均匀设计法
均匀设计法

第六章 均匀设计法
▪例如用U11(1110)的1,7 和1,2列分别画图,得到下面的图 (a)和图 (b)。我们看到,(a)的点散布比较均匀,而(b)的点散 布并不均匀。均匀设计表的这一性质和正交表有很大的不同, 因此,每个均匀设计表必须有一个附加的使用表。
11 10
9 8 7 6 5 4 3 2 1
第六章 均匀设计法
▪1978年,七机部由于导弹设计的要求,提出了一个 五因素的试验,希望每个因素的水平数要多于10, 而试验总数又不超过50,显然优选法和正交设计都 不能用,方开泰与王元经过几个月的共同研究,提 出了一个新的试验设计,即所谓“均匀设计”,将 这一方法用于导弹设计,取得了成效。
▪均匀设计法与正交设计法的不同:
两种设计的均匀性比较
很难找到正交设计和均匀设计具有相同的试验数和相同的水平数。我们从 如下三个角度来比较:
v 1.试验数相同时的偏差的比较
v 当因素s=2时,若用L8(27)安排试验,其偏差为0.4375;
若用均匀设计表
U
* 8
(88
)
,则偏差最好时要达0.1445。
显然试验数相同时均匀设计的均匀性要好得多。值得
U6(64)的使用表
s列
号
213
312 3
412 3 4
偏差值越小,表示均匀度越好
D
0.1875 0.2656 0.2990
第六章 均匀设计法
均匀设计和正交设计的比较
将目前最常用正交设计和均匀设计作一下比较,讨论两种试验设计方法的特 点。
➢1.试验次数的比较 ➢正交设计用于水平数不高的试验,因为它的试验数至少为 水平数的平方。例如一项试验,有五个因素,每个因素取31 水平,若用正交设计,至少需要做961次试验,而用均匀设 计只需31次,所以均匀设计适合于多因素多水平试验。
均匀设计法的基本原理和应用范围

农业试验设计
总结词
在农业研究中,均匀设计法可用于优化种植密度、施肥量等农业措施,提高作物产量和 品质。
详细描述
在农业试验中,需要研究多种因素对作物生长的影响,如种植密度、施肥量、灌溉方式 等。通过均匀设计法,可以有效地安排试验条件,以最少的试验次数获得最佳的试验效
果。
产品制造工艺优化
总结词
在产品制造过程中,均匀设计法可用于优化工艺参数,提高产品质量和生产效率。
均匀设计法的基本原理和应用范围
目录
• 均匀设计法的基本概念 • 均匀设计法的基本原理 • 均匀设计法的应用范围 • 均匀设计法的优势与局限性 • 均匀设计法的实际应用案例
01 均匀设计法的基本概念
定义与特点
定义
均匀设计法是一种实验设计方法,旨在通 过合理地选择实验点和实验次数,最大限 度地获取所需的信息,并减少实验误差。
确定试验点数量
根据试验因素和水平,确定试 验点数量,以确保试验结果的 准确性和可靠性。
进行试验
按照生成的试验点进行试验, 收集数据。
确定试验因素和水平
根据研究目的和问题,确定试 验因素和水平,为后续的试验 设计提供基础。
生成试验点
根据均匀性准则和试验点分布 方法,生成试验点,确保每个 试验点具有代表性。
有限制条件
在满足一定限制条件下选择实验点。
均匀分散
在实验范围内,实验点均匀分散,避免集 中在某些区域。
高效性
通过合理设计,用较少的实验次数获取更 多信息。
与其他设计方法的比较
与正交设计法比较
均匀设计法的实验点分布更均匀,适 用于探索性实验和多因素多水平实验 。
与拉丁方设计法比较
拉丁方设计法适用于两因素实验,而 均匀设计法可应用于多因素实验。
均匀设计法筛选格列吡嗪透皮贴剂的促渗剂

均匀设计法筛选格列吡嗪透皮贴剂的促渗剂均匀设计法的原理是根据预先确定的因素和水平,通过设计精确的试验方案,使各处理组在各因素水平上的问题大小相等,减小误差并提高实验结果的可靠性。
