延平区一中2018-2019学年下学期高二期中数学模拟题
高二第二学期期中考试数学试卷含答案(word版)

2018-2019学年度第二学期期中考试试题高二数学试卷第I 卷(选择题 共60分)一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知z=(m+3)+(m-1)i 在复平面内对应的点在第四象限,则实数m 的取值范围是 ( )A.(-3,1)B.(-1,3)C.(1,+∞)D.(-∞,-3)2.函数y=f(x)的导函数y=()'f x 的图象如图所示,则函数y=f(x)的图象可能是 ( )A. B.C. D.3.曲线C 经过伸缩变换后,对应曲线的方程为:122='+'y x ,则曲线C 的方程为( )A. B. C. D. 4x 2+9y 2=14. 31()i i-的虚部是( ) A. -8 B.i 8- C.8 D.05.化极坐标方程2cos 0ρθρ-=为直角坐标方程为( )A .201y y +==2x 或 B .1x = C .201y +==2x 或x D .1y =6.设点P 对应的复数为i 33+-,以原点为极点,实轴正半轴为极轴建立极坐标系,则点P 的极坐标为( ) A. (23,π43) B. (23-,π45) C. (3,π45) D. (-3,π43) 7.用反证法证明“自然数a ,b ,c 中恰有一个偶数”时,下列假设正确的是( )A. 假设a ,b ,c 至少有两个偶数B. 假设a ,b ,c 都是奇数C. 假设a ,b ,c 都是奇数或至少有两个偶数D. 假设a ,b ,c 都是偶数8.若函数xax x x f 1)(2++=在),21(+∞是增函数,则a 的取值范围是( )A.[]-1,0B.[]-∞1,C.[]0,3D.[]3∞,+9.已知函数()cos 1x f x x =+ , ()f x 的导函数为()'f x , 则'2f π⎛⎫= ⎪⎝⎭( )A .2π-B .1π-C .πD .2π10.用演绎推理证明函数y =x 3是增函数时的小前提是( )A .增函数的定义B .函数y =x 3满足增函数的定义 C .若x 1>x 2,则f (x 1)<f (x 2) D .若x 1>x 2,则f (x 1)>f (x 2)11.已知函数()f x =3231ax x -+,若()f x 存在唯一的零点0x ,且0x >0,则a 的取值范围为A .(2,+∞)B .(-∞,-2)C .(1,+∞)D .(-∞,-1)12. 若x=-2是函数f(x)= (2x +ax-1)1x e -的极值点,则f(x)的极小值为 ( )A.-1B.-23e -C.53e -D.1第Ⅱ卷(非选择题 共90分)二、填空题(本大题共4个小题,每小题5分,共20分.) 13.在极坐标系中,以)2,2(πa 为圆心,2a为半径的圆的极坐标方程是 。
平顶山市第一中学2018-2019学年下学期高二期中数学模拟题

平顶山市第一中学2018-2019学年下学期高二期中数学模拟题一、选择题1. 执行如图所示的程序框图,若输出的结果是,则循环体的判断框内①处应填()A .11?B .12?C .13?D .14? 2. 已知,其中i 为虚数单位,则a+b=()A .﹣1B .1C .2D .33. 已知x ,y 满足时,z=x ﹣y 的最大值为( )A .4B .﹣4C .0D .24. 命题“,使得”是“”成立的( )0x ∃>a x b +≤a b <A .充分不必要条件 B .必要不充分条件C .充要条件 D .既不充分也不必要条件5. 对某班学生一次英语测验的成绩分析,各分数段的分布如图(分数取整数),由此,估计这次测验的优秀率(不小于80分)为()A .92%B .24%C .56%D .5.6%6. 等差数列{a n }中,a 1+a 5=10,a 4=7,则数列{a n }的公差为()A .1B .2C .3D .4班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________7. 已知函数f (x )=是R 上的增函数,则a 的取值范围是( )A .﹣3≤a <0B .﹣3≤a ≤﹣2C .a ≤﹣2D .a <08. “”是“圆关于直线成轴对称图形”的( )3<-b a 056222=++-+a y x y x b x y 2+=A .