全国中考数学锐角三角函数的综合中考真题汇总附答案

一、锐角三角函数真题与模拟题分类汇编(难题易错题)

1.如图,将一副直角三角形拼放在一起得到四边形ABCD,其中∠BAC=45°,∠ACD=30°,点E为CD边上的中点,连接AE,将△ADE沿AE所在直线翻折得到△AD′E,D′E交AC于F 点.若AB=6cm.

(1)AE的长为 cm;

(2)试在线段AC上确定一点P,使得DP+EP的值最小,并求出这个最小值;

(3)求点D′到BC的距离.

【答案】(1);(2)12cm;(3)cm.

【解析】

试题分析:(1)首先利用勾股定理得出AC的长,进而求出CD的长,利用直角三角形斜边上的中线等于斜边的一半进而得出答案:

∵∠BAC=45°,∠B=90°,∴AB=BC=6cm,∴AC=12cm.

∵∠ACD=30°,∠DAC=90°,AC=12cm,∴(cm).

∵点E为CD边上的中点,∴AE=DC=cm.

(2)首先得出△ADE为等边三角形,进而求出点E,D′关于直线AC对称,连接DD′交AC 于点P,根据轴对称的性质,此时DP+EP值为最小,进而得出答案.

(3)连接CD′,BD′,过点D′作D′G⊥BC于点G,进而得出△ABD′≌△CBD′(SSS),则

∠D′BG=45°,D′G=GB,进而利用勾股定理求出点D′到BC边的距离.

试题解析:解:(1).

(2)∵Rt△ADC中,∠ACD=30°,∴∠ADC=60°,

∵E为CD边上的中点,∴DE=AE.∴△ADE为等边三角形.

∵将△ADE沿AE所在直线翻折得△AD′E,∴△AD′E为等边三角形,∠AED′=60°.

∵∠EAC=∠DAC﹣∠EAD=30°,∴∠EFA=90°,即AC所在的直线垂直平分线段ED′.

∴点E,D′关于直线AC对称.

如答图1,连接DD′交AC于点P,∴此时DP+EP值为最小,且DP+EP=DD′.

∵△ADE是等边三角形,AD=AE=,

∴,即DP+EP最小值为12cm.

(3)如答图2,连接CD′,BD′,过点D′作D′G⊥BC于点G,

∵AC垂直平分线ED′,∴AE=AD′,CE=CD′,

∵AE=EC,∴AD′=CD′=.

在△ABD′和△CBD′中,∵,∴△ABD′≌△CBD′

(SSS).∴∠D′BG=∠D′BC=45°.∴D′G=GB.

设D′G长为xcm,则CG长为cm,

在Rt△GD′C中,由勾股定理得,

解得:(不合题意舍去).

∴点D′到BC边的距离为cm.

考点:1.翻折和单动点问题;2.勾股定理;3.直角三角形斜边上的中线性质;4.等边三角形三角形的判定和性质;5.轴对称的应用(最短线路问题);6.全等三角形的判定和性质;7.方程思想的应用.

2.2018年12月10日,郑州市城乡规划局网站挂出《郑州都市区主城区停车场专项规划》,将停车纳入城市综合交通体系,计划到2030年,在主城区新建停车泊位33.04万个,2019年初,某小区拟修建地下停车库,如图是停车库坡道入口的设计图,其中MN是水平线,MN∥AD,AD⊥DE,CF⊥AB,垂足分别为D,F,坡道AB的坡度为13DE =3米,点C在DE上,CD=0.5米,CD是限高标志屏的高度(标志牌上写有:限高米),如果进入该车库车辆的高度不能超过线段CF的长,则该停车库限高多少米?(结果精确到0.12,3)

【答案】该停车库限高约为2.2米.【解析】

【分析】

据题意得出

3

tan B=,即可得出tan A,在Rt△ADE中,根据勾股定理可求得DE,即可

得出∠1的正切值,再在Rt△CEF中,设EF=x,即可求出x,从而得出CF3的长.【详解】

解:由题意得,

3 tan

3

B=

∵MN∥AD,

∴∠A=∠B,

∴tan A3,

∵DE⊥AD,

∴在Rt△ADE中,tan A=DE

AD

∵DE=3,

又∵DC=0.5,

∴CE=2.5,

∵CF⊥AB,

∴∠FCE+∠CEF=90°,

∵DE⊥AD,

∴∠A+∠CEF=90°,

∴∠A=∠FCE,

∴tan∠FCE3

在Rt△CEF中,设EF=x,CF3x(x>0),CE=2.5,

代入得(5

2

)2=x2+3x2,

解得x=1.25,

∴CF3x≈2.2,

∴该停车库限高约为2.2米.【点睛】

本题考查了解直角三角形的应用,坡面坡角问题和勾股定理,解题的关键是坡度等于坡角的正切值.

3.如图1,以点M(-1,0)为圆心的圆与y轴、x轴分别交于点A、B、C、D,直线y=

-x-与⊙M相切于点H,交x轴于点E,交y轴于点F.

(1)请直接写出OE、⊙M的半径r、CH的长;

(2)如图2,弦HQ交x轴于点P,且DP:PH=3:2,求cos∠QHC的值;

(3)如图3,点K为线段EC上一动点(不与E、C重合),连接BK交⊙M于点T,弦AT 交x轴于点N.是否存在一个常数a,始终满足MN·MK=a,如果存在,请求出a的值;如果不存在,请说明理由.

【答案】(1)OE=5,r=2,CH=2

(2);

(3)a=4

【解析】

【分析】

(1)在直线y=-x-中,令y=0,可求得E的坐标,即可得到OE的长为5;连接MH,根据△EMH与△EFO相似即可求得半径为2;再由EC=MC=2,∠EHM=90°,可知CH 是RT△EHM斜边上的中线,根据直角三角形斜边上的中线等于斜边的一半即可得出CH的长;

(2)连接DQ、CQ.根据相似三角形的判定得到△CHP∽△QPD,从而求得DQ的长,在直角三角形CDQ中,即可求得∠D的余弦值,即为cos∠QHC的值;

(3)连接AK,AM,延长AM,与圆交于点G,连接TG,由圆周角定理可知,

∠GTA=90°,∠3=∠4,故∠AKC=∠MAN,再由△AMK∽△NMA即可得出结论.

【详解】

(1)OE=5,r=2,CH=2

(2)如图1,连接QC、QD,则∠CQD =90°,∠QHC =∠QDC,

易知△CHP∽△DQP,故,得DQ=3,由于CD=4,

(3)如图2,连接AK,AM,延长AM,

与圆交于点G,连接TG,则

由于,故,;

而,故

在和中,;

故△AMK∽△NMA

;

即:

故存在常数,始终满足

常数a="4"

解法二:连结BM,证明∽

4.超速行驶是引发交通事故的主要原因.上周末,小明和三位同学尝试用自己所学的知识检测车速,如图,观测点设在到万丰路(直线AO)的距离为120米的点P处.这时,一辆小轿车由西向东匀速行驶,测得此车从A处行驶到B处所用的时间为5秒且∠APO=60°,∠BPO=45°.

(1)求A、B之间的路程;

(2)请判断此车是否超过了万丰路每小时65千米的限制速度?请说明理由.(参考数≈≈).

据:2 1.414,3 1.73

【答案】

【小题1】73.2

【小题2】超过限制速度.

