通信原理课程设计指导

通信原理课程设计指导
通信原理课程设计指导

通信原理课程设计指导

一.通信原理课程设计大纲

课程名称:通信原理课程设计/ Communication Principle Course Designing

周数/学分:一周/1学分

先修课程:通信原理、电子设计EDA

适用专业:电子信息工程

开课学院、系或教研室:信息工程学院电子信息工程教研室

1.课程设计的目的

通过本课程设计巩固并扩展通信原理课程的基本概念、基本理论、分析方法和实现方法。结合EDA技术、数字通信技术和微电子技术,学习现代数字通信系统的建模和设计方法,使学生能有效地将理论和实际紧密结合,培养创新思维和设计能力,增强软件编程实现能力和解决实际问题的能力。

2.课程设计的内容和要求

课程设计内容

1)数字基带信号的编译码设计与建模

2)同步技术的设计

3)数字基带通信系统的设计与建模

4)数字信号频带传输系统的设计与建模

5)PCM通信系统的设计与建模

课程设计要求

要求学生能够熟练地运用通信理论,进行数字基带信号、 数字信号频带传输系统、PCM通信系统和同步系统的设计,并进行通信系统建模。

3.课程设计进度安排

序号设计内容所用时间

1 了解数字通信系统的设计要求,熟悉系统的建模与仿真设计方法1天

2 分析题目,设计通信系统框图,设计仿真程序流程,编写程序代码2天

3 上机调试程序,修改并完善设计,并完成设计报告2天

合计1周

4.课程设计说明书与图纸要求

设计完成后,按学校“课程设计工作规范”中的“统一书写格式”,撰写课程

设计报告一份,包括:设计题目、设计要求、逻辑分析、设计总体电路、模块设

计、模块程序(含对程序的说明)、仿真波形、实验结果分析、心得体会(不少于

500字)、参考文献(不少于5篇)。

5.课程设计评分标准

评定项目评分成绩1.选题合理、目的明确(10分)

2.设计方案正确,具有可行性、创新性(20分) 3.设计结果(软件程序)(20分)

4.态度认真、学习刻苦、遵守纪律(15分)

5.设计报告的规范化、参考文献充分(不少于5篇)(10分)

6.答辩(25分)

总分

备注:成绩等级:优(90分—100分)、良(80分—89分)、中(70分—79分)、

及格(60分—69分)、60分以下为不及格。

6.课程设计主要参考资料

教 材:

段吉海.数字通信系统建模与设计.北京:电子工业出版社,2004

参考书:

江国强.EDA技术与应用. 北京:电子工业出版社,2004

John G. Proakis.Digital Communications. 北京:电子工业出版社,2001

执笔:王 虹

审阅:阙大顺 日期:2007.6

审定:吕锋 日期:2007.6

二.通信原理课程设计课题

课题一数字基带信号HDB3码的编码器设计与建模

HDB3编码器建模的难点之一是判断插“B”,实现中可利用寄存器,首先把信码存入寄存器,同时设置一个计数器计两个“V”之间“1”的个数,经过4个码元后,由判偶电路给寄存器发送是否插“B”的信号,实现插入“B”的功能。设计示例

本设计思想不需要首先把消息代码变换为AMI码,然后进行V符号和B符号的操作,而是按照HDB3编码规则直接对消息代码进行插入“V”符号和“B”符号的操作,最后再实现单极性变双极性的信号输出,这样可以减少寄存器的数量。

HDB3码编码器模型

图1-1 HDB3码编码器模型

插“V”模块的建模

实际上是对消息代码中的四连0串的检测,当出现四个连0串时,将第四个“0”变换成符号“V”,其它情况下则保持消息代码的原样输出。为建模方便,用“11”标识“V”,用“01”标识“1”,用“00”标识“0”。

流程图

图1-2 插“V”符号流程图

插“B”模块的建模

功能是保证附加“V”符号后的序列不破坏“极性交替反转”造成的无直流特性,即当相邻“V”符号之间有偶数个非0符号时,把后一小段的第1个“0”变换成一个“B”符号。用“10”标识“B”。

流程图

图1-3插“B”符号流程图

插“B”模块是这个设计的一个难点,因为它涉及到一个由现在事件的状态决定过去事件状态的问题。其次还有如何确定是“1”,还是“V”的问题。处理难点的思路是:首先把码元(经插“V”处理过的)放入一个4位的移位寄存器里,在同步时钟的作用下,同时进行是否插“B”的判决,等到码元从移位寄存器里出来的时候,就可以决定是应该变换成“B”符号,还是照原码输出。因此,在程序的结构中可进行元件声明,调用库里的D触发器来实现延迟作用。

单极性变双极性的实现

根据HDB3的编码规则,“V”的极性是正负交替的,余下的“1”和“B”看成为一体且极性交替,同时满足“V”的极性与前面的非零码极性一致。

已规定:“11”标识“V”,“10”标识“B”,“01”标识“1”,“00”标识“0”。

图1-4单/双极性变换控制流程图

仿真软件无法识别“-1”,因此采用双相码来分别表示“-1”,“+1”和“0”,要想得到所需要的结果,仅仅在最后加一个硬件(如四选一数字开关CC4052),就可以将程序中所定义的“00”、“01”和“11”分别转换成0、+1和-1,从而达到设计所需结果。

课题二数字基带信号HDB3码的译码器设计与建模

译码原理:根据编码规则,V脉冲与前一个脉冲同极性。因而可从所接收的信码中找到V码,V码与前面的三位代码必然是取代码,在译码时,需要全部复原为四连0,完成了扣V扣B功能。

设计示例

HDB3译码器的模型框图

图2-1 HDB3译码器模型

双/单极性变换电路:正负整流电路分别提取正负电平码部分。

V码检测电路:V脉冲必然是同极性脉冲。当无V脉冲时,传号脉冲“+1”和“-1”交替出现。当连续出现两个“+1”或“-1”时,则后一个一定是V脉冲。

时钟提取电路用于提取同步时钟。见课题八。

扣V扣B电路在V脉冲和同步时钟的控制下,完成扣V扣B的功能。

V 码检测模块的建模

+V码检测:

图2-2 +V码检测模型框图

为方便起见,设从正、负整流电路输出的信号分别为+B、-B。

当+B的上升沿到来时,对输入的+B脉冲进行计数,当计数值等于2时,输出一个脉冲作为+V脉冲,同时计数器清零。而且在计数期间,一旦有-B信号为“1”电平时,立即对计数器清零。这是因为在两个+B脉冲之间,存在-B脉冲,说明第

二个+B脉冲不是+V码,而只有在连续两个+B脉冲之间无-B脉冲,才能说明这两个+B脉冲在HDB3码中,是真正同极性,于是就可以判定第二个+B脉冲实际上是+V码,达到检测+V码的目的。

-V码检测:

图2-3 -V码检测模型框图

-V码检测原理与+V码检测的类似。所不同的是,-V码检测电路在+B控制下,对来自-B信号进行计数和检测、判定。若检测到-V码,则输出-V码信号。

扣V扣B模块建模

图2-4 扣V扣B模块的模型框图

扣V扣B模块有三个输入信号:时钟信号、V码信号和来自正、负整流输出的合路信号。由于该合路信号可能包含有B脉冲和V脉冲,因此需要在扣V扣B 模块中,去除V和B脉冲。

本模块的建模方法是,用V码检测模块所检测出的V码信号,去控制一个移位寄存器,若未碰到V脉冲,则整流输出合成信号在时钟的节拍下,顺利通过移位寄存器;当碰到有V脉冲时,该V脉冲将使移位寄存器清零。

考虑到四连0,即V脉冲及其前面的三个码元应为0码,所以,可设置四位移位寄存器,当V码清零时,同时将移存器中的四位码全变为0。不管是否有B 脉冲,在此模块中,一并清零,因而无需另设扣B电路。另外移位寄存器起到延时四位时钟周期的作用,以使所检测出的V脉冲与信号流中的V脉冲位置对齐,保证清零的准确性。