充分不必要条件 B .必要不充分条件C .充分必要条件 D .既不充分也不必要条件【命题意图】本题考查圆的一般方程、圆的几何性质、常用逻辑等知识,有一定的综合性,突出化归能力的考查,属于中等难度.9. 如图,四面体OABC 的三条棱OA ,OB ,OC 两两垂直,OA=OB=2,OC=3,D 为四面体OABC 外一点.给出下列命题.①不存在点D ,使四面体ABCD 有三个面是直角三角形②不存在点D ,使四面体ABCD 是正三棱锥③存在点D ,使CD 与AB 垂直并且相等④存在无数个点D ,使点O 在四面体ABCD 的外接球面上其中真命题的序号是( )A .①②B .②③C .③D .③④10.给出下列函数:①f (x )=xsinx ;②f (x )=e x +x ;③f (x )=ln (﹣x );∃a >0,使f (x )dx=0的函数是()A .①②B .①③C .②③D .①②③11.已知函数f (x )=31+|x|﹣,则使得f (x )>f (2x ﹣1)成立的x 的取值范围是()A .B .C .(﹣,)D .12.在△ABC 中,若2cosCsinA=sinB ,则△ABC 的形状是( )A .直角三角形B .等边三角形C .等腰直角三角形D .等腰三角形二、填空题13.函数y=lgx 的定义域为 .14.如图,正方形的边长为1,它是水平放置的一个平面图形的直观图,则原图的''''O A B C cm周长为.1111]15.已知f(x+1)=f(x﹣1),f(x)=f(2﹣x),方程f(x)=0在[0,1]内只有一个根x=,则f(x)=0在区间[0,2016]内根的个数 .16.已知||=1,||=2,与的夹角为,那么|+||﹣|= .17.抛物线y2=﹣8x上到焦点距离等于6的点的坐标是 .18.阅读下图所示的程序框图,运行相应的程序,输出的的值等于_________.n三、解答题19.设函数f(x)=lnx﹣ax+﹣1.(Ⅰ)当a=1时,求曲线f(x)在(Ⅱ)当a=时,求函数f(x(Ⅲ)在(Ⅱ)的条件下,设函数g(,若对于[1,2],∃x2∈[0,1],使f(x1)≥g(x2)成立,求实数b的取值范围.20.已知一个几何体的三视图如图所示.(Ⅰ)求此几何体的表面积;(Ⅱ)在如图的正视图中,如果点A为所在线段中点,点B为顶点,求在几何体侧面上从点A到点B的最短路径的长.?21.已知数列{a n }满足a 1=a ,a n+1=(n ∈N *).(1)求a 2,a 3,a 4;(2)猜测数列{a n }的通项公式,并用数学归纳法证明.22.已知函数f (x )=lg (2016+x ),g (x )=lg (2016﹣x )(1)判断函数f (x )﹣g (x )的奇偶性,并予以证明.(2)求使f (x )﹣g (x )<0成立x 的集合. 23. 定圆动圆过点且与圆相切,记圆心的轨迹为22:(16,M x y ++=N 0)F M N .E (Ⅰ)求轨迹的方程;E (Ⅱ)设点在上运动,与关于原点对称,且,当的面积最小时,求直线,,A B C E A B AC BC =ABC ∆AB的方程.24.已知函数,且.(Ⅰ)求的解析式;(Ⅱ)若对于任意,都有,求的最小值;(Ⅲ)证明:函数的图象在直线的下方.平顶山市第一中学2018-2019学年下学期高二期中数学模拟题(参考答案)一、选择题1.【答案】C【解析】解:由已知可得该程序的功能是计算并输出S=+++…+=的值,若输出的结果是,则最后一次执行累加的k值为12,则退出循环时的k值为13,故退出循环的条件应为:k≥13?,故选:C【点评】算法是新课程中的新增加的内容,也必然是新高考中的一个热点,应高度重视.程序填空也是重要的考试题型,这种题考试的重点有:①分支的条件②循环的条件③变量的赋值④变量的输出.其中前两点考试的概率更大.此种题型的易忽略点是:不能准确理解流程图的含义而导致错误.2.【答案】B【解析】解:由得a+2i=bi﹣1,所以由复数相等的意义知a=﹣1,b=2,所以a+b=1另解:由得﹣ai+2=b+i(a,b∈R),则﹣a=1,b=2,a+b=1.故选B.【点评】本题考查复数相等的意义、复数的基本运算,是基础题.3.【答案】A【解析】解:由约束条件作出可行域如图,联立,得A(6,2),化目标函数z=x﹣y为y=x﹣z,由图可知,当直线y=x﹣z过点A时,直线在y轴上的截距最小,z有最大值为4.