带电粒子在等效重力场中的运动

合集下载

等效场

等效场
9.等效场
一、电场+重力场:存在于同一环境场进行合成。
为什么不把磁场加进来?因为这两种场都是保守力 场(恒力),而洛伦兹力是个变力。
例:如下图,小球在电场力和重力作用下平衡,与 竖直方向夹角为θ,现在将小球拉开角度α,使得 小球运动到竖直位置时速度为零,则α=?
分析:传统做法是:利用能量守恒来做。
传统方法:用二斜抛做法。
(2017沈阳育才高三二模)一带正电的小球向右水平 抛入范围足够大的匀强电场,电场方向水平向左, 不计空气阻力,则小球
A.做直线运动 B.做曲线运动 C.速率先减小后增大, D.速率先增大后减小
再讨论:竖直圆分为绳模型和杆模型。现在如果还 想继续使用这些结论,必须在前面加上等效二字。
(2017衡水中学模拟题)如图所示,水平向左的匀 强电场中,用长为l的绝缘轻质细绳悬挂一小球, 小球质量为m,带电量为+q,将小球拉至竖直位 置最低位置A点处无初速释放,小球将向左摆动, 细线向左偏离竖直方向的最大角度θ=74°。
下面用等效场做法:
那么就把重力或电场力都撤掉,取而代之的是一个 恒定的等效重力,那么就可以把所有在重力环境中 的公式,定理应用在新场中。(类比:狭义相对论, 在任何参照系中,光速不变,物理定律仍适用)
拓展:竖直圆,可以找到等效最低点和等效最高点。 问题是:可以找到圆上六个特殊位置的点。
再拓展:若再在刚才环境场的基础上再叠加一个垂 直纸面向里的磁场,以上结论还是不变,因为洛伦 兹力不做功,而且洛伦兹力始终指向圆心。
⑴求电场强度的大小E; ⑵求小球向左摆动的过程中,对细线拉力的最大值;
⑶若从A点处释放小球时,给小球一个水平向左的 初速度v0,则为保证小球在运动过程中,细线不会 松弛,v0的大小应满足什么条件?