课题三 数字基带通信系统的设计与建模

数字通信的基带传输方式是数字通信的最基本的传输方式,如利用中继方式在长距离上直接传输PCM 信号、用双绞线进行局域网内的计算机数据传输等。

本课题讨论的主要对象是数字基带传输系统中的收发系统,具体是对包含绝相变换器的基带系统进行设计与建模。对如何在信道中实现可靠传输不做探讨。这主要是因为以FPGA /CPLD 为目标器件,很难实现对基带传输系统中发送滤波器和接收滤波器的设计。

1. 含绝相变换器的基带系统的设计与建模

绝相变换和相绝变换电路普遍应用于基带系统的部分响应系统及差分移相键控(DPSK )中,对绝相变换电路模块的建模与设计是具有实际意义的。

系统模型

绝相变换是指将二进制非归零的数据码元变换成反映其相邻码元的电位变化的一种新的码元。其变换规则为k a k b 1k k k b a b ?=⊕。

而相绝变换是绝相变换的反变换,其变换规则为1k k k a b b ?=⊕。

绝相变换和相绝变换的原理框图如下:

图3-1 绝相变换和相绝变换的原理框图

图中的为一个码元的宽度。

b T 绝相变换器的电路设计

绝相变换器的电路图如图3-2,用D 触发器作为码元延迟器。由于异或门为组合逻辑器件,其输出信号可能出现冒险现象,为了克服冒险现象,在后面增加一个D 触发器则可保证正确的绝相变换信号输出。

图3-2 绝相变换器的电路图

VHDL建模符号如下:

图3-3 绝相变换器的VHDL建模符号

相绝变换器的电路设计

根据表达式画出相绝变换器电路图如图3-4,图中用D触发器作为码元延迟器。另外,为了克服组合逻辑电路带来的冒险现象,在输出端增加了一个D触发器。

图3-4相绝变换电路图

VHDL建模符号如下:

图3-5相绝变换器的VHDL建模符号

绝相/相绝变换的基带系统的建模

绝相/相绝变换的基带系统的VHDL设计模型如图3-6,图中将以上设计的绝相变换器和相绝变换器连接起来,构成了一个基带系统。

图3-6绝相/相绝变换的基带系统的VHDL设计模型

2. HDB3编、译码器的基带系统的设计与建模

系统模型

由HDB3编码器和译码器模块构成的基带系统模型如图3-7所示。在发送端将数据码和时钟信号送入HDB3编码器,编码器输出双极性的HDB3信号;在接收端对接收的HDB3信号进行双/单极性变换、时钟信号提取和HDB3译码,输出原始数据码和同步时钟信号。

图3-7 HDB3码的基带系统模型

HDB3信号的产生见图1-1。HDB3信号的译码见图2-1。

时钟信号提取

采用数字锁相环法进行设计。参考图8-3。

图3-8 时钟信号提取模块的VHDL建模符号

图中,code_in为单极性码元输入;holk为本地晶振高速时钟信号输入;clk_out 为所提取的时钟信号输出。

课题四多路信号复用的基带发信系统的设计与建模

多路信号复用的基带系统模型

多路信号复用的基带系统模型如图4-1,发送设备由数字信源与复接器、码型变换器等组成,其中数字信号包括晶振、分频和内部基带码产生等;系统的接收设备由码型逆变换与时钟提取电路、帧同步信号提取、数字终端与分接器等。

图4-1 多路复用数字基带传输系统组成框图

数字复接方式

我国目前的复接设备多采用按位复接或者按字复接两种方式。

图4-2 按位复接和按字复接示意图

基带发信系统的设计模型

多路信号复用发信系统包括复接器、数字信源、码型变换器几部分。图中复接器采用四路同步复接器。为了仿真方便,采用四路内部数字信源产生的独立的单极性非归零数字信号作为四路原始基带信号。基带发信系统的模型如图4-3。

图4-3 四路同步复接基带传输发信系统模型

多路复用信号的产生模型

图4-4多路复用信号的产生模型

时序信号与对应的合路信号及帧结构

图4-5时序信号与对应的合路信号及帧结构

模型包括分频器、内码产生器(内部信源产生器)、时序信号发生器及复用输出电路等功能模块。晶振输出信号送分频器分频后得到低频信号作为内码产生器的时钟信号;每个内码产生器用于产生8位数据码且为串行输出,作为内部分路数据信号,其串行数据码输出受到时序信号的控制;时序发生器的功能是产生四路宽度为8位数据码宽度的时序信号,每路时序信号的相对相位延迟按规定顺序为8位数据码宽度;输出电路的功能是将四路分路码组合成一路完整的复用信号。

各功能模块的VHDL建模与设计

分频器

clk为时钟信号输入;A~D为四位二进制分频输出,分别表示2、4、8、16分频输出。

图4-6 分频器的VHDL建模符号

内码产生器

内码产生器的建模符号如图所示。每个内码产生器受分频器和时序信号发生器的控制产生一路8位数据码,并且具有三态串行输出功能。图中,in0_1~in0_8为8位数据码输入,可通过输入高、低电平设定;K3~K1为对8位数据进行选择控制的控制码,有8种状态选择;sx0接时序信号;out0为内码串行数据输出。

图4-7 内码产生器的建模符号

内码控制器,实际也是一个分频器,一个输出端口输出三位并行信号作为内码产生器的地址控制端(选择输入端),另一输出端作为时序产生器的控制端。内码控制器对内码产生器的控制功能表如下。

表中的A2、A1、A0分别表示内码控制器的二进制分频器的8、4、2分频信号。内码产生器应循环并依次输出从“000”、“001’’一直到“111”。这样,内码发生器每个时钟节拍,输出一位码,通过输出电路送到合路信道上,最终形成一路串行码流。

时序信号产生器

时序信号产生器建模符号如图所示。其功能是产生四路时序信号。图中,B 为输入时钟信号;S3~S0为四路时序信号。

图4-8 时序产生器建模符号

时序产生器可产生脉宽为8个时钟周期的四路时序信号。具体实现是:将内码控制器的二分频端(即128kHz时钟输出端)通过一个32分频器,其二分频和四分频输出端作为2/4译码器的控制端,2,4译码器的四个输出端,在经过反相器后,便得出本设计所要求的四路时序。译码器的建模流程图如下。

图4-9 译码器的VHDL建模流程图

输出模块

建模符号如图所示。它由一个4与门和一个D触发器构成。其中4与门具有将四路在时序上独立的分路数据信号进行合路的功能;D触发器的作用是对合路信号进行整形,避免输出信号波形出现冒险现象(毛刺)。

图4-10输出模块的建模符号

课题五 2ASK 数字信号频带传输系统的设计与建模

ASK 调制建模原理

ASK 调制的建模方框图和VHDL 建模符号如图5-1和图5-2所示,图中没有包含模拟电路部分,输出信号为数字信号。

建模思想:(1)采用数字载波信号:数字载波信号产生的方法既可以从外部输入,也可以通过高频时钟信号分频得到;(2)采用键控法调制:数字基带信号作为键控信号控制与门来完成ASK 调制;(3)数字载波调制的ASK 信号可经过外接滤波器转换成模拟形式的信号输出。

因为采用数字载波调制的ASK 信号是数字信号,含丰富的高频成分,所以经过一个带通滤波器或低通滤波器后,将减少高频成分,输出的信号接近模拟载波调制。

本课题的侧重点放在可数字化处理部分。

图5-1 ASK 调制的建模方框图

图5-2 ASK 调制电路的VHDL 建模符号

ASK 解调建模原理

ASK 解调方框图和建模符号如图所示,图中没有包含模拟电路部分,调制信号为数字信号形式。 本页已使用福昕阅读器进行编辑。福昕软件(C)2005-2009,版权所有,仅供试用。

图5-3 ASK解调方框图

图5-4 ASK解调的VHDL建模符号

建模思想:

(1)首先考虑输入信号

根据ASK信号的相干解调原理,解调器的输入信号应包括收端的本地同步载波、ASK信号,但考虑到本课题采用的目标器件为CPLD/PFGA器件,因而解调器也应采用数字载波。

得到数字载波的一种方法是:从ASK信号中应用模拟滤波或模拟锁相环提取模拟载波信号后,进行放大整形,得到与发端同步的数字载波;另一种方法是:采用数字锁相环法提取载波。

为了重点说明ASK信号的解调的建模与VHDL程序设计,本课题不对载波信号的提取做研究。另外,为了模型设计方便,采用外时钟输入,控制分频器,得到数字载波,并假设时钟信号与发端时钟同步且ASK信号为数字信号。