故选:A.【点评】本题考查简单的线性规划,考查了数形结合的解题思想方法,是中档题.4.【答案】C5.【答案】C【解析】解:这次测验的优秀率(不小于80分)为0.032×10+0.024×10=0.56故这次测验的优秀率(不小于80分)为56%故选C【点评】在解决频率分布直方图时,一定注意频率分布直方图的纵坐标是.6.【答案】B【解析】解:设数列{a n}的公差为d,则由a1+a5=10,a4=7,可得2a1+4d=10,a1+3d=7,解得d=2,故选B.7.【答案】B【解析】解:∵函数是R上的增函数设g(x)=﹣x2﹣ax﹣5(x≤1),h(x)=(x>1)由分段函数的性质可知,函数g(x)=﹣x2﹣ax﹣5在(﹣∞,1]单调递增,函数h(x)=在(1,+∞)单调递增,且g(1)≤h(1)∴∴解可得,﹣3≤a≤﹣2故选B8.【答案】A【解析】9.【答案】D【解析】【分析】对于①可构造四棱锥CABD与四面体OABC一样进行判定;对于②,使AB=AD=BD,此时存在点D,使四面体ABCD是正三棱锥;对于③取CD=AB,AD=BD,此时CD垂直面ABD,即存在点D,使CD 与AB垂直并且相等,对于④先找到四面体OABC的内接球的球心P,使半径为r,只需PD=r,可判定④的真假.【解答】解:∵四面体OABC的三条棱OA,OB,OC两两垂直,OA=OB=2,OC=3,∴AC=BC=,AB=当四棱锥CABD与四面体OABC一样时,即取CD=3,AD=BD=2此时点D,使四面体ABCD有三个面是直角三角形,故①不正确使AB=AD=BD,此时存在点D,使四面体ABCD是正三棱锥,故②不正确;取CD=AB,AD=BD,此时CD垂直面ABD,即存在点D,使CD与AB垂直并且相等,故③正确;先找到四面体OABC的内接球的球心P,使半径为r,只需PD=r即可∴存在无数个点D,使点O在四面体ABCD的外接球面上,故④正确故选D10.【答案】B【解析】解:对于①,f(x)=xsinx,∵(sinx﹣xcosx)′=xsinx,∴xsinxdx=(sinx﹣xcosx)=2sina﹣2acosa,令2sina﹣2acosa=0,∴sina=acosa,又cosa≠0,∴tana=a;画出函数y=tanx与y=x的部分图象,如图所示;在(0,)内,两函数的图象有交点,即存在a>0,使f(x)dx=0成立,①满足条件;对于②,f(x)=e x+x,(e x+x)dx=(e x+x2)=e a﹣e﹣a;令e a﹣e﹣a=0,解得a=0,不满足条件;对于③,f(x)=ln(﹣x)是定义域R上的奇函数,且积分的上下限互为相反数,所以定积分值为0,满足条件;综上,∃a>0,使f(x)dx=0的函数是①③.故选:B.【点评】本题主要考查了定积分运算性质的应用问题,当被积函数为奇函数且积分区间对称时,积分值为0,是综合性题目.11.【答案】A【解析】解:函数f(x)=31+|x|﹣为偶函数,当x≥0时,f(x)=31+x﹣∵此时y=31+x为增函数,y=为减函数,∴当x≥0时,f(x)为增函数,则当x≤0时,f(x)为减函数,∵f(x)>f(2x﹣1),∴|x|>|2x﹣1|,∴x2>(2x﹣1)2,解得:x∈,故选:A.【点评】本题考查的知识点是分段函数的应用,函数的奇偶性,函数的单调性,难度中档.12.【答案】D【解析】解:∵A+B+C=180°,∴sinB=sin(A+C)=sinAcosC+sinCcosA=2cosCsinA,∴sinCcosA﹣sinAcosC=0,即sin(C﹣A)=0,∴A=C 即为等腰三角形.故选:D.【点评】本题考查三角形形状的判断,考查和角的三角函数,比较基础.二、填空题13.【答案】 {x|x>0} .【解析】解:对数函数y=lgx的定义域为:{x|x>0}.故答案为:{x|x>0}.【点评】本题考查基本函数的定义域的求法.14.【答案】8cm【解析】考点:平面图形的直观图.15.【答案】 2016 .【解析】解:∵f(x)=f(2﹣x),∴f(x)的图象关于直线x=1对称,即f(1﹣x)=f(1+x).∵f(x+1)=f(x﹣1),∴f(x+2)=f(x),即函数f(x)是周期为2的周期函数,∵方程f(x)=0在[0,1]内只有一个根x=,∴由对称性得,f()=f()=0,∴函数f(x)在一个周期[0,2]上有2个零点,即函数f(x)在每两个整数之间都有一个零点,∴f(x)=0在区间[0,2016]内根的个数为2016,故答案为:2016.16.