河南省郑州市2013届高三第一次质量预测试卷(word版)数学理.com]
河南省郑州市高三第一次质量预测考试.docx

高中数学学习材料马鸣风萧萧*整理制作河南省郑州市2016年高三第一次质量预测考试理科数学(时间120分钟 满分150分)第Ⅰ卷(选择题 共60分)一、选择题:本大题共12个小题,每小题5分,共60分.1.(2016郑州一测)设全集*U {N 4}x x =∈≤,集合{1,4}A =,{2,4}B =,则()U A B =ð( )A .{1,2,3}B .{1,2,4}C .{1,3,4}D .{2,3,4}【答案】A【解析】注意全集U 是小于或等于4的正整数,∵{4}AB =,∴(){1,2,3}U A B =ð. 2.(2016郑州一测) 设1i z =+(i 是虚数单位),则2z=( )A .iB .2i -C .1i -D .0【答案】C【解析】直接代入运算:221i 1iz ==-+. 3.在ABC ∆中,角,,A B C 所对的边分别为,,a b c ,若sin 3cos b aAB =,则cos B =( ) A . 12-B .12C . 32- D .32【答案】B【解析】由正弦定理,得:sin 3cos ba A B =,∴sin sin sin 3cos B A A B =. ∴tan 3B =,0B π<<,∴3B π=,1cos 2B =.4.(2016郑州一测)函数()cos xf x e x =在点(0,(0))f 处的切线斜率为( ) A .0B .1-C . 1D .22【答案】C【解析】()cos sin x x f x e x e x '=-, ∴0(0)(cos 0sin 0)1k f e '==-=.5.(2016郑州一测)已知函数1()()cos 2xf x x =-,则()f x 在[0,2]π上的零点的个数为( ) A .1B .2C .3D .4【答案】C【解析】画出1()2x y =和cos y x =的图象便知两图象有3个交点,∴()f x 在[0,2]π上有3个零点.6.(2016郑州一测)按如下的程序框图,若输出结果为273,则判断框?处应补充的条件为( )A .7i >B .7i ≥C .9i >D .9i ≥【答案】B【解析】135333273++=.7.(2016郑州一测)设双曲线22221x y a b-=的一条渐近线为2y x =-,且一个焦点与抛物线24y x=的焦点相同,则此双曲线的方程为( ) A .225514x y -= B .225514y x -= C .225514x y -= D .225514y x -= 【答案】C【解析】∵抛物线的焦点为(1,0).∴22212c b ac a b=⎧⎪⎪=⎨⎪⎪=+⎩解得221545a b ⎧=⎪⎪⎨⎪=⎪⎩.8. 正项等比数列{}n a 中的14031,a a 是函数321()4633f x x x x =-+-的极值点,则20166loga =( )A .1B .2C .2D . 1-【答案】A【解析】∵()86f x x x '=-+,∴140318a a ⋅=,∴220166a =, ∵20160a >,∴20166a =,20166log1a =.9.(2016郑州一测) 如图是一个四面体的三视图,这三个视图均是腰长为2的等腰直角三角形,正视图和俯视图的虚线是三角形的中线,则该四面体的体积为( ) A .23B .43C .83D .2【答案】A【解析】四面体的直观图如图, ∴112(12)2323V =⨯⨯⨯⨯=.开始结束是否1i =0S =3iS S =+2i i =+?S输出ABDC10.(2016郑州一测)已知函数4()f x x x =+,()2xg x a =+,若11[,3]2x ∀∈,2[2,3]x ∃∈使得12()()f x g x ≥,则实数a 的取值范围是( )A .1a ≤B .1a ≥C .0a ≤D .0a ≥【答案】C【解析】∵1[,3]2x ∈,4()24f x x x≥⋅=, 当且仅当2x =时,min ()4f x =.[2,3]x ∈时,∴2min ()24g x a a =+=+. 依题意min min ()()f x g x ≥,∴0a ≤.11.(2016郑州一测)已知椭圆()222210x y a b a b+=>>的左右焦点分别为1F 、2F ,过点2F 的直线与椭圆交于,A B 两点,若1F AB ∆是以A 为直角顶点的等腰直角三角形,则椭圆的离心率为( ) A . 22B . 23-C .52-D .63-【答案】D【解析】设1212,F F c AF m ==,若1F AB ∆是以A 为直角顶点的等腰直角三角形, ∴1AB AF m ==,12BFm =.由椭圆的定义可知1F AB ∆的周长为4a , ∴422a m m =+,2(22)m a =-. ∴22(222)AF a m a =-=-. ∵2221212AF AF F F +=,∴222224(22)4(21)4a a c -+-=,∴2962e =-,63e =-.12.(2016郑州一测)已知函数222,0()2,0x x x f x x x x ⎧-+≥⎪=⎨- <⎪⎩,若关于x 的不等式2[()]()0f x af x +<恰有1个整数解,则实数a 的最大值是( )A .2B .3C .5D .8【答案】D【解析】∵不等式2[()]()0f x af x +<恰有1个整数解, 当()0f x >时,则0a <,不合题意; 当()0f x <时,则2x >.依题意22[(3)](3)0[(4)](4)0f af f af ⎧+<⎪⎨+≥⎪⎩, xy–1–212345678–1–2–31234∴9306480a a -<⎧⎨-≥⎩,∴38a <≤,故选D .二、填空题:本大题共4个小题,每小题5分,共20分. 13.二项式62()x x-的展开式中,2x 的系数是_______. 【答案】60【解析】662166(2)(2)r r r r r r rr T C x x C x ---+=-=-,令622r -=,解得2r =,∴2x 的系数为226(2)60C -=.14.若不等式222x y +≤所表示的平面区域为M ,不等式组0026x y x y y x -≥⎧⎪+≥⎨⎪≥-⎩表示的平面区域为N ,现随机向区域N 内抛一粒豆子,则豆子落在区域M 内的概率为________. 【答案】24π【解析】211(2)42124382OABP S πππ∆⨯===⨯⨯.15.ABC ∆的三个内角为,,A B C ,若3c o s s i n 7t a n ()123sin cos A A A Aπ+=--,则2c o s s i n2B C +的最大值为________. 【答案】32【解析】tantan73143tan()tan()124331tan tan 143πππππππ++-=-+==--, ∴3cos sin 731tan()123sin cos 31A A A A π++=-=--, xyB (2,2)A (6,6)–1123456–11234567O∴sin cos A A =,∴4A π=.332cos sin 22cos sin 2()2cos sin(2)42B C B B B B ππ+=+-=+- 22cos cos 22cos 12cos B B B B =-=+-1332(cos )222B =--+≤.16.已知点(0,1)A -,(3,0)B ,(1,2)C ,平面区域P 是由所有满足AM AB AC λμ=+(2,m λ<≤2)n μ<≤的点M 组成的区域,若区域P 的面积为16,则m n +的最小值为________.【答案】422+【解析】设(,)M x y ,(3,1),(1,3)AB AC ==, ∵AM AB AC λμ=+,∴(,1)(3,1)(1,3)(3,3)x y λμλμλμ+=+=++.∴313x y λμλμ=+⎧⎨+=+⎩,∴318338x y x y λμ--⎧=⎪⎪⎨-++⎪=⎪⎩,∵2,2m n λμ<≤<≤,∴31283328x y m x y n --⎧<≤⎪⎪⎨-++⎪<≤⎪⎩,即1738113383x y m x y n <-≤+⎧⎨<-+≤-⎩∴1738113383x y m x y n <-≤+⎧⎨<-+≤-⎩表示的可行域为平行四边形,如图:由317313x y x y -=⎧⎨-+=⎩,得(8,7)A ,由381313x y m x y -=+⎧⎨-+=⎩,得(32,2)B m m ++,OyxD C BA x +3y =8n 3x +3y =133x y =8m +13x y =17∴22(36)(2)(2)10AB m m m =-+-=-⋅, ∵(8,7)A 到直线383x y n -+=-的距离81610n d -=, ∴816(2)101610n AB d m -⋅=-⋅⋅=, ∴(2)(2)2m n -⋅-=, ∴2222(2)(2)()2m n m n -+-=-⋅-≤,∴2(4)8m n +-≥,422m n +≥+.三、解答题:本大题共6小题,共70分,解答应写出必要的文字说明、证明及演算步骤. 17.(本小题满分12分)已知数列{}n a 的首项为11a =,前n 项和n S ,且数列n S n ⎧⎫⎨⎬⎩⎭是公差为2的等差数列.(1)求数列{}n a 的通项公式;(2)若(1)nn n b a =-,求数列{}n b 的前n 项和n T .【解析】(1)由已知得1(1)221nS n n n=+-⨯=-, ∴22n S n n =-.当2n ≥时,2212[2(1)(1)]43n n n a S S n n n n n -=-=-----=-.11413a S ==⨯-,∴43n a n =-,*n ∈N .(2)由⑴可得(1)(1)(43)n n n n b a n =-=--. 当n 为偶数时,(15)(913)[(45)(43)]422n nT n n n =-++-++⋅⋅⋅+--+-=⨯=, 当n 为奇数时,1n +为偶数112(1)(41)21n n n T T b n n n ++=-=+-+=-+,综上,2,2,,21,21,.n n n k k T n n k k **⎧ =∈⎪=⎨-+=-∈⎪⎩N N18.(本小题满分12分)某中药种植基地有两处种植区的药材需在下周一、下周二两天内采摘完毕,基地员工一天可以完成一处种植区的采摘.由于下雨会影响药材品质,基地收益如下表所示: 周一 无雨 无雨 有雨 有雨 周二无雨有雨无雨有雨收益 20万元 15万元 10万元 7.5万元若基地额外聘请工人,可在周一当天完成全部采摘任务.无雨时收益为20万元;有雨时,收益为10万元.额外聘请工人的成本为a 万元.已知下周一和下周二有雨的概率相同,两天是否下雨互不影响,基地收益为20万元的概率为0.36. (1)若不额外聘请工人,写出基地收益X 的分布列及基地的预期收益; (2)该基地是否应该外聘工人,请说明理由. 【解析】(1)设下周一有雨的概率为p , 由题意,20.36,0.6p p ==,基地收益X 的可能取值为20,15,10,7.5,则(20)0.36P X ==,(15)0.24P X ==, (10)0.24P X ==,(7.5)0.16P X ==∴基地收益X 的分布列为:()200.36150.24100.247.50.1614.4E X =⨯+⨯+⨯+⨯=,∴基地的预期收益为14.4万元.(2)设基地额外聘请工人时的收益为Y 万元,则其预期收益()200.6100.416E Y a a =⨯+⨯-=-(万元),()() 1.6E Y E X a -=-,综上,当额外聘请工人的成本高于1.6万元时,不外聘工人; 成本低于1.6万元时,外聘工人;成本恰为1.6万元时,是否外聘工人均可以.X 20 15 107.5 p0.36 0.24 0.240.1619.(本小题满分12分)如图,矩形CDEF 和梯形A B C D 所在的平面互相垂直,90BAD ADC ∠=∠=,12AB AD CD ==,BE DF ⊥.(1)若M 为EA 中点,求证:AC ∥平面MDF ;(2)求平面EAD 与平面EBC 所成二面角的大小. 【解析】(1)证明:设EC 与DF 交于点N ,连接MN ,在矩形CDEF 中,点N 为EC 中点, ∵M 为EA 中点,∴MN ∥AC ,又∵AC ⊄平面MDF ,MN ⊂平面MDF , ∴AC ∥平面MDF . (2)∵平面CDEF ⊥平面ABCD ,平面CDEF平面ABCD CD =,DE ⊂平面CDEF ,DE CD ⊥,∴DE ⊥平面ABCD .以D 为坐标原点,建立如图空间直角坐标系, 设DA a =,DE b =,(,,0),(0,0,),(0,2,0),(0,2,)B a a E b C a F a b , (,,),(0,2,),(,,0)BE a a b DF a b BC a a =--==-, ∵BE DF ⊥,∴22(,,)(0,2,)20BE DF a a b a b b a ⋅=--⋅=-=,2b a =.设平面EBC 的法向量(,,)x y z =m ,则00BE BC ⎧⋅=⎪⎨⋅=⎪⎩m m ,即200ax ay az ax ay ⎧--+=⎪⎨-+=⎪⎩,取1x =,则(1,1,2)=m ,注意到平面EAD 的法向量(0,1,0)=n ,--10分 而1cos ,||||2⋅<>==⋅m n m n m n ,∴平面EAD 与EBC 所成锐二面角的大小为60.FD MACBE y zxFD M AC B E N20.