能源和水资源紧缺等状况,在电厂设计中,优化系统设计,合理地利用电厂的烟气余热,提高机组效率,节约用水,减少煤耗,是节能的重要措施之一。本文针对我院某投标工程,对烟气余热利用的可行性及收益情况进行了分析。 关键词优化设计;烟气余热利用;投资;收益 the analysis and calculation of heat recovery from exhaust gas of power plant hua xiu-feng ,li xiao-ming (states nuclear electric power planning design & research institute, beijing 100094, china) abstract: according to the shortage of the energy sources and water in our country, when we design the power plant, optimum design is adopted, the heat from the exhaust gas is used. the efficiency of the power plant is increased, water and coal is saved. this is a good method to save the resource. in this article, based on a power plant our company bid for, the feasibility and income of the heat recovery from exhaust gas of power plant is analyzed. key words: optimum design; heat recovery from exhaust gas; investment; income 在火力发电厂中,锅炉的排烟余热问题即锅炉的排烟温度高一

瑞典爱瑞科烟气余热回收装置介绍

北京烟气冷凝余热回收改造工程 ——广源小区西区锅炉房

原理
? (一)、热能回收装置原理 燃料中含有大量氢元素,燃烧产生大量水蒸汽。每1NM3天然气可以产生1.55KG水 蒸汽,具有可观的汽化潜热,大约为3600KJ,占天然气的低位发热量的10%左右。在排 烟温度较高时,水蒸汽不能冷凝发出热量,随烟气排放,热量被浪费。同时,高温烟气也 带有大量热量,一起排放。 烟气冷凝热能回收装置,利用温度较低的水或空气冷却烟气,实现烟气温度降低,靠 近换热面区域,烟气中水蒸汽冷凝,同时实现烟气放热和水蒸汽汽化潜热释放,加热水或 空气,实现热能回收,明显提高锅炉热效率。 (二)、锅炉热效率提高1NM3天燃气燃烧生产理论烟气量约10.3 NM3(大约12.5KG)。 以过量空气系数1.3为例,产生烟气14 NM3(大约16.6KG)。取烟气温度200℃降低至 40℃,放出物理显热约1600KJ,水蒸汽冷凝率取50%,放出汽化潜热约1850 KJ,总计 放热3450 KJ,约是天然气低位发热量的10%。若取80%烟气进入热能回收装置,可以 提高热能利用率8%以上,节省天然气燃料近10%。实际运行中,水蒸汽冷凝率超过 60%,天然气节省可达12%以上。
?
培训资料

北京市场背景
? 由于举办奥运会,6环以内基本以燃气锅炉为主,目前约有3000座锅炉房,1.8万台燃气 锅炉。 北京市燃气集团09年1月19 日发布消息,2008 年北京市天然气用量达到52 亿立方米。 为实现绿色奥运,净化北京的大气环境, 天然气作为清洁能源其使用得到快速增长。目 前,北京城市燃气管网长度已超过一万多公里。08 年由于奥运因素,太阳宫、郑常庄、 京丰三大燃气电厂,首次向北京城市热网供热。 2009年首都能源与经济运行调节工作会议表示,在今年内,北京市东城、西城、崇文、宣 武城四区内剩余的燃煤锅炉将全部改造,未来由燃气锅炉替代。 为进一步改善首都大气环境质量,确保市政府各阶段控制大气污染措施中燃煤锅炉改用清 洁燃料任务的顺利完成,市政府决定对有锅炉改造任务的单位给适当资金补助。
?
?
?
培训资料