(2)解调器的建模设计

解调器包括分频器、计数器、寄存器和判决器等。分频器的功能是对时钟信号进行分频得到与发端相同的数字载波信号;寄存器的功能是在时钟的上升沿到来时把数字ASK信号存入寄存器XX;计数器的功能是利用分频器输出的载波信号作为计数器的时钟信号,在其上升沿到来时,对寄存器中的ASK载波个数进行计数,当计数值m>3时,输出为“1”,否则为“0”;判决器的功能是:以数字载波作为判决时钟,对计数器输出信号进行抽样判决,并输出解调后的基带信号。

课题六 2FSK 数字信号频带传输系统的设计与建模

FSK 信号的产生

FSK 信号的产生有两种方法:直接调频法和频率键控法。

频率键控法也称频率选择法,实现原理框图如图6-1,它有两个独立的振荡器,数字基带信号控制转换开关,选择不同频率的高频振荡信号实现FSK 调制。

图6-1 频率键控法的原理框图

下图是利用两个独立分频器,以频率键控法来实现FSK 调制的原理电路图。图中,与非门3和4起到了转换开关的作用。当数字基带信号为“1”时,与非门4打开,1f 输出,当数字基带信号为“0”时,与非门3打开,2f 输出,从而实现了FSK 调制。

图6-2利用独立分频器的键控法实现FSK 调制

频率键控法也常常利用数字基带信号去控制可变分频器的分频比来改变输出载波频率,从而实现FSK 调制。下图是一个11/13可控分频器原理图。当数字基带信号为“l ”时,第四级双稳态电路输出的反馈脉冲被加到第一级和第二级双稳态电路上,此时分频比为13;当基带信号为“0”时,第四级双稳态电路输出的反馈脉冲被加到第一级和第三级双稳态电路上,分频比变为11。由于分频比的改变,使输出信号频率发生变化,从而实现了FSK 调制。

采用可变分频器产生的FSK 信号相位通常是连续的,因此在基带信息变化时,FSK 信号会出现过渡频率。为减小过渡时间,可变分频器应工作于较高的频率,并在可变分频器后再插入固定分频器,使输出频率满足FSK 信号要求的频率。

图6-3利用可控分频器实现FSK 调制

FSK 调制的建模方框图及电路符号

FSK 调制方框图和调制电路的VHDL 建模符号如下图所示。FSK 调制的核心部分包括分频器、二选一选通开关等。图中的两个分频器分别产生两路数字载波信号;二选一选通开关的作用是:以基带信号作为控制信号,当基带信号为“0”,选通载波1f ;当基带信号为“l ”时,选通载波2f 。从选通开关输出的信号就是数字FSK 信号。图中没有包含模拟电路部分,调制信号为数字信号。

图6-4 FSK 调制方框图

图6-5 FSK 调制电路的VHDL 建模符号

FSK 解调的建模原理

FSK 解调方框图和FSK 解调电路的VHDL 建模符号如下图所示,该模型与ASK 的解调模型类似,其核心部分由分频器、寄存器、计数器和判决器组成。

图6-6 FSK 解调方框图

图中分频器的分频系数取值对应图6-4中的分频器1和分频器2中较小的分频系数值,也就是说FSK 解调器的分频器输出为较高的那个载波信号。由于1f 和2f 的周期不同,若设1f =22f ,且基带信号电平“1”,对应1f ;基带信号电平“0”对应载波2f ,则图中计数器以1f 为时钟信号,上升沿计数,基带信号“1”码元对应的计数个数为1/1f ,基带信号“0”码元对应的计数个数为21/f 。计数器根据两种不同的计数情况,对应输出“0”和“1”两种电平。判决器以1f 为时钟信号,对计数器输出信号进行抽样判决,并输出基带信号。图中没有包含模拟电路部分,调制信号为数字信号形式。

图6-7 FSK 解调电路的VHDL 建模符号

通信原理课程设计报告书

通信原理课程设计 题目:脉冲编码调制(PCM)系统设计与仿真 院(系):电气与信息工程学院 班级:电信04-6班 姓名:朱明录 学号: 0402020608 指导教师:赵金宪 教师职称:教授

摘要 : SystemView 仿真软件可以实现多层次的通信系统仿真。脉冲编码调制(PCM )是现 代语音通信中数字化的重要编码方式。利用SystemView 实现脉冲编码调制(PCM)仿真,可以为硬件电路实现提供理论依据。通过仿真展示了PCM 编码实现的设计思路及具体过程,并加以进行分析。 关键词: PCM 编译码 1、引言 随着电子技术和计算机技术的发展,仿真技术得到了广泛的应用。基于信号的用于通信系统的动态仿真软件SystemView 具有强大的功能,可以满足从底层到高层不同层次的设计、分析使用,并且提供了嵌入式的模块分析方法,形成多层系统,使系统设计更加简洁明了,便于完成复杂系统的设计。 SystemView 具有良好的交互界面,通过分析窗口和示波器模拟等方法,提供了一个可视的仿真过程,不仅在工程上得到应用,在教学领域也得到认可,尤其在信号分析、通信系统等领域。其可以实现复杂的模拟、数字及数模混合电路及各种速率系统,并提供了内容丰富的基本库和专业库。 本文主要阐述了如何利用SystemView 实现脉冲编码调制(PCM )。系统的实现通过模块分层实现,模块主要由PCM 编码模块、PCM 译码模块、及逻辑时钟控制信号构成。通过仿真设计电路,分析电路仿真结果,为最终硬件实现提供理论依据。 2、系统介绍 PCM 即脉冲编码调制,在通信系统中完成将语音信号数字化功能。PCM 的实现主要包括三个步骤完成:抽样、量化、编码。分别完成时间上离散、幅度上离散、及量化信号的二进制表示。根据CCITT 的建议,为改善小信号量化性能,采用压扩非均匀量化,有两种建议方式,分别为A 律和μ律方式,我国采用了A 律方式,由于A 律压缩实现复杂,常使用 13 折线法编码,采用非均匀量化PCM 编码示意图见图1。 图1 PCM 原理框图 下面将介绍PCM 编码中抽样、量化及编码的原理: (a) 抽样 所谓抽样,就是对模拟信号进行周期性扫描,把时间上连续的信号变成时间上离散的信号。该模拟信号经过抽样后还应当包含原信号中所有信息,也就是说能无失真的恢复原模拟信号。它的抽样速率的下限是由抽样定理确定的。 (b) 量化 从数学上来看,量化就是把一个连续幅度值的无限数集合映射成一个离散幅度值的有限数集合。如图2所示,量化器Q 输出L 个量化值k y ,k=1,2,3,…,L 。k y 常称为重建电

数字通信课程设计

吉林工程技术师范学院 信息工程学院 《数字通信系统》 课程设计报告 题目:基于MATLAB数字基带调制 专业:电子信息工程 班级:电子信息1041班 姓名:唐欢 学号: 25 号 指导教师:范珩王冬梅 时间: 2013/11/25----2013/12/13

目录 第一章绪论 (1) 1.1通信的发展史简介 (1) 1.2设计的目的及意义 (2) 第二章数字基带信号 (3) 2.1数字基带调制原理 (3) 2.2单极性不归零波形 (4) 2.3双极性不归零波形 (4) 2.4单极性归零波形 (5) 2.5双极性归零波形 (6) 第三章载波调制的数字传输 (7) 3.1载波调制的原理 (7) 3.2 二进制2ASK的调制与解调仿真 (8) 3.3二进制2FSK的调制与解调仿真 (15) 3.4二进制2PSK的调制与解调仿真 (20) 第四章总结 (25) 参考文献.............................................. I 附录:................................................ I