在筛选格列吡嗪透皮贴剂促渗剂时,可以将促渗剂的种类和用量作为因素,选取不同类型和不同浓度的促渗剂进行均匀设计实验。
首先,确定实验因素。
在筛选格列吡嗪透皮贴剂促渗剂时,可以选取不同类型的促渗剂作为实验因素,如吉他酸、辛托灵、丁胺苦味酸、聚羟基乙基纤维素等。
另外,可以考虑不同浓度的促渗剂作为另一个因素。
其次,确定水平和处理组数。
根据实验目的和实验条件,可以确定每个因素的水平和处理组数。
一般来说,水平数越多,试验设计越精细,但也增加了实验的难度和时间。
处理组数一般为水平数的倍数,以达到实验结果的可靠性。
然后,设计试验方案。
根据实验因素的水平和处理组数,可以使用统计设计软件(如Design-Expert、Minitab)进行试验方案的设计。
均匀设计的主要特点是各个处理组在各因素水平上的问题大小相等,因此可以通过正交表设计进行试验方案的设计。
根据实验方案,制备透皮贴剂试样。
根据所选的促渗剂和不同浓度的方案,制备透皮贴剂试样。
在制备过程中要保持实验条件的一致性,确保每个处理组之间的唯一差异是促渗剂的种类和浓度。
进行透皮渗透实验。
将制备好的透皮贴剂试样放置于渗透仪中进行透皮渗透实验。
实验条件包括温度、湿度、透穿时间等,需要保持一致性,以减小误差。
收集实验数据并进行统计分析。
根据透皮渗透实验结果,记录透皮贴剂的渗透率、透皮质量等相关数据。
对实验数据进行统计分析,并使用相关的统计方法(如方差分析)评估不同促渗剂和浓度对透皮贴剂透皮性能的影响。
根据统计分析结果,确定最佳促渗剂和浓度。
根据透皮贴剂的透皮性能,如透皮率、透皮质量等指标,选择适合的促渗剂和浓度作为最佳组合。
综上所述,均匀设计法是一种有效的筛选格列吡嗪透皮贴剂促渗剂的方法。
它通过精确的试验方案设计和统计分析,能够筛选出适合且优化的促渗剂类型和浓度,提高透皮贴剂的透皮性能和药效。
药品生产技术《工艺条件优化的试验设计方法——均匀设计法》

?原料药合成过程控制技术?单元教材——工艺条件优化的试验设计方法——均匀设计法1均匀设计法的应用范围及特点在实际工作中,当遇到因素数和水平数较多,尤其是水平数大于5的试验时,正交设计法已不适用,而宜采用均匀设计法。
均匀设计法是指单纯从均匀性出发的试验设计方法,即不考虑“整齐可比〞性,而让试验点在试验范围内充分地“均匀分散〞,这样可以大大地减少试验点的数量。
在因素数和水平数相同的情况下,均匀设计法的试验次数等于水平数,较正交试验设计法大大地减少了。
利用电子计算机处理试验数据,方便、准确、快速地求得定量的回归方程式,便于分析各因素对试验结果的影响;定量地预报优化条件及优化结果的区间估计。
2均匀表均匀设计需要利用现成的均匀表,均匀设计表用U n〔t q〕表示,以U5〔54〕为例,见表1为均匀表,见表2为与之配套的使用表。
表1 U5〔54〕表表2 U5〔54〕的使用表表1U5〔54〕所示的均匀表由五行四列组成,是一个四因素五水平的均匀表。
其中U表示均匀表,下标的5表示试验次数即行数,括号内的5表示因素的水平数;指数“4〞代表因素数,也表示最多可供选择的列数。
配套的使用表见表2的含义是:如果一个试验按U5〔54〕表安排试验,考察2因素时,选取1,2列安排试验;考察3因素时,选取1,2,4列安排试验;考察4因素时,选取1,2,3,4列安排试验。
最多也只能考察4个因素。
3均匀试验设计的步骤均匀试验设计的步骤与正交设计类似,一般包括:①找出制表因子,确定水平数;②选取适宜的均匀表;③制定试验方案;④进行试验并记录结果;⑤试验结果分析。
下面举例说明均匀试验设计的应用。
实例用均匀设计法进行阿魏酸合成条件考察研究人员对常用中药川芎中的一种有效成分阿魏酸的合成工艺条件进行考察。
