机械动力学2自由度机构动力学分析
二自由度动力学方程推导

二自由度动力学方程推导一、引言在机械工程领域,动力学方程是研究机械系统的运动规律和相互作用力的重要工具。
本文将介绍如何推导二自由度机械系统的动力学方程,通过此方程可以描述系统的运动行为和相互作用力。
二、二自由度机械系统的建模二自由度机械系统由两个相互连接的质点或刚体组成,例如双杆摆、双摆锤等。
为了推导动力学方程,首先需要对系统进行建模。
2.1笛卡尔坐标系考虑一个二自由度机械系统,我们选择合适的笛卡尔坐标系来描述系统的运动。
假设系统的质点一的坐标为$(x_1,y_1)$,质点二的坐标为$(x_2,y_2)$,则可以用位移矢量$\ve c{r}_1$和$\v ec{r}_2$来表示质点一和质点二的位置。
2.2动力学变量为了研究系统的运动行为,我们引入广义坐标$q_1$和$q_2$来描述系统的状态。
广义坐标可以是位移、角度或者它们的组合。
在本文中,我们选择关节角度作为广义坐标,记为$\th et a_1$和$\th et a_2$。
定义广义坐标的变化率为广义速度$q_1'$和$q_2'$,广义速度的变化率为广义加速度$q_1''$和$q_2''$。
2.3势能和动能系统的能量可以通过势能和动能进行描述。
势能表示系统由于位置而具有的能量,动能表示系统由于运动而具有的能量。
势能$V$和动能$T$可以表示为:$V=V(q_1,q_2)$$T=T(q_1',q_2')$2.4广义力广义力用于描述系统中各个自由度受到的相互作用力。
对于二自由度机械系统,广义力可以表示为:$\ta u_1=Q_1(q_1,q_2,q_1',q_2')$$\ta u_2=Q_2(q_1,q_2,q_1',q_2')$其中,$\t au_1$和$\t au_2$分别表示广义坐标$q_1$和$q_2$的广义力,$Q_1$和$Q_2$为相应的广义力函数。
自由度机械系统动力学分析

06
结论与展望
研究成果总结
01
02
03
04
自由度机械系统动力学分析在 理论和实践方面取得了重要进 展,为复杂机械系统的动态性 能分析和优化设计提供了有力 支持。
自由度机械系统动力学分析在 理论和实践方面取得了重要进 展,为复杂机械系统的动态性 能分析和优化设计提供了有力 支持。
自由度机械系统动力学分析在 理论和实践方面取得了重要进 展,为复杂机械系统的动态性 能分析和优化设计提供了有力 支持。
自由度机械系统动力学分析
目
CONTENCT
录
• 引言 • 自由度机械系统基础 • 自由度机械系统动力学分析方法 • 自由度机械系统动态特性分析 • 自由度机械系统优化设计 • 结论与展望
01
引言
背景介绍
机械系统在工业、航空航天、交通运输等领域广泛应用,其动力 学性能对系统的稳定性和性能至关重要。
结合人工智能、大数据等先进技术,开展自由度 机械系统动力学分析与优化设计,实现智能化、 自动化的动态性能预测和优化设计。
拓展自由度机械系统动力学分析的应用领域,特 别是在智能制造、新能源、生物医学工程等新兴 领域,发挥其在技术创新和产业升级中的作用。
THANK YOU
感谢聆听
稳定性分析
线性稳定性分析
通过判断系统的线性化方程的解的稳定性,确定系统的稳定性。常用的方法有 特征值法和Lyapunov直接法。
非线性稳定性分析
研究非线性系统的稳定性,需要考虑系统的非线性特性,常用的方法有分岔理 论和混沌理论。
振动特性分析
固有频率和模态分析
通过求解系统的运动微分方程,得到系统的固有频率和模态,即系统自由振动的频率和振型。
02
第2章 两自由度机械系统动力学

代入虚功 方程
W Fk rk 0(3-3)
k
22
得:
n rk W Fk rk Fk q qi k k i 1 i n rk Fk q qi i 1 k i
125
欲实施有效控制,特征 根不能为正值,所以 b0 a g (1 )
126
3.6 二自由度机械手动力学问题
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
本章总结
了解牛顿力学的不足;
掌握广义坐标和广义力的计算方法; 掌握拉格郎日方程的建立方法; 简单的力学应用。
2 1 2 2 2 1
51
52
53
54
例:用拉格朗日方程建立单摆运动方程。
55
(1)确定广义坐标 q (2)计算动能与势能 1 2 1 2 2 mv ml 2 2 V m gl(1 cos ) E (3)计算广义力 V Q m glsin
5
6
7
8
本章采用的方法:拉格郎日方程(重点) 二自由度机械系统动力学不采用等效 力学模型法,一般采用拉格郎日方程来建 模。 在学习拉格郎日方程之前,必须掌握 一些重要的概念,如广义坐标、广义力、 虚位移等。首先了解一些科学史观,培养 科学精神。
9
3.2 自由度与广义坐标
广义坐标:
能够完全确定系统状态的一组坐标叫做广义 坐标。 自由度(DOF): 能够完全确定系统状态的一组坐标的数量叫 自由度。 一般情况下广义坐标数量等于自由度数。
《机械原理自由度》课件

机械故障诊断
通过运动分析诊断机械故障的原因 和位置。
控制系统设计
利用运动分析结果设计控制系统的 参数和策略。
机构运动分析的实例
平面四杆机构的运动分析
01
通过解析法计算平面四杆机构的自由度,并分析其运动特性。
凸轮机构的运动分析
02
利用实验法测量凸轮机构的位移、速度和加速度,分析其运动
规律。
机器人臂关节的运动分析
03
通过数值法模拟机器人臂关节的运动行为,优化关节的设计参
数。
04
机构动力学分析
机构动力学的基本概念
机构动力学是研究机 械系统中机构运动及 其与力的关系的学科 。
机构动力学的基本概 念包括力、力矩、加 速度、速度和位移等 。
它涉及到系统的平衡 、运动规律、动态响 应等方面的内容。
机构动力学分析的Байду номын сангаас法
空间机构自由度计算
总结词
空间机构自由度计算是机械原理中一个复杂的概念,它涉及到机构在空间中的 运动自由度数。
详细描述
空间机构的自由度计算公式为F=6n-(3PL + Ph),其中n为活动构件数,PL为低 副数,Ph为高副数。与平面机构不同,空间机构需要考虑三个方向的自由度, 因此计算更为复杂。
特殊机构自由度计算
通过建立平面连杆机构的运动学和动力学模型,分析其运动规律 和动态响应。
凸轮机构的动力学分析
研究凸轮机构的动态行为,包括从动件的运动规律和受力情况等。
齿轮机构的动力学分析
分析齿轮机构的动态特性,如振动、冲击和噪声等,以提高齿轮传 动的平稳性和可靠性。
05
机构优化设计
机构优化设计的目标和方法
目标
多自由度机械系统动力学

Chapter4多自由度机械系统动力学
机械动力学
Chapter4
多自由度机械系统动力学
2021年6月18日
机械动力学
Chapter4多自由度机械系统动力学
本章解决的主要问题及内容
解决的问题: 解决两自由度机械系统的动力学问题。采 用方法为拉格朗日方程的分析方法。
主要的内容:
一、拉格朗日方程;
工程中的非自由质点系,受到的约束大多是稳定的完整 约束(约束方程仅与质点系的位置有关)。
确定一个受完整约束的质点系的位置所需的独立坐标的数 目,称为该质点系的自由度的数目,简称为自由度数。
对一个非自由质点系,受s个完整约束,(3n-s )个独
立坐标。其自由度 为 N=3n-s 。
机械动力学