第一章绪论 1.1通信的发展史简介 随着数字通信技术和计算机技术的快速发展以及通信网与计算机网络的相互融合,信息科学技术已成为21世纪和世界的新的强大推动力。信息是一种资源,只有通过广泛的传播与交流,才能产生利用价值,而欣喜的传播与交流,是依靠各种通信方式与技术来实现的。学习和掌握现代通信原理与技术是信息社会每一位成员,尤其是未来通信工作者的迫切需求。 通信就是从一地向另一地传递消息。通信的目的是传递消息中所包含的信息。人们可以用语言、文字、数据、图片或活动图像等不同形式的消息来表达信息。信息是消息的内涵,即消息中所包含的人们原来不知而待知的内容于传输含有信息的消息,否则,就失去了通信的意义。实现通信的方式很多,如手势、语言、旌旗、消息树、烽火台、金鼓和译码传令,以及现代社会的电报、电话、广播、电视、遥控、遥测、因特网、数据和计算机通信等,这些都是消息传递方式和信息交流的手段。随着社会的进步和科学技术的发展,目前使用最广泛的通信方式是电通信。由于电通信迅速、准确、可靠且不受时间、地点、距离的限制,自然科学领域凡是涉及“通信”这一术语时,一般均值“电通信”。 通信系统就是传递信息所需要的一切技术设备和传输媒质的总和,包括信息源、发送设备、信道、接收设备和信宿(受信者) ,它的一般模型如图1-1所示。

武科大通信原理课程设计讲解

二○一一~二○一二学年第二学期电子信息工程系 课程设计计划书班级: 课程名称:通信原理课程设计 学号: 姓名: 指导教师:王文武

二○一二年六月二十七日 一、课程设计目的: 通过课程设计,巩固对课堂上基本理论知识的理解,加强理论联系实际,增强动手能力和通信系统仿真的技能。 二、课程设计时间安排: (1)查资料 (2)熟悉仿真软件 (3)设计算法流程 (4)实现 (5)分析仿真结果 三、课程设计内容及要求: 1)设计任务:设计一种数字调制系统(2FSK, 2PSk, 2ASK,2DPSK) 2)设计基本要求: (1)设计出规定的数字通信系统的结构,包括信源,调制,发

送滤波器模块,信道,接受滤波器模块以及信宿; (2)根据通信原理,设计出各个模块的参数(例如码速率,滤波器的截止频率等); (3)观察仿真结果并进行波形分析(眼图,); (4)分析影响系统性能的因素。 3)实施要求 具体要求如下: 使用Matlab/Simulink进行仿真 a) 完成2ASK、2FSK 、2PSk或QPSK中任何一种调制和解调系统。传输信道模型选用下面三种之一:AWGN Channel、Rayleigh fading propagation channel和Binary Symmetric Channel Channel; b) 分析已调信号的功率谱密度; c) 分析信道噪声对误码率的影响。 四、实验原理 1二进制振幅键控(2ASK) 振幅键控是正弦载波的幅度随数字基带信号而变化的数字调制.当数字基带信号为二进制时,则为二进制振幅键控. 设发送的二进制符号序列由0,1序列组成,发送0符号的概率为P,发送1符号的概率为1-P,且相互独立.该二进制符号序列可表示为 (2-1-1)其中: (2-1-2)Ts是二进制基带信号时间间隔,g(t)是持续时间为Ts的矩形脉冲:

通信原理课程设计报告书

通信原理课程设计 ______ 学号_______ 班级_____

目录 一、目录 (2) 二、任务书 (3) 三、具体容及要求 (4) 3.1 题目一 (4) 3.1.1题目容 (4) 3.1.2设计思想或方法 (4) 3.1.3实现的功能或方法 (4) 3.1.4程序流程图 (4) 3.1.5程序代码 (5) 3.1.6仿真框图 (5) 3.1.7模块描述及参数设置 (5) 3.1.8结果运行…………………………………………………………… 10 3.1.9结果分析…………………………………………………………… 11 3.2 题目二………………………………………………………………… 11 3.2.1题目容 (11) 3.2.2设计思想或方法…………………………………………………… 11 3.2.2程序流程图 (12) 3.2.4程序代码…………………………………………………………… 13 3.2.5仿真框图…………………………………………………………… 13 3.2.6模块描述及参数设置………………………………………………… 14 3.2.7结果运行…………………………………………………………… 20 3.2.8结果分析…………………………………………………………… 20

3.3 题目三………………………………………………………………… 20 3.3.1题目容 (20) 3.3.2设计思想或方法 (20) 3.2.3程序流程图 (21) 3.2.4程序代码 (21) 3.2.5结果运行 (23) 3.2.6结果分析 (23) 四、心得与体会 (23) 五、参考文献 (23) 《通信原理课程设计》任务书 一、目的和要求: 要求学生在熟练掌握MATLAB和simulink仿真使用的基础上,学会通信仿真系统的基本设计与调试。并结合通信原理的知识,对通信仿真系统进行性能分析。 二、实验环境 PC机、Matlab/Simulink 三、具体容及要求 (1)试用Matlab/Simulink研究BPSK在加性高斯白噪声信道下的误码率性能与信 噪比之间的关系; (2)试用Matlab/Simulink研究BPSK+信道编码(取汉明码)在加性高斯白噪声信 道下的误码率性能与信噪比之间的关系;分析不同码率对误码率性能的影响。 (3)试用Matlab编程实现HDB3码的编解码过程,并画出1 1 0 1 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 1 0的原始、编码和解码图形。 四、提交设计报告

通信原理课程设计

通信原理课程设计 --基于FPGA的时分多路数字基带传输系统的设计与开发 指导老师:戴慧洁武卫华 班级:通信111班 组长:徐震震 组员:胡彬、韦景山、谢留香、 徐勇、周晶晶、张秋红 日期:

一、课程设计目的 通信系统课程设计是一门综合设计性实践课程。使大家在综合已学现代通信系统理论知识的基础上,借助可编程逻辑器件及EDA技术的灵活性和可编程性,充分发挥自主创新意识,在规定时间内完成符合实际需求的通信系统电路设计与调试任务。 它不仅能够提高大家对所学理论知识的理解能力,更重要的是能够提高和挖掘大家对所学知识的实际运用能力,为将来进入社会从事相关工作奠定较好的“能力”基础。 二、课程设计内容 时分多路数字电话基带传输系统的设计与开发 三、课程设计要求任务 1、64Kb/S的A律PCM数字话音编译码器的开发设计 2、PCM 30/32一次群时分复接与分接器的开发设计 3、数字基带编码HDB3编译码器的开发设计 4、同步(帧、位、载波同步(可选))电路的开发设计

四、小组分工 小组成员负责项目 徐震震同步(帧同步、位同步) 谢留香PCM 30/32一次群时分复接 韦景山64Kb/S的A律PCM数字话音编码 胡彬PCM 30/32一次群时分分接 徐勇64Kb/S的A律PCM数字话音译码 周晶晶数字基带编码HDB3译码 张秋红数字基带编码HDB3编码 五、时分多路数字电话基带传输系统框图

PCM编码设计 一、设计要求 1、PCM编码器输入信号为: 一个13位逻辑矢量的均匀量化值:D0,D1…D12 其中:D0为极性位,取值范围在-4096~+4096之间; 一个占空比为1/32的8K/S的取样时钟信号; 一个占空比为50%的2.048Mb/S的合路时钟信号; 2、PCM编码器输出信号为: 一个8位逻辑矢量的13折线非均匀量化值:C0,C1…C7 其中:C0为极性位.C0=1为正,C0=0为负; 一个占空比为1/32的8K/S的取样时钟信号; 一个占空比为50%的2.048Mb/S的合路时钟信号; 二、PCM编码分析 脉冲编码调制(PCM)在通信系统中完成将语音信号数字化功能。是一种对模拟信号数字化的取样技术,将模拟信号变换为数字信号的编码方式,特别是对于音频信号。PCM 对信号每秒钟取样8000 次;每次取样为8个位,总共64kbps。PCM的实现主要包括三个步骤完成:抽样、量化、编码。分别完成时间上离散、幅度上离散、及量化信号的二进制表示。根据CCITT的建议,为改善小信号量化性能,采用压扩非均匀量化,有两种建议方式,分别为A 律和μ律方式,本设计采用了A律方式。 在13折线法中,无论输入信号是正是负,均按8段折线(8个段落)进行编码。若用8位折叠二进制码来表示输入信号的抽样量化值,其中用第一位表示量化值的极性,其余七位(第二位至第八位)则表示抽样量化值的绝对大小。具体的做法是:用第二至第四位表示

通信原理课程设计(1)