冷凝燃气锅炉烟气余热回收利用研究

冷凝燃气锅炉烟气余热回收利用研究 摘要近些年来,随着经济社会的快速发展,国家对环境保护、节约资源、能源综合利用等提出了较高的要求。在北京市集中供热系统中,燃气锅炉得到了广泛的应用,而燃气锅炉所排放的烟气具有较高的温度,可以采取有效措施来降低烟气排放温度,并实现对烟气余热的有效回收,其不仅可以使燃气锅炉的供热效率得到有效提升,而且还可以达到比较理想的节能效果。本文将会以北京市某热源厂为例来对冷凝燃气锅炉烟气余热回收利用技术进行探究。 关键词冷凝燃气锅炉;烟气余热;回收利用 如今,随着燃气锅炉在供热行业中的广泛应用,与燃煤锅炉相比具有热效率更高、污染更小等特点。在锅炉中天然气燃烧过程中,将会有大概92%左右能量转化为热量、7%左右为排烟热损失、1%左右表面散热损失掉。因此,做好烟气余热回收利用工作就显得尤为重要。通常情况下,很大一部分烟气中的余热存在于水蒸气中,在回收显热、降低烟气温度的同时,会有效回收烟气中的水蒸气潜热,从而实现烟气全热的正回收。烟气余热回收利用主要是以天然气为驱动源,借助回收型热泵机组,就能够使锅炉排烟从80℃降至30℃,从而使大量的水蒸气冷凝潜热被回收,这样既可以达到节省燃气锅炉燃气耗量的目的,而且还可以降低PM2.5雾霾形成物的排放,达到节能减排的双重效果。 1 冷凝燃气锅炉烟气余热回收利用技术 1.1 利用换热器烟气余热回收技术 在烟气余热回收利用技术中,换热器是比较常用的设备,对其进行科学、合理的选择尤为关键,根据换热方式的差异,可以将烟气余热回收利用方式划分为直接接触式换热型、间接接触式换热型[1]。 (1)直接接触式换热器。直接接触式换热通常是以直接接触的方式来实现两种介质相互传热传质的过程。通常情况可以根据接触结构的不同划分为折流盘型、多孔板鼓泡型和填料型如图1所示。因为我国供热供回水温度相对比较高,导致直接接触式换热型换热器在烟气余热回收利用过程中并未得到广泛的应用。(2)间接接触式换热器。间接换热通常是指在被壁面分隔来的空间里冷热介质可以实现独立流动,并通过壁面来使实现冷热介质的换热。在烟气余热回收利用技术中,常用的间接接触式换热器有热管换热器、翅片管换热器和板式换热器. 1.2 利用热泵回收烟气余热技术 在燃气锅炉中,天然气燃烧过程中所产生的烟气露点在55—65℃之间,在进行回收烟气冷凝余热阶段,一般要求供热回水温度在烟气露点温度范围以内。一旦供热回水温度超过了烟气露点温度,则需要借助热泵回收烟气冷凝余热来实现预热供热回水。目前,在烟气余热回收利用过程中,吸收式热泵回收烟气余热

600万大卡导热油炉烟气余热回收方案讲解

实益长丰纺织有限公司 600万大卡导热油炉-余热回收装置 项 目 说 明 书 目录

1.摘要 (1) 2.公司营业执照和资质证书复印件 (1) 3.授权委托书 (2) 4.用户供热系统分析、节能分析及节能计算 (3) 5. 热量回收计算表 (4) 6.热管技术介绍 (5) 7.国内常用余热回收方式对比分析 (9) 8.热管余热回收解决方案 (10) 9. 施工方案 (12) 10. 工程报价及付款方式 (13) 11.售后服务 (14) 12.公司部分实体图片 (15) 13.公司简介 (16)

摘要 本文详细介绍了英德市实益长丰纺织有限公司供热系统余热回收工程方案,分析英德市实益长丰纺织有限公司供热系统并对余热回收技术做了系统的描述,根据工作需求及工作背景做出技术解决方案、施工方案、工程报价、节能分析、售后服务,对超导热管技术做了较为具体的描述。本文还对国内各种常用余热回收方式做了系统比较。

2 供热系统分析 英德市实益长丰纺织有限公司目前1台600万大卡燃煤导热油炉,在能源日趋紧张的背景下,同时企业的经营成本不断上升。排烟温度在280℃以上,造成很大的资源浪费。 备注:根据现有锅炉情况,排烟温度为280℃以上,其节能有很大的空间,因为其烟气量较大,热焓高。 节能分析 英德市实益长丰纺织有限公司导热油炉可以改进节能设备: 在导热油炉与引风机之间加装热管余热回收器,烟气温度由300℃降到130℃左右,每小时可产生173度的蒸汽1.15吨,回收74万大卡的热量,为企业带来可观的经济效益。 节能计算 每小时回收74万大卡热量,按煤燃烧值5000大卡、锅炉效率80%计算,每小时可省煤 74万大卡÷5000小时÷80%=185公斤/小时 185公斤/小时×24/天×320天=1420800公斤/每年 1420800公斤÷1000=1402.8吨 1402.8吨×0.7143=1001tce(每年可节省) 按煤价650元/吨,每小时节省费用 185公斤/小时×0.65元/公斤=120元/小时 每年锅炉运行时间按7200小时计,则每年可节约 120元/小时×7200小时=86万元 设备总投资约16万,则设备的回报周期为: 16万/(86万/12月)=2.23个月,保守估计3个月收回全部投资。