(本小题满分12分)已知点(1,0)M -,(1,0)N ,曲线E 上任意一点到点M 的距离均是到点N 的距离的3倍. (1)求曲线E 的方程;(2)已知0m ≠,设直线1:10l x my --=交曲线E 于,A C 两点,直线2:0l mx y m +-=交曲线E 于,B D 两点,,C D 两点均在x 轴下方.当CD 的斜率为1-时,求线段AB 的长. 【解析】(1)设曲线E 上任意一点坐标为(,)x y ,由题意,2222(1)3(1)x y x y ++=-+,整理得22410x y x +-+=,即22(2)3x y -+=为所求.(2)由题知12l l ⊥ ,且两条直线均恒过点(1,0)N , 设曲线E 的圆心为E ,则(2,0)E ,线段CD 的中点为P ,则直线EP :2y x =-, 设直线CD :y x t =-+,由2y x y x t =-⎧⎨=-+⎩,得22(,)22t t P +-,由圆的几何性质,221||||||||2NP CD ED EP ==-,而22222||(1)()22t t NP +-=-+,2||3ED =,22|2|||()2t EP -=, 解之得0t =或3t =,又,C D 两点均在x 轴下方,直线CD :y x =-.由22410,,⎧+-+=⎨=-⎩x y x y x 解得21,2212x y ⎧=-⎪⎪⎨⎪=-⎪⎩ 或21,22 1.2⎧=+⎪⎪⎨⎪=--⎪⎩x y 不失一般性,设2222(1,1),(1,1)2222C D --+--, 由22410(1)x y x y u x ⎧+-+=⎨=-⎩,得2222(1)2(2)10u x u x u +-+++=,⑴方程⑴的两根之积为1,∴点A 的横坐标22A x =+,∵点22(1,1)22C --在直线1:10l x my --=上,解得21m =+, 直线1:(21)(1)l y x =--,∴(22A +.同理可得,(22,1)B -,∴线段AB 的长为22.21.(2016郑州一测)设函数21()ln 2f x x m x =-,2()(1)g x x m x =-+,0m >. (1)求函数()f x 的单调区间;(2)当1m ≥时,讨论函数()f x 与()g x 图象的交点个数.【解析】(1)函数()f x 的定义域为(0,)+∞, ()()()x m x m f x x+-'=, 当0x m <<时,()0f x '<,函数()f x 的单调递减, 当x m >时,()0f x '>,函数()f x 的单调递增.综上,函数()f x 的单调增区间是(,)m +∞,减区间是(0,)m .(2)令21()()()(1)ln ,02F x f x g x x m x m x x =-=-++->, 问题等价于求函数()F x 的零点个数,(1)()()x x m F x x--'=-, 当1m =时,()0F x '≤,函数()F x 为减函数, 注意到3(1)02F =>,(4)ln 40F =-<,∴()F x 有唯一零点. 当1m >时, 01x <<或x m >时,()0F x '<,1x m <<时,()0F x '>,∴函数()F x 在(0,1)和(,)m +∞单调递减,在(1,)m 单调递增,注意到1(1)02F m =+>,(22)ln(22)0F m m m +=-+<, ∴()F x 有唯一零点.综上,函数()F x 有唯一零点,即两函数图象总有一个交点.请考生在22-24三题中任选一题做答,如果多做,则按所做的第一题记分.做答时用2B 铅笔在答题卡上把所选题目的题号涂黑.把答案填在答题卡上.22.(2016郑州一测)如图,BAC ∠的平分线与BC 和ABC ∆的外接圆分别相交于D 和E ,延长AC 交过,,D E C 的三点的圆于点F .(1)求证:EC EF =;(2)若2ED =,3EF =,求AC AF ⋅的值.【解析】(1)证明:∵ECF CAE CEA CAE CBA ∠=∠+∠=∠+∠,EFC CDA BAE CBA ∠=∠=∠+∠, AE 平分BAC ∠,∴ECF EFC ∠=∠,∴EC EF =.(2)∵ECD BAE EAC ∠=∠=∠,CEA DEC ∠=∠, ∴CEA ∆∽DEC ∆,即2,CE DE EC EA EA CE DE==, 由(1)知,3EC EF ==,∴92EA =, ∴45()4AC AF AD AE AE DE AE ⋅=⋅=-⋅=. 23.(2016郑州一测)已知曲线1C 的参数方程为32212x t y t ⎧=--⎪⎪⎨⎪=⎪⎩,曲线2C 的极坐标方程为22cos()4πρθ=-.以极点为坐标原点,极轴为x 轴正半轴建立平面直角坐标系. (1)求曲线2C 的直角坐标方程;(2)求曲线2C 上的动点M 到曲线1C 的距离的最大值.【解析】(1)π22cos()2(cos sin )4ρθθθ=-=+,即()22cos sin ρρθρθ=+,可得22220x y x y +--=, 故2C 的直角坐标方程为()()22112x y -+-=.(2)1C 的直角坐标方程为320x y ++=,由(1)知曲线2C 是以(1,1)为圆心的圆, 且圆心到直线1C 的距离()2213233213d +++==+, ∴动点M 到曲线1C 的距离的最大值为33222++. A BE FC D24.(2016郑州一测)已知函数()21f x x x =--+(1)解不等式()1f x >;(2)当0x >时,函数21()(0)ax x g x a x-+=>的最小值总大于函数()f x ,试求实数a 的取值范围. 【解析】∵211x x --+>,∴131x <-⎧⎨>⎩,或12121x x -≤<⎧⎨->⎩,或231x ≥⎧⎨->⎩, 解得0x <,∴原不等式的解集为(,0)-∞.(2)∵1()121g x ax a x=+-≥-,当且仅当a x a =时“=”成立, ∴min ()21g x a =-,12,02,()3, 2.x x f x x -<≤⎧=⎨- >⎩∴()[3,1)f x ∈-, ∴211a -≥,即1a ≥为所求.。
郑州市2011年高中毕业年级第一次质量预测数学(理科)试题(含答案)(word典藏版)

郑州市2011年高中毕业年级第一次质量预测数学试题(理科)第Ⅰ卷 (选择题 共60分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.若复数i R a iia ,(213∈-+为虚数单位)是纯虚数,则实数a 的值为 A .2-B .4C .6-D .62.若向量、满足1||||==b a ,且20)5()3(=+⋅+b a b a ,则向量、的夹角为A .030B .045C .060D .0903.已知集合}3,2{=A ,}06|{=-=mx x B ,若A B ⊆,则实数=mA .3B .2C .2或3D .0或2或34.若nxx )2(+的展开式中的第5项为常数,则=n A .8B .10C .12D .155.已知R a ∈,则“2>a ”是“a a 22>”成立的A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件6.直线1+=kx y 与曲线b ax x y ++=3相切于点)3,1(A ,则=-b aA .4-B .1-C .3D .2-7.设α、β是两个不同的平面,a 、b 是两条不同的直线,给出下列四个命题,其中真命题是A .若α//a ,α//b ,则b a //B .若α//a ,β//b ,b a //,则βα//C .若α⊥a ,β⊥b ,b a ⊥,则βα⊥D .若a 、b 在平面α内的射影互相垂直,则b a ⊥ 8.已知等差数列}{n a 的前n 项和为n S ,且3184=S S ,则=168S S A .81 B .31 C .91D .103正视图 侧视图俯视图9.右图是一个空间几何体的三视图,如果直角三角形的直角 边长均为1,那么这个几何体的外接球的表面积为A .πB .π3C .π4D .π1210.将函数)46sin(π+=x y 的图象上各点的横坐标伸长到原来的3倍,再向右平移8π个单位,得到的函数的一个对称中 心是A .)0,2(πB .)0,4(πC .)0,9(πD .)0,16(π11.已知双曲线的方程为)0(12222>>=-b a by a x ,它的一个顶点到一条渐近线的距离为c 32(c 为半焦距),则双曲线的离心率为 A .3或26 B .26 C .773D .312.若定义在R 上的偶函数)(x f 满足)()2(x f x f =+,且当]1,0[∈x 时,x x f =)(,则函数||log )(3x x f y -=的零点个数是A .多于4个B .4个C .3个第Ⅱ卷(非选择题 共二、填空题(本大题共4小题每小题5分,共2013为81,则输入的实数x 值为 . 14.已知2tan =α,计算αα2tan 2cos 1+15.若不等式组⎪⎩⎪⎨⎧≤---≥≤032y x x y x y 示的平面区域为N ,现随机向区域M 内抛一粒豆子,则豆子落在区域N 内的概率为 .16.已知抛物线x y 42=的焦点为F ,△ABC 三个顶点均在抛物线上,若。
河南省郑州市2013届高三第一次模拟考试数学(理)试题(扫描版)

18.解:⑴设第(1,2,,8)i i =组的频率为i f ,则由频率分布直方图知71(0.0040.010.010.020.020.0160.008)100.12.f =-++++++⨯=所以成绩在260分以上的同学的概率780.142f p f ≈+=, 故这2 000名同学中,取得面试资格的约为280人. ――――-4分⑵不妨设三位同学为甲、乙、丙,且甲的成绩在270分以上,记事件,,M N R 分别表示甲、乙、丙获得B 类资格的事件,则113()1884P M =--=,17()()188P N P R ==-=,――――6分 所以1(0)()256P X P M N R ===, 17(1)()256P X P M N R M N R M NR ==++=,91(2)()256P X P MN R M NR M NR ==++=, 147(3)()256P X P MNR ===, 所以随机变量X 的分布列为:――――10分 117911475()01232562562562562E X =⨯+⨯+⨯+⨯=.――――12分X 0 1 23 P 1256 17256 91256 147256所以,可取()1,1,1m =-.同理可以求得平面A CD '的一个法向量()0,1,0.n =cos ,m nm n m n ⋅===⋅ 故平面A CD '与平面A BE '夹角的余弦值为.33――――12分整理得22211(0,)34344k m k k==∈++, 所以在线段2OF 上存在点)0,(m M 符合题意,其中1(0,)4m ∈.――――12分综上,当0≤a 时,函数()f x 的增区间为),1(),1,1(+∞-,无减区间; 当0>a 时,函数()f x 的增区间为),(),,1(21+∞-x x ,减区间为),1(),1,(21x x , 其中282,2822221a a a x a a a x +++=+-+=.―-6分 ⑵证明:当1=a 时,由⑴知,函数xx x x f --+=1)1ln()(在)1,0(上为减函数,――7分 则当10<<x 时,0)0(1)1ln()(=<--+=f x x x x f ,即xx x -<+1)1ln(, 令1()201321m x m N *=∈⨯+,则11ln(1)20132120132m m +<⨯+⨯,即201311ln(1)2013212m m+<⨯+, 所以1201321(1)201321m m m a e =+<⨯+,―――10分 又111112422120,3m m m m a a a a e e e e e ->∴⋅⋅⋅<⋅⋅⋅=<<.――――12分24.解:⑴原不等式可化为2123x x -+-≤,依题意,当2x >时,333,x -≤则2,x ≤无解, 当122x ≤≤时,+13,x ≤则2,x ≤所以122x ≤≤, 当1<2x 时,3-33,x ≤则0,x ≥所以10<2x ≤, 综上所述:原不等式的解集为[]0,2. ――――5分 ⑵原不等式可化为2321x a x -≤--,因为[]1,2x ∈,所以24-2x a x -≤,即24242x a x x -≤-≤-,故3424x a x -≤≤-对[]1,2x ∈恒成立,当12x ≤≤时,34x -的最大值2,4x -的最小值为2, 所以为a 的取值范围为1.――――10分。
2013年河南省郑州市中考数学一模试卷