【答案】 .【解析】解:∵||=1,||=2,与的夹角为,∴==1×=1.∴|+||﹣|====.故答案为:.【点评】本题考查了数量积的定义及其运算性质,考查了推理能力与计算能力,属于中档题. 17.【答案】 (﹣4,) .【解析】解:∵抛物线方程为y 2=﹣8x ,可得2p=8, =2.∴抛物线的焦点为F (﹣2,0),准线为x=2.设抛物线上点P (m ,n )到焦点F 的距离等于6,根据抛物线的定义,得点P 到F 的距离等于P 到准线的距离,即|PF|=﹣m+2=6,解得m=﹣4,∴n 2=8m=32,可得n=±4,因此,点P 的坐标为(﹣4,).故答案为:(﹣4,).【点评】本题给出抛物线的方程,求抛物线上到焦点的距离等于定长的点的坐标.着重考查了抛物线的定义与标准方程等知识,属于基础题. 18.【答案】6【解析】解析:本题考查程序框图中的循环结构.第1次运行后,;第2次运行后,9,2,2,S T n S T ===>;第3次运行后,;第4次运行后,13,4,3,S T n S T ===>17,8,4,S T n S T ===>;第5次运行后,,此时跳出循环,输出结果21,16,5,S T n S T ===>25,32,6,S T n S T ===<6n =程序结束.三、解答题19.【答案】【解析】解:函数f (x )的定义域为(0,+∞),(2分)(Ⅰ)当a=1时,f (x )=lnx ﹣x ﹣1,∴f (1)=﹣2,,∴f ′(1)=0,∴f (x )在x=1处的切线方程为y=﹣2(5分)(Ⅱ)=(6分)令f ′(x )<0,可得0<x <1,或x >2;令f'(x )>0,可得1<x <2故当时,函数f (x )的单调递增区间为(1,2);单调递减区间为(0,1),(2,+∞).(Ⅲ)当时,由(Ⅱ)可知函数f (x )在(1,2)上为增函数,∴函数f (x )在[1,2]上的最小值为f (1)=(9分)若对于∀x 1∈[1,2],∃x 2∈[0,1]使f (x 1)≥g (x 2)成立,等价于g (x )在[0,1]上的最小值不大于f (x )在(0,e]上的最小值(*)(10分)又,x ∈[0,1]①当b <0时,g (x )在[0,1]上为增函数,与(*)矛盾②当0≤b≤1时,,由及0≤b≤1得,③当b>1时,g(x)在[0,1]上为减函数,,此时b>1(11分)综上,b的取值范围是(12分)【点评】本题考查导数知识的运用,考查导数的几何意义,考查函数的单调性,考查恒成立问题,解题的关键是将对于∀x1∈[1,2],∃x2∈[0,1]使f(x1)≥g(x2)成立,转化为g(x)在[0,1]上的最小值不大于f(x)在(0,e]上的最小值.20.【答案】【解析】解:(Ⅰ)由三视图知:几何体是一个圆锥与一个圆柱的组合体,且圆锥与圆柱的底面半径为2,母线长分别为2、4,其表面积是圆锥的侧面积、圆柱的侧面积和圆柱的一个底面积之和.S圆锥侧=×2π×2×2=4π;S圆柱侧=2π×2×4=16π;S圆柱底=π×22=4π.∴几何体的表面积S=20π+4π;(Ⅱ)沿A点与B点所在母线剪开圆柱侧面,如图:则AB===2,∴以从A点到B点在侧面上的最短路径的长为2.21.【答案】【解析】解:(1)由a n+1=,可得a2==,a3== =,a4===.(2)猜测a n=(n∈N*).下面用数学归纳法证明:①当n=1时,左边=a 1=a ,右边==a ,猜测成立.②假设当n=k (k ∈N *)时猜测成立,即a k =.则当n=k+1时,a k+1====.故当n=k+1时,猜测也成立.由①,②可知,对任意n ∈N *都有a n =成立.22.【答案】【解析】解:(1)设h (x )=f (x )﹣g (x )=lg (2016+x )﹣lg (2016﹣x ),h (x )的定义域为(﹣2016,2016);h (﹣x )=lg (2016﹣x )﹣lg (2016+x )=﹣h (x );∴f (x )﹣g (x )为奇函数;(2)由f (x )﹣g (x )<0得,f (x )<g (x );即lg (2016+x )<lg (2016﹣x );∴;解得﹣2016<x <0;∴使f (x )﹣g (x )<0成立x 的集合为(﹣2016,0).【点评】考查奇函数的定义及判断方法和过程,对数的真数需大于0,以及对数函数的单调性. 