【解析】

AB=-73.2 (米).…6分

解:(1)100(31)

(2) 此车制速度v==18.3米/秒

5.关于三角函数有如下的公式:

sin(α+β)=sinαcosβ+cosαsinβ①

cos(α+β)=cosαcosβ﹣sinαsinβ②

tan(α+β)=③

利用这些公式可将某些不是特殊角的三角函数转化为特殊角的三角函数来求值,如:

tan105°=tan(45°+60°)==﹣

(2+).

根据上面的知识,你可以选择适当的公式解决下面的实际问题:

如图,直升飞机在一建筑物CD上方A点处测得建筑物顶端D点的俯角α=60°,底端C点的俯角β=75°,此时直升飞机与建筑物CD的水平距离BC为42m,求建筑物CD的高.

【答案】建筑物CD的高为84米.

【解析】

分析:

如图,过点D作DE⊥AB于点E,由题意易得∠ACB=75°,∠ABC=90°,DE=BC=42m,

∠ADE=60°,这样在Rt△ABC和在Rt△ADE中,结合题中所给关系式分别求出AB和AE的长,即可由CD=BE=AB-AE求得结果了.

详解:

如图,过点D作DE⊥AB于点E,由题意可得∠ACB=75°,∠ABC=90°,DE=BC=42m,

CD=BE,∠ADE=60°,

∴在Rt△ABC和Rt△ADE

AB=BC•tan75°=42tan75°=,

AE=,

∴CD=AB﹣AE=(米).

答:建筑物CD的高为84米.

睛:读懂题意,把已知量和未知量转化到Rt△ABC和Rt△ADE中,这样利用直角三角形中边角间的关系结合题目中所给的“两角和的三角形函数公式”即可使问题得到解决.

6.如图,AB为⊙O的直径,P是BA延长线上一点,CG是⊙O的弦∠PCA=∠ABC,

CG⊥AB,垂足为D

(1)求证:PC是⊙O的切线;

(2)求证:PA AD PC CD

(3)过点A作AE∥PC交⊙O于点E,交CD于点F,连接BE,若sin∠P=3

5

,CF=5,求BE

的长.

【答案】(1)见解析;(2)BE=12.

【解析】

【分析】

(1)连接OC,由PC切⊙O于点C,得到OC⊥PC,于是得到∠PCA+∠OCA=90°,由AB为⊙O的直径,得到∠ABC+∠OAC=90°,由于OC=OA,证得∠OCA=∠OAC,于是得到结论;(2)由AE∥PC,得到∠PCA=∠CAF根据垂径定理得到弧AC=弧AG,于是得到

∠ACF=∠ABC,由于∠PCA=∠ABC,推出∠ACF=∠CAF,根据等腰三角形的性质得到

CF=AF,在R t△AFD中,AF=5,sin∠FAD=3

5

,求得FD=3,AD=4,CD=8,在R t△OCD中,

设OC=r,根据勾股定理得到方程r2=(r-4)2+82,解得r=10,得到AB=2r=20,由于AB为

⊙O的直径,得到∠AEB=90°,在R t△ABE中,由sin∠EAD=3

5,得到

BE

AB

3

5

,于是求得

结论.

【详解】

(1)证明:连接OC,

∵PC切⊙O于点C,∴OC⊥PC,

∴∠PCO=90°,

∴∠PCA+∠OCA=90°,∵AB为⊙O的直径,∴∠ACB=90°,

∴∠ABC+∠OAC=90°,∵OC=OA,

∴∠OCA=∠OAC,

∴∠PCA=∠ABC;(2)解:∵AE∥PC,∴∠PCA=∠CAF,

∵AB⊥CG,

∴弧AC=弧AG,

∴∠ACF=∠ABC,

∵∠PCA=∠ABC,

∴∠ACF=∠CAF,

∴CF=AF,

∵CF=5,

∴AF=5,

∵AE∥PC,

∴∠FAD=∠P,

∵sin∠P=3

5

∴sin∠FAD=3

5

在R t△AFD中,AF=5,sin∠FAD=3

5

∴FD=3,AD=4,∴CD=8,

在R t△OCD中,设OC=r,

∴r2=(r﹣4)2+82,

∴r=10,

∴AB=2r=20,

∵AB为⊙O的直径,

∴∠AEB=90°,在R t△ABE中,

∵sin∠EAD=3

5,∴

3

5

BE

AB

∵AB=20,

∴BE=12.

【点睛】

本题考查切线的性质,锐角三角函数,圆周角定理,等腰三角形的性质,解题关键是连接OC构造直角三角形.

7.如图,直线与轴交于点,与轴交于点,抛物线经过点,.点为轴上一动点,过点且垂直于轴的直线分别交直线及抛物线于点,.

(1)填空:点的坐标为,抛物线的解析式为;

(2)当点在线段上运动时(不与点,重合),

①当为何值时,线段最大值,并求出的最大值;

②求出使为直角三角形时的值;

(3)若抛物线上有且只有三个点到直线的距离是,请直接写出此时由点,,,构成的四边形的面积.

【答案】(1),;

(2)①当时,有最大值是3;②使为直角三角形时的值为3或;

(3)点,,,构成的四边形的面积为:6或或.

【解析】

【分析】

(1)把点A坐标代入直线表达式y=,求出a=−3,把点A、B的坐标代入二次函数表达式,即可求解;

(2)①设:点P(m,),N(m,)求出PN值的表达式,即可求解;②分∠BNP=90°、∠NBP=90°、∠BPN=90°三种情况,求解即可;

(3)若抛物线上有且只有三个点N到直线AB的距离是h,则只能出现:在AB直线下方抛物线与过点N的直线与抛物线有一个交点N,在直线AB上方的交点有两个,分别求解即可.

【详解】

解:(1)把点坐标代入直线表达式,

解得:,则:直线表达式为:,令,则:,

则点坐标为,

将点的坐标代入二次函数表达式得:,

把点的坐标代入二次函数表达式得:,

解得:,

故:抛物线的解析式为:,

故:答案为:,;

(2)①∵在线段上,且轴,

∴点,,

∴,

∵,

∴抛物线开口向下,

∴当时,有最大值是3,

②当时,点的纵坐标为-3,

把代入抛物线的表达式得:,解得:或0(舍去),∴;

当时,∵,两直线垂直,其值相乘为-1,

设:直线的表达式为:,

把点的坐标代入上式,解得:,则:直线的表达式为:,

将上式与抛物线的表达式联立并解得:或0(舍去),

当时,不合题意舍去,

故:使为直角三角形时的值为3或;

(3)∵,,

在中,,则:,,

∵轴,

∴,

若抛物线上有且只有三个点到直线的距离是,

则只能出现:在直线下方抛物线与过点的直线与抛物线有一个交点,在直线上方的交点有两个.

当过点的直线与抛物线有一个交点,

点的坐标为,设:点坐标为:,

则:,过点作的平行线,

则点所在的直线表达式为:,将点坐标代入,

解得:过点直线表达式为:,

将拋物线的表达式与上式联立并整理得:,

将代入上式并整理得:,

解得:,则点的坐标为,

则:点坐标为,则:,

∵,,∴四边形为平行四边形,则点到直线的距离等于点到直线的距离,

即:过点与平行的直线与抛物线的交点为另外两个点,即:、,

直线的表达式为:,将该表达式与二次函数表达式联立并整理得:

,解得:,

则点、的横坐标分别为,,

作交直线于点,

则,

作轴,交轴于点,则:,,

则:,

同理:,

故:点,,,构成的四边形的面积为:6或或.