烟气余热回收

烟气余热回收 目录 前言 烟气余热回收的方法 编辑本段前言 近十年来,由于能源紧张,随着节能工作进一步开展。各种新型,节能先进炉型日趋完善,且采用新型耐火纤维等优质保温材料后使得炉窑散热损失明显下降。采用先进的燃烧装置强化了燃烧,降低了不完全燃烧量,空燃比也趋于合理。然而,降低排烟热损失和回收烟气余热的技术仍进展不快。为了进一步提高窑炉的热效率,达到节能降耗的目的,回收烟气余热也是一项重要的节能途径。 烟气是一般耗能设备浪费能量的主要途径,比如锅炉排烟耗能大约在15%,而其他设备比如印染行业的定型机、烘干机以及窑炉等主要耗能都是通过烟气排放。烟气余热回收主要是通过某种换热方式将烟气携带的热量转换成可以利用的热量。 编辑本段烟气余热回收的方法 烟气余热回收途径通常采用二种方法:一种是预热工件;二种是预热空气进行助燃。烟气预热工件需占用较大的体积进行热交换,往往受到作业场地的限制(间歇使用的炉窑还无法采用此种方法)。预热空气助燃是一种较好的方法,一般配置在加热炉上,也可强化燃烧,加快炉子的升温速度,提高炉子热工性能。这样既满足工艺的要求,最后也可获得显著的综合节能效果。 此外国内从五十年代开始在工业炉窑上采用预热空气的预热器,其中主要形式为管式、圆筒辐射式和铸铁块状等形式换热器,但交换效率较低。八十年代,国内先后研制了喷流式,喷流辐射式,复台式等换热器,主要解决中低温的余热回收。在100度以下烟气余热回收中取得了显着的效果,提高了换热效率。但在高温下仍因换热器的材质所限,使用寿命低,维修工作量大或固造价昂贵而影响推广使用。 21世纪初国内研制出了陶瓷换热器。其生产工艺与窑具的生产工艺基本相同,导热性与抗氧化性能是材料的主要应用性能。它的原理是把陶瓷换热器放置在烟道出口较近,温度较高的地方,不需要掺冷风及高温保护,当窑炉温度1250-1450℃时,烟道出口的温度应是1000-1300℃,陶瓷换热器回收余热可达到450-750℃,将回收到的的热空气送进窑炉与燃气形成混合气进行燃烧,可节约能源35%-55%,这样直接降低生产成本,增加经济效益。 陶瓷换热器在金属换热器的使用局限下得到了很好的发展,因为它较好地解决了耐腐蚀,耐高温等课题,成为了回收高温余热的最佳换热器。经过多年生产实践,表明陶瓷换热器效果很好。它的主要优点是:导热性能好,高温强度高,抗氧化、抗热震性能好。寿命长,维修量小,性能可靠稳定,操作简便。是目前回收高温烟气余热的最佳装置。目前,陶瓷换热器可以用于冶金、有色、耐材、化工、建材等行业主要热工窑炉。 烟气余热回收的其它方式:

余热回收设计方法

恒昌焦化 焦炉烟气余热回收项目 设计方案 唐山德业环保设备有限公司 二〇一二年三月 一、焦化工艺概述: 备煤车间送来的配合煤装入煤塔,装煤车按作业计划从煤塔取煤,经计量后装入炭化室内。煤料在炭化室内经过一个结焦周期的高温干馏制成焦炭并产生荒煤气。 炭化室内的焦炭成熟后,用推焦车推出,经拦焦车导入熄焦车内,并由电机车牵引熄焦车到熄焦塔内进行喷水熄焦。熄焦后的焦炭卸至凉焦台上,冷却一定时间后送往筛焦工段,经筛分按级别贮存待运。 煤在炭化室干馏过程中产生的荒煤气汇集到炭化室顶部空间,经过上升管、桥管进入集气管。约800℃左右的荒煤气在桥管内被氨水喷洒冷却至84℃左右。荒煤气中的焦油等

同时被冷凝下来。煤气和冷凝下来的焦油等同氨水一起经过吸煤气管送入煤气净化车间。 焦炉加热用的焦炉煤气,由外部管道架空引入。焦炉煤气经预热后送到焦炉地下室,通过下喷管把煤气送入燃烧室立火道底部与由废气交换开闭器进入的空气汇合燃烧。燃烧后的废气经过立火道顶部跨越孔进入下降气流的立火道,再经蓄热室,又格子赚把废气的部分显热回收后,经过小烟道、废气交换开闭器、分烟道、总烟道、烟囱排入大气。 对于其中经总烟道进入烟囱热烟气的仍有较大的余热回收价值。 二、余热回收工艺流程图 技术方案如下:该系统由热管蒸气发生器、软水预热器、汽包、上升管、下降管、外连管路和控制仪表等组成,并且互相独立。 主要技术特点: 1、地下烟道开孔技术:如何实现地下主烟道在焦炉正常行产情况下在线开孔,是本项目成功实施的第一关键。我公司根据多次地下烟道的开孔经验,成功总结出一套行之有效施工方案。 地下烟道路截面尺寸如上图所示。

烟气余热回收装置的利用(2021年)

Enhance the initiative and predictability of work safety, take precautions, and comprehensively solve the problems of work safety. (安全管理) 单位:___________________ 姓名:___________________ 日期:___________________ 烟气余热回收装置的利用(2021 年)

烟气余热回收装置的利用(2021年)导语:根据时代发展的要求,转变观念,开拓创新,统筹规划,增强对安全生产工作的主动性和预见性,做到未雨绸缪,综合解决安全生产问题。文档可用作电子存档或实体印刷,使用时请详细阅读条款。 [摘要]文章主要介绍锅炉排烟余热回收的必要性和利用方向,当今国内外烟气回收装置的应用情况,从设计角度提出设置烟气余热回收装置(烟气冷却器)需要考虑的问题,并列举工程设计方案及其预期的节能效果。 [关键词]烟气余热回收;低温腐蚀;节能 [作者简介]梁著文,广东省电力设计研究院,广东广州,510000 [中图分类号]TM621.2[文献标识码]A[文章编号]1007-7723(2010)10-0111-0003 一、引言 在火电厂的运行中,煤炭燃烧及各种用能设备、热能换热设备产生了大量的余热,然而这些能量多数都被浪费了。近些年来,在国家大力倡导“节能减排”能源利用政策的大环境下,国内某些电厂成功地设计安装了余热回收利用装置,给电厂带来很好的经济效益。 对火力发电厂讲,锅炉热损失中最大的是排烟热损失。对小型锅