2013年河南省郑州市中考第一次质量预测数学试卷一、选择题(每小题3分,共24分)1.(3分)下面的数中,与﹣3的和为0的是()A.3B.﹣3C.D.2.(3分)如图是由七个相同的小正方体堆砌而成的几何体,则这个几何体的俯视图是()A.B.C.D.3.(3分)下列图形中既是轴对称又是中心对称图形的是()A.三角形B.平行四边形C.圆D.正五边形4.(3分)下面的计算正确的是()A.6a﹣5a=1B.﹣(a﹣b)=﹣a+bC.a+2a2=3a3D.2(a+b)=2a+b5.(3分)已知:如图,CF平分∠DCE,点C在BD上,CE∥AB.若∠ECF=55°,则∠ABD的度数为()A.55°B.100°C.110°D.125°6.(3分)某校九年级参加了“维护小区周边环境”、“维护繁华街道卫生”、“义务指路”等志愿者活动,如图是根据该校九年级六个班的同学某天“义务指路”总人次所绘制的折线统计图,则关于这六个数据中,下列说法正确的是()A.极差是40B.众数是58C.中位数是51.5D.平均数是607.(3分)如图,△ABC内接于⊙O,连接OA,OB,∠OBA=40°,则∠C的度数是()A.60°B.50°C.45°D.40°8.(3分)如图,把图中的△ABC经过一定的变换得到△A′B′C′,如果图中△ABC 上的点P的坐标为(a,b),那么它的对应点P′的坐标为()A.(a﹣2,b)B.(a+2,b)C.(﹣a﹣2,﹣b)D.(a+2,﹣b)二、填空题(每小题3分,共21分)9.(3分)计算=.10.(3分)2012年11月,国务院批复《中原经济区规划》,建设中原经济区上升为国家战略.经济区范围包括河南全部及周边四省(部分)共30个地市,总面积28.9万平方公里,总人口1.7亿人,均居全国第一位.1.7亿人用科学记数法可表示为人.11.(3分)已知关于x的一元二次方程ax2+x﹣b=0的一根为﹣1,则a﹣b的值是.12.(3分)现有形状、大小和颜色完全一样的三张卡片,上面分别标有数字“1”、“2”、“3”,第一次从这三张卡片中随机抽取一张,记下数字后放回,第二次再从这三张卡片中随机抽取一张并记下数字,则第二次抽取的数字大于第一次抽取的数字的概率是.13.(3分)工程上常用钢珠来测量零件上小圆孔的宽口,假设钢珠的直径是10mm,测得钢珠顶端离零件表面的距离为8mm,如图所示,则这个小圆孔的宽口AB 的长度为mm.14.(3分)在Rt△ABC中,∠C=30°,DE垂直平分斜边BC,交AC于点D,E点是垂足,连接BD,若BC=8,则AD的长是.15.(3分)如图,在平面直角坐标系中,正方形ABCD顶点A的坐标为(0,2),B点在x轴上,对角线AC,BD交于点M,OM=,则点C的坐标为.三、解答题(本大题共8个小题,共75分)16.(8分)阅读某同学解分式方程的具体过程,回答后面问题.解方程.解:原方程可化为:检验:当x=﹣6时,各分母均不为0,∴x=﹣6是原方程的解.…⑤请回答:(1)第①步变形的依据是;(2)从第步开始出现了错误,这一步错误的原因是;(3)原方程的解为.17.(9分)某学校为了学生的身体健康,每天开展体育活动一小时,开设排球、篮球、羽毛球、体操四项体育活动课.学生可根据自己的爱好任选其中一项,老师根据学生报名情况进行了统计,并绘制了下面尚未完成的扇形统计图和频数分布直方图,请你结合图中的信息,解答下列问题:(1)该校学生报名总人数有多少人?(2)从表中可知选羽毛球的学生有多少人?选排球和篮球的人数分别占报名总人数的百分之几?(3)频数分布直方图补充完整.18.(9分)如图,函数y=kx与y=的图象在第一象限内交于点A.在求点A坐标时,小明由于看错了k,解得A(1,3);小华由于看错了m,解得A(1,).(1)求这两个函数的关系式及点A的坐标;(2)根据(1)的结果及函数图象,若kx﹣>0,请直接写出x的取值范围.19.(9分)如图,在菱形ABCD中,∠BAD=60°,把菱形ABCD绕点A按逆时针方向旋转α°,得到菱形AB′C′D′.(1)当α的度数为时,射线AB′经过点C(此时射线AD也经过点C′);(2)在(1)的条件下,求证:四边形B′CC′D是等腰梯形.20.(9分)钓鱼岛自古就是中国的领土,中国有关部门已对钓鱼岛及其附属岛屿开展常态化监视监测.一日,中国一艘海监船从A点沿正北方向巡航,其航线距钓鱼岛(设M,N为该岛的东西两端点)最近距离为12海里(即MC=12海里).在A点测得岛屿的西端点M在点A的东北方向;航行4海里后到达B 点,测得岛屿的东端点N在点B的北偏东60°方向,(其中N,M,C在同一条直线上),求钓鱼岛东西两端点MN之间的距离.21.(10分)某商场经营某种品牌的童装,购进时的单价是60元.根据市场调查,在一段时间内,销售单价是80元时,销售量是200件,而销售单价每降低1元,就可多售出20件.(1)写出销售量y件与销售单价x元之间的函数关系式;(2)写出销售该品牌童装获得的利润w元与销售单价x元之间的函数关系式;(3)若童装厂规定该品牌童装销售单价不低于76元,且商场要完成不少于240件的销售任务,则商场销售该品牌童装获得的最大利润是多少?22.(10分)(1)问题背景如图1,Rt△ABC中,∠BAC=90°,AB=AC,∠ABC的平分线交直线AC于D,过点C作CE⊥BD,交直线BD于E.请探究线段BD与CE的数量关系.(事实上,我们可以延长CE与直线BA相交,通过三角形的全等等知识解决问题.)结论:线段BD与CE的数量关系是(请直接写出结论);(2)类比探索在(1)中,如果把BD改为∠ABC的外角∠ABF的平分线,其他条件均不变(如图2),(1)中的结论还成立吗?若成立,请写出证明过程;若不成立,请说明理由;(3)拓展延伸在(2)中,如果AB≠AC,且AB=nAC(0<n<1),其他条件均不变(如图3),请你直接写出BD与CE的数量关系.结论:BD=CE(用含n的代数式表示).23.(11分)如图,抛物线与直线AB交于点A(﹣1,0),B(4,).点D是抛物线A,B两点间部分上的一个动点(不与点A,B重合),直线CD与y轴平行,交直线AB于点C,连接AD,BD.(1)求抛物线的解析式;(2)设点D的横坐标为m,△ADB的面积为S,求S关于m的函数关系式,并求出当S取最大值时的点C的坐标;(3)当点D为抛物线的顶点时,若点P是抛物线上的动点,点Q是直线AB上的动点,判断有几个位置能使以点P,Q,C,D为顶点的四边形为平行四边形,直接写出相应的点Q的坐标.2013年河南省郑州市中考第一次质量预测数学试卷参考答案与试题解析一、选择题(每小题3分,共24分)1.(3分)下面的数中,与﹣3的和为0的是()A.3B.﹣3C.D.【分析】设这个数为x,根据题意可得方程x+(﹣3)=0,再解方程即可.【解答】解:设这个数为x,由题意得:x+(﹣3)=0,x﹣3=0,x=3,故选:A.2.(3分)如图是由七个相同的小正方体堆砌而成的几何体,则这个几何体的俯视图是()A.B.C.D.【分析】找到从上面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.【解答】解:从上面看易得左边第一列有2个正方形,中间第二列最有2个正方形,最右边一列有1个正方形在右上角处.故选:C.3.(3分)下列图形中既是轴对称又是中心对称图形的是()A.三角形B.平行四边形C.圆D.正五边形【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形.不是中心对称图形,因为找不到任何这样的一点,旋转180度后它的两部分能够重合;即不满足中心对称图形的定义.故错误;B、不是轴对称图形,因为找不到任何这样的一条直线,沿这条直线对折后它的两部分能够重合;即不满足轴对称图形的定义.是中心对称图形.故错误;C、是轴对称图形,又是中心对称图形.故正确;D、是轴对称图形.不是中心对称图形,因为找不到任何这样的一点,旋转180度后它的两部分能够重合;即不满足中心对称图形的定义.故错误.故选:C.4.(3分)下面的计算正确的是()A.6a﹣5a=1B.﹣(a﹣b)=﹣a+bC.a+2a2=3a3D.2(a+b)=2a+b【分析】A、合并同类项得到结果,即可作出判断;B、利用去括号法则去括号得到结果,即可作出判断;C、原式为最简的,不能合并;D、利用去括号法则去括号后得到结果,即可作出判断.【解答】解:A、6a﹣5a=a,本选项错误;B、﹣(a﹣b)=﹣a+b,本选项正确;C、a+2a2不是同类项,不能合并,本选项错误;D、2(a+b)=2a+2b,本选项错误.故选:B.5.(3分)已知:如图,CF平分∠DCE,点C在BD上,CE∥AB.若∠ECF=55°,则∠ABD的度数为()A.55°B.100°C.110°D.125°【分析】由CF为角平分线,利用角平分线的定义得到一对角相等,进而求出∠ECD的度数,再由两直线同位角相等得到∠ABD与∠ECD相等,即可求出∠ABD的度数.【解答】解:∵CF平分∠DCE,∠ECF=55°,∴∠ECD=2∠ECF=110°,∵CE∥AB,∴∠ABD=∠ECD=110°.故选:C.6.(3分)某校九年级参加了“维护小区周边环境”、“维护繁华街道卫生”、“义务指路”等志愿者活动,如图是根据该校九年级六个班的同学某天“义务指路”总人次所绘制的折线统计图,则关于这六个数据中,下列说法正确的是()A.极差是40B.众数是58C.中位数是51.5D.平均数是60【分析】根据极差的定义、众数、中位数、算术平均数的定义,对每一项分别进行解答,再做出判断,即可得出答案.【解答】解:A、根据极差的定义可得:极差是80﹣45=35,故本选项错误;B、因为58出现了2次,次数最多,所以众数是58,故本选项正确;C、按照从小到大的顺序排列如下:45、50、58、58、62、80,第3、4两个数都是58,则中位数是58,故本选项错误;D、根据平均数的定义可得:平均数=(50+80+58+45+58+62)=×353=58,故本选项错误;故选:B.7.(3分)如图,△ABC内接于⊙O,连接OA,OB,∠OBA=40°,则∠C的度数是()A.60°B.50°C.45°D.40°【分析】由OA=OB,∠OBA=40°,根据等边对等角的性质,可求得∠OAB的度数,继而求得∠AOB的度数,又由圆周角定理,可求得∠C的度数.【解答】解:∵OA=OB,∠OBA=40°,∴∠OAB=∠OBA=40°,∴∠AOB=180°﹣∠OAB﹣∠OBA=100°,∴∠C=∠AOB=50°.故选:B.8.(3分)如图,把图中的△ABC经过一定的变换得到△A′B′C′,如果图中△ABC 上的点P的坐标为(a,b),那么它的对应点P′的坐标为()A.(a﹣2,b)B.(a+2,b)C.(﹣a﹣2,﹣b)D.(a+2,﹣b)【分析】先根据图形确定出对称中心,然后根据中点公式列式计算即可得解.【解答】解:由图可知,△ABC与△A′B′C′关于点(﹣1,0)成中心对称,设点P′的坐标为(x,y),所以,=﹣1,=0,解得x=﹣a﹣2,y=﹣b,所以,P′(﹣a﹣2,﹣b).故选:C.二、填空题(每小题3分,共21分)9.(3分)计算=4.【分析】本题涉及零指数幂、绝对值等考点.针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【解答】解:原式=3+1=4,故答案为4.10.(3分)2012年11月,国务院批复《中原经济区规划》,建设中原经济区上升为国家战略.经济区范围包括河南全部及周边四省(部分)共30个地市,总面积28.9万平方公里,总人口1.7亿人,均居全国第一位.1.7亿人用科学记数法可表示为 1.7×108人.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于1.7亿有9位,所以可以确定n=9﹣1=8.【解答】解:1.7亿=170 000 000=1.7×108.故答案为:1.7×108.11.(3分)已知关于x的一元二次方程ax2+x﹣b=0的一根为﹣1,则a﹣b的值是1.【分析】将x=﹣1代入已知一元二次方程,通过移项即可求得(a﹣b)的值.【解答】解:∵关于x的一元二次方程ax2+x﹣b=0的一根为﹣1,∴x=﹣1满足该方程,∴a﹣1﹣b=0,解得,1.故答案是:1.12.(3分)现有形状、大小和颜色完全一样的三张卡片,上面分别标有数字“1”、“2”、“3”,第一次从这三张卡片中随机抽取一张,记下数字后放回,第二次再从这三张卡片中随机抽取一张并记下数字,则第二次抽取的数字大于第一次抽取的数字的概率是.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与第二次抽取的数字大于第一次抽取的数字的情况,再利用概率公式求解即可求得答案.【解答】解:画树状图得:∵共有9种等可能的结果,第二次抽取的数字大于第一次抽取的数字的有3种情况,∴第二次抽取的数字大于第一次抽取的数字的概率是:=.故答案为:.13.(3分)工程上常用钢珠来测量零件上小圆孔的宽口,假设钢珠的直径是10mm,测得钢珠顶端离零件表面的距离为8mm,如图所示,则这个小圆孔的宽口AB 的长度为8mm.【分析】先求出钢珠的半径及OD的长,连接OA,过点O作OD⊥AB于点D,则AB=2AD,在Rt△AOD中利用勾股定理即可求出AD的长,进而得出AB的长.【解答】解:连接OA,过点O作OD⊥AB于点D,则AB=2AD,∵钢珠的直径是10mm,∴钢珠的半径是5mm,∵钢珠顶端离零件表面的距离为8mm,∴OD=3mm,在Rt△AOD中,∵AD===4mm,∴AB=2AD=2×4=8mm.故答案为:8.14.(3分)在Rt△ABC中,∠C=30°,DE垂直平分斜边BC,交AC于点D,E点是垂足,连接BD,若BC=8,则AD的长是.【分析】由在Rt△ABC中,∠C=30°,BC=8,可求得AB的长,又由勾股定理,求得AC的长,然后设AD=x,由线段垂直平分线的性质,可得BD=CD=AC﹣AD,然后由勾股定理得到方程:16+x2=(4﹣x)2,解此方程即可求得答案.