Chapter4多自由度机械系统动力学
机械动力学
Chapter4多自由度机械系统动力学
例:铅直平面内摆动的双摆。
▼确定A、B两点位置(平面问题) 需四个独立坐标 ▼系统受两个完整约束,其约束方程:
x12 y12 a2 , (x2 x1)2 ( y2 y1)2 b2
▼系统的自由度:N=2n-s=4-2=2
★两个自由度, 取广义坐标,
Qk 0 (k 1,2,, N )
机械动力学
Chapter4多自由度机械系统动力学
以广义坐标 表示的质点系的平衡条件:
Qk
n
(Xi
i 1
xi qk
Yi
yi qk
Zi
zi ) 0 qk
(k 1,2,, N)
解决质点系的平衡问题的关键是如何计算广义力
※广义力的计算
方法1:计算广义力 Qk 的步骤
N
xi
二自由度机械臂动力学分析

平面二自由度机械臂动力学分析姓名:黄辉龙 专业年级:13级机电 单位:汕头大学摘要:机器臂是一个非线性的复杂动力学系统。
动力学问题的求解比较困难,而且需要较长的运算时间,因此,这里主要对平面二自由度机械臂进行动力学研究。
拉格朗日方程在多刚体系统动力学的应用方法分析平面二自由度机械臂的正向动力学。
经过分析,得出平面二自由度机械臂的动力学方程,为后续更深入研究做铺垫。
关键字:平面二自由度 动力学方程 拉格朗日方程相关介绍机器人动力学的研究有牛顿-欧拉(Newton-Euler )法、拉格朗日(Langrange)法、高斯(Gauss )法等,但一般在构建机器人动力学方程中,多采用牛顿-欧拉法及拉格朗日法。
欧拉方程又称牛顿-欧拉方程,应用欧拉方程建立机器人机构的动力学方程是指研究构件质心的运动使用牛顿方程,研究相对于构件质心的转动使用欧拉方程,欧拉方程表征了力、力矩、惯性张量和加速度之间的关系。
在机器人的动力学研究中,主要应用拉格朗日方程建立机器人的动力学方程,这类方程可直接表示为系统控制输入的函数,若采用齐次坐标,递推的拉格朗日方程也可以建立比较方便且有效的动力学方程。
在求解机器人动力学方程过程中,其问题有两类:1)给出已知轨迹点上•••θθθ、及、,即机器人关节位置、速度和加速度,求相应的关节力矩矢量τ。
这对实现机器人动态控制是相当有用的。
2)已知关节驱动力矩,求机器人系统相应各瞬时的运动。
也就是说,给出关节力矩矢量τ,求机器人所产生的运动•••θθθ、及、。
这对模拟机器人的运动是非常有用的。
平面二自由度机械臂动力学方程分析及推导过程1、机器人是结构复杂的连杆系统,一般采用齐次变换的方法,用拉格朗日方程建立其系统动力学方程,对其位姿和运动状态进行描述。
机器人动力学方程的具体推导过程如下:1) 选取坐标系,选定完全而且独立的广义关节变量n r ,,2,1,r ⋅⋅⋅=θ。
2) 选定相应关节上的广义力r F :当r θ是位移变量时,r F 为力;当r θ是角度变量时,r F 为力矩。
机械动力学第3章两自由度系统

b.微分方程
m1&&1 + (k1 + kc ) x1 − kc x2 = F1 (t ) x (3.1-1) ) m2 &&2 + (k 2 + kc ) x2 − kc x1 = F2 (t ) x
5
写成矩阵形式: 写成矩阵形式:
m1 0
0 &&1 k1 + kc x && + −k m2 x2 c
(3.1-12) )
讨论( 讨论(3.1-11)的解,假定 )的解,
f (t ) = Be
st
代入( 代入(3.1-11)得 )
10
3.1无阻尼自由振动 3.1无阻尼自由振动
3.1.1 固有模态振动
QQ1094860954
s +λ =0
2
(3.1-13) )
− −λt
(3.1-11)的通解 )
f (t ) = B1e