通信原理课程设计报告 题目:基于MATLAB 的M-QAM调 制及相干解调的设计与仿真班级:通信工程1411 姓名:杨仕浩(2014111347) 解博文(2014111321) 介子豪(2014111322) 指导老师:罗倩倩 成绩: 日期:2016 年12 月21 日

基于MATLAB的M-QAM调制及相干解调的设计与仿真 摘要:正交幅度调制技术(QAM)是一种功率和带宽相对高效的信道调制技术,因此在自适应信道调制技术中得到了较多应用。本次课程设计主要运用MATLAB软件对M =16 进制正交幅度调制系统进行了仿真,从理论上验证16进制正交幅度调制系统工作原理,为实际应用和科学合理地设计正交幅度调制系统,提供了便捷、高效、直观的重要方法。实验及仿真的结果证明,多进制正交幅度调制解调易于实现,且性能良好,是未来通信技术的主要研究方向之一,并有广阔的应用前景。 关键词:正交幅度调制系统;MATLAB;仿真

目录 1引言 (1) 1.1课程设计的目的 (1) 1.2课程设计的基本任务和要求 (1) 1.3仿真平台Matlab (1) 2 QAM系统的介绍 (2) 2.1正交幅度调制技术 (2) 2.2QAM调制解调原理 (5) 2.3QAM的误码率性能 (7) 3 多进制正交幅度(M-QAM)调制及相干解调原理框图 (9) 4 基于MATLAB的多进制正交幅度(M-QAM)调制及相干解调设计与仿真 (10) 4.1系统设计 (10) 4.2随机信号的生成 (10) 4.3星座图映射 (11) 4.4波形成形(平方根升余弦滤波器) (13) 4.5调制 (14) 4.6加入高斯白噪声之后解调 (15) 5 仿真结果及分析 (20) 6 总结与体会 (23) 6.1总结 (23) 6.2心得体会 (24) 【参考文献】 (25) 附录 (26)

通信原理实验总结

通信原理实验总结 ——电信0906 经过三次的通信原理课程相关实验的学习,我们班同学都受益菲浅。在此仅代表我们班,我对这三次的实验进行了总结。 首先对三次实验中所学到的知识点做个总结。我们一共做了10个实验:数字基带信号,数字调制,模拟锁相环与载波同步,数字解调与眼图,数字锁相环与位同步,帧同步,时分复用数字基带信号,时分复用2DPSK、2FSK通信系统,PCM编译码,时分复用通话与抽样定理。通过这10个实验,我们在理论和实际应用方面都有了一定的提高,比如在理论方面,通过数字基带信号的实验,我们了解了单极性码、双极性码、归零码、不归零码等基带信号波形特点并掌握AMI、HDB3码的编码规则;通过数字调制的实验,我们掌握绝对码、相对码概念及它们之间的变换关系,掌握了相对波形与2PSK信号波形之间的关系、绝对码波形与2DPSK信号波形之间的关系,并对2ASK、2FSK、2DPSK信号的频谱与数字基带信号频谱之间的关系有了进一步了解。又比如在实际应用方面,通过模拟锁相环与载波同步的实验,我们掌握了用平方环法从2DPSK信号中提取相干载波的原理及模拟锁相环的设计方法;通过PCM编译码,我们掌握了PCM基带信号的形成过程及分接过程,并学会了语音信号PCM 编译码系统的动态范围和频率特性的定义及测量方法。 其次在通信原理实验的学习中,我们班同学在学习方法上也受益颇多。总结如下:一、强化了课前预习的好习惯。大多同学觉得自己一直以来就没能养成课前预习的好习惯(虽然一直认为课前预习是很重要的),但通过这三次实验懂得了课前预习的重要。因为只有在课前充分了解了实验原理,才能在课上更好的学习,收获的更多、掌握的更多。二、培养了勤于动手能力。“实验就是为了让你动手做,去探索一些你未知的或是你尚不是深刻理解的东西。”由于10个实验每个步骤大家都必须亲自去做,亲自去调试,同学们都认为动手能力得到了提高。三、懂得了在探索中求得真知。那些伟大的科学家之所以伟大就是他们利用实验证明了他们的伟大。实验是检验理论正确与否的试金石。为了要使你的理论被人接受,你必须用事实(实验)来证明,让那些怀疑的人哑口无言。虽说我们的通信原理实验基本上都是验证性实验,只是对前人的经典实验的重复,但是对于一个知识尚浅、探索能力还不够的人来说,这些探索也非一件易事。对于这些实验,同学们在探索中学习、在模仿中理解、在实践中掌握。通信原理实验让我慢慢开始“摸着石头过河”。学习就是为了能自我学习,这正是实验课的核心,它让我在探索、自我学习中获得知识。 另外,个人方面,经过这一周的通信原理实验课的学习,让我收获多多。但在这中间,我也发现了自身存在的很多不足。我的动手能力还不够强,当有些实验需要很强的动手能力时我还不能从容应对,往往需要组员的帮助;我的探索方式还有待改善,当面对一些复杂的实验时我还不能很快很好的完成,同时面对每个实验后相关的思考题,我有时也会显得非常棘手。 最后,我们班同学在做完实验后也普遍认为,10个实验均为验证性试验,虽然对知识的理解会有很大帮助,但缺乏创新性。因此建议学校能在通信原理课上适当增加一点创新性实验或让同学在完成一定数量的实验且拥有一定的知识积淀后能有所创新。另外,不少同学也表示,他们是在实验结束后,通过写实验报告才对实验原理有了比较清晰的了解,所以大家也建议学校可以先让学生写预习报告,在对实验原理及过程充分了解后,再完成实验。

通信原理课设-基于Systemview的通信系统的仿真

目录 第1章绪论 (1) 第2章 SystemView的基本介绍 (2) 第3章二进制振幅键控 2ASK (4) 3.1 2ASK调制系统 (4) 3.2 2ASK调制解调系统 (6) 3.3 2ASK系统仿真结果分析 (9) 第四章二进制频移键控 2FSK (10) 4.1 2FSK调制系统 (10) 4.2 2FSK调制解调系统 (12) 4.3 2FSK仿真结果分析 (17) 第5章二进制移相键控 2PSK (18) 5.1 2PSK调制系统 (18) 5.2 2PSK调制解调系统 (19) 5.3 2PSK仿真结果分析 (23) 第6章二进制差分移相键控 2DPSK (24) 6.1 2DPSK实验原理 (24) 6.2 2DPSK仿真结果分析 (29) 第7章实验总结 (30) 第8章参考文献 (30) 第9章谢辞 (32)

第1章绪论 通信按照传统的理解就是信息的传输,信息的传输离不开它的传输工具,通信系统应运而生,我们此次课题的目的就是要对调制解调的通信系统进行仿真研究。 数字信号的传输方式可以分为基带传输和带通传输。为了使信号在带通信道中传输,必须用数字基带信号对载波进行调制,以使信号与信道特性相匹配。在这个过程中就要用到数字调制。 在通信系统中,利用数字信号的离散取值特点通过开关键控载波,来实现数字调制,这种方法通常称为键控法,主要对载波的振幅,频率,和相位进行键控。键控主要分为:振幅键控,频移键控,相移键控三种基本的数字调制方式。 本次课程设计的目的是在学习以上三种调制的基础上,通过Systemview仿真软件,实现对2ASK,2FSK,2PSK,2DPSK等数字调制系统的仿真,同时对以上系统有深入的了解。 Systemview是美国ELANIX公司于1995年开始推出的软件工具,它为用户提供了一个完整的动态系统设计、仿真与分析的可视化软件环境,能进行模拟、数字、数模混合系统、线性和非线性系统的分析设计,可对线性系统进行拉氏变换和Z变换分析。 SystemView基本属于一个系统级工具平台,可进行包括数字信号处理(DSP)系统、模拟与数字通信系统、信号处理系统和控制系统的仿真分析,并配置了大量图符块(Token)库,用户很容易构造出所需要的仿真系统,只要调出有关图符块并设置好参数,完成图符块间的连线后运行仿真操作,最终以时域波形、眼图、功率谱、星座图和各类曲线形式给出系统的仿真分析结果。 在此次课程设计之前,先学会熟练掌握Systemview的用法,在该软件的配合下完成各个系统的结构图,还有调试结果图。 Systemview对系统的分析主要分为两大块,调制系统的分析和解调系统的分析。由于调制是解调的基础,没有调制就不可能有解调,为了表现解调系统往往需要很高的采样频率来减少滤波带来的解调失真,所以调制的已调信号通过波形模块观察起来不是很清楚,为了更好的弄清楚调制是怎么样的一个过程,在这里,我们把调制单独列出来,用较低的频率实现它,就能从单个周期上观察调制系统的运作模式,更深刻地表现调制系统的调制过程。