【解答】解:∵在Rt△ABC中,∠C=30°,BC=8,∴AB=BC=4,∴AC==4,∵DE垂直平分斜边BC,∴BD=CD,设AD=x,则CD=BD=AC﹣AD=4﹣x,在Rt△ABD中,AB2+AD2=BD2,即16+x2=(4﹣x)2,解得:x=,∴AD=.故答案为:.15.(3分)如图,在平面直角坐标系中,正方形ABCD顶点A的坐标为(0,2),B点在x轴上,对角线AC,BD交于点M,OM=,则点C的坐标为(6,4).【分析】过点C作CE⊥x轴于点E,过点M作MF⊥x轴于点F,连结EM,根据正方形的性质可以得出F是OE的中点,就可以得出MF是梯形AOEC的中位线,证明△AOB≌△BEC就可以得出OB=CE,AO=BE,就可以求得△OME是等腰直角三角形,由勾股定理就可以求出OE的值,从而得出C点的纵坐标.【解答】解:过点C作CE⊥x轴于点E,过点M作MF⊥x轴于点F,连结EM,∴∠MFO=∠CEO=∠AOB=90°,AO∥MF∥CE,∵四边形ABCD是正方形,∴AB=BC,∠ABC=90°,AM=CM,∴∠OAB=∠EBC,OF=EF,∴MF是梯形AOEC的中位线,∴MF=(AO+EC),∵MF⊥OE,∴MO=ME.∵在△AOB和△BEC中,,∴△AOB≌△BEC(AAS),∴OB=CE,AO=BE.∴MF=(BE+OB),又∵OF=FE,∴△MOE是直角三角形,∵MO=ME,∴△MOE是等腰直角三角形,∴OE==6,∴A(0,2),∴OA=2,∴BE=2,∴OB=CE=4.∴C(6,4).故答案为:(6,4).三、解答题(本大题共8个小题,共75分)16.(8分)阅读某同学解分式方程的具体过程,回答后面问题.解方程.解:原方程可化为:检验:当x=﹣6时,各分母均不为0,∴x=﹣6是原方程的解.…⑤请回答:(1)第①步变形的依据是等式的性质;(2)从第③步开始出现了错误,这一步错误的原因是移项不变号;(3)原方程的解为x=.【分析】(1)去分母的依据为等式的性质;(2)从第三边开始出现错误,错误的原因是移项不变号;(3)去括号后,移项合并,将x系数化为1,求出x的值,代入检验即可得到原分式方程的解.【解答】解:(1)第①步变形的依据是等式的性质;(2)从第③步开始出现了错误,这一步错误的原因是移项不变号;(3)移项得:2x+3x+x2﹣x2=6,即5x=6,解得:x=,经检验是原分式方程的解.故答案为:(1)等式的性质;(2)③,移项不变号;(3)x=17.(9分)某学校为了学生的身体健康,每天开展体育活动一小时,开设排球、篮球、羽毛球、体操四项体育活动课.学生可根据自己的爱好任选其中一项,老师根据学生报名情况进行了统计,并绘制了下面尚未完成的扇形统计图和频数分布直方图,请你结合图中的信息,解答下列问题:(1)该校学生报名总人数有多少人?(2)从表中可知选羽毛球的学生有多少人?选排球和篮球的人数分别占报名总人数的百分之几?(3)频数分布直方图补充完整.【分析】(1)由两个统计图可以看出:该校学生报名总人数有160÷40%=400人;(2)羽毛球的学生有400×25%=100人;因为选排球的人数是100人,即可求得占报名总人数的百分比;(3)因为选篮球的人数是40人,除以总人数即可求解.【解答】解:(1)由两个统计图可知该校报名总人数是(人);(2)选羽毛球的人数是400×25%=100(人),因为选排球的人数是100人,所以,因为选篮球的人数是40人,所以,即选排球、篮球的人数占报名的总人数分别是25%和10%.(3)如图:18.(9分)如图,函数y=kx与y=的图象在第一象限内交于点A.在求点A坐标时,小明由于看错了k,解得A(1,3);小华由于看错了m,解得A(1,).(1)求这两个函数的关系式及点A的坐标;(2)根据(1)的结果及函数图象,若kx﹣>0,请直接写出x的取值范围.【分析】(1)将A(1,3)代入反比例解析式中求出m的值,确定出反比例解析式;将A(1,)代入正比例函数解析式中求出k的值,确定出正比例解析式;(2)联立两函数解析式求出A与B的坐标,利用图象得出不等式的解集,即为x的范围.【解答】解:(1)将A(1,3)代入反比例解析式中,得:3=,即m=3,则反比例解析式为y=;将A(1,)代入正比例解析式得:=k,则正比例解析式为y=x;(2)联立两函数解析式得:,解得:或,则A(3,1),B(﹣3,﹣1),根据函数图象得:x>3或﹣3<x<0.19.(9分)如图,在菱形ABCD中,∠BAD=60°,把菱形ABCD绕点A按逆时针方向旋转α°,得到菱形AB′C′D′.(1)当α的度数为30°时,射线AB′经过点C(此时射线AD也经过点C′);(2)在(1)的条件下,求证:四边形B′CC′D是等腰梯形.【分析】(1)根据菱形的对角线平分一组对角可得∠BAC=∠BAD,然后根据旋转角等于对应边AB、AB′的夹角解答;(2)根据菱形的四条边都相等可得AB=AD,再根据旋转只改变图形的位置不改变图形的形状与大小可得AB=AB′、AC′=AC,然后求出DB′∥CC′,B′C=DC′,再根据等腰梯形的定义证明即可.【解答】(1)解:在菱形ABCD中,∵∠BAD=60°,∴∠BAC=∠BAD=×60°=30°,∵菱形ABCD旋转后射线AB′经过点C,∴旋转角α=∠BAC=30°;(2)证明:在菱形ABCD中,AB=AD,∵菱形ABCD绕点A按逆时针方向旋转得到菱形AB′C′D′,∴AB=AB′、AC′=AC,∴AD=AB′,AC﹣AB′=AC′﹣AD,即B′C=DC′,=,∴DB′∥CC′,∴四边形B′CC′D是等腰梯形.20.(9分)钓鱼岛自古就是中国的领土,中国有关部门已对钓鱼岛及其附属岛屿开展常态化监视监测.一日,中国一艘海监船从A点沿正北方向巡航,其航线距钓鱼岛(设M,N为该岛的东西两端点)最近距离为12海里(即MC=12海里).在A点测得岛屿的西端点M在点A的东北方向;航行4海里后到达B 点,测得岛屿的东端点N在点B的北偏东60°方向,(其中N,M,C在同一条直线上),求钓鱼岛东西两端点MN之间的距离.【分析】在直角△ACM,∠CAM=45°,则△ACM是等腰直角三角形,即可求得AC的长,则BC可以求得,然后在直角△BCN中,利用三角函数求得AN,根据MN=CN﹣CM即可求解.【解答】解:在直角△ACM,∠CAM=45度,则△ACM是等腰直角三角形,则AC=CM=12(海里),∴BC=AC﹣AB=12﹣4=8(海里),直角△BCN中,CN=BC•tan∠CBN=BC=8(海里),∴MN=CN﹣CM=8﹣12(海里).答:钓鱼岛东西两端点MN之间的距离是(8﹣12)海里.21.(10分)某商场经营某种品牌的童装,购进时的单价是60元.根据市场调查,在一段时间内,销售单价是80元时,销售量是200件,而销售单价每降低1元,就可多售出20件.(1)写出销售量y件与销售单价x元之间的函数关系式;(2)写出销售该品牌童装获得的利润w元与销售单价x元之间的函数关系式;(3)若童装厂规定该品牌童装销售单价不低于76元,且商场要完成不少于240件的销售任务,则商场销售该品牌童装获得的最大利润是多少?【分析】(1)销售量y件为200件加增加的件数(80﹣x)×20;(2)利润w等于单件利润×销售量y件,即W=(x﹣60)(﹣20x+1800),整理即可;(3)先利用二次函数的性质得到w=﹣20x2+3000x﹣108000的对称轴为x=﹣=75,而﹣20x+1800≥240,x≤78,得76≤x≤78,根据二次函数的性质得到当76≤x≤78时,W随x的增大而减小,把x=76代入计算即可得到商场销售该品牌童装获得的最大利润.【解答】解:(1)根据题意得,y=200+(80﹣x)×20=﹣20x+1800,所以销售量y件与销售单价x元之间的函数关系式为y=﹣20x+1800(60≤x≤80);(2)W=(x﹣60)y=(x﹣60)(﹣20x+1800)=﹣20x2+3000x﹣108000,所以销售该品牌童装获得的利润w元与销售单价x元之间的函数关系式W=﹣20x2+3000x﹣108000;(3)根据题意得,﹣20x+1800≥240,解得x≤78,∴76≤x≤78,w=﹣20x2+3000x﹣108000,对称轴为x=﹣=75,∵a=﹣20<0,∴抛物线开口向下,∴当76≤x≤78时,W随x的增大而减小,∴x=76时,W有最大值,最大值=(76﹣60)(﹣20×76+1800)=4480(元).所以商场销售该品牌童装获得的最大利润是4480元.22.(10分)(1)问题背景如图1,Rt△ABC中,∠BAC=90°,AB=AC,∠ABC的平分线交直线AC于D,过点C作CE⊥BD,交直线BD于E.请探究线段BD与CE的数量关系.(事实上,我们可以延长CE与直线BA相交,通过三角形的全等等知识解决问题.)结论:线段BD与CE的数量关系是BD=2CE(请直接写出结论);(2)类比探索在(1)中,如果把BD改为∠ABC的外角∠ABF的平分线,其他条件均不变(如图2),(1)中的结论还成立吗?若成立,请写出证明过程;若不成立,请说明理由;(3)拓展延伸在(2)中,如果AB≠AC,且AB=nAC(0<n<1),其他条件均不变(如图3),请你直接写出BD与CE的数量关系.结论:BD=2n CE(用含n的代数式表示).【分析】(1)延长CE、BA交于F点,先证明△BFC是等腰三角形,再根据等腰三角形的性质可得CF=2CE,然后证明△ADB≌△AFC可得BD=FC,进而证出BD=2CE;(2)延长CE、AB交于点G,先利用ASA证明△GBE≌△CBE,得出GE=CE,则CG=2CE,再证明△DAB∽△GAC,根据相似三角形对应边的比相等及AB=AC即可得出BD=CG=2CE;(3)同(2),延长CE、AB交于点G,先利用ASA证明△GBE≌△CBE,得出GE=CE,则CG=2CE,再证明△DAB∽△GAC,根据相似三角形对应边的比相等及AB=nAC 即可得出BD=CG=2nCE.【解答】解:(1)BD=2CE.理由如下:如图1,延长CE、BA交于F点.∵CE⊥BD,交直线BD于E,∴∠FEB=∠CEB=90°.∵BD平分∠ABC,∴∠1=∠2,∴∠F=∠BCF,∴BF=BC,∵BE⊥CF,∴CF=2CE.∵△ABC中,AC=AB,∠A=90°,∴∠CBA=45°,∴∠F=(180﹣45)°÷2=67.5°,∠FBE=22.5°,∴∠ADB=67.5°,∵在△ADB和△AFC中,,∴△ADB≌△AFC(AAS),∴BD=CF,∴BD=2CE;(2)结论BD=2CE仍然成立.理由如下:如图2,延长CE、AB交于点G.∵∠1=∠2,∠1=∠3,∠2=∠4,∴∠3=∠4,又∵BE=BE,∠GEB=∠CEB=90°,∴△GBE≌△CBE(ASA),∴GE=CE,∴CG=2CE.∵∠D+∠DCG=∠G+∠DCG=90°,∴∠D=∠G,又∵∠DAB=∠GAC=90°,∴△DAB∽△GAC,∴=,∵AB=AC,∴BD=CG=2CE;(3)BD=2nCE.理由如下:如图3,延长CE、AB交于点G.∵∠1=∠2,∠1=∠3,∠2=∠4,∴∠3=∠4,又∵BE=BE,∠GEB=∠CEB=90°,∴△GBE≌△CBE(ASA),∴GE=CE,∴CG=2CE.∵∠D+∠DCG=∠G+∠DCG=90°,∴∠D=∠G,又∵∠DAB=∠GAC=90°,∴△DAB∽△GAC,∴=,∵AB=nAC,∴BD=nCG=2nCE.故答案为BD=2CE;2n.23.(11分)如图,抛物线与直线AB交于点A(﹣1,0),B(4,).点D是抛物线A,B两点间部分上的一个动点(不与点A,B重合),直线CD与y轴平行,交直线AB于点C,连接AD,BD.(1)求抛物线的解析式;(2)设点D的横坐标为m,△ADB的面积为S,求S关于m的函数关系式,并求出当S取最大值时的点C的坐标;(3)当点D为抛物线的顶点时,若点P是抛物线上的动点,点Q是直线AB上的动点,判断有几个位置能使以点P,Q,C,D为顶点的四边形为平行四边形,直接写出相应的点Q的坐标.【分析】(1)把点A、B的坐标分别代入函数解析式列出关于a、b的方程组,通过解方程组即可求得系数a、b的值;(2)如图1,过点B作BF⊥DE于点F.则S=CD•(AE+BF)=﹣(m﹣)2+,所以当m=时,S取最大值;(3)需要分类讨论:①如图2,当PQ∥DC,PQ=DC时.②如图3,当CD∥PQ,且CD=PQ时.③如图4,当PC∥DQ,且PC=DQ时.分别求得这三种情况下的点Q的坐标.【解答】解:(1)∵抛物线与直线AB交于点A(﹣1,0),B(4,).∴,解得,,∴抛物线的解析式是y=﹣x2+2x+(2)如图1,过点B作BF⊥DE于点F.∵点A(﹣1,0),B(4,),∴易求直线AB的解析式为:y=x+.又∵点D的横坐标为m,∴点C的坐标是(m,m+),点D的纵坐标是(﹣m2+2m+)∴AE=m+1,BF=4﹣m,CD=﹣m2+m+2,∴S=CD•(AE+BF)=×(﹣m2+m+2)×(m+1+4﹣m)=﹣(m﹣)2+(﹣1<m<4).∴当m=时,S取最大值,此时C(,);(3)假设存在这样的点P、Q使以点P,Q,C,D为顶点的四边形为平行四边形.∵点D是抛物线的顶点,∴D(2,),C(2,).①如图2,当PQ∥DC,PQ=DC时.设P(x,﹣x2+2x+),则Q(x,x+),∴﹣x2+2x+﹣x﹣=3,解得,x=1或x=2(舍去),∴Q(1,1);②如图3,当CD∥PQ,且CD=PQ时.设P(x,﹣x2+2x+),则Q(x,x+),∴x++x2﹣2x﹣=3,解得,x=5或x=﹣2,∴Q(5,3)、Q′(﹣2,﹣);③如图4,当PC∥DQ,且PC=DQ时.过点P作PE⊥CD于点E,过点Q作QF⊥CD于点F.则PE=QF,DE=FC.设P(x,﹣x2+2x+),则E(2,﹣x2+2x+),∴Q(4﹣x,﹣x),F(2,﹣x),∴由DE=CF得,﹣(﹣x2+2x+)=﹣x﹣,解得,x=1或x=2(舍去),∴Q(3,2)综上所述,符合条件的点Q的坐标有:(1,1)、(5,3)、(﹣2,﹣)、(3,2).。