(3.1-22) )
17
3.1无阻尼自由振动 3.1无阻尼自由振动
3.1.1 固有模态振动
叫做特征向量, 叫做特征向量 振型向量或模态向量 r 1 r 2 叫做振型比 固有频率和振型向量构成系统的固有模态的基 或简称模态参数),它们表明了系统自由振动 本参数(或简称模态参数 本参数 或简称模态参数 它们表明了系统自由振动 的特性。 的特性。 两自由度系数有两个固有模态,即 两自由度系数有两个固有模态 即系统的固有 模态等于系统的自由度数。 模态等于系统的自由度数。 对于给定的系统, 对于给定的系统 特征向量或振型向量的相对比值 是确定的唯一的,和固有频率一样取决于系统的物 是确定的唯一的 和固有频率一样取决于系统的物 理参数,是系统固有的 而振幅则不同。 是系统固有的,而振幅则不同 理参数 是系统固有的 而振幅则不同。
机械动力学

机械动力学Copyright @ 2009 HRBEU 702All Rights Reserved绪论一、机械动力学性质1.机械:机构、机器的总称。
(机械原理)2.动力学:研究刚体运动及受力关系的学科。
动力学正问题—已知力(力矩)求运动;动力学反(逆)问题—已知运动求力(力矩)。
机械动力学:是研究机械在力作用下的运动、机械在运动中产生的力(力矩)的科学。
F ma=例:机构组成性质:曲柄、急回。
若已知力(力矩),当机构处于平衡状态时,求力矩(力)--机械静力学问题。
若已知M、F,求ω、v 时—机械动力学。
ωM Fv二、机械动力学研究内容1. 描述机械有那些基本参数1)机构参数:几何参数(杆长);物理参数(质量m,转动惯量J)。
2)运动参数:转角θ、ω、α、s、v、a。
3)力矩M、力F。
2. 内容1)已知机械的物理、几何参数进行动力学分析。
a、已知力求运动;b、已知力求运动。
可表示为:2)已知运动、受力求结构这是机械设计研究问题,一般实际做法是先设计后校核,少数情况是直接求设计参数。
例:(,)(,,,,,,)f F Mg l m J v a ωαZZ X YZ Z q求支点最佳位置。
如果梁静止为静力学问题;如果梁有惯性运动为动力学问题。
3)具体章节内容单自由度运动学方程的建立二自由度运动学方程的建立,如差动轮系、五杆机构多自由度运动学方程的建立,如机械手臂、机器人等理想情况下(无摩擦变形等)考虑摩擦,如铰链、关节处摩擦考虑弹性变形,如杆变形、并联柔性机器人变质量问题,如推土机工作过程、火箭发射过程有间隙情况下动力学研究,不详讲述三、研究对象--以机械为研究对象三大典型机构连杆机构凸轮机构齿轮机构组合机构四、其它1.学习机械动力学目的、意义学习动力学分析问题的思想和基本方法,能够解决一般动力学问题。
2.教材(见前言)3.考核方式开卷。
§1-1 利用动态静力法进行动力学分析一、思路动静法:根据达朗贝尔原理将惯性力计入静力平衡方程,求出为平衡静载荷和动载荷而需在原动件上施加的力(力矩)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
关键问题
• 二自由度机械手我们这里分析的是平面 的动力学相关问题而还有较复杂空间动 力学问题 • 对于数值计算结果与仿真求解结果存在 些差异,还有待更严谨的计算。
解决方案
1.应用拉格朗日方程也能解决只是计算较复杂 2.需要重新查错验算。
小组成员分工
• • • • • • • PPT制作与课堂介绍:李孟禹、许云猛 三维及二维建模几何参数确定:庞乂铭、薛琨 MATLAB仿真:薛琨、李孟禹 ADAMS仿真:孙铭权、庞乂铭 动力学建模:许云猛、孙文浩 关键问题解决与资料查找:孙文浩、孙铭权 方案讨论与确定:全体成员
The end!