溴化锂直燃机烟气余热利用计算方法

烟气余热回收热量计算方法 一.烟气余热回收热量Q的计算 1.烟气的平均比热:Cp 烟气的入口温度T1时的比热C1 烟气的出口温度T2时的比热C2 烟气的平均比热Cp=(C1+C2)/2 2.烟气的质量流量:Vm(kg/h) 烟气入口温度T时的密度P 烟气的质量流量Vm= P*V 3.烟气换热量(显热):Q烟气 烟气换热量Q=Cp×Vm×△T=Cp×Vm×(T1-T2) 4.水蒸汽的凝结热量(潜热):Q凝水 天然气密度:0.642kg/m3;甲烷纯度为:90% 1kg甲烷燃烧产生2kg水蒸汽,1kg水蒸汽冷凝成水释放539kcal热量。 Q凝水=天然气量(m3/h)×0.642×90%×2×539 5. 烟气余热回收热量:Q=Q凝水+Q烟气 二.计算实例 例:某用户采用100万大卡直燃机组,额定制冷时排气温度为160℃。利用一台烟气板交对烟气余热进行回收利用将卫生热水由25℃加热至55℃,烟气通过烟气板交后排气温度降至75℃。 1.计算烟气换热量:Q烟气 烟气换热量Q烟气=Cp×Vm×△T=Cp×Vm×(T1-T2) 1万大卡燃料热值充分燃烧排气量为18m3; 100万大卡机组额定天然气用量为84.5m3/h,排气量V(m3/h)为:84.5×8600÷10000×18=1308 排气温度为160℃时,烟气质量流量Vm(kg/h): Vm=P×V=0.829×1308 =1084 烟气的平均比热Cp: 烟气入口温度为160℃时的比热C1:0.2590 烟气出口温度为75℃时的比热C2:0.2520 Cp=(C1+C2)/2=(0.2590+0.2523)/2=0.2555 烟气换热量Q烟气=Cp×Vm×△T =Cp×Vm×(T1-T2) =0.2555×1084×(160-75) =23541kcal 2. 计算水蒸汽凝水热量:Q凝水 Q凝水=84.5×0.642×90%×2×539=52632kcal 烟气余热回收热量: Q=Q烟气+Q凝水=23541+52632=76173kcal 3. 余热回收效率:76173÷(8 4.5×8600)×100%=10.4%三.烟气温度、密度、比热关系

烟气余热回收利用装置

钻井柴油机烟气余热回收利用装置 申请号/专利号:200920139896 本实用新型公开了一种钻井柴油机烟气余热回收利用装置,包括水罐以及盘管热交换器,盘管热交换器具有进气端与出气端,进气端与柴油机的排气管相连通;盘管热交换器还具有进水口与出水口,进水口与出水口之间连接着装有循环泵的循环水管路,循环水管路从油罐中穿过,水罐连接在循环水管路上。本实用新型结构简单,易于制造,利用柴油机排出的烟气余热加热油罐中的存油,达到了在冬季用0#柴油替代-35#柴油、节能减排的目的,同时提高了井队冬季开钻工作效率,降低了井队运行成本。 申请日:2009年02月24日 公开日: 授权公告日:2010年01月06日 申请人/专利权人:新疆塔林石油科技有限公司 申请人地址:新疆维吾尔自治区克拉玛依市白碱滩区门户路100号 发明设计人:杜其江;何龙;李树新;田成建;林宣义;吕伟;姚庆元;尚玉龙;李建华;马伟;王琪 专利代理机构:乌鲁木齐新科联专利代理事务所有限公司 代理人:李振中 专利类型:实用新型专利 分类号:F02M31/16;F02G5/02;F01N5/02 点此查看跟该专利相关的主附图\公开说明书\授权说明书 烟气余热回收装置的利用 2010年第10期沿海企业与科技一一NO.10.2010l堂箜12堇塑!£Q△曼坠坠量烈!垦!丛:墅墨竖趔坠錾!量丛堡E鱼匹垦丛丛Q!!E蔓羔!垡丛婴坚!坐i!曼!!塑Q:12主!烟气余热回收装置的利用梁著文〔摘要〕文章主要介绍锅炉排烟余热回收的必奏巨和利用方向。当今国内外烟气回收蓑王的应用情况。从设计角度提出设置