高考物理带电粒子在电场中的运动

高考物理带电粒子在电场中的运动

带电粒子在电场中的运动1.研究带电粒子在电场中运动的方法带电粒子在电场中的运动,是一个综合电场力、电势能的力学问题,研究的方法与质点动力学相同,它同样遵循运动的合成与分解、牛顿运动定律、动量定理、动能定理等力学规律,处理问题的要点是要注意区分不同的物理过程,弄清在不同的物理过程中物体的受力情况及运动性质,并选用相应的物理规律,在解题时,主要可以选用下面两种方法.(1)力和运动关系——牛顿第二定律:根据带电粒子受到电场力,用牛顿第二定律找出加速度,结合运动学公式确定带电粒子的速度、位移等.这种方法通常适用于受恒力作用下做匀变速运动的情况.(2)功和能的关系——动能定理:根据电场力对带电粒子所做的功,引起带电粒子的能量发生变化,利用动能定理研究全过程中能量的转化,研究带电粒子的速度变化、经历的位移等.这种方法同样也适用于不均匀的电场.注意事项:带电粒子的重力是否忽略的问题是否考虑带电粒子的重力要根据具体情况而定,一般说来:(1)基本粒子:如电子、质子、α粒子、离子等除有说明或有明确的暗示以外一般都不考虑重力(但并不忽略质量).(2)带电粒子:如液滴、油滴、尘埃、小球等,除有说明或有明确的暗示以外,一般都不能忽略重力,2. 带电粒子的加速(1)运动状态分析:带电粒子沿平行电场线的方向进入匀强电场,受到的电场力与运动方向在同一直线上,做匀加(减)速直线运动.(2)用功能观点分析:粒子动能的变化量等于电场力做的功(电场可以是匀强电场或非匀强电场).若粒子的初速度为零,则:mqU v qU mv 2,212==若粒子的初速度不为零,则:mqU v v qU mv mv 2,212120202+==-例1.(多选)如图所示,在P 板附近有一质子由静止开始向Q 板运动,则关于质子在两板间的运动情况,下列叙述正确的是( ) A.两板间距越大,加速的时间越长B.两板间距越小,加速度就越大,质子到达Q 板时的 速度就越大C.质子到达Q 板时的速度与板间距离无关,与板间 电压U 有关D.质子的加速度和末速度都与板间距离无关例2.如图甲所示平行板电容器A 、B 两板上加上如图乙所示的交变电压,开始B 板的电势比A 板高,这时两板中间原来静止的电子在电场力作用下开始运动,设电子在运动中不与极板发生碰撞,则下述说法正确的是(不计电子重力)( ) A.电子先向A 板运动,然后向B 板运 动,再返回A 板做周期性来回运动 B.电子一直向A 板运动 C.电子一直向B 板运动D.电子先向B 板运动,然后向A 板运 动,再返回B 板做周期性来回运动3. 带电粒子在匀强电场中的偏转(不考虑重力作用)(1)运动状态分析:带电粒子以速度0v 垂直于电场线方向飞入匀强电场时,受到恒定的与初速度方向成90°角的电场力作用而做匀变速曲线运动. (2)偏转问题的分析处理方法类似于平抛运动的分析处理,应用运动的合成和分解的方法:沿初速度方向为匀速直线运动,运动时间:0/v l t =沿电场力方向为初速度为零的匀加速直线运动:md qU m Eq m F a ///===离开电场时的偏移量:d mv qUl at y 2022221== 离开电场时的偏转角:dmv qUlv at v v y 2000tan ===θ(U 为偏转电压)(3)推论:推论①粒子从偏转电场中射出时,其速度反向延长线与初速度方向交于一 点,此点平分沿初速度方向的位移.推论②以相同的初速度0v 进入同一偏转电场的带电粒子,不论m 、q 是否相同,只要q/m 相同,即荷质比相间,则偏转距离y 和偏转角θ都相同.推论③若以相同的初动能0k E 进入同一偏转电场,只要q 相同,不论m 是否相同,则偏转距离y 和偏转角θ都相同.推论④若以相同的初动量0p 进人同一偏转电场,不论m 、q 是否相同,只要mq 相同,即质量与电荷量的乘积相同,则偏转距离y 和偏转角θ都相同. 推论①可根据类平抛直接得到结论,这里我们给出后几个推论的证明d p Ul mq d v m mqUl d E Ul q d mv Ul q d Ul v m q d mv qUl y k ⋅⋅==⋅⋅=⋅⋅⋅=⋅⋅⋅==222022220222020222421412120 dp Ulmq d v m mqUl d E Ul q d mv Ul q d Ul v m q d mv qUl k ⋅⋅==⋅⋅=⋅⋅⋅=⋅⋅==2202202020022121tan θ 推论⑤不同的带电粒子由静止经同一加速电场加速后(即加速电压1U 相同),进人同一偏转电场2U ,则偏转距离y 和偏转角θ相同,但这里必须注意,粒子必须是静止开始加速,只有这样120210qU mv E k ==带入上面的式子得: d U l U d qU l qU d E l qU y k 122122224440=== d U lU d qU l qU d E l qU k 12122222tan 0===θ(4)如果对于一些带电粒子在不能忽略重力时,则上面的推导公式无法使用,这时可以先求出合外力得到加速度(一般是重力与电场力的合力产生偏转加速度),结合类平抛规律特点处理问题,本质上与上面的问题是相同的(5)带电粒于能否飞出偏转电场的条件及求解方法带电粒子能否飞出偏转电场,关键看带电粒子在电场中的侧移量y.如质量为m 、电荷量为q 的带电粒子沿中线以0v 垂直射入板长为l 、板间距为d 的匀强电场中,要使粒子飞出电场,则应满足:0v l t =时,2dy ≤;若当0v l t =时,2dy >,则粒子打在板上,不能飞出电场. 由此可见,这类问题的分析方法及求解关键是抓住“刚好”射出(或不射出)这一临界状态(即2dy =)分析求解即可.(6)矩形波电压问题的处理对于这类问题一般先根据粒子的受力特点,找到加速度变化规律,进而作出在加速度方向上运动的v —t 图像,通过图像特点分析计算位移变化,可将问题的处理大大简化例3.(多选)如图所示,一个质量为m 带电荷量为q 的粒子(重力不计),从两平行板左侧中点沿垂直场强方向射入,当人射速度为v 时,恰好穿过电场而不碰金属板。