【点睛】

本题考查的是二次函数知识的综合运用,涉及到一次函数、解直角三角形等相关知识,其中(3)中确定点N的位置是本题的难点,核心是通过△=0,确定图中N点的坐标.

8.在等腰△ABC中,∠B=90°,AM是△ABC的角平分线,过点M作MN⊥AC于点N,

∠EMF=135°.将∠EMF绕点M旋转,使∠EMF的两边交直线AB于点E,交直线AC于点F,请解答下列问题:

(1)当∠EMF绕点M旋转到如图①的位置时,求证:BE+CF=BM;

(2)当∠EMF绕点M旋转到如图②,图③的位置时,请分别写出线段BE,CF,BM之间的数量关系,不需要证明;

(3)在(1)和(2)的条件下,tan∠BEM=,AN=+1,则BM=,CF=.

【答案】(1)证明见解析(2)见解析(3)1,1+或1﹣

【解析】

【分析】

(1)由等腰△ABC中,∠B=90°,AM是△ABC的角平分线,过点M作MN⊥AC于点N,可得BM=MN,∠BMN=135°,又∠EMF=135°,可证明的△BME≌△NMF,可得BE=NF,

NC=NM=BM进而得出结论;

(2)①如图②时,同(1)可证△BME≌△NMF,可得BE﹣CF=BM,

②如图③时,同(1)可证△BME≌△NMF,可得CF﹣BE=BM;

(3) 在Rt△ABM和Rt△ANM中,,

可得Rt△ABM≌Rt△ANM,后分别求出AB、 AC、 CN 、BM、 BE的长,结合(1)(2)的结论对图①②③进行讨论可得CF的长.

【详解】

(1)证明:∵△ABC是等腰直角三角形,

∴∠BAC=∠C=45°,

∵AM是∠BAC的平分线,MN⊥AC,

∴BM=MN,

在四边形ABMN中,∠,BMN=360°﹣90°﹣90°﹣45°=135°,

∵∠ENF=135°,,

∴∠BME=∠NMF,

∴△BME≌△NMF,

∴BE=NF,

∵MN⊥AC,∠C=45°,

∴∠CMN=∠C=45°,

∴NC=NM=BM,

∵CN=CF+NF,

∴BE+CF=BM;

(2)针对图2,同(1)的方法得,△BME≌△NMF,∴BE=NF,

∵MN⊥AC,∠C=45°,

∴∠CMN=∠C=45°,

∴NC=NM=BM,

∵NC=NF﹣CF,

∴BE﹣CF=BM;

针对图3,同(1)的方法得,△BME≌△NMF,

∴BE=NF,

∵MN⊥AC,∠C=45°,

∴∠CMN=∠C=45°,

∴NC=NM=BM,

∵NC=CF﹣NF,

∴CF﹣BE=BM;

(3)在Rt△ABM和Rt△ANM中,,

∴Rt△ABM≌Rt△ANM(HL),

∴AB=AN=+1,

在Rt△ABC中,AC=AB=+1,

∴AC=AB=2+,

∴CN=AC﹣AN=2+﹣(+1)=1,

在Rt△CMN中,CM=CN=,

∴BM=BC﹣CM=+1﹣=1,

在Rt△BME中,tan∠BEM===,

∴BE=,

∴①由(1)知,如图1,BE+CF=BM,

∴CF=BM﹣BE=1﹣

②由(2)知,如图2,由tan∠BEM=,

∴此种情况不成立;

③由(2)知,如图3,CF﹣BE=BM,

∴CF=BM+BE=1+,

故答案为1,1+或1﹣.

【点睛】

本题考查三角函数与旋转与三角形全等的综合,难度较大,需综合运用所学知识求解.

9.问题探究:

(一)新知学习:

圆内接四边形的判断定理:如果四边形对角互补,那么这个四边形内接于圆(即如果四边形EFGH的对角互补,那么四边形EFGH的四个顶点E、F、G、H都在同个圆上).

(二)问题解决:

已知⊙O的半径为2,AB,CD是⊙O的直径.P是上任意一点,过点P分别作AB,CD 的垂线,垂足分别为N,M.

(1)若直径AB⊥CD,对于上任意一点P(不与B、C重合)(如图一),证明四边形PMON内接于圆,并求此圆直径的长;

(2)若直径AB⊥CD,在点P(不与B、C重合)从B运动到C的过程汇总,证明MN的长为定值,并求其定值;

(3)若直径AB与CD相交成120°角.

①当点P运动到的中点P1时(如图二),求MN的长;

②当点P(不与B、C重合)从B运动到C的过程中(如图三),证明MN的长为定值.(4)试问当直径AB与CD相交成多少度角时,MN的长取最大值,并写出其最大值.

【答案】(1)证明见解析,直径OP=2;

(2)证明见解析,MN的长为定值,该定值为2;

(3)①MN=;②证明见解析;

(4)MN取得最大值2.

【解析】

试题分析:(1)如图一,易证∠PMO+∠PNO=180°,从而可得四边形PMON内接于圆,直径OP=2;

(2)如图一,易证四边形PMON是矩形,则有MN=OP=2,问题得以解决;

(3)①如图二,根据等弧所对的圆心角相等可得∠COP1=∠BOP1=60°,根据圆内接四边形的对角互补可得∠MP1N=60°.根据角平分线的性质可得P1M=P1N,从而得到△P1MN是等边三角形,则有MN=P1M.然后在Rt△P1MO运用三角函数就可解决问题;②设四边形PMON的外接圆为⊙O′,连接NO′并延长,交⊙O′于点Q,连接QM,如图三,根据圆周角定理可得∠QMN=90°,∠MQN=∠MPN=60°,在Rt△QMN中运用三角函数可得:

MN=QN•sin∠MQN,从而可得MN=OP•sin∠MQN,由此即可解决问题;

(4)由(3)②中已得结论MN=OP•sin∠MQN可知,当∠MQN=90°时,MN最大,问题

得以解决.

试题解析:(1)如图一,

∵PM⊥OC,PN⊥OB,∴∠PMO=∠PNO=90°,∴∠PMO+∠PNO=180°,∴四边形PMON内接于圆,直径OP=2;

(2)如图一,

∵AB⊥OC,即∠BOC=90°,∴∠BOC=∠PMO=∠PNO=90°,∴四边形PMON是矩形,

∴MN=OP=2,∴MN的长为定值,该定值为2;

(3)①如图二,

∵P1是的中点,∠BOC=120°,∴∠COP1=∠BOP1=60°,∠MP1N=60°,∵P1M⊥OC,

P1N⊥OB,∴P1M=P1N,∴△P1MN是等边三角形,∴MN=P1M.

∵P1M=OP1•sin∠MOP1=2×sin60°=,∴MN=;

②设四边形PMON的外接圆为⊙O′,连接NO′并延长,

交⊙O′于点Q,连接QM,如图三,

则有∠QMN=90°,∠MQN=∠MPN=60°,

在Rt△QMN中,sin∠MQN=,∴MN=QN•sin∠MQN,

∴MN=OP•sin ∠MQN=2×sin60°=2×=

,∴MN 是定值.