烟气余热回收装王(烟气冷却器)需要考虑的问题。并列举工程设计方案及其预期的节能效果。〔关键词〕烟气余热回收;低温腐蚀;节能〔作者简介】粱著文,广东省电力设计研究院,广东广州。510000〔中圈分类号〕TM621.2〔文献标识码〕A〔文章编号〕1007-7723(2010)10-0111-0003一、引言2.利用烟气余热干燥褐煤。其核心设备(干燥机滚筒)是稍微倾斜并可回转的圆筒体,湿物料从一端上部加入,干物料在另一端下部进行收集。约150。C的热烟气由迸料端或出料端进入,从另一端的上部排出,热烟气和物料以逆流或顺流的方式接触,出口烟气温度约降至120℃左右。3.安装防腐蚀管式换热器,用来加热厂房或是厂区的水暖系统热网循环水,以替代或部分替代常规的热网加热器,从而节省了热网加热器的加热蒸汽量,增加了发电量。4.利用烟气的余热加热凝结水,用来提高全厂的热效率,降低煤耗,增加电厂发电量。加热的方式主要有两个:一是直接加热方式,即安装烟气回热加热器,使烟气与凝结水直接进行热交换;二是间接加热方式,即安装烟气回热加热器及水水换热器,使烟气在闭式水和烟气回热加热器内进行热交换;吸收烟气余热后的闭式水进入水水换热器内与凝结水进行热交换,然后再将热量带入主凝结水系统,图l为系统流程图。在火电厂的运行中,煤炭燃烧及各种用能设备、热能换热设备产生了大量的余热,然而这些能量多数都被浪费了。近些年来,在国家大力倡导“节能减排”能源利用政策的大环境下,国内某些电厂成功地设计安装了余热回收利用装置,给电厂带来很好的经济效益。对火力发电厂讲,锅炉热损失中最大的是排烟热损失。对小型锅炉,燃用高硫分煤时,排烟温度比较高,可以达到180—2200C左右;中型锅炉排烟温度在110—180℃。一般来说,排烟温度每升高15.20。C,锅炉热效率大约降低1.o%。因此,锅炉排烟是—个潜力很大的余热资源。二、烟气余热的利用方向烟气余热的利用方向主要可分为预热并干燥燃料、预热助燃空气、加热热网水、凝结水等。1.用水水换热的暖风器替代常规蒸汽暖风器,即以一次循环水为热媒,将在烟气侧吸收的热量释放给一、二次冷风。将进人预热器前的冷风预加热。以减少常规蒸汽暖风器辅助蒸汽用量。硝装置电功tn水牟龠圈1系统流程万方数据三、烟气余热回收装置在国内外的应用情况1.德国黑泵(Schwa眺Pumpe)电厂2×800MW褐煤发电机组在静电除尘器和烟气脱硫塔之间加装了烟气冷却器,利用烟气加热锅炉凝结水。2.德国科隆Nidemusseml000MW级褐煤发电机组采用分隔烟道系统充分降低排烟温度,把低温省煤器加装在空气预热器的旁通烟道中,在烟气热量足够的前提下引入部分烟气到旁通烟道内加热锅炉给水。3.日本的常陆那珂电厂采用了水媒方式的管式GGH。烟气放热段的GGH布置在电除尘器上游,烟气被冷却后进人低温除尘器(烟气温度在90—100℃左右)。4.外高桥电厂三期2×1000MW机组进行了低温省煤器改造,低温省煤器布置在引风机后脱硫吸收塔前,根据性能考核报告,其节能效果明显。目前国内较多应用。器传热管的金属安全壁温Ta。由于以上烟气酸露点的计算采用的是经验公式,但实际煤质及具体的运行情况会通常偏差较大,按锅炉厂的常规经验设计,一般会加5~lO℃的温度裕量作为金属安全壁温。如果在实际运行中通过取样检测能够获得较准确的烟气露点温度,可以相应调整烟气冷却器的金属安全壁温ta。(三)传热管的堵灰问题低温受热面的积灰不仅会污染传热管表面,影响传热效率,严重时还会堵塞烟气流动通道,增加烟气流动阻力,甚至影响锅炉安全运行,而导致不得不停炉清灰。为保证烟气余热回收装置不发生堵塞,应保持传热管的积灰为干灰状态。因此,在电站锅炉烟气余热回收装置运行过程中,保证传热管金属温度高于烟气水蒸汽露点温度、传热管上不会造成水蒸汽结露至关重要。对于干灰的清理,可采取以下几方面的措施:1.烟道内烟气流动顺畅,在结构设计上不出现大量积灰源,同时保证吹灰器能吹到所有的管束,不留吹灰死角。2.烟气流动速度均匀,设计烟气流速高于lOm/s,使烟气在流动中具有一定的自清灰功能。3.采用成熟可

热管技术在有机热载体锅炉烟气余热回收上的应用(2021年)

热管技术在有机热载体锅炉烟气余热回收上的应用(2021 Safety management is an important part of enterprise production management. The object is the state management and control of all people, objects and environments in production. ( 安全管理 ) 单位:______________________ 姓名:______________________ 日期:______________________ 编号:AQ-SN-0371