根据文献调研及初步预试验结果,确定考察的因素及其范围如下:A:香兰醛与丙二酸mol比~B:吡啶量10~28 mlC:反响时间~h具体试验设计方法如下:第一步:找出制表因子,确定水平数本例中,影响因素A、B、C在本例中,故不需再找。
均匀设计-均匀设计.ppt

3.3.3.2 非线性回归模型(续1)
法、后退法、逐步回归法或最优子集法等进行变量的 筛选。其回归系数求解可经过方程项的转换按多元线 性回归的方法完成。 (2) 多项式回归模型
一般地,包含多变量的任意多项式可表述为:
可通过类似x1=Z1,x2=Z2,x3=Z12,x4=Z1Z2,x5=z22 的变换, 将其按多元线性回归分析。多项式回归在回归分析中 占特殊地位,因为任何函数至少在一
S
列号
D
2 15
0.1632
3 145
0.2649
4 1345
0.3528
5 12345
0.4286
6 1 2 3 4 5 6 0.4942
说明:设计表中的列代表的是各因素的水平, 但具体代表的是哪个因素的水平,需按使用 表确定,使用表s一栏的数字是试验的因素数, 它后面的数字指定了各种因素数进行试验时 该如何选择设计表的列;使用表中D栏代表 不同因素数选择设计表的不同列时均匀设计 的偏差,偏差越小,均匀性越好,试验成功 的几率和结果的可靠性越大。
(4) 用分次试验的指标值和取得该指标值的各因 素水平值建立试验指标—各因素水平关系的回归 模型(这也是均匀设计中的最重要的环节之一);
(5) 成功地建立了回归模型后在各试验因素的试 验范围内寻找最佳的各因素水平组合并进行该组 合的验证试验(也可和步骤6一起进行);
(6) 验证试验成功则进一步缩小水平划分更为细致的新的一 轮的试验,进一步寻找最优试验条件组合。一般 情况下,此次最优条件即为整个试验的最优条件, 试验结束。
3 均匀设计的应用方法
试验设计的共性问题 均匀设计的应用方法 具体问题的解决方法
3.1 试验设计的共性问题
试验设计(如正交试验设计、裂区试验设 计、系统分组设计等)过程必然离不开试验基 础内容的构思(试验的评价指标;试验的因素、 水平的选择和试验次数的拟定)、试验结果数 据的分析等共性方面的问题。试验的因素和水 平的选择关系到一个试验能否成功的关键,下 列的注意事项和建议对使用试验设计(当然也 包括均匀设计)的人员应该是有益的:
均匀设计和正交设计的比较

均匀设计和正交设计的比较均匀设计(Uniform Design)和正交设计(Orthogonal Design)是两种常用的实验设计方法,用于确定影响因素和因变量之间的关系,以及确定最适合的因素水平。
下面将对这两种设计方法进行比较。
1.定义和原理:-均匀设计:均匀设计是一种实验设计方法,旨在通过选择一系列设计点,在全区间内均匀覆盖因素水平的组合,从而得到最优的判别能力和推断效果。
-正交设计:正交设计是一种实验设计方法,它通过将影响因素的各个水平进行组合,使得各个因素及其交互作用之间的关系得以均匀分布,从而有效地降低测量误差和背景干扰。
2.设计要素数量:-均匀设计:均匀设计要求设计点之间具有相似的分布规律,通常需要更多的设计点来达到均匀覆盖的目的。
-正交设计:正交设计要求因素水平之间的关系在各个方向上都是均匀分布的,因此设计所需的样本数量通常比均匀设计少。
3.因素水平组合:-均匀设计:均匀设计通过选择各个因素的水平组合来实现因素与因变量之间的关系研究,可以包含更多的因素和水平数,但样本点之间的因素水平组合可能会重复。
-正交设计:正交设计通过选择各个因素水平组合的方式来实现因素与因变量之间的关系研究,可以保证不同因素之间的水平组合均匀分布,从而减少重复度。
4.探索和解释能力:-均匀设计:均匀设计具有较高的探索性能,因为它能够覆盖全区间的因素水平组合,可用于快速筛选和发现影响因素。