(4)由(3)②得MN=OP•sin ∠MQN=2sin ∠MQN .

当直径AB 与CD 相交成90°角时,∠MQN=180°﹣90°=90°,MN 取得最大值2. 考点:圆的综合题.

10.已知Rt △ABC,∠A=90°,BC=10,以BC 为边向下作矩形BCDE,连AE 交BC 于F. (1)如图1,当AB=AC,且sin ∠BEF=35

时,求BF CF 的值;

(2)如图2,当tan ∠ABC=

1

2

时,过D 作DH ⊥AE 于H,求EH EA ⋅的值; (3)如图3,连AD 交BC 于G,当2FG BF CG =⋅时,求矩形BCDE 的面积

【答案】(1)1

7

;(2)80;(3)100. 【解析】 【分析】

(1)过A 作AK ⊥BC 于K ,根据sin ∠BEF=

35得出

3

5

FK AK =,设FK =3a ,AK =5a ,可求得BF =a ,故1

7

BF CF =;(2)过A 作AK ⊥BC 于K ,延长AK 交ED 于G ,则AG ⊥ED ,得△EGA ∽△EHD ,利用相似三角形的性质即可求出;(3)延长AB 、ED 交于K ,延长AC 、ED 交于T ,根据相似三角形的性质可求出BE =ED ,故可求出矩形的面积. 【详解】

解:(1)过A 作AK ⊥BC 于K , ∵sin ∠BEF =35,sin ∠FAK =35

, ∴

35

FK AK =, 设FK =3a ,AK =5a , ∴AK =4a ,

∵AB =AC ,∠BAC =90°, ∴BK =CK =4a ,

∴BF =a , 又∵CF =7a , ∴

1

7

BF CF = (2)过A 作AK ⊥BC 于K ,延长AK 交ED 于G ,则AG ⊥ED , ∵∠AGE =∠DHE =90°, ∴△EGA ∽△EHD , ∴

EH ED

EG EA

=, ∴·EH EA EG ED ⋅=,其中EG =BK , ∵BC =10,tan ∠ABC =1

2

, cos ∠ABC

∴BA =BC · cos ∠ABC

BK= BA·cos ∠ABC 8

= ∴EG =8,

另一方面:ED =BC =10, ∴EH ·EA =80

(3)延长AB 、ED 交于K ,延长AC 、ED 交于T , ∵BC ∥KT , BF AF FG KE AE ED

==, ∴

BF KE FG DE =,同理:FG ED

CG DT

= ∵FG 2= BF ·CG ∴BF FG

FG CG =, ∴ED 2= KE ·DT ∴

KE ED

DE DT

= , 又∵△KEB ∽△CDT ,∴

KE CD

BE DT

=, ∴KE ·DT =BE 2, ∴BE 2=ED 2 ∴ BE =ED

∴1010100BCDE S =⨯=矩形

【点睛】

此题主要考查相似三角形的判定与性质,解题的关键根据题意作出辅助线再进行求解.

全国备战中考数学锐角三角函数的综合备战中考模拟和真题汇总附详细答案

全国备战中考数学锐角三角函数的综合备战中考模拟和真题汇总附详细答案 一、锐角三角函数 1.如图,在平行四边形ABCD中,平分,交于点,平分,交于点,与交于点,连接,. (1)求证:四边形是菱形; (2)若,,,求的值. 【答案】(1)证明见解析 (2) 【解析】 试题分析:(1)根据AE平分∠BAD、BF平分∠ABC及平行四边形的性质可得AF=AB=BE,从而可知ABEF为平行四边形,又邻边相等,可知为菱形 (2)由菱形的性质可知AP的长及∠PAF=60°,过点P作PH⊥AD于H,即可得到PH、DH 的长,从而可求tan∠ADP 试题解析:(1)∵AE平分∠BAD BF平分∠ABC ∴∠BAE=∠EAF ∠ABF=∠EBF ∵AD//BC ∴∠EAF=∠AEB ∠AFB=∠EBF ∴∠BAE=∠AEB ∠AFB=∠ABF ∴AB=BE AB=AF ∴AF=AB=BE ∵AD//BC ∴ABEF为平行四边形 又AB=BE ∴ABEF为菱形 (2)作PH⊥AD于H 由∠ABC=60°而已(1)可知∠PAF=60°,PA=2,则有PH=,AH=1,∴DH=AD-AH=5

∴tan∠ADP= 考点:1、平行四边形;2、菱形;3、直角三角形;4、三角函数 2.已知:如图,在Rt△ABC中,∠ACB=90°,点M是斜边AB的中点,MD∥BC,且MD=CM,DE⊥AB于点E,连结AD、CD. (1)求证:△MED∽△BCA; (2)求证:△AMD≌△CMD; (3)设△MDE的面积为S1,四边形BCMD的面积为S2,当S2 =17 5 S1时,求cos∠ABC的 值. 【答案】(1)证明见解析;(2)证明见解析;(3)cos∠ABC=5 7 . 【解析】 【分析】 (1)易证∠DME=∠CBA,∠ACB=∠MED=90°,从而可证明△MED∽△BCA;(2)由∠ACB=90°,点M是斜边AB的中点,可知MB=MC=AM,从而可证明∠AMD=∠CMD,从而可利用全等三角形的判定证明△AMD≌△CMD; (3)易证MD=2AB,由(1)可知:△MED∽△BCA,所以 2 1 1 4 ACB S MD S AB ⎛⎫ == ⎪ ⎝⎭ V ,所以 S△MCB=1 2 S△ACB=2S1,从而可求出S△EBD=S2﹣S△MCB﹣S1= 2 5 S1,由于1 EBD S ME S EB = V ,从而可 知 5 2 ME EB =,设ME=5x,EB=2x,从而可求出AB=14x,BC= 7 2 ,最后根据锐角三角函数的 定义即可求出答案. 【详解】 (1)∵MD∥BC, ∴∠DME=∠CBA, ∵∠ACB=∠MED=90°, ∴△MED∽△BCA; (2)∵∠ACB=90°,点M是斜边AB的中点,∴MB=MC=AM,

中考数学锐角三角函数综合经典题及详细答案

一、锐角三角函数真题与模拟题分类汇编(难题易错题) 1.如图,AB是⊙O的直径,弦CD⊥AB于H,过CD延长线上一点E作⊙O的切线交AB 的延长线于切点为G,连接AG交CD于K. (1)求证:KE=GE; (2)若KG2=KD•GE,试判断AC与EF的位置关系,并说明理由; (3)在(2)的条件下,若sinE=,AK=,求FG的长. 【答案】(1)证明见解析;(2)AC∥EF,证明见解析;(3)FG= . 【解析】 试题分析:(1)如图1,连接OG.根据切线性质及CD⊥AB,可以推出 ∠KGE=∠AKH=∠GKE,根据等角对等边得到KE=GE; (2)AC与EF平行,理由为:如图2所示,连接GD,由∠KGE=∠GKE,及KG2=KD•GE,利用两边对应成比例且夹角相等的两三角形相似可得出△GKD与△EKG相似,又利用同弧所对的圆周角相等得到∠C=∠AGD,可推知∠E=∠C,从而得到AC∥EF; (3)如图3所示,连接OG,OC,先求出KE=GE,再求出圆的半径,根据勾股定理与垂径定理可以求解;然后在Rt△OGF中,解直角三角形即可求得FG的长度. 试题解析:(1)如图1,连接OG. ∵EG为切线, ∴∠KGE+∠OGA=90°, ∵CD⊥AB, ∴∠AKH+∠OAG=90°, 又∵OA=OG, ∴∠OGA=∠OAG,