热管技术在有机热载体锅炉烟气余热回收 上的应用(2021年) 绍兴是一个纺织印染大市,全市有2万余台有机热载体锅炉,其中燃煤有机热载体锅炉占到70%以上,燃煤有机热载体锅炉尾部排烟温度达到320℃以上,烟气带走的热量为30%--40%,造成大量的热量浪费。根据国家TSGG0002-2010《锅炉节能结束监督管理规程》的要求,尾部烟气温度过高,必须装节能装置,降低排烟温度。 为积极响应绍兴市节能减排的需要,我公司开发出一系列热管式余热锅炉,并在印染行业得到了广泛应用,降低了燃煤有机热载体锅炉排烟温度,取得了较好成绩、 1.热管技术回收有机热载体锅炉烟气余热主要用途 在燃煤有机热载体锅炉尾部受热面中,热管技术主要有以下用

途: 1.1.生产热水和蒸汽。利用有机热载体锅炉排烟温度300~400℃中,高温烟气余热,产生50-90℃的热水,也客气产生0.8Mpa及以下蒸汽,可以广泛用于生活和工艺用热。 1.2.预热空气。燃煤有机热载体锅炉具有排烟温度高,效率低的特点,在燃烧过程中,煤没有充分燃烧,可以用来加热空气,提高鼓风机进口空气温度,提高工作效率。 2.热管技术原理和回收装置构造 2.1.热管技术原理 热管是一个内部抽成真空并充以一定量高纯度工质的密封管,形状无特殊限制.全管分为加热段、放热段、绝热段。在工作时,工质在加热段吸热汽化,到放热段凝结放出热量,并回流到加热段重新吸热,从而将热量从一端传递到另一端,以达到热交换之目的。 以热管为传热元件的热管式余热锅炉(气一汽型热管换热器),具有超常规的优良特性,特别是在余热回收中,发挥着重要作用. 2.2.回收装置结构

烟气余热回收装置的利用(新编版)

烟气余热回收装置的利用(新 编版) Safety work has only a starting point and no end. Only the leadership can really pay attention to it, measures are implemented, and assessments are in place. ( 安全管理 ) 单位:______________________ 姓名:______________________ 日期:______________________ 编号:AQ-SN-0521

烟气余热回收装置的利用(新编版) [摘要]文章主要介绍锅炉排烟余热回收的必要性和利用方向,当今国内外烟气回收装置的应用情况,从设计角度提出设置烟气余热回收装置(烟气冷却器)需要考虑的问题,并列举工程设计方案及其预期的节能效果。 [关键词]烟气余热回收;低温腐蚀;节能 [作者简介]梁著文,广东省电力设计研究院,广东广州,510000 [中图分类号]TM621.2[文献标识码]A[文章编号]1007-7723(2010)10-0111-0003 一、引言 在火电厂的运行中,煤炭燃烧及各种用能设备、热能换热设备产生了大量的余热,然而这些能量多数都被浪费了。近些年来,在国家大力倡导“节能减排”能源利用政策的大环境下,国内某些电

厂成功地设计安装了余热回收利用装置,给电厂带来很好的经济效益。 对火力发电厂讲,锅炉热损失中最大的是排烟热损失。对小型锅炉,燃用高硫分煤时,排烟温度比较高,可以达到180~220℃左右;中型锅炉排烟温度在110~180℃。一般来说,排烟温度每升高15~20℃,锅炉热效率大约降低1.0%。因此,锅炉排烟是一个潜力很大的余热资源。 二、烟气余热的利用方向 烟气余热的利用方向主要可分为预热并干燥燃料、预热助燃空气、加热热网水、凝结水等。 1.用水水换热的暖风器替代常规蒸汽暖风器,即以一次循环水为热媒,将在烟气侧吸收的热量释放给一、二次冷风,将进入预热器前的冷风预加热,以减少常规蒸汽暖风器辅助蒸汽用量。 2.利用烟气余热干燥褐煤。其核心设备(干燥机滚筒)是稍微倾斜并可回转的圆筒体,湿物料从一端上部加入,干物料在另一端下部进行收集。约150℃的热烟气由进料端或出料端进入,从另一端

空压机余热回收方案

空压机余热利用中央热水系统设计案 致: 根据贵员工宿舍中央热水系统工程项目的邀请,设计施工市森茂节能环保工程有限公司,按贵要求,为该公司员工的热水工程提供空压机余热利用中央热水系统,设计案包括如下容。 第一部分工程概述(P2-4) 第二部分空压机余热利用装置的综合优势(P5-6) 第三部分工程设计案详解(P7-11) 第四部分施工组织计划(P12-13) 第五部分售后服务(P14) 第六部分经济效益分析(P15-P16) 后附:工程概算报价单1份 工程图纸 1