通信原理课程设计

通信原理课程设计 院(系):通信工程系 班级:通信10-1班 姓名: 学号: 1 课程设计要求

产生两路模拟语音信号,经过pcm编码、时分复用、DPSK调制经过同一个信道单向传输到对应的接收端。常用的三个模块;simulink、通信模块、信号处理模块。 2 数字通信系统的组成原理说明 通常,按照信道中传输的是模拟信号还是数字信号,相应的把通信系统分为模拟通信系统和数字通信系统。又因数字通信系统拥有如下特点:⑴抗干扰能力强,无噪声积累。⑵保密性能好。⑶便于组成现代化数字通信网,便于实现多媒体通信。得到了广泛的应用。 实现数字通信,首先必须使发送端发出的模拟信号变为数字信号,这个过程称为“模数转换”。模拟信号数字化最基本的方法有三个过程,第一步是“抽样”,就是对连续的模拟信号进行离散化处理,可以以相等的时间间隔来抽取模拟信号的样值,也可以不等间隔抽取。第二步是“量化”,将模拟信号样值变换到最接近的数字值。因抽样后的样值在时间上虽是离散的,但在幅度上仍是连续的,量化过程就是把幅度上连续的抽样也变为离散的。第三步是“编码”,就是把量化后的样值信号用一组二进制数字代码来表示,最终完成模拟信号的数字化。数字信号送入数字网进行传输。在传输数字信号时候,为了提高传输质量,提高传输的可靠性,通常要进行调制,调制的方式有多种,例如二进制相移键控2PSK,二进制频移键控2FSK,二进制振幅键控2ASK,差分二进制相移键控2DPSK 等等。为了提高传输是新到的利用率,在调制之前,可将多路信号进行复用,包括频分复用,时分复用等等,通常数字通信系统中常用的的是时分复用。在接收端则是一个还原过程,把接收到得信号进行解调制,解复用申城多路数字信号。再把每一路数字信号解码变为模拟信号,即“数模转换”,从而再现原始信号。数字通信系统模型如图所示。 3 PCM基本原理

《通信原理课程设计》

信息工程学院 2014 / 2015学年第一学期 课程设计报告 课程名称:通信原理课程设计 专业班级:统本电信1201 学生学号:12610304152213 12520527151362 学生姓名:陈钰康 夏涛 指导教师:田亚楠

摘要 8PSK(8 Phase Shift Keying,8移相键控)是八进制相移键控,它是一种相位调制算法。相位调制(调相)是频率调制(调频)的一种演变,载波的相位被调整用于把数字信息的比特编码到每一词相位改变(相移)。 8PSK中的“PSK”表示使用移相键控方式,移相键控是调相的一种形式,用于表达一系列离散的状态,8PSK对应8种状态的PSK。如果是其一半的状态,即4种,则为QPSK,如果是其2倍的状态,则为16PSK。因为8PSK拥有8种状态,所以8PSK每个符号(symbol)可以编码3个比特(bits)。8PSK抗链路恶化的能力(抗噪能力)不如QPSK,但提供了更高的数据吞吐容量。本次课程设计过程中,利用了MATLAB7.1仿真实现了8PSK信号的调制与解调,并仿真8PSK载波调制信号在高斯白噪声信道下的误码率及误比特率性能,并用MATLAB仿真出了调制信号、载波信号及已调信号的波形图和频谱图。并在高斯白噪声下,讨论了8PSK 误码率及误比特率性能。 关键字:8PSK;载波的调制;解调;

目录 一.设计内容及要求(PSK信号的仿真) (1) 二.相关理论知识的论述分析 (1) 2. 1.1、8PSK的概念 (1) 2. 1.2、8PSK的特点 (1) 2.2.1、 PSK的调制 (2) 2.2.2、调制的概念 (2) 2.2.3、调制的种类 (2) 2.2.4、调制的作用 (3) 2.2.5、调制方式 (3) 三.系统原理框图及分析(8PSK的原理) (3) 四.完整的设计仿真过程 (4) 五.仿真结果输出及结论 (6) 六.仿真调试中出现的错误、原因及排除方法 (7) 七.总结本次设计,指出设计的核心及应用价值,提出改进意见和展望 (7) 八.收获、体会 (7) 九.参考文献 (8)

通信原理课程设计心得体会

通信原理课程设计心得体会 、时分解复用原理 为了提高信道利用率,使多路已抽样的信号组合起来沿同一信道传输而互相不干扰,称时分多路复用。时分复用的解调过程称为时分解复用。目前采用较多的是频分多路解复用和时分多路解复用。频分多路解复用用于模拟通信,而时分多路解复用用于数字通信。为了实现TDM传输,要把传输时间分成若干个时隙,在每个时隙内传输一路信号,将若干个原始的脉冲调制信号在时间上进行交错排列,从而形成一个复合脉冲串,该脉冲串扰码后经信道传输到达接收端。时分解复用通信,是把各路信号在同一信道上占有不同时间间隙进行通信分离出原来的模拟信号。由抽样定理可知,将时间上离散的信号变成时间上连续的信号,其在信道上占用时间的有限性,为多路信号沿同一信道传输提供了条件。时分解复用是建立在抽样定理的基础上的,因为抽样定理连续的基带信号由可能被在时间上离散出现的抽样脉冲所代替.具体说,就是把时间分成一些均匀的时间间隙,将各路信号的传输时间分配在不同的时间间隙,以达到互相分开,互不干扰的目的。抽样脉冲占据时间一般较短,在抽样脉冲之间就留出间隙.利用这些空隙便可以传输其他信号的抽样,因此,就可能用一条信道同时传送若干个基带信号,并且每一个抽

样值占用的时间越短,能够传输的数据也就越多.时分解复用信号在接收端只要在时间上恰当地进行分离,各个信号就能分别互相分开,互不干扰并不失真地还原出原来的模拟信号。 在通信系统中,同步具有相当重要的地位。通信系统能否具有有效、可靠地工作,在很大程度上依赖有无良好的同步系统。同步可分为载波同步、位同步、帧同步和网同步几大类型。他们在通信系统中都具有相当重要的作用。时分解复用通信中的同步技术包括位同步和帧同步,这是数字通信的又一个重要特点。时分解复用的电路原理就是先通过帧同步信号和位同步信号把各路信号数据分开,然后通过移位寄存器构成的并/串转换电路输出串行的数据,把时分复用的调制信号不失真的分离出来。 位同步 位同步的目的是确定数字通信中的个码元的抽样时刻,即把每个码元加以区分,使接受端得到一连串的码元序列,这一连串的码元列代表一定的信息。位同步是最基本的同步,是实现帧同步的前提。位同步的基本含义是收、发两端机的时钟频率必须同频、同相,这样接收端才能正确接收和判决发送端送来的每一个码元。因此,接收端必须提供一个确定抽样判决时刻的定时脉冲序列.