-正交设计:正交设计具有较高的解释能力,因为它能够有效地区分主要因素和交互作用,从而更加精确地解释因果关系。
5.应用场景:-均匀设计:均匀设计适用于对影响因素的探索性研究、多因素筛选和较小样本量的试验设计。
-正交设计:正交设计适用于影响因素的优选、因素交互作用的分析、样本容量要求相对较高的试验设计。
总结来说,均匀设计和正交设计是两种不同的实验设计方法,各自具有不同的优势和适用场景。
均匀设计适用于探索性研究、多因素筛选等,而正交设计适用于因素优选和因素交互作用的分析。
均匀设计法名词解释
均匀设计法名词解释
均匀设计法是一种试验设计方法,它的设计点在试验范围内均匀散布。
该方法由方开泰教授和数学家王元在1978年共同提出,是数论方法中的“伪蒙特卡罗方法”的一个应用。
在科学研究和技术开发中,常常需要进行试验设计来探究不同因素对试验结果的影响。
试验设计的目的在于最小化试验次数和最大化试验信息的收集。
均匀设计法是一种有效的试验设计方法,它可以在试验点均匀散布的条件下,最小化试验次数,同时收集到足够的试验信息。
均匀设计法的优点在于它可以减少试验次数,提高试验效率,同时还可以均匀散布试验点,使试验结果更具代表性。
此外,均匀设计法还可以筛选关键因素,帮助研究人员更好地理解试验结果。
在均匀设计法中,每个因素的水平都被均匀地分配到试验中的各个点。
这使得每个试验点的数据都能够提供关于该因素的信息,从而使得在较少的试验次数下获得足够的信息成为可能。
总的来说,均匀设计法是一种有效的试验设计方法,可以帮助研究人员在较少的试验次数下收集到足够的试验信息,同时还可以提高试验效率并筛选关键因素。
均匀设计实验方法
均匀设计实验方法
它是一种很特别的实验设计方法哦。
你想想看,做实验的时候,我们常常想要用最少的实验次数得到最多最有用的信息,均匀设计就有这个本事呢。
比如说,要是传统的全面实验法,那可能要做超级多的实验组合,又费时间又费材料。
但是均匀设计呢,就像是一个聪明的小助手,它会巧妙地安排实验点,让这些点在整个实验范围内分布得超级均匀。
这种均匀分布有啥好处呢?这就好比你在一个大果园里摘果子,你要是乱走乱摘,可能有的地方果子好你没发现,有的地方你又白跑了。
但要是按照均匀设计的方法,就像是有个小地图,告诉你在哪几个地方摘,就能摘到各种不同类型的果子,把果园的情况摸得门儿清。
在实际操作的时候呢,它有自己的一套规则。
它会根据因素的个数和水平数来确定实验方案。
就像搭积木一样,每个积木块(因素)都有自己不同的样子(水平),均匀设计能把这些积木搭得又整齐又合理。
而且哦,它的实验点不会集中在某个小区域,而是均匀地散落在整个实验空间里。
均匀设计在很多领域都大显身手呢。
在化学实验里,要调配各种试剂的比例,用均匀设计就能快速找到比较好的配比组合。
在农业上,研究不同肥料、水分、光照对作物的影响,也可以靠它。
它就像一个多面手,到处都能帮忙。
均匀设计
7.1 均匀设计表
7.1.1 等水平均匀设计表
(1)记号: )记号: Un(rl)或 Un*(rl) 或 U——均匀表代号; 均匀表代号; 均匀表代号 n——均匀表横行数(需要做的试验次数); 均匀表横行数(需要做的试验次数); 均匀表横行数 r——因素水平数,与n相等; 因素水平数, 相等; 因素水平数 相等 l——均匀表纵列数; 均匀表纵列数; 均匀表纵列数 *——均匀性更好的表,优先选用Un*表 均匀性更好的表,优先选用 均匀性更好的表 表
试验号 1 2 3 4 5 6 7 8 9 10
A (1)1 (2)1 (3)2 (4)2 (5)3 (6)3 (7)4 (8)4 (9)5 (10)5
B (2)1 (4)2 (6)3 (8)4 (10)5 (1)1 (3)2 (5)3 (7)4 (9)5