23.【答案】【解析】(Ⅰ)在圆内,圆内切于圆F Q 22:(16M x y ++=∴N .M24.【答案】【解析】【知识点】导数的综合运用利用导数研究函数的单调性【试题解析】(Ⅰ)对求导,得,所以,解得,所以.(Ⅱ)由,得,因为,所以对于任意,都有.设,则.令,解得.当x变化时,与的变化情况如下表:所以当时,.因为对于任意,都有成立,所以.所以的最小值为.(Ⅲ)证明:“函数的图象在直线的下方”等价于“”,即要证,所以只要证.由(Ⅱ),得,即(当且仅当时等号成立).所以只要证明当时,即可.设,所以,令,解得.由,得,所以在上为增函数.所以,即.所以.故函数的图象在直线的下方.。
延平区高级中学2018-2019学年高二上学期第一次月考试卷数学

延平区高级中学2018-2019学年高二上学期第一次月考试卷数学 班级__________ 姓名__________ 分数__________一、选择题1. 某三棱锥的三视图如图所示,该三棱锥的表面积是A 、28+B 、30+C 、56+D 、 60+2. PM 2.5是指大气中直径小于或等于2.5微米的颗粒物,也称为可入肺颗粒物,如图是据某地某日早7点至晚8点甲、乙两个PM 2.5监测点统计的数据(单位:毫克/每立方米)列出的茎叶图,则甲、乙两地浓度的方差较小的是( )A .甲B .乙C .甲乙相等D .无法确定3. 命题“∀x ∈R ,2x 2+1>0”的否定是( )A .∀x ∈R ,2x 2+1≤0B .C .D .4. 设F 为双曲线22221(0,0)x y a b a b-=>>的右焦点,若OF 的垂直平分线与渐近线在第一象限内的交点到另一条渐近线的距离为1||2OF ,则双曲线的离心率为( )A .BC .D .3【命题意图】本题考查双曲线方程与几何性质,意在考查逻辑思维能力、运算求解能力、方程思想.5. 已知曲线2:4C y x =的焦点为F ,过点F 的直线与曲线C 交于,P Q 两点,且20FP FQ +=,则OP Q ∆的面积等于( )A .B .C .2 D .46. 在△ABC 中,a 2=b 2+c 2+bc ,则A 等于( ) A .120° B .60° C .45° D .30°7. 已知α,[,]βππ∈-,则“||||βα>”是“βαβαcos cos ||||->-”的( ) A. 充分必要条件 B. 充分不必要条件 C. 必要不充分条件 D. 既不充分也不必要条件【命题意图】本题考查三角函数的性质与充分必要条件等基础知识,意在考查构造函数的思想与运算求解能力. 8. 如图,正方体ABCD ﹣A 1B 1C 1D 1中,点E ,F 分别是AA 1,AD 的中点,则CD 1与EF 所成角为( )A .0°B .45°C .60°D .90°9. 双曲线4x 2+ty 2﹣4t=0的虚轴长等于( )A .B .﹣2tC .D .410.函数y=(x 2﹣5x+6)的单调减区间为( )A .(,+∞)B .(3,+∞)C .(﹣∞,)D .(﹣∞,2)11.正方体的内切球与外接球的半径之比为( )A .B .C .D .12.某三棱椎的三视图如图所示,该三棱锥的四个面的面积中,最大的是( )A .B .8C .D .二、填空题13.设函数f (x )=,①若a=1,则f (x )的最小值为 ;②若f (x )恰有2个零点,则实数a 的取值范围是 .14.已知正整数m 的3次幂有如下分解规律:113=;5323+=;119733++=;1917151343+++=;…若)(3+∈N m m 的分解中最小的数为91,则m 的值为 .【命题意图】本题考查了归纳、数列等知识,问题的给出比较新颖,对逻辑推理及化归能力有较高要求,难度中等.15.【常熟中学2018届高三10月阶段性抽测(一)】已知函数()()ln R xf x x a a x =+-∈,若曲线122e e 1x x y +=+(e 为自然对数的底数)上存在点()00,x y 使得()()00f f y y =,则实数a 的取值范围为__________.16.设双曲线﹣=1,F 1,F 2是其两个焦点,点M 在双曲线上.若∠F 1MF 2=90°,则△F 1MF 2的面积是 .17.在半径为2的球面上有A 、B 、C 、D 四点,若AB=CD=2,则四面体ABCD 的体积的最大值为 .18.