2FSK调制解调通信原理课程设计

` 课程设计报告 课程名称:通信系统课程设计 设计名称:2FSK调制解调仿真实现 姓名: 学号: 班级: 指导教师: 起止日期:

课程设计任务书 学生班级:学生姓名:学号: 设计名称:2FSK调制解调仿真实现 起止日期:指导教师: 课程设计学生日志

课程设计考勤表 课程设计评语表

2FSK 的调制解调仿真实现 一、 设计目的和意义 1、 熟练地掌握matlab 在数字通信工程方面的应用。 2、 了解信号处理系统的设计方法和步骤。 3、 理解2FSK 调制解调的具体实现方法,加深对理论的理解,并实现2FSK 的调制解调,画出各个阶段的波形。 4、 学习信号调制与解调的相关知识。 5、 通过编程、调试掌握matlab 软件的一些应用,掌握2FSK 调制解调的方法,激发学习和研究的兴趣; 二、 设计原理 1.2FSK 介绍: 数字频率调制又称频移键控(FSK ),二进制频移键控记作2FSK 。数字频移键控是用载波的频率来传送数字消息,即用所传送的数字消息控制载波的频率。2FSK 信号便是符号“1”对应于载频f1,而符号“0”对应于载频f2(与f1不同的另一载频)的已调波形,而且f1与f2之间的改变是瞬间完成的。 其表达式为: { )cos() cos(212)(n n t A t A FSK t e ?ωθω++= 典型波形如下图所示。由图可见,2FSK 信号可以看作两个不同载频的ASK 信号的叠加。因此2FSK 信号的时域表达式又可以写成: ) cos()]([)cos(])([)(2_ 12n s n n n n s n FSK t nT t g a t nT t g a t s ?ωθω+-++-=∑∑ z

通信原理课程设计报告(基于Matlab)

2DPSK调制与解调系统的仿真 设计原理 (1) 2DPSK信号原理 1.1 2DPSK信号原理 2DPSK方式即是利用前后相邻码元的相对相位值去表示数字信息的一种方式。现假设用Φ表示本码元初相与前一码元初相之差,并规定:Φ=0表示0码,Φ=π表示1码。则数字信息序列与2DPSK信号的码元相位关系可举例表示如2PSK信号是用载波的不同相位直接去表示相应的数字信号而得出的,在接收端只能采用相干解调,它的时域波形图如图2.1所示。 图1.1 2DPSK信号 在这种绝对移相方式中,发送端是采用某一个相位作为基准,所以在系统接收端也必须采用相同的基准相位。如果基准相位发生变化,则在接收端回复的信号将与发送的数字信息完全相反。所以在实际过程中一般不采用绝对移相方式,而采用相对移相方式。定义为本码元初相与前一码元初相之差,假设: →数字信息“0”; →数字信息“1”。 则数字信息序列与2DPSK信号的码元相位关系可举例表示如下: 数字信息: 1 0 1 1 0 1 1 1 0 1 DPSK信号相位:0

或 : 1.2 2DPSK 信号的调制原理 一般来说,2DPSK 信号有两种调试方法,即模拟调制法和键控法。2DPSK 信号的的模拟调制法框图如图1.2.1所示,其中码变换的过程为将输入的单极性不归零码转换为双极性不归零码。 图1.2.1 模拟调制法 2DPSK 信号的的键控调制法框图如图1.2.2所示,其中码变换的过程为将输入的基带信号差分,即变为它的相对码。选相开关作用为当输入为数字信息“0” 时接相位0,当输入数字信息为“1”时接pi 。 图1.2.2 键控法调制原理图 1.3 2DPSK 信号的解调原理 2DPSK 信号最常用的解调方法有两种,一种是极性比较和码变换法,另一种是差分相干解调法。 码变换 相乘 载波 s(t) e o (t)

奇偶校验-通信原理课程设计心得【模版】

西南科技大学通信原理设计报告 课程名称:通信原理课程设计 设计名称:奇偶校验编码仿真 姓名:王雷 学号: 班级:通信1004 指导教师:秦明伟 起止日期:2013年7月5日星期五 西南科技大学信息工程学院制

方向设计任务书 学生班级:通信1004 学生姓名:王雷学号: 设计名称:奇偶校验编码仿真 起止日期:2013年7月5日星期五指导教师:秦明伟 方向设计学生日志

奇偶校验编码仿真 一、摘要(150-250字) 奇偶校验是一种校验代码传输正确性的方法。根据被传输的一组二进制代码的数位中“1”的个数是奇数或偶数来进行校验。采用奇数的称为奇校验,反之,称为偶校验。采用何种校验是事先规定好的。通常专门设置一个奇偶校验位,用它使这组代码中“1”的个数为奇数或偶数。若用奇校验,则当接收端收到这组代码时,校验“1”的个数是否为奇数,从而确定传输代码的正确性。 二、设计目的和意义 认识matlab软件,学习掌握matlab的基本操作方法,熟悉M文件和simulink的具体实现方法,了解数据奇偶校验的原理和在matlab中的基本仿真,通过对简单的通信实验设计,提高了动手能力和对matlab操作,巩固了课程知识。 三、设计原理 在数据传输前附加一位奇校验位,用来表示传输的数据中"1"的个数是奇数还是偶数,为奇数时,校验位置为"0",否则置为"1",用以保持数据的奇偶性不变。例如,需要传输"11001110",数据中含5个"1",所以其奇校验位为"0",同时把"110011100"传输给接收方,接收方收到数据后再一次计算奇偶性,"110011100"中仍然含有5个"1",所以接收方计算出的奇校验位还是"0",与发送方一致,表示在此次传输过程中未发生错误。奇偶校验就是接收方用来验证发送方在传输过程中所传数据是否由于某些原因造成破坏。 奇偶校验原理是基于异或的逻辑功能。奇偶校验的编码方法是在原信号码组后面添加以为监督码元,奇偶校验分为奇校验和偶校验,奇校验是原信息码元加上监督码元后,使整个组成的数码组中,1的个数为奇数个。偶校验的工作原理则正好与奇校验相反。 对于n位二进码a1a2a3a4……a n奇校验有如下表示: a1⊕a2⊕a3⊕a4……⊕a n⊕C=1 偶校验的表达式为: a1⊕a2⊕a3⊕a4……⊕a n⊕C =1 其中,C为监督码元,在本设计中n为8,可以推出C的表达式为: C =a1⊕a2⊕a3⊕a4……⊕a8 在发送端让其监督码和信息码一起发送,在信息接收端,计算校验因子的表达式为: 、 S=a1⊕a2⊕a3⊕a4……⊕a n⊕C

通信原理设计报告(7_4)汉明码的编解码设计

目录 前言...............................................................1第1章设计要求.................................................3第2章 QuartusⅡ软件介绍.......................................4第3章汉明码的构造原理........................................6 3.1 (7,4)汉明码的构造原理........................................6 3.2 监督矩阵H与生成矩阵G.........................................7 3.3 校正子(伴随式S)..............................................8第4章(7,4)汉明码编码器的设计............................10 4.1 (7,4)汉明码的编码原理及方法.................................10 4.2 (7,4)汉明码编码程序的设计...................................10 4.3 (7,4)汉明码编码程序的编译及仿真.............................11第5章(7,4)汉明码译码器的设计...........................12 5.1 (7,4)汉明码的译码方法......................................12 5.2 (7,4)汉明码译码程序的设计..................................13 5.3 (7,4)汉明码译码程序的编译及仿真............................15第6章(7,4)汉明码编译码器的设计........................17 6.1 (7,4)汉明码编译码器的设计..................................17参考文献.........................................................18体会与建议.......................................................19附录..............................................................20

通信原理实验报告systemview-数字信号的基带传输

通信原理实验报告 实验名称:数字信号的基带传输 一.实验目的 (1)理解无码间干扰数字基带信号的传输; (2)掌握升余弦滚降滤波器的特性;

(3)通过时域、频域波形分析系统性能。 二、仿真环境 SystemView 仿真软件 三、实验原理 (1)数字基带传输系统的基本结构 它主要由信道信号形成器、信道、接收滤滤器和抽样判决器组成。为了保证系统可靠有序地工作,还应有同步系统。 1.信道信号形成器 把原始基带信号变换成适合于信道传输的基带信号,这种变换主要是通过码型变换和波形变换来实现的。 2.信道 是允许基带信号通过的媒质,通常为有线信道,信道的传输特性通常不满足无失真传输条件,甚至是随机变化的。另外信道还会进入噪声。 3.接收滤波器 滤除带外噪声,对信道特性均衡,使输出的基带波形有利于抽样判决。 4.抽样判决器 在传输特性不理想及噪声背景下,在规定时刻(由位定时脉冲控制)对接收滤波器的输出波形进行抽样判决,以恢复或再生基带信号。而用来抽样的位定时脉冲则依靠同步提取电路从接收信号中提取。 (2) 奈奎斯特第一准则 奈奎斯特准则提出:只要信号经过整形后能够在抽样点保持不变, 即使其波形已经发生了变化,也能够在抽样判决后恢复原始的信号, 因为信息完全恢复携带在抽样点幅度上。 奈奎斯特准则要求在波形成形输入到接收端的滤波器输出的整个 传送过程传递函数满足: 令k′=j -k , 并考虑到k′也为整数,可用k 表示: 在实际应用中,理想低通滤波器是不可能实现的,升余弦滤波器 是在实际中满足无码间干扰传输的充要条件,已获得广泛应用的滤波 器。 升余弦滤波器满足的传递函数为: ???=+-0)(1])[(0或其它常数t T k j h b k j k j ≠=???=+0 1)(0t kT h b 00≠=k k