河南省中原2013届高三下学期第一次联考数学(理)试题扫描版含答案

理科数学试题参考答案一、 选择题:二.填空题: 【13】 72 【14】 ±1 【15】 3 【16】 ①③三、解答题:解答应写出文字说明,证明过程或演算步骤。
(17)(本小题满分12分)解:(Ⅰ)当1n =时,112S a a ==+.………………………………………1分 当2n ≥时,112n n n n a S S --=-=.…………………………………………………3分因为{}n a 是等比数列,所以111221a a -=+==,即11a =,1a =-.…………5分所以数列{}n a 的通项公式为12n n a -=*()n ∈N .…………………………………6分(Ⅱ)由(Ⅰ)得1(21)(21)2n n n b n a n -=-=-⋅.则23111325272(21)2n n T n -=⨯+⨯+⨯+⨯++-⋅. ①2312123252(23)2(21)2n n n T n n -=⨯+⨯+⨯++-⋅+-⋅. ②①-②得 2111222222(21)2n n n T n --=⨯+⨯+⨯++⨯--⋅…………………9分 2112(222)(21)2n n n -=++++--⋅114(21)(21)2n n n -=+---⋅(23)23n n =--⋅-.…………………………………………………12分所以(23)23n n T n =-⋅+.……………………………………………………………13分18.(本小题满分12分)解:(Ⅰ)由题意可知,16,0.04,0.032,0.004a b x y ====. ………………4分(Ⅱ)由题意可知,第4组有4人,第5组有2人,共6人.所以ξ的可能取值为0,1,2,则 ………………………………………6分242662(0)155C P C ξ====,1142268(1)15C C P C ξ===,22261(2)15C P C ξ===. 所以,ξ的分布列为…………………………10分 所以,28120125151E ξ=⨯+⨯+.……………………………………12分 19.(本小题满分12分)(Ⅰ)证明:连接BD 与AC 相交于点O ,连结EO .因为四边形ABCD 为正方形,所以O 为BD 中点. 因为 E 为棱PD 中点.所以 EO PB //.……2分 因为 ⊄PB 平面EAC ,⊂EO 平面EAC ,所以直线PB //平面EAC . ………………3分(Ⅱ)证明:因为⊥PA 平面PDC ,所以CD PA ⊥. ………………4分因为四边形ABCD 为正方形,所以CD AD ⊥,所以⊥CD 平面PAD . ………………5分 所以平面PAD ⊥平面ABCD . ………………6分(Ⅲ)解法一:在平面PAD 内过D 作直线Dz AD ⊥.因为平面PAD ⊥平面ABCD ,所以Dz ⊥平面ABCD .由,,Dz DA DC 两两垂直,建立如图所示的空间直角坐标系xyz D -.…………7分设4AB =,则(0,0,0),(4,0,0),(4,4,0),(0,4,0),(2,0,2),(1,0,1)D A B C P E .所以(301)EA =-u u u r ,,,(440)AC =-u u u r ,,. 设平面EAC 的法向量为()n x y z =r ,,,则有00n EA n AC ìï=ïíï=ïîr u u u r g r u u u r g 所以 ⎩⎨⎧=+-=-.044,03y x z x 取1=x ,得(113)n =r ,,.………………9分 易知平面ABCD 的法向量为(01)v =r ,0,. ………………10分 所以cos ,n v n v n v<>=v v v v g v v . ………………11分 因为二面角与两平面的法向量所成角相等或互补, 而由图可知二面角B AC E --的平面角是钝角 ,所以二面角B AC E --的余弦值为11113-. ………………12分 解法二:取AD 中点M ,BC 中点N ,连结PM ,MN 因为ABCD 为正方形,所以CD MN //. 由(Ⅱ)可得⊥MN 平面PAD . 因为PD PA =,所以⊥PM AD . 由,,MP MA MN 两两垂直,建立如图所示 的空间直角坐标系xyz M -. 设4=AB ,则(2,0,0),(2,4,0),(2,4,0),(2,0,0),(0,0,2),(1,0,1)A B C D P E ---. 所以(301)EA =-u u u r ,,,(440)AC =-u u u r ,,. 设平面EAC 的法向量为()n x y z =r ,,,则有00n EA n AC ìï=ïíï=ïîr u u u r g r u u u r g 所以 ⎩⎨⎧=+-=-.044,03y x z x 取1=x ,得(113)n =r ,,. ………………9分 易知平面ABCD 的法向量为(01)v =r ,0,. ………………10分 所以cos ,11n v n v n v <>=v v v v g v v . ………………11分 因为二面角与两平面的法向量所成角相等或互补, 而由图可知二面角B AC E --的平面角是钝角 ,所以二面角B AC E --的余弦值为11113-. ………………12分 20.(本小题满分12分) 解.(Ⅰ)由椭圆定义可知,点P 的轨迹C 是以(0),0)为焦点,长半轴长为2 的椭圆.……………………………………………………………………………3分故曲线C 的方程为2214x y +=. …………………………………………………5分 (Ⅱ)存在△AOB 面积的最大值. …………………………………………………6分 因为直线l 过点(1,0)E -,可设直线l 的方程为 1x my =-或0y =(舍). 则 整理得 22(4)230m y my +--=.…………………7分22(2)12(4)0m m ∆=++>.设1122()()A x y B x y ,,,.解得124m y m +=+,224m y m -=+.则21||y y -= 因为1212AOB S OE y y ∆=⋅-21=. ………………………10分 设1()g t t t=+,t =t ≥.则()g t在区间)+∞上为增函数.所以()3g t ≥.所以2AOB S ∆≤,当且仅当0m =时取等号,即max ()2AOB S ∆=. 所以AOB S ∆的最大值为2.………………………………………………………………12分 21.(本小题满分12分)(1)依题意得⎪⎪⎩⎪⎪⎨⎧-+=+-++=-+a x a a x f x f a x a a x f x f x x x x ln 2)1()(2)(ln )1(2)(2)(解之得a x a x f x ln )(-=……4分(2)a a a a a x f x x ln )1(ln ln )('-=-=当x >0时()0f x '> 当x <0时()0f x '<∴()f x )在(,0)-∞上递减在(0,)+∞上递增∴min ()f x =f (0) =1 ……8分(3)由(2)得 ln 1x a x a -≥恒成立,令a =e , 则1x e x +≥在1x e x +≥中令x =-n k (k =1,2,…n -1) ∴1-nk ≤n ke - ∴(1)n k k e n --≤ ∴(1-n 1)n ≤e -1 (1-n 2)n ≤e -2 …(1-n n 1-)n ≤e -(n -1),(nn )n =1 ∴(n n )n +(n n 1-)n +(n n 2-)n +…+(n1)n ≤1+e -1+e -2+…+e -(n -1) =1-e e 1])1(1[11)1(1<--=--e e e e e n n ……12分 22.(本小题满分10分)《选修4—1:几何证明选讲》【证明】(1)连结BC,∵AB 是直径,∴∠ACB=90°,∴∠ACB=∠AGC=90°.∵GC 切⊙O 于C,∴∠GCA=∠ABC.221,4 1.x y x my ⎧+=⎪⎨⎪=-⎩∴∠BAC=∠CAG. 。
河南省郑州市高中高三年级第一次质量预测理科数学试题 扫描版含答案.pdf

2014年高中毕业年级第一次质量预测 数学(理科) 参考答案 选择题 ADACB DBCBB AB 填空题 13.; 14.; 15. ; 16.. 三、解答题 17.解:(1) 因为,所以, 即,…………………………….2分 在中,由余弦定理可知, 即, 解之得或 ……………………………………………….6分 由于,所以…………………………………………………..7分 (2) 在中,由正弦定理可知, 又由可知, 所以, 因为, 所以.……………………………………………………..12分 18.解:随机猜对问题的概率,随机猜对问题的概率.………… 2分 ⑴设参与者先回答问题,且恰好获得奖金元为事件, 则, 即参与者先回答问题,其恰好获得奖金元的概率为. ………………4分 ⑵参与者回答问题的顺序有两种,分别讨论如下: ①先回答问题,再回答问题.参与者获奖金额可取, 则,, ②先回答问题,再回答问题,参与者获奖金额,可取, 则,, ………… 10分 于是,当,时,即先回答问题A,再回答问题B,获奖的期望值较大; 当,时,两种顺序获奖的期望值相等;当,时,先回答问题B,再回答问题A,获奖的期望值较大.…………………………12分 19.解:(1)证明:由题意, 注意到,所以, 所以, 所以, ……………………3分 又侧面, 又与交于点,所以, 又因为,所以.……………………………6分 (2)如图,以所在的直线为轴,以为原点,建立空间直角坐标系则, ,,, 又因为,所以 …………8分 所以,, 设平面的法向量为, 则根据可得是平面的一个法向量, 设直线与平面所成角为,则………………12分 20.⑴解:由题知 所以曲线是以为焦点,长轴长为的椭圆(挖去与轴的交点), 设曲线:, 则, 所以曲线:为所求.---------------4分 ⑵解:注意到直线的斜率不为,且过定点, 设, 由 消得,所以, 所以 -------------------------------------8分 因为,所以 注意到点在以为直径的圆上,所以,即,-----11分 所以直线的方程或为所求.------12分 21.⑴解:注意到函数的定义域为, 所以恒成立恒成立, 设, 则, ------------2分 当时,对恒成立,所以是上的增函数, 注意到,所以时,不合题意.-------4分 当时,若,;若,. 所以是上的减函数,是上的增函数, 故只需. --------6分 令, , 当时,; 当时,. 所以是上的增函数,是上的减函数. 故当且仅当时等号成立. 所以当且仅当时,成立,即为所求. --------8分 ⑵解:由⑴知当或时,,即仅有唯一解,不合题意; 当时, 是上的增函数,对,有, 所以没有大于的根,不合题意. ---------8分 当时,由解得,若存在, 则,即, 令,, 令,当时,总有, 所以是上的增函数,即, 故,在上是增函数, 所以,即在无解. 综上可知,不存在满足条件的实数. ----------------------12分 22.解:四点共圆, ,又为公共角, ∴∽ ∴ ∴. ∴. ……………………………………………………………… 6分 , , 又, ∽, , 又四点共圆,,, .…………………………………………………… 10分 曲线为圆心是,半径是1的圆. 曲线为中心是坐标原点,焦点在x轴上,长轴长是8,短轴长是6的椭圆. ……4分 ⑵曲线的左顶点为,则直线的参数方程为(为参数) 将其代入曲线整理可得:,设对应参数分别为, 则 所以. ……………………………10分 24.解:⑴因为 因为,所以当且仅当时等号成立,故 为所求.……………………4分 ⑵不等式即不等式 , ①当时,原不等式可化为 即 所以,当时,原不等式成立. ②当时,原不等式可化为 即所以,当时,原不等式成立. ③当时,原不等式可化为 即 由于时 所以,当时,原不等式成立. 综合①②③可知: 不等式的解集为……………………10分 y z x。
河南省郑州市高中毕业班高三数学第一次质量预测理科试卷
河南省郑州市2009年高中毕业班第一次质量预测数学(理科)(必修+选修Ⅱ)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
第Ⅰ卷l 至2页。
第Ⅱ卷3至4页。
考试结束后,将本试卷和答卷一并交回。