第10讲-【答案解析】带电粒子在电场中的运动

第10讲-【答案解析】带电粒子在电场中的运动

例7
答案: ACD
解答:
A
.由
qU1
=
1 2
mv02
可知,其他条件不变时,当 U1
变大,则电子进入偏转电场的速度变大,故
A
正确
B
.设偏转极板的长度为
L
,由
qU1
=
1 2
mv02
,t
=
L v0
,得 t
=
L
m 2eU1 ,其他条件不变,当U1 变
大时,运动时间变短,故 B 错误
C
.由
F
=
U2q d
可知, U 2
移相等,根据 y = 1 at 2 ,可知运动时间相等,所以在 b 飞离电场的同时, a 刚好打在负极板上.故 A 正 2
确.
B
、b
、 c 竖直方向上的位移不等,
yc
<
yb
.根据
y
=
1 2
at 2
可知, tc
<
tb
.则知 c
先飞离电
场.故 B 错误. C 、在垂直于电场方向即水平方向,三个粒子做匀速直线运动,则有: v = x .因 t
类比重力场,将电场力与重力的合力视为等效重力 mg′ ,大小为
7
_带电粒子在电场中的运动_参考答案
= mg′
= (qE )2 + (mg )2
2 3mg

3
tan=θ q= E 3 ,得θ = 30° , mg 3
等效重力的方向与斜面垂直指向右下方,小球在斜面上做匀速运动。因要使小球能安全通过圆轨道,在圆轨

m ,与比荷有关,故 C 错误。 q
例9
答案: AC

高中物理典型问题12等效重力场

高中物理典型问题12等效重力场

等效重力场问题一、在重力场中竖直平面问题 绳拉物体在竖直平面内做圆周运动规律最高点最低点(平衡位置) 临界最高点:重力提供向心力,速度最小 速度最大、拉力最大二、在力场、电场等叠加而成的复合场问题等效重力场:力场、电场等叠加而成的复合场。

重等效重力:重力、电场力的合力处理思路:①受力分析,计算等效重力(重力与电场力的合力)的大小和方向②在复合场中找出等效最低点、最高点。

过圆心做等效重力的平行线与圆相交。

③根据圆周运动供需平衡结合动能定理列方程处理例1.光滑绝缘的圆形轨道竖直放置,半径为R ,在其最低点A 处放一质量为m 的带电小球,整个空间存在匀强电场,使小球受到电场力的大小为mg 33,方向水平向右,现给小球一个水平向右的初速度0v ,使小球沿轨道向上运动,若小球刚好能做完整的圆周运动,求0v 及运动过程中的最大拉力例2.如图所示,ABCD 为表示竖立放在场强为E=104V/m 的水平匀强电场中的绝缘光滑轨道,其中轨道的BCD 部分是半径为R 的半圆环,轨道的水平部分与半圆环相切A 为水平轨道的一点,而且.2.0m R AB ==把一质量m=100g 、带电q=10-4C 的小球,放在水平轨道的A 点上面由静止开始被释放后,在轨道的内侧运动。

(g=10m/s 2)求:(1)它到达C 点时的速度是多大?(2)它到达C 点时对轨道压力是多大?(3)小球所能获得的最大动能是多少?例3.在水平方向的匀强电场中,用长为3L 的轻质绝缘细线悬挂一质量为m 的带电小球,小球静止在A 处,悬线与竖直方向成300角,现将小球拉至B 点,使悬线水平,并由静止释放,求小球运动到最低点D 时的速度大小例4.如图所示,在沿水平方向的匀强电场中有一固定点 O ,用一根长度m L 40.0=的绝缘细绳把质量为kg m 10.0=、带有正电荷的金属小球悬挂在O 点,小球静止在B 点时细绳与竖直方向的夹角为 37=θ。

现将小球拉至位置A 使细线水平后由静止释放,求:⑴小球通过最低点C 时的速度的大小;⑵小球通在摆动过程中细线对小球的最大拉力(注:文档可能无法思考全面,请浏览后下载,供参考。

“等效重力场”解答匀强电场题目[整理版]

“等效重力场”解答匀强电场题目[整理版]

解题应用1.解直线运动例1 如图1所示,在离坡顶为l 的山坡上的C 点树直固定一根直杆,杆高也是L 。

杆上端A 到坡底B 之间有一光滑细绳,一个带电量为q 、质量为m 的物体穿心于绳上,整个系统处在水平向右的匀强电场中,已知细线与竖直方向的夹角 30=θ。

若物体从A 点由静止开始沿绳无摩擦的滑下,设细绳始终没有发生形变,求物体在细绳上滑行的时间。

(2/10s m g =,60.037sin = ,80.037cos = )解析 因细绳始终没有发生形变,故知在垂直绳的方向上没有压力存在,即带电小球受到的重力和电场力的合力方向沿绳的方向。