设幂函数()f x kx α=的图象经过点()4,2,则k α+= ▲ .三、解答题19.如图,在三棱锥 P ABC -中,,,,E F G H 分别是,,,AB AC PC BC 的中点,且,PA PB AC BC ==.(1)证明: AB PC ⊥; (2)证明:平面 PAB 平面 FGH .20.已知p:“直线x+y﹣m=0与圆(x﹣1)2+y2=1相交”;q:“方程x2﹣x+m﹣4=0的两根异号”.若p∨q为真,¬p为真,求实数m的取值范围.21.设函数f(x)=kx2+2x(k为实常数)为奇函数,函数g(x)=a f(x)﹣1(a>0且a≠1).(Ⅰ)求k的值;(Ⅱ)求g(x)在[﹣1,2]上的最大值;(Ⅲ)当时,g(x)≤t2﹣2mt+1对所有的x∈[﹣1,1]及m∈[﹣1,1]恒成立,求实数t的取值范围.22.在直角坐标系xOy中,直线l的参数方程为(t为参数).再以原点为极点,以x正半轴为极轴建立极坐标系,并使得它与直角坐标系xOy有相同的长度单位.在该极坐标系中圆C的方程为ρ=4sinθ.(1)求圆C的直角坐标方程;(2)设圆C与直线l交于点A、B,若点M的坐标为(﹣2,1),求|MA|+|MB|的值.23.(本小题满分10分)选修4—5:不等式选讲 已知函数3212)(-++=x x x f .(I )若R x ∈∃0,使得不等式m x f ≤)(0成立,求实数m 的最小值M ; (Ⅱ)在(I )的条件下,若正数,a b 满足3a b M +=,证明:313b a+≥.24.已知全集U 为R ,集合A={x|0<x ≤2},B={x|x <﹣3,或x >1}求:(I )A ∩B ;(II )(C U A )∩(C U B );(III )C U (A ∪B ).延平区高级中学2018-2019学年高二上学期第一次月考试卷数学(参考答案)一、选择题1.【答案】B【解析】从所给的三视图可以得到该几何体为三棱锥,所求表面积为三棱锥四个面的面积之和。
延平区高级中学2018-2019学年上学期高二数学12月月考试题含解析

延平区高级中学2018-2019学年上学期高二数学12月月考试题含解析班级__________ 座号_____ 姓名__________ 分数__________一、选择题1.“”是“A=30°”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也必要条件2.设集合A={x|x<a},B={x|x<3},则“a<3”是“A⊆B”的()A.充分不必要条件B.必要不充分条件C.充要条件 D.既不充分也不必要条件3.用反证法证明某命题时,对结论:“自然数a,b,c中恰有一个偶数”正确的反设为()A.a,b,c中至少有两个偶数B.a,b,c中至少有两个偶数或都是奇数C.a,b,c都是奇数D.a,b,c都是偶数4.已知函数f(x)=x2﹣,则函数y=f(x)的大致图象是()A.B.C.D.5.设方程|x2+3x﹣3|=a的解的个数为m,则m不可能等于()A.1 B.2 C.3 D.46.设为虚数单位,则()A. B. C. D.7.已知球的半径和圆柱体的底面半径都为1且体积相同,则圆柱的高为()A.1 B.C.2 D.48.方程x2+2ax+y2=0(a≠0)表示的圆()A.关于x轴对称B.关于y轴对称C.关于直线y=x轴对称D.关于直线y=﹣x轴对称9.对某班学生一次英语测验的成绩分析,各分数段的分布如图(分数取整数),由此,估计这次测验的优秀率(不小于80分)为()A.92% B.24% C.56% D.5.6%10.执行如图所示的程序框图,若输出的结果是,则循环体的判断框内①处应填()A.11? B.12? C.13? D.14?11.独立性检验中,假设H0:变量X与变量Y没有关系.则在H0成立的情况下,估算概率P(K2≥6.635)≈0.01表示的意义是()A.变量X与变量Y有关系的概率为1%B.变量X与变量Y没有关系的概率为99%C.变量X与变量Y有关系的概率为99%D.变量X与变量Y没有关系的概率为99.9%12.记集合T={0,1,2,3,4,5,6,7,8,9},M=,将M中的元素按从大到小排列,则第2013个数是()A.B.C.D.二、填空题13.已知变量x,y,满足,则z=log4(2x+y+4)的最大值为.14.