通信原理实验二

实验二 数字调制 一、 实验目的 1、掌握绝对码、相对码概念及它们之间的变换关系。 2、掌握用键控法产生2ASK 、2FSK 、2DPSK 信号的方法。 3、掌握相对码波形与2PSK 信号波形之间的关系、绝对码波形与2DPSK 信号波形之间的关系。 4、了解2ASK 、2FSK 、2DPSK 信号的频谱与数字基带信号频谱之间的关系。 二、实验内容 1、用示波器观察绝对码波形、相对码波形。 2、用示波器观察2ASK 、2FSK 、2PSK 、2DPSK 信号波形。 3、用频谱仪观察数字基带信号频谱及2ASK 、2FSK 、2DPSK 信号的频谱。 三、实验步骤 本实验使用数字信源单元及数字调制单元。 1、熟悉数字调制单元的工作原理。接好电源线,打开实验箱电源开关。 2、用数字信源单元的FS 信号作为示波器的外同步信号,示波器CH1 接信源单元的(NRZ-OUT)AK ,CH2 接数字调制单元的BK ,信源单元的K1、K2、K3 置于任意状态(非全0),观察AK 、BK 波形,总结绝对码至相对码变换规律以及从相对码至绝对码的变换规律。 图 2-1 AK 和BK 信号 结论:从图中结果,总结AK 信号和BK 信号的关系为:-1b =n n n a b ⊕,反过来,-1=b n n n a b ⊕。由于异或1相当于取反,异或0相当于保持。所以当-1=0n b 时,b =n n a ,而当-1=1n b 时,b =n n a 。最终的BK 波形由b n 的首个参考相位决定。

3、示波器CH1 接2DPSK,CH2 分别接AK 及BK,观察并总结2DPSK 信号相位变化与绝对码的关系以及2DPSK 信号相位变化与相对码的关系。 图 2-2 AK和2DPSK信号 结论:2DPSK信号在AK码元为“1”时反相。 图 2-3 BK和2DPSK信号 结论:2DPSK信号在BK信号的前后码元不一致时反相。 4、示波器CH1 接AK、CH2 依次接2FSK 和2ASK;观察这两个信号与AK 的关系。 图 2-4 AK信号和2FSK信号 结论: 2FSK信号中,在AK信号码元为“1”是,对应已调波有载波振幅,码元为“0”时,无已调载波波振幅。

通信原理课程设计对讲机

1任务书 设计并制作一个无线对讲机,要求采用调频方式工作,至少10米以上通话距离。2设计方案选择 方案一:发射试用调频无线送话器,接收采用集成电路KC538,具有中频放大、鉴频和音频功率放大等功能。KC538中频放大器采用三极管差分放大器,故有增益高和调配抑制比较好的特点。 方案二:采用集成电路D1800,它作为收音机接收专业集成电路,功放部分则用D2822电路具有体积小、外围元件少灵敏度极高、性能稳定等优点。 方案选择:综上电路,接收频率和工作电流都在要求范围之内,具有良好的抗干扰能力,经过比较,方案二更具有简洁性,电路布复杂。因此本系统采用方案二设计。 工作原理 该对讲收音机的原理框图如下图所示,分为接收部分和发射部分,发射部分电路采用本级振荡经调制差频后中频发射。接收部分采用相干解调方式放大输出。

接收部分原理:调频信号由TX接收,经C9耦合到IC1的19脚内的混频电路,IC1第1脚内部为本机振荡电路,1脚为本振信号输入端,L4、R6、C10、C11等元件构成本振的调谐回路。在IC1内部混频后的信号经低通滤波器后得到10.7MHz的中频信号,中频信号由IC1的7、8、9脚内电路进行中频放大、检波,7、8、9脚外接的电容为高频滤波电容,此时,中频信号频率仍然是变化的,经过鉴频后变成变化的电压。10脚外接电容为鉴频电路的滤波电容。这个变化的电压就是音频信号,经过静噪的音频信号从14脚输出耦合至12脚内的功放电路,第一次功率放大后的音频信号从11脚输出,经过R10、C25、RP,耦合至IC2进行第二次功率放大,推动扬声器发出声音。 对讲机接收结构框图如下图所示:

通信原理心得

通信原理心得 经过这一个学期的学习,让我对此学科有了进一步的了解,而且是我对此学科产生了浓厚的兴趣,通信原理课程是通信、电子、信息领域中最重要的专业基础课之一,是电子信息系各专业必修的专业基础课。信系统作为一个实际系统,是为了满足社会与个人的需求而产生的,目的就是传送消息(数据、语音和图像等)。通信技术的发展,特别是近30年来形成了通信原理的主要理论体系,即信息论基础、编码理论、调制与解调理论、同步和信道复用等。本课程教学的重点是介绍数字通信系统中各种通信信号的产生、传输和解调的基本理论和方法,使学生掌握和熟悉通信系统的基本理论和分析方法,为后续课程打下良好的基础。通信随着科技的发展,通信将被广泛运用到学习与生活中,我们应该重视此学科。 在这两周通信原理课程设计的学习中,让我受益颇多。一、让我养成了课前预习的好习惯。一直以来就没能养成课前预习的好习惯(虽然一直认为课前预习是很重要的),但经过这一周,让我深深的懂得课前预习的重要。只有在课前进行了认真的预习,才能在课上更好的学习,收获的更多、掌握的更多。二、培养了我的动手能力。“实验就是为了让你动手做,去探索一些你未知的或是你尚不是深刻理解的东西。”每个步骤我都亲自去做,不放弃每次锻炼的机会。经过这两周,让我的动手能力有了明显的提高。三、让我在探索中求得真知。那些伟大的科学家之所以伟大就是他们利用实验证明了他们的伟大。实验是检验理论正确与否的试金石。为了要使你的理论被人接受,你必须用事实(实验)来证明,让那些怀疑的人哑口无言。虽说我们的通信原理实验只是对前人的经典实验的重复,但是对于一个知识尚浅、探索能力还不够的人来说,这些探索也非一件易事。通信原理实验都是一些经典的给人类带来了难以想象的便利与财富。对于这些实验,我在探索中学习、在模仿中理解、在实践中掌握。通信原理实验让我慢慢开始“摸着石头过河”。学习就是为了能自我学习,这正是实验课的核心,它让我在探索、自我学习中获得知识。四、教会了我处理数据的能力。实验就有数据,有数据就得处理,这些数据处理的是否得当将直接影响你的实验成功与否。经过这一周,我学会了图像法等处理数据的方法,让我对其它课程的学习也是得心应手。 经过这一周的通信原理实验课的学习,让我收获多多。但在这中间,我也发现了我存在的很多不足。我的动手能力还不够强,当有些实验需要很强的动手能力时我还不能从容应对;我的探索方式还有待改善,当面对一些复杂的实验时我还不能很快很好的完成;我的数据处理能力还得提高,当眼前摆着一大堆复杂数据时我处理的方式及能力还不足,不能用最佳的处理手段使实验误差减小到最小程度 总之,通信原理课程设计让我收获颇丰,同时也让我发现了自身的不足。在实验课上学得的,我将发挥到其它中去,也将在今后的学习和工作中不断提高、完善;在此间发现的不足,我将努力改善,通过学习、实践等方式不断提高,克服那些不应成为学习、获得知识的障碍。在今后的学习、工作中有更大的收获,在不断地探索中、在无私的学习、奉献中实现自己的人身价值! 学了通信原理这门课,一开始觉得很难,而且听学长们也总是告诫我们,通信原理是很难的课程,平时一定要好好学,不然自己复习的日子根本就抓不到要点了。事实上好像也是如此,在周围,这门主课的挂课率总是算前排的。当然对

相关文档
最新文档