第Ⅰ卷注意事项:1.答题前,考生在答题卡上务必用0.5毫米黑色墨水签字笔将自己的姓名、准考证号、 座号填写清楚,并将准考证号对应的数字涂黑.2.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动.用 橡皮擦干净后,再选涂其他答案标号.在试题卷上作答无效.3.本卷共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是 符合题目要求的. 参考公式:如果事件A ,B 互斥,那么 球的表面积公式()()()P A B P A P B +=+24S R π=如果事件A ,B 相互独立,那么其中R 表示球的半径 ()()()P A B P A P B ⋅=⋅球的体积公式如果事件A 在一次试验中发生的概率是P ,那 343V R π=么n 次独立重复试验中恰好发生k 次的概率()(1)(0,1,2,,)k k n kn n P k C P P k n -=-=其中R 表示球的半径一、选择题1.设{|4,2},{||1|3}A x x x B x x =≤-≥=-≤或,则AB =A .[2,4]B .[2,2]-C .[2,4]-D .[4,4]-2.设复数1212,1z i z i =-=+,则复数12z z z =在复平面内对应的点位于 A .第一象限B .第二象限C .第三象限D .第四象限3.一枚硬币连掷5次,则至少一次正面向上的概率为A .132B .3132C .532D .154.将1、2、3、…、9这9个数字填在如图的9个空格中,要求每一行从左到右,每一列从上到下增大,当3、4固定在图中 的位置时,填写空格的方法为A .6种B .12种C .18种D .24种5.若互不相等的实数a ,b ,c 成等差数列,ca ,ab ,bc 成等比数列,且15a b c ++=, 则a = A .20-B .5C .5-D .206.如右图,在正方体1111ABCD A BC D -中,P 为棱DC 的中点,则1D P 与1BC 所在直线 所成角的余弦值等于A .45 BC .12D 7.已知函数23()log log 2f x a x b x =++且1()42008f =,则(2008)f 的值为 A .4-B .2-C .0D .28.同时具有性质:“①最小正周期是π;②图像关于直线3x π=对称;③在[,]63ππ-上是 增函数”的一个函数是A .sin()26x y π=+B .cos(2)3y x π=+ C .sin(2)6y x π=-D .cos(2)6y x π=-9.图中三条曲线给出了三个函数的图象,一条是汽车位移函数()s t ,一条是汽车速度函数()t υ,一条是汽车加速度函数()a t ,则A .曲线a 是()s t 的图象,b 是()t υ的图象,c 是()a t 的图象B .曲线b 是()s t 的图象,a 是()t υ的图象,c 是()a t 的图象C .曲线a 是()s t 的图象,c 是()t υ的图象,b 是()a t 的图象D .曲线c 是()s t 的图象,b 是()t υ的图象,a 是()a t 的图象10.斜率为2的直线l 过双曲线22221(0,0)x y a b a b-=>>的右焦点,且与双曲线的左右两支分别相交,则双曲线的离心率e 的取值范围是A .e <B .1e <<C .1e <<D .e >11.定义在R 上的函数()f x 的反函数为1()f x -,且对于任意x R ∈,都有 ()()3f x f x -+=,则11(1)(4)f x f x ---+-=A .0B .2-C .2D .24x -12.已知ABC ,如果对一切实数t ,都有||||BA tBC AC -≥,则ABC 一定为A .锐角三角形B .钝角三角形C .直角三角形D .与t 的值有关第Ⅱ卷注意事项:1.答题前,考生先在答题卡上用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证 号填写清楚.2.第Ⅱ卷共2页,请用直径0.5毫米黑色墨水签字笔在答题卷上各题的答题区域内作 答,在试题卷上作答无效. 3.本卷共l0小题,共90分.二、填空题:本大题共4小题,每小题5分,共20分.(注意:在试题卷上作答无效) 13.已知20,220,x y x y -≥⎧⎨-+≤⎩则1()2x y+的最大值是 .14.若9(22x-的展开式的第7项为214,则x = .15.已知点P 是抛物线24y x =上的点,设点P 到抛物线准线的距离为1d ,到圆2(3)x ++2(3)1y -=上的一动点Q 的距离为2d ,则12d d +的最小值是 . 16.下列命题:① 如果一个平面内有一条直线与另一个平面内的一条直线平行,那么这两个平面平行; ② 如果一个平面内的两条直线分别平行于另一个平面,那么这两个平面平行;③ 平行于同一平面的两个不同平面相互平行; ④ 垂直于同一直线的两个不同平面相互平行.其中真命题的是 .(把正确的命题序号全部填在横线上.) 三、解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分l0分)(注意:在试题卷上作答无效.........) a ,b ,c 为ABC 的内角A 、B 、C 的对边,(cos,sin ),(cos ,sin ),2222C C C Cm n ==- 且m 与n 的夹角为3π. (1)求角C ;(2)已知7,2c ABC =的面积2S =,求a b +.18.(本题满分12分)(注意:在试题卷上作答无效.........) 如图所示,正方形ABCD 和矩形ADEF 所在平面相互垂直,G 是AF 的中点. (1)求证://AC 平面GBE ;(2)若直线BE 与平面ABCD 成45°角,求二面角B GE D --的大小.19.(本题满分12分)(注意:在试题卷上作答无效.........) 从某批产品中,有放回地抽取产品2次,每次随机抽取1件,假设事件A :“取出的2件产品中至多有l 件是二等品”的概率()0.96P A =.(1)求从该批产品中任取1件是二等品的概率P ;(2)若该批产品共100件,从中一次性任意抽取2件,用ξ表示取出的2件产品中的二等品的件数,求ξ的分布列及期望.20.(本题满分12分)(注意:在试题卷上作答无效.........) 已知三次函数32()f x x ax bx c =+++在(,1),(2,)-∞-+∞上单调递增,在(1,2)-上单调递减,当且仅当4x >时,2()45f x x x >-+.(1)求函数()f x 的解析式;(2)若函数()()(1)ln()3(2)f x h x m x m x '=-++-,求()h x 的单调区间和极值.21.(本题满分12分)(注意:在试题卷上作答无效.........)已知点M 、N 分别在直线y mx =和(0)y mx m =->上运动,点P 是线段MN 的中点,且||2MN =,动点P 的轨迹是曲线C .(1)求曲线C 的方程,并讨论C 所表示的曲线类型; (2)当2m =时,过点(3A -的直线l 与曲线c 恰有一个公共点,求直线l 的斜率.22.(本题满分12分)(注意:在试题卷上作答无效.........) 设2a >,给定数列{}n x ,其中211,(1,2,)2(1)nn n x x a x n x +===-.求证:(1)12,1(1,2,)n n nx x n x +><=; (2)如果3a ≤,那么112(1,2,)2n n x n -≤+=.参考答案一、选择题二、填空题 13.1414.13-15.4 16.③④三、解答题 17.解:(1)(cos,sin ),(cos ,sin )2222C C C C m n ==-, 22cos sin cos .22C Cm n C ∴⋅=-=(2分) 又1||||cos cos ,332m n m n ππ⋅=⋅==(4分) 1cos ,23C C π∴=∴=.(6分)(2)222712cos ,,cos ,22c a b ab C c C =+-==22249()3.4a b ab a b ab ∴=+-=+- (8分)11sin , 6.2222S ab C ab ab ==⋅=∴=2494912111()318,.4442a b ab a b ∴+=+=+=∴+=(10分)18.(1)证明:连结BD 交AC 于点M ,取BE 的中点N ,连结MN ,则MN // ED且1,2MN ED =依题意,知//AG ED 且12AG ED =, //MN AG ∴,且MN AG =,故四边形MNAG 是平行四边形,//AM GN ,即//,AC GN(3分)又GN ⊆平面GBE ,AC ⊄平面GBE//AC ∴平面GBE ,(6分)(2)解:处长EG 交DA 的处长线于H 点,连结BH ,作AO GH ⊥于O ,连结BO .∵平面ABCD ⊥平面ADEF ,平面ABCD平面,ADEF AD AB AD =⊥AB ∴⊥平面ADEF ,由三垂线定理,知AB GH ⊥,故AOB ∠就是三面角B GE D --的平面角.(8分)∵平面ABCD ⊥平面ADEF ,平面ABCD 平面,ADEF AD ED AD =⊥ED ∴⊥平面ABCD ,故EBD ∠就是直线BE 与平面ABCD 成的角, (10分)知45,EBD ∠=设AB a =,则BE BD ==.在直三角形AGH 中:1,,2AH AD a AG BE HG ======3AH AG AO a HG ⋅==.在直角三角形ABO中:tan 60.ABAOB AOB AO∠===∴∠=故三而角B GE D --的大小为60°.(12分)19.解:(1)记0A 表示事无偿援助,“取出的2件产品中无二等品”,1A 表示事件“取出的2件产品中恰有1件是二等品”。
河南省郑州市高三数学上学期第一次质量预测试题 理(扫
河南省郑州市2015届高三数学上学期第一次质量预测试题理(扫描版)2015年高中毕业年级第一次质量预测理科数学 参考答案一、选择题1-12:BCDA DBCC BADA 二、填空题 13.63414.-10 15.82 16.2,3,4. 三、解答题17.解:(Ⅰ) 42cos 23=∠=ABC a ,,3=c , 由余弦定理:ABC a c a c b ∠⋅⋅-+=cos 2222=18423232)23(322=⨯⨯⨯-+,………………………………2分 ∴ 23=b . ……………………………………………………………………4分又(0,)π∠∈ABC ,所以414cos 1sin 2=∠-=∠ABC ABC ,由正弦定理:ABC bACB c ∠=∠sin sin , 得47sin sin =∠⨯=∠b ABC c ACB .………………………………………6分(Ⅱ) 以BC BA ,为邻边作如图所示的平行四边形ABCE ,如图,则42cos cos -=∠-=∠ABC BCE ,…………………8分 ,62==BD BE 在△BCE 中,由余弦定理:BCE CE CB CE CB BE ∠⋅⋅-+=cos 2222.即)42(23218362-⨯⨯⨯-+=CE CE , 解得:,3=CE 即,3=AB …………………10分 所以479sin 21=∠=∆ABC ac S ABC .…………………………………………12分 18.解:(Ⅰ)当206=S 时,即背诵6首后,正确个数为4首,错误2首,………………2分 若第一首和第二首背诵正确,则其余4首可任意背诵对2首;…………………3分若第一首正确,第二首背诵错误,第三首背诵正确,则其余3首可任意背诵对1首, 此时的概率为:811631)32(323132)31()32()32(21322242=⨯⨯⨯⨯⨯+⨯⨯⨯=C C p ………… …………5分(2)∵5S =ξ的取值为10,30,50,又21,,32p q ==…………………6分∴8140)31()32()31()32()10(32252335=+==C C P ξ, D A E8130)31()32()31()32()30(41151445=+==C C P ξ 5505552111(50)()().3381P C C ξ==+=…………………9分∴ξ的分布列为:∴81815081308110=⨯+⨯+⨯=ξE .…………………………………………12分 19.解:(1)当M 为PC 中点时,//PA 平面BMQ ,…………………2分 理由如下: 连结AC 交BQ 于N ,连结MN ,因为090ADC ∠=,Q 为AD 的中点,所以N 为AC 的中点.当M 为PC 的中点,即PM MC =时,MN 为PAC ∆故//MN PA ,又MN ⊂平面BMQ ,所以//PA 平面BMQ .…………………………………………5分 (2)由题意,以点D 为原点DP DC DA ,,所在直线分别为z y x ,,轴,建立空间直角坐标系,…………………6分 则),0,2,1(),0,0,1(),2,0,0(B Q P …………………7分 由MC PM 2=可得点)32,34,0(M , 所以)32,34,1(),0,2,0(),20,1(-==-=,设平面PQB 的法向量为),,(1z y x n =,则1120,2,0.20,PQ n x z x z y QB n y ⎧⋅=-==⎧⎪∴⎨⎨=⋅==⎩⎪⎩u u u r u r u u u r u r 令)1,0,2(,11=∴=n z ,…………………9分同理平面MBQ 的法向量为)1,0,32(2=n ,…………………10分y设二面角大小为θ,.65657cos ==θ…………………………………………12分 20.解:(1).设点),(y x P ,由题意可得,22|2|)1(22=-+-x y x ,…………………2分 整理可得:1222=+y x .