第一部分工程概述 1.1用户需求 1.1.1现用户热水使用情况 现贵司要求我公司对员工楼热水供应系统提供设计案,贵司现有员工3000人左右,员工宿舍楼2栋,每栋共20层,现需增加空压机余热回收系统供热水。1.1.2 空压机机使用情况 现对贵司9台旧空压机及新增4台新空压机进行余热回收改造,空压机余热回收机放置于污水处理厂旁的空压机房,一般情况下13台空压机每天工作24个小时。1.1.3 热水工程改造需求 本着降低企业运营成本及环保的目的,贵司现要求我公司对其热水系统进行改造。改造式为利用螺杆式空压机余热加热热水,实现零费用获取热水的效果。 本工程对13台空压机加装余热利用装置。分两套系统安装,本工程完工后,基本满足3000人的热水供应,供水标准为33KG/人,总供水量约100吨/日,供水式为不定时不定量,热水温度在55℃以上。 1.2 工程总案 根据贵公司的实际情况,我公司为贵公司设计热水系统,将对贵公司现有的13台螺杆式空压机加装余热利用装置,所得热水储存于宿舍楼楼顶的保温水箱,再将热水管

道接入宿舍楼各宿舍洗手间。 1.2.1循环加热输送管道 本工程热泵为我公司的螺杆式空压机余热利用装置,因输送管道过长,所以在空压机房及厂房楼顶各安装了两个转箱,保暖水箱里的水通过循环水泵送入余热利用装置加热,再送回保暖水箱,如此不断往复循环,保证水箱里面的水不断得到加热。 根据贵公司的实际情况,我公司为贵公司设计热水系统,将对贵公司现有的13台螺杆式空压机加装13台“森茂”牌空压机余热利用主机,自来水经冷水管的补水电磁阀输送到保温水箱,经主机换热器与空压机的高温油进行热交换,冷水温度慢慢升高,最终的热水温度即为显示面板控制器所指定的温度。所得热水储存于宿舍楼楼顶的保温水箱,再将热水管道接入宿舍楼各宿舍洗手间。 在管路上水箱、水泵、换热器两头及各预留检修处,均安装铜制优质阀门,另在保暖水箱出口及换热器出口处安装水过滤器各1个。 1.2.2保暖水塔 贵司安装两个50吨保暖水箱,即可满足贵公司员工的用水要求。水箱材质为双层不锈钢,50mm厚聚脂泡沫保溫层,24小时温降5℃以。 1.2.3 换热装置 本工程将对13台螺杆式空压机加装余热利用装置,分两套系统,每小时分别可产水800L以上,10小时可产水160吨,完全可以满足员工的用水要求。 1.2.4 补水系统 补水系统使用水位开关、电磁阀、温度控制器控制

工业烟气余热回收利用方案优化分析

龙源期刊网 https://www.360docs.net/doc/a79113899.html, 工业烟气余热回收利用方案优化分析 作者:罗先辉 来源:《科技与创新》2015年第14期 当前,我国资源、能源问题日益严峻,引起了国家与各地政府的高度关注。在节能减排的背景下,为了节约资源,实现社会经济的可持续发展,对工业烟气余热进行回收利用成为了大势所趋。在工业生产中,对烟气余热进行回收利用不仅节约了能源,保护了生态环境,还能为我国经济社会的建设与发展提供强大动力支持。 1;;工业余热回收利用现状 工业余热主要是指在工作生产过程中使用的热能转换设备和相关机械设备中未被利用的能量。总体来看,我国余热资源较为丰富。相关研究资料显示,我国余热资源数量平均高达 4.0×107;t标准煤。 工业部门的余热资源平均率为7.3%,但是回收利用率却只为34.9%.我国余热资源之所以回收利用率较低,主要原因是过多的余热量以各种形式浪费掉。在工业未来发展中,可以看出余热资源存在巨大的回收利用潜力。随着科学技术的发展,通过有效的管理、设备改造升级、节能操作等手段,可以使余热资源得到有效利用,余热资源利用回收率将会大幅提高。在现代工业发展中,充分利用余热资源,对提高资源平均利用率具有重要意义,同时这也是工业发展中亟需解决的问题。 2;;利用烟气余热的原则 3;;设计工业烟气余热回收利用优化方案 烟气回收工作中使用的主要设备是余热回收换热器,它是工业生产中的主要节能设备,在提高工业烟气热效率的同时,还能够大幅提升能量的有效能效率。因而在设计工业烟气余热回收利用优化方案时,就需要对换热器进行优化。 3.1;;确定优化目标 余热回收换热器最优方案受到多种因素的影响,包括能源价格、原材料价格、安装费用、贷款方式和利率等。另外,技术因素也会对其产生影响,例如换热器性能和使用寿命。 当前比较明显的优化目标方案主要有换热器回收预热年净收益最大目标函数、基于相对费用参数的换热器优化目标函数、最小投资回收年限目标函数等。这些目标函数的取法各有利弊,利用追求年净收益最大和相对费用参数的目标函数对预热回收效果进行了定量研究,但是能量、质量没有得到准确反映;而换热器优化目标函数虽然对能量的考虑更全面,但在投资经济效果方面存在欠缺。