如图,在长方体ABCD﹣A1B1C1D1中,AB=5,BC=4,AA1=3,沿该长方体对角面ABC1D1将其截成两部分,并将它们再拼成一个新的四棱柱,那么这个四棱柱表面积的最大值为.15.抛物线y2=4x的焦点为F,过F且倾斜角等于的直线与抛物线在x轴上方的曲线交于点A,则AF的长为.16.已知圆O:x2+y2=1和双曲线C:﹣=1(a>0,b>0).若对双曲线C上任意一点A(点A在圆O外),均存在与圆O外切且顶点都在双曲线C上的菱形ABCD,则﹣=.17.已知函数为定义在区间[﹣2a,3a﹣1]上的奇函数,则a+b=.18.某公司租赁甲、乙两种设备生产A B,两类产品,甲种设备每天能生产A类产品5件和B类产品10件,乙种设备每天能生产A类产品6件和B类产品20件.已知设备甲每天的租赁费为200元,设备乙每天的租赁费用为300元,现该公司至少要生产A类产品50件,B类产品140件,所需租赁费最少为__________元.三、解答题19.已知集合A={x|2≤x≤6},集合B={x|x≥3}.(1)求C R(A∩B);(2)若C={x|x≤a},且A C,求实数a的取值范围.20.已知函数f(x)=2cosx(sinx+cosx)﹣1(Ⅰ)求f(x)在区间[0,]上的最大值;(Ⅱ)在△ABC中,内角A,B,C的对边分别为a,b,c,且f(B)=1,a+c=2,求b的取值范围.21.如图,已知椭圆C,点B坐标为(0,﹣1),过点B的直线与椭圆C的另外一个交点为A,且线段AB的中点E在直线y=x上.(1)求直线AB的方程;(2)若点P为椭圆C上异于A,B的任意一点,直线AP,BP分别交直线y=x于点M,N,直线BM交椭圆C于另外一点Q.①证明:OM•ON为定值;②证明:A、Q、N三点共线.22.我市某校某数学老师这学期分别用m,n两种不同的教学方式试验高一甲、乙两个班(人数均为60人,入学数学平均分和优秀率都相同,勤奋程度和自觉性都一样).现随机抽取甲、乙两班各20名的数学期末考试成绩,并作出茎叶图如图所示.(Ⅰ)依茎叶图判断哪个班的平均分高?(Ⅱ)现从甲班所抽数学成绩不低于80分的同学中随机抽取两名同学,用ξ表示抽到成绩为86分的人数,求ξ的分布列和数学期望;(Ⅲ)学校规定:成绩不低于85分的为优秀,作出分类变量成绩与教学方式的2×2列联表,并判断“能否在犯错误的概率不超过0.025的前提下认为成绩优秀与教学方式有关?”下面临界值表仅供参考:P(K2≥k)0.15 0.10 0.05 0.025 0.010 0.005 0.001k 2.072 2.706 3.841 5.024 6.635 7.879 10.828(参考公式:K2=,其中n=a+b+c+d)23.已知命题p:“存在实数a,使直线x+ay﹣2=0与圆x2+y2=1有公共点”,命题q:“存在实数a,使点(a,1)在椭圆内部”,若命题“p且¬q”是真命题,求实数a的取值范围.24.某机床厂今年初用98万元购进一台数控机床,并立即投入使用,计划第一年维修、保养费用12万元,从第二年开始,每年的维修、保养修费用比上一年增加4万元,该机床使用后,每年的总收入为50万元,设使用x年后数控机床的盈利总额y元.(1)写出y与x之间的函数关系式;(2)从第几年开始,该机床开始盈利?(3)使用若干年后,对机床的处理有两种方案:①当年平均盈利额达到最大值时,以30万元价格处理该机床;②当盈利额达到最大值时,以12万元价格处理该机床.问哪种方案处理较为合理?请说明理由.延平区高级中学2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1.【答案】B【解析】解:“A=30°”⇒“”,反之不成立.故选B【点评】本题考查充要条件的判断和三角函数求值问题,属基本题.2.【答案】A【解析】解:若A⊆B,则a≤3,则“a<3”是“A⊆B”的充分不必要条件,故选:A【点评】本题主要考查充分条件和必要条件的判断,根据集合关系是解决本题的关键.3.【答案】B【解析】解:∵结论:“自然数a,b,c中恰有一个偶数”可得题设为:a,b,c中恰有一个偶数∴反设的内容是假设a,b,c中至少有两个偶数或都是奇数.故选B.【点评】此题考查了反证法的定义,反证法在数学中经常运用,当论题从正面不容易或不能得到证明时,就需要运用反证法,此即所谓“正难则反“.4.【答案】A【解析】解:由题意可得,函数的定义域x≠0,并且可得函数为非奇非偶函数,满足f(﹣1)=f(1)=1,可排除B、C两个选项.