∴∠KGE=∠AKH=∠GKE, ∴KE=GE. (2)AC∥EF,理由为连接GD,如图2所示. ∵KG2=KD•GE,即, ∴, 又∵∠KGE=∠GKE, ∴△GKD∽△EGK, ∴∠E=∠AGD, 又∵∠C=∠AGD, ∴∠E=∠C, ∴AC∥EF; (3)连接OG,OC,如图3所示, ∵EG为切线, ∴∠KGE+∠OGA=90°, ∵CD⊥AB, ∴∠AKH+∠OAG=90°, 又∵OA=OG, ∴∠OGA=∠OAG, ∴∠KGE=∠AKH=∠GKE, ∴KE=GE. ∵sinE=sin∠ACH= ,设AH=3t,则AC=5t,CH=4t,

中考数学真题精选之《锐角三角函数》综合解答题

中考数学真题精选之《锐角三角函数》综合解答题 1.如图所示是消防员攀爬云梯到小明家的场景.已知AE⊥BE,BC⊥BE,CD∥BE,AC= 10.4m,BC=1.26m,点A关于点C的仰角为70°,则楼AE的高度为多少m? (结果保留整数.参考数据:sin70°≈0.94,cos70°≈0.34,tan70°≈2.75) 2.贵州旅游资源丰富.某景区为给游客提供更好的游览体验,拟在如图①景区内修建观光索道.设计示意图如图②所示,以山脚A为起点,沿途修建AB、CD两段长度相等的观光索道,最终到达山顶D处,中途设计了一段与AF平行的观光平台BC为50m.索道AB与AF的夹角为15°,CD与水平线夹角为45°,A、B两处的水平距离AE为576m,DF⊥AF,垂足为点F.(图中所有点都在同一平面内,点A、E、F在同一水平线上) (1)求索道AB的长(结果精确到1m); (2)求水平距离AF的长(结果精确到1m). (参考数据:sin15°≈0.25,cos15°≈0.96,tan15°≈0.26,√2≈1.41) 3.徐州电视塔为我市的标志性建筑之一,如图,为了测量其高度,小明在云龙公园的点C 处,用测角仪测得塔顶A的仰角∠AFE=36°,他在平地上沿正对电视塔的方向后退至点D处,测得塔顶A的仰角∠AGE=30°.若测角仪距地面的高度FC=GD=1.6m,CD =70m,求电视塔的高度AB(精确到0.1m).(参考数据:sin36°≈0.59,cos36°≈0.81,tan36°≈0.73,sin30°≈0.50,cos30°≈0.87,tan30°≈0.58)

4.问题情境:筒车是我国古代发明的一种水利灌溉工具,既经济又环保.明朝科学家徐光启在《农政全书》中用图画描绘了筒车的工作原理(如图①).假定在水流量稳定的情况下,筒车上的每一个盛水筒都按逆时针做匀速圆周运动,每旋转一周用时120秒.问题设置:把筒车抽象为一个半径为r的⊙O.如图②,OM始终垂直于水平面,设筒车半径为2米.当t=0时,某盛水筒恰好位于水面A处,此时∠AOM=30°,经过95秒后该盛水筒运动到点B处. 问题解决: (1)求该盛水筒从A处逆时针旋转到B处时,∠BOM的度数; (2)求该盛水筒旋转至B处时,它到水面的距离.(结果精确到0.1米)(参考数据√2≈1.414,√3≈1.732) 5.今年“五一”长假期间,小陈、小余同学和家长去沙滩公园游玩,坐在如图的椅子上休息时,小陈感觉很舒服,激发了她对这把椅子的好奇心,就想出个问题考考同学小余,小陈同学先测量,根据测量结果画出了图1的示意图(图2).在图2中,已知四边形ABCD 是平行四边形,座板CD与地面MN平行,△EBC是等腰三角形且BC=CE,∠FBA=114.2°,靠背FC=57cm,支架AN=43cm,扶手的一部分BE=16.4cm.这时她问小余同学,你能算出靠背顶端F点距地面(MN)的高度是多少吗?请你帮小余同学算出结果(最后结果保留一位小数).(参考数据:sin65.8°=0.91,cos65.8°=0.41,tan65.8°=

2020-2021全国中考数学锐角三角函数的综合中考真题汇总附答案

2020-2021全国中考数学锐角三角函数的综合中考真题汇总附答案 一、锐角三角函数 1.在△ABC中,AB=BC,点O是AC的中点,点P是AC上的一个动点(点P不与点A,O,C重合).过点A,点C作直线BP的垂线,垂足分别为点E和点F,连接OE,OF.(1)如图1,请直接写出线段OE与OF的数量关系; (2)如图2,当∠ABC=90°时,请判断线段OE与OF之间的数量关系和位置关系,并说明理由 (3)若|CF﹣AE|=2,EF=23,当△POF为等腰三角形时,请直接写出线段OP的长. 【答案】(1)OF =OE;(2)OF⊥EK,OF=OE,理由见解析;(3)OP的长为62 或 23 . 【解析】 【分析】(1)如图1中,延长EO交CF于K,证明△AOE≌△COK,从而可得OE=OK,再根据直角三角形斜边中线等于斜边一半即可得OF=OE; (2)如图2中,延长EO交CF于K,由已知证明△ABE≌△BCF,△AOE≌△COK,继而可证得△EFK是等腰直角三角形,由等腰直角三角形的性质即可得OF⊥EK,OF=OE; (3)分点P在AO上与CO上两种情况分别画图进行解答即可得. 【详解】(1)如图1中,延长EO交CF于K, ∵AE⊥BE,CF⊥BE,∴AE∥CK,∴∠EAO=∠KCO, ∵OA=OC,∠AOE=∠COK,∴△AOE≌△COK,∴OE=OK, ∵△EFK是直角三角形,∴OF=1 2 EK=OE; (2)如图2中,延长EO交CF于K,

∵∠ABC=∠AEB=∠CFB=90°, ∴∠ABE+∠BAE=90°,∠ABE+∠CBF=90°,∴∠BAE=∠CBF, ∵AB=BC,∴△ABE≌△BCF,∴BE=CF,AE=BF, ∵△AOE≌△COK,∴AE=CK,OE=OK,∴FK=EF, ∴△EFK是等腰直角三角形,∴OF⊥EK,OF=OE; (3)如图3中,点P在线段AO上,延长EO交CF于K,作PH⊥OF于H, ∵|CF﹣AE|=2,3AE=CK,∴FK=2, 在Rt△EFK中,tan∠3 ∴∠FEK=30°,∠EKF=60°, ∴EK=2FK=4,OF=1 2 EK=2, ∵△OPF是等腰三角形,观察图形可知,只有OF=FP=2, 在Rt△PHF中,PH=1 2 PF=1,3OH=23 ∴()2 2 12362 +-=