建立“等效重力场”如图2所示,“等效重力场”的“等效重力加速度”,方向:与竖直方向的夹角30,大小:30cos gg ='带电小球沿绳做初速度为零,加速度为g '的匀加速运动30cos 2L S AB = ①221t g S AB '=②由①②两式解得gL t 3=2.解抛类运动例3 如图3所示,在电场强度为E 的水平匀强电场中,以初速度为0v 竖直向上发射一个质量为m 、带电量为+q 的带电小球,求小球在运动过程中具有的最小速度。

解析 建立等效重力场如图4所示,等效重力加速度g 'E图1图2设g '与竖直方向的夹角为θ,则θcos g g ='其中22arcsin )()(mg qE qE +=θ则小球在“等效重力场”中做斜抛运动θsin 0v v x = θc o s 0v v y = 当小球在y 轴方向的速度减小到零,即0=y v 时,两者的合速度即为运动过程中的最小速度2200min sin )()(qE mg qEv v v v x +===θ例 4 如图5-1所示,匀强电场水平向右,310=E N/C ,一带正电的油滴的质量5100.2-⨯=m kg ,电量5100.2-⨯=q C 。

在A 点时速度大小为20=v m/s ,方向为竖直向上,则油滴在何时速度最小且求出最小速度?3.解振动类例5 如图5所示,让单摆处在电场强度为E ,方向水平向右的匀强电场中,让摆球带上q 的电量,求单摆的周期。

用等效法解决带电体在匀强电场中的圆周运动问题

用等效法解决带电体在匀强电场中的圆周运动问题

用等效法解决带电体在匀强电场中的圆周运动问题(1)等效思维方法就是将一个复杂的物理问题,等效为一个熟知的物理模型或问题的方法。

常见的等效法有“分解”“合成”“等效类比”“等效替换”“等效变换”“等效简化”等。

带电粒子在匀强电场和重力场组成的复合场中做圆周运动的问题是一类重要而典型的题型。

对于这类问题,若采用常规方法求解,过程复杂,运算量大。

若采用“等效法”求解,则过程比较简捷。

(2)解题思路:①求出重力与电场力的合力,将这个合力视为一个“等效重力”。

②将a =F 合m视为“等效重力加速度”。

③将物体在重力场中做圆周运动的规律迁移到等效重力场中分析求解。

[典例] 在水平向右的匀强电场中,有一质量为m 、带正电的小球,用长为l 的绝缘细线悬挂于O 点,当小球静止时,细线与竖直方向夹角为θ,如图所示,现给小球一个垂直于悬线的初速度,小球恰能在竖直平面内做圆周运动,试问:(1)小球在做圆周运动的过程中,在哪一位置速度最小?速度最小值多大?(2)小球在B 点的初速度多大?对应练习:1.如图所示,绝缘光滑轨道AB 部分为倾角为30°的斜面,AC 部分为竖直平面上半径为R 的圆轨道,斜面与圆轨道相切。

整个装置处于场强为E 、方向水平向右的匀强电场中。

现有一个质量为m 的小球,带正电荷量为q =3mg 3E,要使小球能安全通过圆轨道,在O 点的初速度应为多大?2.(2012·合肥质检)如图所示,在竖直平面内固定的圆形绝缘轨道的圆心为O、半径为r、内壁光滑,A、B两点分别是圆轨道的最低点和最高点。

该区间存在方向水平向右的匀强电场,一质量为m、带负电的小球在轨道内侧做完整的圆周运动(电荷量不变),经过C点时速度最大,O、C连线与竖直方向的夹角θ=60°,重力加速度为g。

(1)求小球所受到的电场力的大小;(2)求小球在A点速度v0多大时,小球经过B点时对圆轨道的压力最小?3.如图所示的装置是在竖直平面内放置的光滑绝缘轨道,处于水平向右的匀强电场中,带负电荷的小球从高h的A处由静止开始下滑,沿轨道ABC运动并进入圆环内做圆周运动。