C (5)1 (10)2 (4)1 (9)2 (3)1 (8)2 (2)1 (7)2 (1)1 (6)2
均匀设计( design) 均匀设计(uniform design) : 一种只考虑试验点在试验范围内均匀散布的 试验设计方法 通过均匀表来安排试验 应用:试验因素变化范围较大,需要取较多 应用:试验因素变化范围较大, 水平时 例如: 因素31水平的试验: 31水平的试验 例如:5因素31水平的试验: 正交设计试验次数≥ 正交设计试验次数≥312=961 均匀设计试验次数: 均匀设计试验次数:31
7.2 均匀Biblioteka 计基本步骤(1)明确试验目的,确定试验指标 )明确试验目的, (2)选因素 ) (3)确定因素的水平 ) 可以随机排列因素的水平序号 (4)选择均匀设计表 ) 根据试验的因素数和水平数来选择 参考使用表 首选U 表 首选 n*表
7.2
均匀设计基本步骤
均匀设计的基本步骤
均匀设计的基本步骤
均匀设计是一种实验设计方法,用于在有限次试验中寻找最佳的试验条件。
以下是均匀设计的基本步骤:
1.确定实验目的和响应变量:首先需要明确实验的目的,确定要研究的响应变量,以便于确定实验的主要内容和目标。
2.确定实验因素和水平:根据专业知识和实际经验,选择对响应变量影响较大的因素作为实验因素。
根据实际情况和历史数据,为每个实验因素选择适当的水平。
3.制定均匀设计表:根据实验因素和水平的数量,选择合适的均匀设计表进行实验。
均匀设计表是一种特殊的矩阵,用于安排实验并确保各因素水平在实验中均匀分布。
4.安排实验:根据均匀设计表,安排实验的具体实施方案。
确保每个实验条件只被试验一次或多次,以确保结果的准确性。
5.收集数据:按照实验方案进行实验,并记录各实验条件下的响应变量值。
6.分析数据:对收集到的数据进行分析,探索各因素与响应变量之间的关系。
可以采用回归分析、方差分析等方法进行数据分析。
7.优化条件:根据数据分析结果,选择最优的实验条件进行进一步优化。
这可能涉及对实验方案进行调整或重复试验。
8.验证和确认:对优化后的条件进行验证和确认,以证明其在实践中具有可行性和有效性。
9.总结和报告:整理实验过程和结果,编写详细的实验报告,总
结实验的经验和教训,并提出改进意见和建议。
以上步骤是一个典型的均匀设计过程的基本流程。
具体的实施过程中,可以根据实际需求和条件进行调整和优化。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2
1.4(2) 19(4) 3.0(6) 0.336
3பைடு நூலகம்
1.8(3) 25(6) 1.0(2) 0.294
4
2.2(4) 10(1) 2.5(5) 0.476
5
2.6(5) 16(3) 0.5(1) 0.209
6
3.0(6) 22(5) 2.0(4) 0.451
7
3.4(7) 28(7) 3.5(7) 0.482
xik
_
xi
xik
_
xj
Liy
N K 1
xik
_
xi
yk
_
y
Lyy
N i1
yk
_
y
2
_
N
xi xi
i1
i 1, 2, m
i, j 1, 2, , m i 1, 2, , m
(8 2) (8 3) (8 4) (8 5)
_ 1 N
y N i1 yk 回归方程组系数由下列正规方程组决定:
^
2mT
方程(8 9)化为 y b0 bl xl (T Cm2 ) (8 11)
l 1
在这种情况下,为了求得二次项和交互作用项,就不能
选用试验次数等于因素数的均匀设计表,二必须选用试
验次数大于或等于回归方程系数总数的U表了
§9-2 应用举例
▪ 利用均匀设计表来安排试验的步骤:
• (1)根据试验的目的,选择合适的因素和相应的水平。 • (2)选择适合该试验的均匀设计表,然后根据该表的使