烟气余热回收技术方案

烟气余热回收利用改造项目 技术方案 *** 节能科技有限公司 二O 一二年

、运行现状 锅炉房配备2.1MW锅炉2台(一用一备),供热面积5万m2;**炉配备2.1MW 锅炉2台(一用一备),供热面积4.5万m2。经监测,**锅炉房2台锅炉正常运行排烟温度在150--170 C,平均热效率在89%, **锅炉房2台锅炉正常运行排烟温度在160-180C,平均热效率在88%,(标准应不高于160C)。锅炉系统运行进出水温差较小,排烟热损失较大,同时影响锅炉热效率的提高,回收利用潜力明显。 二、技术介绍 烟气冷凝回收利用技术是国家第一批特种设备节能技术推荐目录中的成熟技术。 有着显著的节能效益。主要原理: 1m3天然气燃烧后会放出9450kcal的热量,其中显热为8500kcal,水蒸气含有的热量(潜热)为950kcal。对于传统燃气锅炉可利用的热能就是8500kcal的显热,供热行业中 常规计算天然气热值一般以8500kcal/nm3为基础计算。这样,天然气的实际总发热量 9450kcal与天然气的显热8500kcal比例关系以百分数表示就为:111%,其中显热部分占100%,潜热部分占11%,所以对于传统燃气锅炉来说还是有很多热量白白浪费掉。 普通天然气锅炉的排烟温度一般在120--250 C,这些烟气含有8%--15%的显热和 11%的水蒸气潜热。加装烟气冷凝器的主要目的就是通过冷凝器把烟气中的水蒸气变成凝结水,最大限度地回收烟气中含有的潜热和显热,使回收热量后排烟温度可降至100C左右,同时烟气冷却后产生的凝结水得到及时有效地排出( 1 nm3天然气完全燃 烧后,可产生1.66kg水),并且大大减少了co2、co、nox等有害物质向大气的排放,起到了明显的节能、降耗、减排及保护锅炉设备的作用。从而达到节能增效的目的。 三、改造方案 3.1、设备选型 烟气余热回收器选用瑞典爱瑞科(AIREC)瑞典 板式烟气热回收器 AIREC公司是世界上唯一一家钎焊式模块化非对称流量板式换 热器的专业生产制造商,凭借独到的设计理念,雄厚的产品开 发能力和多年行业丰富的实践经验使AIREC成为在非对称流量 换热领域的真正领导者。 irCross21由多块板片重叠冲压在一起,在真空和高温 的环境下,板片用铜或镍焊接在一起,具有很高的机械强度, 更大的传热面积,更高的效率,更轻便小巧。AIREC通过继承 CBE(钎焊式换热器)的技术特点,独特的换热器设计板纹,

烟气余热回收装置

烟气余热回收装置 根据本项目的具体情况,锅炉为泰安锅炉,其排烟温度较高,虽然招标方没提及此项节能改造内容,但我公司仍然建议加装上冷凝式余热回收设备,详细介绍如下: 烟气冷凝回收系统图 a) 技术说明 4.2MW燃气热水锅炉: 型号:LN400-1.0;换热面积:295.520m2(折合:49.17m2/0.7MW); 材质:不锈钢304(0Cr18Ni9),设备采用不锈钢304制作; 烟气降幅:80-110℃ 使用寿命:15年。 本烟气余热冷凝回收装置是采用不锈钢、铝复合的强化翅片换热管结构。分组组装,安装方便,便于维修。采用不锈钢材质、强化传热技术,足够的受热面以达到余热回收最大化的目的,节气率处于全国同类产品领先地位。从而能够把烟气中的显热和潜热最大程度回收的一种专用于燃气(油)锅炉(直燃机)的节能装置。 b) 烟气余热冷凝回收装置的性能特点 加装烟气余热冷凝回收利用装置后,常规油(气)锅炉就改造为分体式冷凝型锅

炉(另一种为热管式),热效率可达到98%以上。在比较理想的工况下节气率可达到6%~15%。能够大大地降低运行费用,为用户带来显著的经济效益。 高效烟气余热回收装置采用不锈钢、铝材质的强化翅片换热管结构。分组组装,安装方便,便于维修。翅片管外走烟气,管内走水,形成间壁式对流换热。设备外部保温用硅酸铝耐热纤维毡保温,保温层外用彩色钢板包装。足够的受热面以达到余热回收最大化的目的。 烟气余热回收装置的阻力不大于500pa,通过大量的实际使用完全不会影响锅炉的燃烧。 烟气余热冷凝回收装置设计压力为1.0MPa,水压试验压力为1.25MPa,完全可以满足采暖和锅炉补水压力的使用要求。 设计结构本身就考虑了水力的均匀分配。所配管束均为一样。实际的使用效果也很好! 采用的不锈钢、铝合金翅片管具有很强的抗酸性腐蚀的能力。完全可以保证使用寿命。使用寿命在15年以上。 设备本身带有冷凝水排放装置,“烟气余热冷凝回收装置”最下部设置了冷凝水收集箱及排放口,及时将产生的冷凝水排出,排入下水系统。冷凝水为弱酸性,PH值在6左右,不会对环境造成污染。冷凝水收集采用不锈钢制作,耐腐蚀性强,使用可靠。 设备外包装完全可以根据用户的要求配备不同的颜色,从而和锅炉协调一致。 c) 余热冷凝回收装置的节能率计算

相关文档
最新文档