曲线E 的方程是1222=+y x .………………………5分 (2).设),(11y x C ,),(22y x D,由已知可得:||AB =当0=m 时,不合题意. …………………6分 当0≠m 时,由直线l 与圆122=+y x 相切,可得:11||2=+m n ,即221.m n +=联立⎪⎩⎪⎨⎧=++=1222y x nmx y 消去y 得2221()210.2m x mnx n +++-=…………………8分02)1)(21(4422222>=-+-=∆m n m n m ,122,1222221+∆--=+∆+-=m mn x m mn x 所以,1222,1242221221+-=+-=+m n x x m mn x x||||2112x x AB S ACBD-=四边形=12||2121222222+=++-m m m n m=2122||||m m ≤+10分 当且仅当||1||2m m =,即22±=m 时等号成立,此时26±=n ,经检验可知,直线2622-=x y 和直线2622+-=x y 符合题意. ………………………………12分21.解:(1)当1a =-时,22()(2)ln 2f x x x x x =--+,定义域为()0,+∞,()()()22ln 22.f x x x x x '=-+-- …………………2分(1)3f '∴=-,又(1)1,f =()f x 在()()1,1f 处的切线方程340.x y +-= ……………4分(2)令()()20,g x f x x =--=则()222ln 22,x x x ax x -++=+即1(2)ln ,x xa x--⋅=令1(2)ln ()x xh x x--⋅=, …………………5分则2221122ln 12ln ().x x x h x x x x x---'=--+= …………………6分 令()12ln t x x x =--,22()1x t x x x--'=--=,()0t x '<Q ,()t x 在(0,)+∞上是减函数,又()()110t h '==Q ,所以当01x <<时,()0h x '>,当1x <时,()0h x '<,所以()h x 在()0,1上单调递增,在()1,+∞上单调递减,()max (1)1h x h ∴==.………8分 因为0>a , 所以当函数()g x 有且仅有一个零点时,1a =. 当1a =,()()222ln g x x x x x x =-+-,若2,(),ex e g x m -<<≤只需证明max (),g x m ≤…………………9分()()()132ln g x x x '=-+,令()0g x '=得1x =或32x e -=,又2e x e -<<Q ,∴函数()g x 在322(,)e e --上单调递增,在32(,1)e -上单调递减,在(1,)e 上单调递增,10分又333221()22g e e e ---=-+ , 2()23,g e e e =-Q333322213()2222()().22g e e e e e e e g e ----=-+<<<-= 即32()()g eg e -< ,2max ()()23,g x g e e e ==- 223.m e e ∴≥- ………12分22.证明:(1)因为PD PG =,所以PGD PDG ∠=∠.由于PD 为切线,故DBA PDA ∠=∠,…………………2分 又因为PGD EGA ∠=∠,所以DBA EGA ∠=∠,所以DBA BAD EGA BAD ∠+∠=∠+∠, 从而BDA PFA ∠=∠.…………………4分又,EP AF ⊥所以ο90=∠PFA ,所以ο90=∠BDA ,故AB 为圆的直径.…………………5分 (2)连接BC ,DC .由于AB 是直径,故∠BDA =∠ACB =90°.在Rt △BDA 与Rt △ACB 中,AB =BA ,AC =BD ,从而得Rt △BDA ≌Rt △ACB , 于是∠DAB =∠CBA . …………………7分又因为∠DCB =∠DAB ,所以∠DCB =∠CBA ,故DC ∥AB . ………………8分 因为AB ⊥EP ,所以DC ⊥EP ,∠DCE 为直角,…………………9分所以ED 为直径,又由(1)知AB 为圆的直径,所以5==AB DE .…………………10分 23.解:(Ⅰ)圆C 的普通方程为02222=+-+y x y x ,即22(1)(1) 2.x y -++=………2分所以圆心坐标为(1,-1),圆心极坐标为7)4π;…………………5分 (Ⅱ)直线l 的普通方程:0122=--y x ,圆心到直线l 的距离32231122=-+=d ,…………………7分 所以,31029822=-=AB 点P 直线AB 距离的最大值为,3253222=+=+d r …………………9分 9510325310221max =⨯⨯=S .…………………10分 24.解:(Ⅰ)当5=m 时,,1,3411,21,63)(⎪⎩⎪⎨⎧>-≤≤-+--<+=x x x x x x x f ………………………3分由2)(>x f 易得不等式解集为)0,34(-∈x ;………………………5分(2)由二次函数2)1(3222++=++=x x x y ,该函数在1-=x 取得最小值2,因为31,1()3,1131,1x m x f x x m x x m x ++<-⎧⎪=--+-≤≤⎨⎪-+->⎩在1-=x 处取得最大值2-m ,…………………7分所以要使二次函数322++=x x y 与函数)(x f y =的图象恒有公共点,只需22≥-m , 即 4.m ≥.……………………………10分。
河南省郑州市高三上学期第一次质量预测试题(9科10份,
文科数学参考答案一、选择题ACCCC BCBAC DD二、填空题13. 14. 15. 16.三、解答题(共70分)17.解:⑴由已知条件: 21415,43428,2=+=⎧⎪⎨⨯=+⨯=⎪⎩a a d S a d ………………………2分 ………………………4分()114 3.n a a n d n ∴=+-⨯=-………………………6分⑵由⑴可得()(1)(1)43n n n n b a n =-=--………………………8分()21591317......8344.n T n n n =-+-+-++-=⨯=………………………12分18.解:⑴设“当罚金定为10元时,闯红灯的市民改正行为”为事件,……2分则………………………4分∴当罚金定为10元时,比不制定处罚,行人闯红灯的概率会降低.……………6分⑵由题可知类市民和类市民各有40人,故分别从类市民和类市民各抽出两人,设从类市民抽出的两人分别为、,设从类市民抽出的两人分别为、.设从“类与类市民按分层抽样的方法抽取4人依次进行深度问卷”为事件,………………………8分则事件中首先抽出的事件有:, ,,,共6种.同理首先抽出、、的事件也各有6种.故事件共有种.………………………10分设从“抽取4人中前两位均为类市民”为事件,则事件有,,,.∴抽取4人中前两位均为类市民的概率是.………………………12分19. ⑴证明:设与交于点,连结,在矩形中,点为中点,因为为中点,所以∥,又因为平面,平面,所以∥平面. ……………………4分⑵解:取中点为,连结,平面平面,平面平面,平面,,所以平面,同理平面,……………………7分所以,的长即为四棱锥的高,……………………8分在梯形中1,//2AB CD DG AB DG ==, 所以四边形是平行四边形,,所以平面,又因为平面,所以,又,,所以平面,.……………………10分注意到,所以,,所以13E ABCD ABCD V S ED -=⋅=……………………12分20. ⑴解:设曲线上任意一点坐标为,由题意,= ……………………2分 整理得,即为所求.……………………4分⑵解:由题知,且两条直线均恒过点,……………………6分设曲线的圆心为,则,线段的中点为,则直线:,设直线:,由,解得点, ……………………8分由圆的几何性质,1||||2NP CD == ……………………9分 而22222||(1)()22t t NP +-=-+,,, 解之得,或, ……………………10分所以直线的方程为,或. ……………………12分21. ⑴解:函数的定义域为,(()x x f x x+'=,…………2分 当时,,函数的单调递减,当时,,函数的单调递增.综上:函数的单调增区间是,减区间是.……………………5分 ⑵解:令21()()()(1)ln ,02F x f x g x x m x m x x =-=-++->, 问题等价于求函数的零点个数,……………………6分 (1)()()x x m F x x--'=-,当时,,函数为减函数, 注意到,,所以有唯一零点;………………8分当时,或时,时,所以函数在和单调递减,在单调递增,注意到,(22)ln(22)0F m m m +=-+<,所以有唯一零点; ……………………11分综上,函数有唯一零点,即两函数图象总有一个交点. ……………12分22. ⑴证明:因为ECF CAE CEA CAE CBA ∠=∠+∠=∠+∠,EFC CDA BAE CBA ∠=∠=∠+∠,平分,所以,所以. ……………………4分⑵解:因为ECD BAE EAC ∠=∠=∠,,所以, ……………………6分 即2,CE DE EC EA EA CE DE==, 由⑴知,,所以, …………8分 所以45()4AC AF AD AE AE DE AE ⋅=⋅=-⋅=. ……………………10分23.解:(Ⅰ)()π2cos sin 4ρθθθ⎛⎫=-=+ ⎪⎝⎭,……………………………2分 即()22cos sin ρρθρθ=+,可得,故的直角坐标方程为.…………………………………………5分(Ⅱ)的直角坐标方程为,由(Ⅰ)知曲线是以为圆心的圆,且圆心到直线的距离d == ………………………8分 所以动点到曲线的距离的最大值为.………………………10分24.解:(Ⅰ)①当时,原不等式可化为,此时不成立;②当时,原不等式可化为,即,③当时,原不等式可化为,即, ......3分 ∴原不等式的解集是. (5)分 (Ⅱ)因为1()11g x ax x=+-≥,当且仅当时“=”成立, 所以,-----7分12,02,()3,2x x f x x -<≤⎧=⎨->⎩,所以,-----9分 ∴,即为所求. -----10分。
河南省郑州市2013届高三第一次预测(模拟)考试数学理科试题Word版含答案
2013年高中毕业年级第一次质量预测理科数学试题卷注意事项:1. 本试卷分第I卷(选择题)和第II卷(非选择题〉两部分.答卷前,考生务必将自己的姓名、准考证号填写在本试卷和答题卡相应位置上。
2. 回答第I卷时:若选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案标号。
写在本试卷上无效。
3. 回答第II卷时:将答案写在答题卡上。
写在本试卷上无效。
4. 考试结束后,将本试卷和答题卡一并交回。
第I卷一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有 —项是符合题目要求的.1. 若集合A={0,1,2,x},=A,则满足条件的实数x的个数有A. 1个B. 2个C. 3个D. 4个2. 若复数z=2-i,则等于A.2-IB. 2 + iC. 4 + 2iD. 6+3i3. 直线与曲线相切于点A(l, 3),则的值等于A. 2B. -1C. 1D. —24. 我国第一艘航母“辽宁舰”在某次舰载机起降飞行训练中,有5架歼-15飞机准备着舰.如果甲、乙两机必须相邻着舰,而丙、丁两机不能相邻着舰,那么不同的着舰方法有A. 12B. 18C. 24D.485. 执行如图所示的程序框图,若输入x==2,则输出y的值为A. 5B. 9C. 14D. 416. 图中阴影部分的面积S是h的函数(〉,则该函数的大致图象是7. 已知双曲线!的离心率为,则双曲线的渐近线方程为A. B. C. D.8.把70个面包分5份给5个人,使每人所得成等差数列,且使较大的三份之和的1/6是较小的两份之和,问最小的1份为.A.2B. 8C. 14D. 209.在三棱锥A—BCD中,侧棱AB、AC、AD两两垂直,的面积分别为,则该三棱锥外接球的表面积为A. B. C. D.10. 设函数,把f(x)的图象按向量a=(m,0)(m>0)平移后的图象恰好为函数的图象,则m的最小值为A. B . C. D.11. 已知抛物线上有一条长为6的动弦Ab,则AB中点到X轴的最短距离为A. B. C. 1 D. 212. 设函数,对任意,恒成立,则实数m的取值范围是A. B. C. D.第II卷本卷包括必考题和选考题两部分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2013年高三理科数学试题卷一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有—项是符合题目要求的.1. 若集合A={0,1,2,x},B={ 1,X2}=A,则满足条件的实数x的个数有A. 1个B. 2个C. 3个D. 4个2. 若复数z=2-i,则等于A.2-IB. 2 + iC. 4 + 2iD. 6+3i3. 直线与曲线相切于点A(l,3),则2a+b的值等于A. 2B. -1C. 1D. —24. 