§6-1 基本原理
• 一、引言
• 正交试验设计利用:
▪ 均衡分散:试验点在试验范围内排列规律整齐
▪ 整齐可比:试验点在试验范围内散布均匀
▪
▪
可以进行部分试验而得到基本上反映全面情况的试验
结果,但是,当试验中因素数或水平数比较大时,正交试
验的次数也会很大。如5因素5水平,用正交表需要安排55
=25次试验。这时,可以选用均匀设计法,仅用5次试验
用表从中选出列号,将因素分别安排到这些列号上,并将 这些因素的水平按所在列的指示分别对号,则试验就安排 好了
▪ 在阿魏酸的合成工艺考察中,为了提高产量,选 取了原料配比(A)、吡啶量(B)和反应时间(C)三个 因素,它们各取了7个水平如下:
✓ 原料配比(A):1.0,1.4,1.8,2.2,2.6,3.0,3.4 ✓ 吡啶量(B)(ml):10,13,16,19,22,25,28 ✓ 反应时间(C)(h):0.5,1.0,1.5,2.0,2.5,3.0,3.5
这时这三个t值遵从含四个自由度的t分布,临界值为 t4 (0.05) 2.78,从而X1应从方程中剔除,然后对Y和X3 建立回归方程
Y 0.2141 0.079X3
(8 13)
这里t3 3.34 t5(0.05) 2.57, 0.063。因此,回归方
程(8-13)并非真正的最终模型,而是在线性框架下的
U6(64)的使用表
s列
号
D
213
0.1875
312 3
0.2656
4
1
2
3
4
0.2990
• 均匀设计有其独特的布(试验)点方式:
▪ 每个因素的每个水平做一次且仅做一次试验
▪ 任两个因素的试验点点在平面的格子点上,每行每列有且 仅有一个试验点
▪
以上两个性质反映了均匀设计试验安排的“均衡性”,即对各
值大于该值的因素表示对方程有显著贡献,否则表示不显
著。今 均小于(0.05)=3.18 ,说明回归方程(2.18)的三个
变量至少有一个不起显著作用.于是我们将贡献最小的X2 删去,重新建立Y和X1及X3的线性回归方程,得
Y 0.169 0.0251X1 0.0742X3
2 0.065262,三个t值分别为t0 2.12,t1 0.79,t3 2.91,
因素,每个因素的每个水平一视同仁。
▪ 均匀设计表任两列组成的试验方案一般并不等价
▪ 例如用U6(64)的1,3 和1,4列分别画图,得到下面的图 (a)和图 (b)。我们看到,(a)的点散布比较均匀,而(b)的 点散布并不均匀。均匀设计表的这一性质和正交表有很大 的不同,因此,每个均匀设计表必须有一个附加的使用表。
▪ 设先用后退法来选变量.所谓后退法,就是开始将 所有的变量全部采用,然后逐步剔除对方程没有 显著贡献的变量,直到方程中所有的变量都有显 著贡献为止。
▪ 仍考虑线性模型,开始三个因素全部进入方程, 得(2.12).统计软件包通常还会提供每个变量的t值, t值越大(按绝对值计)表示该因素越重要.对本 例有
这时收率大于前面所讲的用U表安排的7号试验的结果
棗 48.2%,达到了优化的目的
例.均匀设计法在全光亮镀镍研究中的应用
• 1. 均匀设计表的选取 • 本实验的目的是提高镀层光亮性。经初步研究,取其固
定组成为硫酸镍25g/L,次磷酸钠25g/L,醋酸钠25g/L。 考察因素为稳定剂,主光亮剂,辅助光亮剂,润湿剂4个 因素,每个因素取值范围为t个水平(t 为实验次数),4 个因素的一次项及二次项各有4项,4项因素间的两两交互 作用设有6项,共14项,实验数不能小于14,本实验选用 U17(178)表。
就可能得到能满足需要的结果