全国中考数学锐角三角函数的综合中考真题汇总附详细答案

一、锐角三角函数真题与模拟题分类汇编(难题易错题) 1.已知:如图,在四边形 ABCD 中, AB ∥CD , ∠ACB =90°, AB=10cm , BC=8cm , OD 垂直平分 A C .点 P 从点 B 出发,沿 BA 方向匀速运动,速度为 1cm/s ;同时,点 Q 从点 D 出发,沿 DC 方向匀速运动,速度为 1cm/s ;当一个点停止运动,另一个点也停止运动.过点 P 作 PE ⊥AB ,交 BC 于点 E ,过点 Q 作 QF ∥AC ,分别交 AD , OD 于点 F , G .连接 OP ,EG .设运动时间为 t ( s )(0<t <5) ,解答下列问题: (1)当 t 为何值时,点 E 在 BAC 的平分线上? (2)设四边形 PEGO 的面积为 S(cm 2) ,求 S 与 t 的函数关系式; (3)在运动过程中,是否存在某一时刻 t ,使四边形 PEGO 的面积最大?若存在,求出t 的值;若不存在,请说明理由; (4)连接 OE , OQ ,在运动过程中,是否存在某一时刻 t ,使 OE ⊥OQ ?若存在,求出t 的值;若不存在,请说明理由. 【答案】(1)4s t =;(2)PEGO S 四边形23 15688 t t =-++ ,(05)t <<;(3)52t =时,PEGO S 四边形取得最大值;(4)165 t = 时,OE OQ ⊥. 【解析】 【分析】 (1)当点E 在∠BAC 的平分线上时,因为EP ⊥AB ,EC ⊥AC ,可得PE=EC ,由此构建方程即可解决问题. (2)根据S 四边形OPEG =S △OEG +S △OPE =S △OEG +(S △OPC +S △PCE -S △OEC )构建函数关系式即可. (3)利用二次函数的性质解决问题即可. (4)证明∠EOC=∠QOG ,可得tan ∠EOC=tan ∠QOG ,推出 EC GQ OC OG =,由此构建方程即可解决问题. 【详解】 (1)在Rt △ABC 中,∵∠ACB=90°,AB=10cm ,BC=8cm , ∴22108-=6(cm ), ∵OD 垂直平分线段AC , ∴OC=OA=3(cm ),∠DOC=90°, ∵CD ∥AB ,

2021年全国各省市中考真题分类汇编:锐角三角函数(含答案)

2021年全国各省市数学中考分类汇编 锐角三角函数 一、选择题 1.(2021·山东省淄博市)如图,在Rt△ABC中,∠ACB=90°,CE是斜边AB上的中线, 过点E作EF⊥AB交AC于点F.若BC=4,△AEF的面积为5,则sin∠CEF的值为() A. 3 5B. √5 5 C. 4 5 D. 2√5 5 2.(2021·浙江省金华市)如图是一架人字梯,已知AB=AC=2米,AC与地面BC的夹角 为α,则两梯脚之间的距离BC为() A. 4cosα米 B. 4sinα米 C. 4tanα米 D. 4 cosα 米 3.(2021·山东省泰安市)如图,为了测量某建筑物BC的高度,小颖采用了如下的方法: 先从与建筑物底端B在同一水平线上的A点出发,沿斜坡AD行走130米至坡顶D 处,再从D处沿水平方向继续前行若干米后至点E处,在E点测得该建筑物顶端C 的仰角为60°,建筑物底端B的俯角为45°,点A、B、C、D、E在同一平面内,斜坡AD的坡度i=1:2.4.根据小颖的测量数据,计算出建筑物BC的高度约为(参考数据:√3≈1.732)() A. 136.6米 B. 86.7米 C. 186.7米 D. 86.6米 4.(2021·重庆市)如图,在建筑物AB左侧距楼底B点水平距离150米的C处有一山坡, 斜坡CD的坡度(或坡比)为i=1:2.4,坡顶D到BC的垂直距离DE=50米(点A,

B , C , D , E 在同一平面内),在点D 处测得建筑物顶A 点的仰角为50°,则建筑物AB 的高度约为( ) (参考数据:sin50°≈0.77;cos50°≈0.64;tan50°≈1.19) A. 69.2米 B. 73.1米 C. 80.0米 D. 85.7米 5. (2021·广东省)如图,为了测量一条河流的宽度,一测量员在河岸边相距200米的P 、 Q 两点分别测定对岸一棵树T 的位置,T 在P 的正北方向,且T 在Q 的北偏西70°方向,则河宽(PT 的长)可以表示为( ) A. 200tan70°米 B. 200tan70∘米 C. 200sin 70°米 D. 200 sin70∘米 6. (2021·湖北省随州市)如图,某梯子长10米,斜靠在竖直的 墙面上,当梯子与水平地面所成角为α时,梯子顶端靠在墙 面上的点A 处,底端落在水平地面的点B 处,现将梯子底 端向墙面靠近,使梯子与地面所成角为β,已知sinα=cosβ=3 5, 则梯子顶端上升了( ) A. 1米 B. 1.5米 C. 2米 D. 2.5米 7. (2021·广西壮族自治区桂林市)如图,在平面直角坐标系内有一点P (3,4),连接 OP ,则OP 与x 轴正方向所夹锐角α的正弦值是( ) A. 34 B. 4 3 C. 35D. 4 5

中考数学—锐角三角函数的综合压轴题专题复习及详细答案

中考数学—锐角三角函数的综合压轴题专题复习及详细答案 一、锐角三角函数 1.如图,在△ABC中,∠ABC=90°,以AB的中点O为圆心,OA为半径的圆交AC于点D,E是BC的中点,连接DE,OE. (1)判断DE与⊙O的位置关系,并说明理由; (2)求证:BC2=2CD•OE; (3)若 314 cos, 53 BAD BE ∠==,求OE的长. 【答案】(1)DE为⊙O的切线,理由见解析;(2)证明见解析;(3)OE =35 6 . 【解析】 试题分析:(1)连接OD,BD,由直径所对的圆周角是直角得到∠ADB为直角,可得出△BCD为直角三角形,E为斜边BC的中点,由直角三角形斜边上的中线等于斜边的一半,得到CE=DE,从而得∠C=∠CDE,再由OA=OD,得∠A=∠ADO,由Rt△ABC中两锐角互余,从而可得∠ADO与∠CDE互余,可得出∠ODE为直角,即DE垂直于半径OD,可得出DE为⊙O的切线; (2)由已知可得OE是△ABC的中位线,从而有AC=2OE,再由∠C=∠C,∠ABC=∠BDC,可得△ABC∽△BDC,根据相似三角形的对应边的比相等,即可证得; (3)在直角△ABC中,利用勾股定理求得AC的长,根据三角形中位线定理OE的长即可求得. 试题解析:(1)DE为⊙O的切线,理由如下: 连接OD,BD, ∵AB为⊙O的直径, ∴∠ADB=90°, 在Rt△BDC中,E为斜边BC的中点, ∴CE=DE=BE=BC,

∴∠C=∠CDE , ∵OA=OD , ∴∠A=∠ADO , ∵∠ABC=90°, ∴∠C+∠A=90°, ∴∠ADO+∠CDE=90°, ∴∠ODE=90°, ∴DE ⊥OD ,又OD 为圆的半径, ∴DE 为⊙O 的切线; (2)∵E 是BC 的中点,O 点是AB 的中点, ∴OE 是△ABC 的中位线, ∴AC=2OE , ∵∠C=∠C ,∠ABC=∠BDC , ∴△ABC ∽△BDC , ∴,即BC 2=AC•CD . ∴BC 2=2CD•OE ; (3)解:∵cos ∠BAD= , ∴sin ∠BAC= , 又∵BE= ,E 是BC 的中点,即BC=, ∴AC=. 又∵AC=2OE , ∴OE=AC=. 考点:1、切线的判定;2、相似三角形的判定与性质;3、三角函数 2.(本题满分14分,第(1)小题满分4分,第(2)小题满分5分,第(3)小题满分5分) 已知:如图,AB 是半圆O 的直径,弦//CD AB ,动点P 、Q 分别在线段OC 、CD 上,且DQ OP =,AP 的延长线与射线OQ 相交于点E 、与弦CD 相交于点F (点F 与点C 、D 不重合),20AB =,4cos 5 AOC ∠=.设OP x =,CPF ∆的面积为y .