等效重力在电场中的应用

最高点有最小速度v= R(gqE/m)
小球运动到最低点时有 最大拉力 T=6mg, =6(mg+qE)
5
思考1:如果粒子带负 电,大小为q,则结果 如何?
E
R
6
思考2:如果将电场方 向改为水平向右,则 结果如何?
E
R
7
例2:如图所示,一条长为L的细线,上端
固定,下端栓一质量为m的带电小球,将
它置于一匀强电场中,电场强度大小为E,
方向水平。已知当细线离开竖直位置的偏
角为α时,小球处于平衡。求:
(1)小球带何种电荷? 小球的电量?
(2)如果使细线与竖直
方向的偏角由α增大到θ, 然后将小球由静止释放,
则θ为多大时,可使小
L
α
球到达竖直位置时速度

刚好为
可得:小球带正电
qE
qE/mg=tgα
将g,代入周期公式得: T周=2π l cosa/g
10
[拓展2] 若将原题中电场E突然反向, 求细线偏离竖直方向的最大偏角? (α小于45o)
解:电场E反向,由受力可知摆动 的等效最低点在竖直偏左α角处, 等效摆的摆角为2 α,再由对称性可 知,小球偏离竖直方向的最大夹角 为3 α。
11
[拓展3] 原题中至少给小球多大的 初速度,才能使小球做圆周运动?
讨论: mg> qE :
mg- qE= mg,
最高点 vmin= R(gqE/m)
最低点Tmax=6(mg-qE)
mg< qE :
qE -mg= mg,
最低点vmin= R(qE/mg)
最高点Tmax=6(qE-mg)
mg= qE : 小球做匀速圆周运动,无极值17。

2022届高考物理二轮复习 3.1 电场的性质 带电粒子在电场中的运动 讲义

专题三电场与磁场第1讲电场的性质带电粒子在电场中的运动基本知能:考点一| 电场的性质1.电场中各物理量的关系2.电势高低的比较(1)根据电场线方向判断,沿着电场线方向,电势越来越低。

(2)将带电荷量为+q的电荷从电场中的某点移至无穷远处时,电场力做正功越多,则该点的电势越高。

(3)根据电势差U AB=φA-φB判断,若U AB>0,则φA>φB,反之φA<φB。

3.电势能变化的判断(1)根据电场力做功判断,若电场力对电荷做正功,电势能减少;反之则增加。

即W=-ΔE p。

(2)根据能量守恒定律判断,电场力做功的过程是电势能和其他形式的能相互转化的过程,若只有电场力做功,电荷的电势能与动能相互转化,总和应保持不变,即当动能增加时,电势能减少。

4.掌握图象问题的四个关键(1)根据v ­t 图象中速度变化、斜率确定电荷所受合力的方向与合力大小变化,确定电场的方向、电势高低及电势能变化。

(2)电场强度的大小等于φ ­x 图线的斜率大小,电场强度为零处,φ ­x 图线存在极值,其切线的斜率为零。

(3)E ­x 图象中图线与x 轴围成的“面积”表示电势差,“面积”大小表示电势差大小。

(4)E p ­x 图象中图线的切线斜率大小等于电场力大小。

5.掌握平行板电容器的两个重要结论(1)电容器与电路(或电源)相连,则两端电压取决于电路(或电源),稳定时相当于断路,两端电压总等于与之并联的支路电压。

(2)充电后电容器与电路断开,电容器所带电荷量不变,此时若只改变两板间距离,则板间电场强度大小不变。

必须记住的三个公式定义式C =Q U ,决定式C =εr S 4πkd ,关系式E =U d .电场中力与能的综合[典例1] (多选)(2021·湖南卷)如图,圆心为O 的圆处于匀强电场中,电场方向与圆平面平行,ab 和cd 为该圆直径。