我国第一艘航母“辽宁舰”在某次舰载机起降飞行训练中,有5架歼-15飞机准备着舰.如果甲、乙两机必须相邻着舰,而丙、丁两机不能相邻着舰,那么不同的着舰方法有A. 12B. 18C. 24D.485. 执行如图所示的程序框图,若输入x==2,则输出y的值为A. 5B. 9C. 14D. 416. 图中阴影部分的面积S是h的函数(〉,则该函数的大致图象是7. 已知双曲线!的离心率为,则双曲线的渐近线方程为A. B. C. D.8. 把70个面包分5份给5个人,使每人所得成等差数列,且使较大的三份之和的1/6是较小的两份之和,问最小的1份为.A.2B. 8C. 14D. 209. 在三棱锥A—BCD中,侧棱AB、AC、AD两两垂直,的面积分别为,则该三棱锥外接球的表面积为A. B. C. D.10. 设函数,把f(x)的图象按向量a=(m,0)(m>0)平移后的图象恰好为函数的图象,则m的最小值为A. B . C. D.11. 已知抛物线上有一条长为6的动弦AB,则AB中点到X轴的最短距离为A. B. C. 1 D. 212. 设函数,对任意,恒成立,则实数 m的取值范围是A. B. C.D.二、填空题:本大题共4小题,每小题5分,共20分.13. 已知a=(l,2),b=(x,6),且 a//b,则|a-b|=_______14. —个几何体的三视图如图所示(单位:m)则该几何体的体积为______m3.15. 若x,y满足条件,当且仅当x=y = 3时,Z=ax-y取最小值,则实数a的取值范围是______.,数列的通项公式为16 已知,数列的前n项和为Sab=n-8,则的最小值为_____.n三、解答题:本大题共6小题,共70 分,解答应写出文字说明,证明过程或演算步骤.17. (本小题满分12分)已知a ,b,c 分别为ΔABC 三个内角A ,B,C 的对边,(I )求 B ;(II)若ΔABC 的面积为,求b 的取值范围.18. (本小题满分12分)某高校组织自主招生考试,共有2 000名优秀学生参加笔试,成绩均介于195分到275 分之间,从中随机抽取50名同学的成绩进行统计,将统计结果按如下方式分成八组:第一组 [195,205),第二组[205,215),…,第八组[265,275].如图是按上述分组方法得到的频率分 布直方图,且笔试成绩在260分(含260分)以上的同学进入面试.(I )估计所有参加笔试的2 000名学生中,参加 面试的学生人数;(II)面试时,每位考生抽取三个问题,若三个问 题全答错,则不能取得该校的自主招生资格;若三个 问题均回答正确且笔试成绩在270分以上,则获A 类资格;其它情况下获B 类资格.现已知某中学有三人获得面试资格,且仅有一人笔试成绩为270分以上,在回答三个面试问题时,三人对每一 个问题正确回答的概率均为,用随机变量X 表示该中学获得B 类资格的人数,求X 的分 布列及期望EX. 19. (本小题满分12分) 如图,ΔABC 是等腰直角三角形,D, E 分别为AC ,AB 的中点,沿DE 将ΔADE 折起,得到如图 所示的四棱锥(I)在棱上找一点F ,使EF//平面;(II )当四棱锥A'-BCDE 体积取最大值时,求平面 与平面夹角的佘弦值.20. (本小题满分12分) 已知椭圆的左、右焦点分别为F 1,F 2,点A 在椭圆C 上,,过点F 2且与坐标轴不垂直的直线交椭圆于P ,Q 两点. (I )求椭圆C 的方程;(I I )线段OF 2上是否存在点M(m ,0),使得若存在,求出实数m 的取值范围;若不存在,说明理由. 21. (本小题满分12分) 已知函数(I)求函数f(x)的单调区间; (I I )若数列的通项公式,求证:22. (本小题满分10分)选修4 —1 :几何证明选讲如图:AB 是的直径,G 是AB 延长线上的一点,GCD 是的割线,过点G 作AG 的垂线,交直线AC 于点E ,交直线 AD 于点F ,过点G 作的切线,切点为H.求证:(I)C,D,E,F 四点共圆; (II)若GH=6,GE=4,求 EF 的长.23. (本小题满分10分)选修4一4:坐标系与参数方程 已知在直角坐标系xOy 中,曲线C 的参数方程为为参数),在极坐标系(与直角坐标系xOy 取相同的长度单位,且以原点O 为极点,以x 轴正半轴为极轴)中,直 线l 的方程为(I )求曲线C 在极坐标系中的方程; (II)求直线l 被曲线C 截得的弦长.24. (本小题满分10分)选修4-5:不等式选讲 已知函数. (I )当a = l 时,求的解集;(I I )当时,恒成立,求实数a 的取值范围.2013年高中毕业年级第一次质量预测理科数学 参考答案一、选择题BDCCD BAABC DA 二、填空题13. 14.π+6; 15.⎪⎭⎫⎝⎛-53,32; 16.4-.三、解答题17.解:⑴由正弦定理得2sin cos 2sin sin B C A C =-,――――2分 在ABC ∆中,sin sin()sin cos sin cos A B C B C C B =+=+, sin (2cos 1)0C B ∴-=,又0,sin 0C C π<<> , 1cos 2B ∴=,注意到0,3B B ππ<<∴=.―――――6分⑵1sin 42ABCS ac B ac ∆==∴= ,――――8分 由余弦定理得222222cos 4b a c ac B a c ac ac =+-=+-≥=,当且仅当2a c ==时,“=”成立, 2b ∴≥为所求. ――――12分 18.解:⑴设第(1,2,,8)i i = 组的频率为i f , 则由频率分布直方图知71(0.0040.010.010.020.020.0160.008)100.12.f =-++++++⨯=所以成绩在260分以上的同学的概率780.142f p f ≈+=, 故这2 000名同学中,取得面试资格的约为280人. ――――-4分 ⑵不妨设三位同学为甲、乙、丙,且甲的成绩在270分以上, 记事件,,M N R 分别表示甲、乙、丙获得B 类资格的事件,则113()1884P M =--=,17()()188P N P R ==-=,――――6分所以1(0)()256P X P M N R ===,17(1)()256P X P M N R M N R M NR ==++=, 91(2)()256P X P MN R M NR M NR ==++=,147(3)()256P X P MNR ===,所以随机变量X 的分布列为:――――10分117911475()01232562562562562E X =⨯+⨯+⨯+⨯=.――――12分 19.解:⑴F 为棱A B '的中点.证明如下:取C A '的中点G ,连结GF EF DG ,,,则由中位线定理得BC DE BC DE 21,//=,且.21,//BC GF BC GF = 所以GF DE GF DE =,//,从而四边形DEFG 是平行四边形,.//DG EF 又⊄EF 平面CD A ',⊂DG 平面CD A ', 故F 为棱A B '的中点时,//EF A CD '平面.――――4分⑵在平面A CD '内作CD H A ⊥'于点H ,DE A DDE CD DE A CD A H DE A D CD D '⊥⎫⎪''⊥⇒⊥⇒⊥⎬⎪'=⎭平面, 又DE CD D = ,⊥'∴H A 底面BCDE ,即H A '就是四棱锥A BCDE '-的高.由A H AD '≤知,点H 和D 重合时, 四棱锥A BCDE '-的体积取最大值.――――8分分别以A D DE DC ',,所在直线为z y x ,,轴,建立空间直角坐标系如图,X0 1 2 3 P1256 17256 91256 147256则()0,0,A a ',()0,2,a a B ,()0,,0a E ,(),2,A B a a a '=- ,()0,,A E a a '=-, 设平面A BE '的法向量为(),,m x y z =,由0,0,m A B m A E ⎧'⋅=⎪⎨'⋅=⎪⎩得20,0,ax ay az ay az +-=⎧⎨-=⎩即20,,x y z y z +-=⎧⎨=⎩ 所以,可取()1,1,1m =-.同理可以求得平面A CD '的一个法向量()0,1,0.n =cos ,m n m n m n ⋅===⋅故平面A CD '与平面A BE '夹角的余弦值为.33――――12分 20.解:⑴由题意1212390,cos 5AF F F AF ∠=∠= ,注意到12||2F F = ,所以121235||,||,2||||422AF AF a AF AF ===+= ,所以2222,1,3a c b a c ===-=,即所求椭圆方程为22143x y +=.――――4分⑵存在这样的点M 符合题意.――――-5分设线段PQ 的中点为N ,112200(,),(,),(,)P x y Q x y N x y ,直线PQ 的斜率为(0)k k ≠,注意到2(1,0)F ,则直线PQ 的方程为(1)y k x =-,由221,43(1),x y y k x ⎧+=⎪⎨⎪=-⎩消y 得2222(43)84120k x k x k +-+-=,由求根公式得:1,2x =所以2122843k x x k +=+,故212024243x x k x k +==+, 又点N 在直线PQ 上,所以22243(,)4343k kN k k -++.―――――8分由QP MP PQ MQ ⋅=⋅ 可得()20PQ MQ MP PQ MN ⋅+=⋅=,即PQ MN ⊥,所以22230143443MNk k k k k m k ++==--+,――――10分 整理得22211(0,)34344k m k k==∈++,所以在线段2OF 上存在点)0,(m M 符合题意,其中1(0,)4m ∈.――――12分21.解:⑴由题意,函数的定义域为),1()1,1(+∞- ,2)1(11)(x ax x f --+=',―――1分当0≤a 时,注意到0)1(,0112≤->+x ax ,所以0)(>'x f , 即函数()f x 的增区间为),1(),1,1(+∞-,无减区间; ―――2分当0>a 时,222)1)(1(1)2()1(11)(x x a x a x x a x x f -+-++-=--+=', 由0)(='x f ,得01)2(2=-++-a x a x ,此方程的两根282,2822221aa a x a a a x +++=+-+=,其中2111x x <<<-,注意到0)1)(1(2>-+x x , 所以2110)(x x x x x f ><<-⇔>'或, 21110)(x x x x x f <<<<⇔<'或,即函数()f x 的增区间为),(),,1(21+∞-x x ,减区间为),1(),1,(21x x ,综上,当0≤a 时,函数()f x 的增区间为),1(),1,1(+∞-,无减区间;当0>a 时,函数()f x 的增区间为),(),,1(21+∞-x x ,减区间为),1(),1,(21x x ,其中282,2822221aa a x a a a x +++=+-+=.―-6分⑵证明:当1=a 时,由⑴知,函数xxx x f --+=1)1ln()(在)1,0(上为减函数,――7分则当10<<x 时,0)0(1)1ln()(=<--+=f x x x x f ,即xxx -<+1)1ln(, 令1()201321m x m N *=∈⨯+,则11ln(1)20132120132m m+<⨯+⨯, 即201311ln(1)2013212m m+<⨯+, 所以1201321(1)201321mm m a e =+<⨯+,―――10分又111112422120,3mmm m a a a a e e e e e ->∴⋅⋅⋅<⋅⋅⋅=<< .――――12分22. 证明:⑴连接DB ,AB 是⊙O 的直径,090ADB ∴∠=,Rt ABD Rt AFG ABD AFE ∆∆∠=∠在与中,,又ABD ACD ∠=∠ ,ACD AFE ∠=∠,,,,C D E F ∴四点共圆.――――5分⑵2C D F E GE GF GC GD GH O H GH GC GD ⇒⋅=⋅⎫⎬⇒=⋅⎭、、、四点共圆切于点⇒2GH GE GF =⋅ 又因为6,4GH GE ==,所以9,5GF EF GF GE ==-=. ―――10分23.解:⑴曲线C 的普通方程为22(2)4x y -+=,即2240x y x +-=,化为极坐标方程是θρcos 4=.――――5分 ⑵ 直线l 的直角坐标方程为40x y +-=,由2240,4,x y x x y ⎧+-=⎨+=⎩得直线l 与曲线C 的交点坐标为(2,2),(4,0), 所以弦长22=OA .――――10分24.解:⑴原不等式可化为2123x x -+-≤,依题意,当2x >时,333,x -≤则2,x ≤无解,当122x ≤≤时,+13,x ≤则2,x ≤所以122x ≤≤, 当1<2x 时,3-33,x ≤则0,x ≥所以10<2x ≤,综上所述:原不等式的解集为[]0,2. ――――5分⑵原不等式可化为2321x a x -≤--, 因为[]1,2x ∈,所以24-2x a x -≤, 即24242x a x x -≤-≤-,故3424x a x -≤≤-对[]1,2x ∈恒成立,当12x ≤≤时,34x -的最大值2,4x -的最小值为2, 所以为a 的取值范围为1.――――10分。