中考真题分类整理:锐角三角函数(附答案)

一、选择题 9. (2020·杭州)如图,一块矩形木板ABCD 斜靠在墙边(OC ⊥OB ,点A ,B ,C ,D ,O 在同一平面内),已知AB=a ,AD=b ,∠BCO=x ,则点A 到OC 的距离等于( ) A .asinx+bsinx B .acosx+bcosx C .asinx+bcosx D .acosx+bsinx 【答案】D 【解析】作AE ⊥OC 于点E ,作AF ⊥OB 于点F ,∵四边形ABCD 是矩形,∴∠ABC=90°,∵∠ABC=∠AEC ,∠BCO=x ,∴∠EAB=x ,∴∠FBA=x ,∵AB=a ,AD=b ,∴FO=FB+BO=a •cosx+b •sinx ,故选D . 3. (2020·威海)如图,一个人从山脚下的A 点出发,沿山坡小路AB 走到山顶B 点.已知坡角为20°,山高 BC =2 ) A. B. C. D. 【答案】A 1.(2020·怀化)已知∠α为锐角,且sin α=1 2 ,则∠α=() A.30° B.45° C.60° D.90° 【答案】A. 【解析】∵∠α为锐角,且sinα= 12 , ∴∠α=30°. 故选A. 2.(2020·滨州)满足下列条件时,△ABC 不是..直角三角形的为( ) A .AB ,BC =4,AC =5 B .AB :B C :AC =3:4:5 C .∠A :∠B :∠C =3:4:5 D . 2 1 3 cos A tan B 2 3 - - =0 【答案】C 20° 2

【解析】A 中,∵4<5,AC 2+BC 2=52+42=41,AB 2=)2=41,∴AC 2+BC 2=AB 2,∴△ABC 是直角 三角形;B 中,∵AB :BC :AC=3:4:5,设AB=3k ,BC=4k ,AC=5k ,∵AB 2+BC2=(3k )2+(4k )2=25k 2,AC 2=(5k )2=25k 2,∴AB 2+BC 2=AC 2,∴△ABC 是直角三角形;C 中,∠A :∠B :∠C=3:4:5,∴∠A =180°× 312=45°,∠B=180°×412=60°,∠C=180°×512=75°,∴△ABC 不是直角三角形;D 中,∵2 1 3cos A tan B 2 3- - =0,又∵1cos A 2-≥0,2 3tan B 3-≥0,∴cosA=12 ,tanB=3,∴∠A=60°,∠B=30°,∴△ABC 是直角三角形.故选C . 3.(2020·达州)矩形OABC 在平面直角坐标系中的位置如图所示,已知B (32,2),点A 在x 轴上,点C 在y 轴上,P 是对角线OB 上一动点(不与原点重合),连接PC ,过点P 作PD ⊥PC 交x 轴于点D ,下列结论: ①OA=BC=32;②当点D 运动到OA 的中点处时,PC 2+PD 2 =7;③在运动过程中,∠CDP 是一个定值;④ 当△ODP 为等腰三角形时,点D 的坐标为(3 3 2,0),其中正确结论的个数是() A. 1个 B. 2个 C.3个 D. 4个 【答案】D 【解析】已知B (32,2),所以OA=BC=32,故①正确;当点D 运动到OA 的中点处时,OD=3,而 OC=2,所以OC 2 =7,在直角三角形CPD 中,PC 2 +PD 2 =7,故②正确;过点P 作PD ⊥PC 交x 轴于点D ,所以在运动过程中,∠CDP 是一个定值,故③正确;当△ODP 为等腰三角形时,OC ⊥BD ,∠CDO=60°所以3 OD OC ,即OD=332,所以点D 的坐标为(33 2,0). 4. (2020· 凉山) 如图,在△A B C 中,CA = CB = 4,cos B 的值为(▲) A . B . C . D .

中考数学真题分类汇编及解析(三十九)锐角三角函数

(2022•云南中考)如图,已知AB 是⊙O 的直径,CD 是⊙O 的弦,AB ⊥CD ,垂足为E .若AB =26,CD =24,则 ∠OCE 的余弦值为( ) A .7 13 B .12 13 C .7 12 D .13 12 【解析】选B .因为AB 是⊙O 的直径,AB ⊥CD ,所以CE =DE =1 2CD =12, 因为AB =26,所以OC =13.所以cos ∠OCE =CE OC =12 13. 3901 (2022•广元中考)如图,在正方形方格纸中,每个小正方形的边长都相等,A 、B 、C 、D 都在格点处,AB 与CD 相交于点P ,则cos ∠APC 的值为( ) A .√3 5 B . 2√55 C .25 D .√5 5 【解析】选B .把AB 向上平移一个单位到DE ,连接CE ,如图. 则DE ∥AB ,所以∠APC =∠EDC . 在△DCE 中,有EC =√22+1=√5,DC =√42+22=2√5,DE =√32+42=5, 因为EC 2 +DC 2 =DE 2 , 故△DCE 为直角三角形,∠DCE =90°. 所以sin ∠APC =sin ∠EDC =EC DE = √5 5 ,所以cos ∠APC =√1−1 5= 2√5 5 .

(2022•河北中考)题目:“如图,∠B=45°,BC=2,在射线BM上取一点A,设AC=d,若对于d的一个数值,只能作出唯一一个△ABC,求d的取值范围.”对于其答案,甲答:d≥2,乙答:d=1.6,丙答:d=√2,则正确的是() A.只有甲答的对 B.甲、丙答案合在一起才完整 C.甲、乙答案合在一起才完整 D.三人答案合在一起才完整 【解析】选B. 由题意知,当CA⊥BA或CA>BC时,能作出唯一一个△ABC, ①当CA⊥BA时, 因为∠B=45°,BC=2,所以AC=BC•sin45°=2×√2 2 =√2,即此时d=√2, ②当CA=BC时, 因为∠B=45°,BC=2,所以此时AC=2,即d>2, 综上,当d=√2或d>2时能作出唯一一个△ABC. (2022•乐山中考)如图,在Rt△ABC中,∠C=90°,BC=√5,点D是AC上一点,连结BD.若tan∠A=1 2, tan∠ABD=1 3,则CD的长为() A.2√5B.3 C.√5D.2 【解析】选C.过D点作DE⊥AB于E, 因为tan∠A=DE AE =12,tan∠ABD=DE BE =13, 所以AE=2DE,BE=2DE,所以2DE+3DE=5DE=AB,