将电荷量为q (q >0)的粒子从a 点移动到b 点,电场力做功为2W (W >0);若将该粒子从c 点移动到d 点,电场力做功为W 。

高考物理学霸复习讲义匀强电场-第五部分 带电体在匀强电场中的运动综合

第五部分带电体在匀强电场中的运动综合一、带电体在电场中的运动1.运动情况反映受力情况:(1)静止或匀速直线运动,电场力与重力平衡。

(2)匀变速直线运动,电场力(重力不计)或电场力与重力的合力方向与速度方向共线。

(3)变速直线运动,存在点电荷及约束(平面、杆、管道等),合力与速度方向共线。

(4)类平抛运动或斜抛运动,电场力(重力不计)或电场力与重力的合力方向与速度方向不共线。

(5)匀速圆周运动,存在点电荷(或辐射电场),电场力充当向心力。

(6)变速圆周运动,存在电场力或重力的复合场及约束(圆轨道、圆环、圆管等)。

2.分析方法:电场力从本质上区别于重力、弹力、摩擦力等,但产生的作用效果服从牛顿力学的所有规律。

因此,对电场力作用下带电体的运动,仍然根据力学问题的解题思路进行分析。

3.动力学观点:常用来处理加速度恒定的运动,主要情况有:(1)带电体的匀速直线运动;(2)带电体的匀变速直线运动;(3)带电体的类平抛运动或斜抛运动。

4.功能观点:既可以用来处理加速度恒定的运动,也可以用来处理加速度大小或方向发生变化的运动。

二、带电体在交变电场中的运动1.常见的交变电场:方波、锯齿波、正弦波等。

2.常见试题情境:(1)带电体做单向直线运动。

(2)带电体做往返运动,包括能返回起点和每个周期都有单向位移的运动。

(3)带电体做偏转运动,包括偏转距离能减小到零和偏转距离一直增大的运动。

3.常用分析方法:(1)在方波交变电场中,电场每次突变前后皆可视作匀强电场,带电体受到恒定的电场力作用。

(2)带电体在交变电场中一般做直线运动或偏转运动,可对一个周期内电场不变的各段分别进行受力分析和运动分析。

(3)电场突变的时刻常为速度的极值点,即运动的变化周期常与交变电场的周期成简单的整数比。

(4)根据运动分析,作出带电体的运动轨迹或速度–时间图象常可以使问题更直观,便于分析。

(5)锯齿波、正弦波交变电场问题中,一般会直接或间接地提到带电体在电场中的运动时间远小于电场变化周期,即带电体在电场中运动时,电场可视为匀强电场。

(教参)第7章专题九 带电粒子在电场中运动的综合问题含解析

专题九 带电粒子在电场中运动的综合问题考点一 带电粒子在交变电场中的运动考法① 直线运动问题如图甲所示,两平行正对的金属板A 、B 间加有如图乙所示的交变电压,一重力可忽略不计的带正电粒子被固定在两板的正中间P 处。

若在t 0时刻释放该粒子,粒子会时而向A 板运动,时而向B 板运动,并最终打在A 板上。

则t 0可能属于的时间段是( )A .0<t 0<T4B.T 2<t 0<3T 4C.3T4<t 0<T D.T <t 0<9T 8B [设粒子的速度方向、位移方向均以向右为正。

依题意得,粒子的速度方向时而为负,时而为正,最终打在A 板上时位移为负,速度方向为负。

作出t 0=0、T 4、T 2、3T4时粒子运动的速度—时间图象,如图所示。

由于v -t 图线与t 轴所围面积表示粒子通过的位移,则由图象可知0<t 0<T 4、3T4<t 0<T 时释放的粒子在一个周期内的总位移大于零;T 4<t 0<3T4时释放的粒子在一个周期内的总位移小于零;因粒子最终打在A板上,则要求粒子在每个周期内的总位移应小于零。

分析各选项可知只有B 正确。

]考法② 偏转运动问题如图甲所示,A 、B 为两块相距很近的平行金属板,A 、B 间电压为U AB =-U 0,紧贴A 板有一电子源,不停地飘出质量为m ,带电荷量为e 的电子(初速度可视为0)。

在B 板右侧两块平行金属板M 、N 间加有如图乙所示的电压,电压变化的周期T =Lm2eU 0,板间中线与电子源在同一水平线上。

已知金属板M 、N 间距为d ,极板长为L ,距偏转极板右边缘s 处有荧光屏,求:(1)电子进入偏转极板时的速度;(2)T4时刻沿中线射入偏转极板间的电子刚射出偏转极板时与板间中线的距离(未与极板接触)。

解析:(1)设电子进入偏转极板时的速度为v,由动能定理有eU0=12m v2解得v=2eU0m。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、等效重力场
例如我们学习过的等效电阻、分力与合力、合运动与分运动等都体现了等效思维方法。