二自由度机械手 动力学分析
小组成员:孙文浩、许云猛、薛琨、孙 铭权、庞乂铭、李孟禹 日期:2018.10.13 指导教师:庞永刚
目录
• • • • • • 三维建模 机构简图 几何参数的确定 动力学建模及数值分析 ADMS仿真分析 关键问题
三 维 建 模
机 构 简 图
A点的位置及速度
B点的位置及速度
广义力:
2
J12 m2l1ls 2 cos 2 1
Q1 M1 m1 gl1 sin 1 Fl1 sin 1 m2 gl1 sin 1 Q2 M 2 Fl3 sin 2 m2 gls 2 sin 2
• MATLAB求解
• 给定条件 角位移运动规律:
l3 l2 l2 1.201 0.750 1.951 m l 1.044 l 1.201 ls1 1 0.522 m ls 2 2 0.6005 m 2 2 2 2
MATLAB求解程序:
• t=0:0.1:3; • D111=0; theta1=-0.1163*t.^3+0.52335*t.^2; D122=-m2*l1*l2*sin(theta2); w1=-0.3489*t.^2+1.0467*t; D222=0; a1=-0.6978*t+1.0467; D211=m2*l1*l2*sin(theta2); theta2=-0.1163*t.^3+0.52335*t.^2; D112=-m2*l1*l2*sin(theta2); w2=-0.3489*t.^2+1.0467*t; D121=-m2*l1*l2*sin(theta2); a2=-0.6978*t+1.0467; D212=0; m1=72.259; D221=0; m2=79.555; D1=(m1+m2)*g*l1*sin(theta1)+m2*g*l2*sin(theta1+theta2); l1=1.044; D2=m2*g*l2*sin(theta1+theta2); l2=1.201; M1=D11.*a1+D12.*a2+D111.*w1.^2+D122.*w2.^2+D112.*w1.*w2+D121.*w2.*w1+D1; g=9.8; M2=D21.*a2+D22.*a2+D211.*w1.^2+D222.*w2.^2+D212.*w1.*w2+D221.*w2.*w1+D2; D11=(m1+m2)*l1.^2+m2*l2.^2+2*m2*l1*l2*cos(theta2); T1=polyfit(t,M1,3) D22=m2*l2.^2; T2=polyfit(t,M2,3) D12=m2*l2.^2+m2*l1*l2*cos(theta2); subplot(2,1,1),plot(t,M1),grid on,xlabel('时间(s)'),ylabel('控制力矩(N· m)'),title('motion1') D21=m2*l2.^2+m2*l1*l2*cos(theta2); subplot(2,1,2),plot(t,M2),grid on,xlabel('时间(s)'),ylabel('控制力矩(N· m)') title('motion2')
两个角都是从0到90°,角位移曲线为三次函数曲线。
几何参数
体积/m3 大臂 小臂 圆环 0.65690 0.72323 0.49234 质量/kg 72.259 79.555 54.157 杆长/m 1.044 1.201 0.750 转动惯量/kg· m2 6.52
42.37
在分析时,由于小臂与圆环是胶合连接,为简化计算,将小臂与圆环当成一个整 体考虑,因此,小臂部分总体杆长l3与质心到杆端距离ls1,ls2分别为:
C点位置及速度
D点的位置及速度
动力学建模
q1(大臂)
M1 m1g M2 Js1 m1 Js2 1 ls1 0
q2(小臂)
0 0 1
m2g F
m2
A
l1
l1
ls2
l3
惯性系数:
J11 J S 1 m1 ls1 m2 l1
2
2
J 22 J s 2 m2 ls 2
数值计算结果:
M1 和 M2 数 值 变 化 图:
• ADAMS仿真:MODEL_3.avi
大臂力矩M1
小臂力矩M2
ADAMS仿真
大臂的角速度 小臂的角速度
大臂的角加速度
小臂的角加速度
ቤተ መጻሕፍቲ ባይዱ
• 结论:
从函数规律上看,虽然有所差异,但两种求解方法得出的结果几 乎一样。由上述图形可以看出:数值计算结果与仿真求解结果相差很 小,误出现这种结果的原因可能是因为两种方法计算的精度不同,或 者是算法存在差异。如果对结果精度要求不是很高,可以认为两种方 法求得的结果相等,进一步说明了仿真计算的可靠性。