陕西省中考数学历年(2016-2022年)真题分类汇编专题11锐角三角函数及答案

陕西省中考数学历年(2016-2022年)真题分类汇编专题11 锐角三角函数一、单选题 1.如图,AD是△ABC的高,若BD=2CD=6,tan∠C=2,则边AB的长为()A.3√2B.3√5C.3√7D.6√2 2.如图,⊙O的半径为4,⊙ABC是⊙O的内接三角形,连接OB、OC.若⊙BAC与⊙BOC互补,则弦BC的长为() A.3 √3B.4 √3C.5 √3D.6 √3 3.如图,在⊙ABC中,AC=8,⊙ABC=60°,⊙C=45°,AD⊙BC,垂足为D,⊙ABC的平分线交AD于点E,则AE的长为() A.4√2 3B.2 √2C.8√2 3 D.3 √2 4.如图,⊙ABC是⊙O的内接三角形,⊙C=30°,⊙O的半径为5,若点P是⊙O上的一点,在⊙ABP 中,PB=AB,则PA的长为() A.5B.5√3 2 C.5 √2D.5 √3 二、填空题 5.请从以下两个小题中任选一个作答,若多选,则按第一题计分. A.一个多边形的一个外角为45°,则这个正多边形的边数是. B.运用科学计算器计算:3 √17sin73°52′≈.(结果精确到0.1) 6.计算:2sin60°=. 7.请从以下两个小题中任选一个作答,若多选,则按第一题计分. A.如图,在⊙ABC中,BD和CE是⊙ABC的两条角平分线.若⊙A=52°,则⊙1+⊙2的度数 为. B. √17 3tan38°15′≈.(结果精确到0.01) 三、计算题 8.计算:(﹣1)2017+tan45°+ √27 3+|3﹣π|. 四、解答题 9.一座吊桥的钢索立柱AD两侧各有若干条斜拉的钢索,大致如图所示.小明和小亮想用测量知识测较长钢索AB的长度,他们测得∠ABD为30°,由于B、D两点间的距离不易测得,通过探究和测量,发现∠ACD恰好为45°,点B与点C之间的距离约为16m.已知点B、C、D共线,AD⊥BD.求钢索AB的长度.(结果保留根号) 10.如图所示,小明家与小华家住在同一栋楼的同一单元,他俩想测算所住楼对面商业大厦的高MN.他俩在小明家的窗台B处,测得商业大厦顶部N的仰角⊙1的度数,由于楼下植物的遮挡,不能

(9)锐角三角函数——2022年中考数学真题专项汇编(含答案)

(9)锐角三角函数——2022年中考数学真题专项汇编 1.【2022年天津】tan45︒的值等于( ) A.2 B.1 C.2 2.【2022年陕西A 】如图,AD 是ABC △的高.若26BD CD ==,tan 2C =,则边AB 的长为( ) A. B. C. D. 3.【2022年四川乐山】如图,在Rt ABC △中,90C ∠=︒,BC =,点D 是AC 上一点,连结BD .若1tan 2A ∠=,1tan 3 ABD ∠=,则CD 的长为( ) A. B.3 D.2 4.【2022年浙江杭州】某项目学习小组为了测量直立在水平地面上的旗杆AB 的高度,把标杆DE 直立在同一水平地面上(如图),同一时刻测得旗杆和标杆在太阳光下的影长分别是8.72BC =m , 2.18EF =m.已知B ,C ,E ,F 在同一直线上,AB BC ⊥,DE EF ⊥,2.47DE =m ,则AB =_______m. 5.【2022年陕西A 】如图,在菱形ABCD 中,4AB =,7BD =.若M ,N 分别是边AD ,BC 上的动点,且AM BN =,作ME BD ⊥,NF BD ⊥,垂足分别为E ,F ,则ME NF +的值为__________.

6.【2022年浙江绍兴】圭表(如图1)是我国古代一种通过测量正午日影长度来推定节气的天文仪器,它包括一根直立的标竿(称为“表”)和一把呈南北方向水平固定摆放的与标竿垂直的长尺(称为“圭”),当正午太阳照射在表上时,日影便会投影在圭面上,圭面上日影长度最长的那一天定为冬至,日影长度最短的那一天定为夏至.图2是一个根据某市地理位置设计的圭表平面示意图,表AC垂直圭BC,已知该市冬至正午太阳高度角(即ABC ∠)为37°,夏至正午太阳高度角(即ADC ∠)为84°,圭面上冬至线与夏至线之间的距离(即DB的长)为4米. (1)求BAD ∠的度数. (2)求表AC的长(最后结果精确到0.1米). (参考数据:sin373 5 ︒≈,cos374 5 ︒≈,tan373 4 ︒≈, 9 tan84 1 2 ︒≈) 7.【2022年江西】图(1)是某长征主题公园的雕塑,将其抽象成如图(2)所示的示意图,已知 //// AB CD FG,A,D,H,G四点在同一直线上,测得72.9 FEC A ∠=∠=︒, 1.6 AD=m, 6.2 EF=m. (1)求证:四边形DEFG为平行四边形;

2022年中考数学真题分类汇编:23锐角三角函数及答案

2022年中考数学真题分类汇编:23 锐角三角函数 一、单选题 1.如图,某博物馆大厅电梯的截面图中,AB 的长为12米,AB 与AC 的夹角为 α ,则高BC 是( ) A .12sinα 米 B .12cosα 米 C .12sinα 米 D .12cosα 米 2.如图,在 △ABC 中, CA =CB =4,∠BAC =α ,将 △ABC 绕点A 逆时针旋转 2α ,得到 △AB′C′ ,连接 B′C 并延长交AB 于点D ,当 B′D ⊥AB 时, BB′ ⌢ 的长是( ) A .2√33π B .4√33π C .8√39π D .10√39π 3.如图,在△ABC 中,BC =6,AC =8,△C =90°,以点B 为圆心,BC 长为半径画弧,与AB 交于点D ,再分别以A 、D 为圆心,大于12 AD 的长为半径画弧,两弧交于点M 、N ,作直线MN ,分别交AC 、AB 于点E 、F ,则AE 的长度为( ) A .52 B .3 C .2√2 D .103 4.如图,在正方形方格纸中,每个小正方形的边长都相等,A ,B ,C ,D 都在格点处,AB 与CD 相交于点P ,则cos△APC 的值为( ) A .√35 B .2√55 C .25 D .√55 5.tan45°的值等于( ) A .2 B .1 C .√22 D .√33 6.如图,等腰△ABC 的面积为2√3,AB=AC ,BC=2.作AE△BC 且AE=12 BC.点P 是线段AB 上一动点,连接PE ,过点E 作PE 的垂线交BC 的延长线于点F ,M 是线段EF 的中点.那么,当点P 从A 点运动到B 点时,点M 的运动路径长为( ) A .√3 B .3 C .2√3 D .4 7.如图,AD 是△ABC 的高,若BD =2CD =6,tan∠C =2,则边AB 的长为( ) A .3√2 B .3√5 C .3√7 D .6√2 8.一配电房示意图如图所示,它是一个轴对称图形.已知BC=6m.△ABC=α.则房顶A 离地面EF 的高度为( ) A .(4+3sinα)m B .(4+3tanα)m C .(4+3sinα)m D .(4+3tanα)m 9.家具厂利用如图所示直径为1米的圆形材料加工成一种扇形家具部件,已知扇形的圆心角△BAC =90°,则扇形部件的面积为( )

相关文档
最新文档