常见的等效法有“分解”、“合成”、“等效类比”、“等效替换”、“等效变换”、“等效简化”等,从而化繁为简,化难为易。

2. 带电体在匀强电场和重力场组成的复合场中做圆周运动问题
这类问题是高中物理教学中一类重要而典型的题型。

对于这类问题,若采用常规方法求解,过程复杂,运算量大。

若采用“等效法”求解,则能避开复杂的运算,过程比较简捷。


求出重力与电场力的合力,将这个合力视为一个“等效重力”,将a =
m
F 合
视为“等效重力加速度”。

再将物体在重力场中做圆周运动的规律迁移到等效重力场中分析求解即可。

例题1 如图所示,ab 是半径为R 的圆的一条直径,该圆处于匀强电场中,匀强电场与圆周在同一平面内。

现在该平面内,将一带正电的粒子从a 点以相同的动能抛出,抛出方向不同时,粒子会经过圆周上不同的点,在这些所有的点中,到达c 点时粒子的动能最大。

已知∠cab=30°,若不计重力和空气阻力,试求:
(1)电场方向与ac 间的夹角θ。

(2)若粒子在a 点时初速度方向与电场方向垂直,则粒子恰好能落在c 点,那么初动能为多大?
思路分析:(1)对这道例题不少同学感到无从下手,其实在重力场中有一个我们非常熟悉的事实:如下图所示,
在竖直平面内,从圆周的a 点以相同的动能抛出粒子,抛出方向不同时,粒子会经过圆周上不同的点,在这些所有的点中,到达圆周最低点d 时粒子的动能最大,最低点是过圆心的竖直直径的一点,根据这一事实,我们将电场等效为重力场,那么粒子也应该是在“最低点”时速度最大,所以过圆心作一条过c 点的直径,这就是电场的方向,如下图所示,所以θ=30°。

(2)粒子做类平抛运动,由平抛运动知识可知
x v t y at EQt m
===022
122,,
而x R y x ==cos /tan θθ,,
解得E mv REQ k ==121
8
02。

答案:(1)θ=30° (2)1
8
REQ
例题2 如图所示,一条长为L的细线上端固定在O点,下端系一个质量为m的小球,将它置于一个很大的匀强电场中,电场强度为E,方向水平向右,已知小球在B点时平衡,细线与竖直线的夹角为α。

求:当细线与竖直线的夹角为多大时,才能使小球由静止释放后,细线到竖直位置时,小球速度恰好为零?
点时所受恒力进行分析(如图所示),
满分训练:水平向右的匀强电场中,用长为R的轻质细线在O点悬挂一质量为m的带电小球,静止在A处,AO的连线与竖直方向夹角为37°,现给小球施加一个沿圆弧切线方向的初速度v0,小球便在竖直面内运动,为使小球能在竖直面内完成圆周运动,这个初速度v至少应为多大?
3
(答题时间:30分钟)
于匀强电场中,场强方向平行于圆周平面。

将带等量负电荷的相同小球从O点以相同的动能射出,射出方向不同时,小球会经过圆周上不同的点,在这些所有的点中,到达A点时小球的动能总是最小。

忽略空气阻力,则下列说法中正确的是()
点时小球的电势能和重力势能之和总是最小
对到达圆上的所有小球中,机械能最小的小球应落在圆弧
点,用长为
点时处于静止状态,此时细线与竖直方向则对于此后小球的受力和运动情况,下列判断中正确的是(
然后释放小球。

已知电场力大于重力,求悬线受到的最大拉力。

4. 如图所示,一条长为L的细线上端固定,下端拴一个质量为m的带电小球,将它置于一方向水平向右,场强为正的匀强电场中,已知当细线离开竖直位置偏角α时,小球处于平衡状态。

(1)若使细线的偏角由α增大到ϕ,然后将小球由静止释放。

则ϕ应为多大,才能使细线到达竖直位置时小球的速度刚好为零?
(2)若α角很小,那么(1)问中带电小球由静止释放到到达竖直位置需多长时间?5. 在水平方向的匀强电场中,用长为3L的轻质绝缘细线悬挂一质量为m的带电小球,小球静止在A处,悬线与竖直方向成30°角,现将小球拉至B点,使悬线水平,并由静止释放,求小球运动到最低点D时的速度大小。

然后无初速释放,小球在B、A间来回振动,OA为竖直线。

q4
(1)求小球在电场中受到的电场力大小F;
(2)当小球处于图中A位置时,保持静止状态。

若剪断细绳,求剪断瞬间小球的加速度大小a;
(3)现把小球置于图中位置B处,使OB沿着水平方向,轻绳处于拉直状态。

小球从
位置B无初速度释放。

不计小球受到的空气阻力。

求小球通过最低点时的速度大小v。

相关文档
最新文档