▪ 1978年,七机部由于导弹设计的要求,提出了一个五因 素的试验,希望每个因素的水平数要多于10,而试验总数 又不超过50,显然优选法和正交设计都不能用,方开泰与 王元经过几个月的共同研究,提出了一个新的试验设计, 即所谓“均匀设计”,将这一方法用于导弹设计,取得了 成效
ji
可以解得
从而
b1 0.037,b2 0.00343,b3 0.077
a 0.3683 0.037 2.2 0.0034319 0.077 2.0 0.201
的估计 0.07,于是回归方程为:
Y 0.201 0.037X1 0.00343X2 0.0077X3 (8 12) 进一步对它做方差分析,其方差分析表如下:
•
逐步回归是回归分析中的一种筛选变量的技术.开始它
将贡献最大的一个变量选入回归方程,并且预先确定两个
阈值Fin和Fout,用于决定变量能否入选或剔除.逐步回归在 每一步有三种可能的功能:
✓ 将一个新变量引进回归模型,这时相应的F统计量必须大于Fin ✓ 将一个变量从回归模型中剔除,这时相应的F统计量必须小于Fout ✓ 将回归模型内的一个变量和回归模型外的一个变量交换位置。
• 二、均匀设计表
▪ 均匀设计表符号表示的意义
因素数
均匀表的代号
U7(76)
因素的水平数 试验次数
图9-1 两因素均匀设计布点图
▪ 如U6(64)表示要做次6试验,每个因素有6个水平, 该表有4列。
U6(64)
列号 试验号
1
2
3
4
1
1
2
3
6
2
2
4
6
5
3
3
6
2
4
4
4
1
5
3
5
5
3
1
2
6
6
5
4
1
▪ 每个均匀设计表都附有一个使用表,它指示我们如何从设计表 中选用适当的列,以及由这些列所组成的试验方案的均匀度。 下表是U6(64)的使用表。它告诉我们,若有两个因素,应选用1, 3两列来安排试验;若有三个因素,应选用1,2,3三列,…, 最后1列D表示刻划均匀度的偏差(discrepancy),偏差值越小, 表示均匀度越好。
(8 6)
L11b1
L1M bm L1y
L21b1
L2mbm L2 y
Lm1b1
Lmmbm Lmy
_N
_
b0 y bi yi
i 1
(8-7)
当各因素与响应值关系是非线性关系时,或存在因素
的交互作用时,可采用多项式回归分析的方法
例如各因素与响应值均为二次关系时的回归方程为:
▪ 7个水平,需要安排7次试验,根据因素和水平,我们可以 选用U7(76)完成该试验。
U7(76)
1 列号
试验号
2
3
4
5
6
11 2 3 6 5 6
22 4 6 5 3 5
33 6 2 4 1 4
44 1 5 3 6 3
55 3 1 2 4 2
66 5 4 1 2 1
77 7 7 7 7 7
因素数
▪ 均匀设计法愈正交设计法的不同:
▪ 均匀设计法不再考虑“数据整齐可比”性,只考虑试验点 在试验范围内充分“均衡分散”
▪ 均匀设计属于近年发展起来的“伪蒙特卡罗方法”的 范筹。将经典的确定的单变量问题的计算方法推广后 用于多变量问题的计算时,计算量往往跟变量个数有 关,即使电脑再进步很多,这种方法仍无法实际应用, 乌拉母(S.Ulam)与冯诺依曼(J.von Neumann)在40 年代提出蒙特卡罗方法,即统计模拟方法,这个方法 的大意是将一个分析问题化为一个有同样解答的概率 问题,然后用统计模拟的方法来处理后面这个问题, 这样使一些困难的分析问题反而得到了解决,例如多 重定积分的近似计算。蒙特卡罗方法的关键是找一组 随机数作为统计模拟之用,所以这一方法的精度在于 随机数的均匀性与独立性。
方差分析表
方差来源 自由度 平方和
均方
F
回归
3
0.048770 0.016257
3.29
误差
3
0.014838 0.004946
总和
6
0.063608
当 0.05时F表的临界值 Fm,nm1( ) F3,3(0.05) 9.28 F 3.29
回归方程不可信。