∵当x>0时,t==在x=e时,t有最小值为∴函数y=f(x)=x2﹣,当x>0时满足y=f(x)≥e2﹣>0,因此,当x>0时,函数图象恒在x轴上方,排除D选项故选A5.【答案】A【解析】解:方程|x2+3x﹣3|=a的解的个数可化为函数y=|x2+3x﹣3|与y=a的图象的交点的个数,作函数y=|x2+3x﹣3|与y=a的图象如下,,结合图象可知,m的可能值有2,3,4;故选A.6.【答案】C【解析】【知识点】复数乘除和乘方【试题解析】故答案为:C7.【答案】B【解析】解:设圆柱的高为h,则V圆柱=π×12×h=h,V球==,∴h=.故选:B.8.【答案】A【解析】解:方程x2+2ax+y2=0(a≠0)可化为(x+a)2+y2=a2,圆心为(﹣a,0),∴方程x2+2ax+y2=0(a≠0)表示的圆关于x轴对称,故选:A.【点评】此题考查了圆的一般方程,方程化为标准方程是解本题的关键.9.【答案】C【解析】解:这次测验的优秀率(不小于80分)为0.032×10+0.024×10=0.56故这次测验的优秀率(不小于80分)为56%故选C【点评】在解决频率分布直方图时,一定注意频率分布直方图的纵坐标是.10.【答案】C【解析】解:由已知可得该程序的功能是计算并输出S=+++…+=的值,若输出的结果是,则最后一次执行累加的k值为12,则退出循环时的k值为13,故退出循环的条件应为:k≥13?,故选:C【点评】算法是新课程中的新增加的内容,也必然是新高考中的一个热点,应高度重视.程序填空也是重要的考试题型,这种题考试的重点有:①分支的条件②循环的条件③变量的赋值④变量的输出.其中前两点考试的概率更大.此种题型的易忽略点是:不能准确理解流程图的含义而导致错误.11.【答案】C【解析】解:∵概率P(K2≥6.635)≈0.01,∴两个变量有关系的可信度是1﹣0.01=99%,即两个变量有关系的概率是99%,故选C.【点评】本题考查实际推断原理和假设检验的应用,本题解题的关键是理解所求出的概率的意义,本题是一个基础题.12.【答案】A【解析】进行简单的合情推理.【专题】规律型;探究型.【分析】将M中的元素按从大到小排列,求第2013个数所对应的a i,首先要搞清楚,M集合中元素的特征,同样要分析求第2011个数所对应的十进制数,并根据十进制转换为八进行的方法,将它转换为八进制数,即得答案.【解答】因为=(a1×103+a2×102+a3×10+a4),括号内表示的10进制数,其最大值为9999;从大到小排列,第2013个数为9999﹣2013+1=7987所以a1=7,a2=9,a3=8,a4=7则第2013个数是故选A.【点评】对十进制的排序,关键是要找到对应的数是几,如果从大到小排序,要找到最大数(即第一个数),再找出第n个数对应的十进制的数即可.二、填空题13.【答案】【解析】解:作的可行域如图:易知可行域为一个三角形,验证知在点A(1,2)时,z1=2x+y+4取得最大值8,∴z=log4(2x+y+4)最大是,故答案为:.【点评】本题主要考查了简单的线性规划,以及利用几何意义求最值,属于基础题.14.【答案】114.【解析】解:根据题目要求得出:当5×3的两个面叠合时,所得新的四棱柱的表面积最大,其表面积为(5×4+5×5+3×4)×2=114.故答案为:114【点评】本题考查了空间几何体的性质,运算公式,学生的空间想象能力,属于中档题,难度不大,学会分析判断解决问题.15.【答案】4.【解析】解:由已知可得直线AF的方程为y=(x﹣1),联立直线与抛物线方程消元得:3x2﹣10x+3=0,解之得:x1=3,x2=(据题意应舍去),由抛物线定义可得:AF=x1+=3+1=4.故答案为:4.【点评】本题考查直线与抛物线的位置关系,考查抛物线的定义,考查学生的计算能力,属于中档题.16.【答案】1.【解析】解:若对双曲线C上任意一点A(点A在圆O外),均存在与圆O外切且顶点都在双曲线C上的菱形ABCD,可通过特殊点,取A(﹣1,t),则B(﹣1,﹣t),C(1,﹣t),D(1,t),由直线和圆相切的条件可得,t=1.将A(﹣1,1)代入双曲线方程,可得﹣=1.故答案为:1.【点评】本题考查双曲线的方程和运用,同时考查直线和圆相切的条件,属于基础题.17.【答案】2.【解析】解:∵f(x)是定义在[﹣2a,3a﹣1]上奇函数,∴定义域关于原点对称,即﹣2a+3a﹣1=0,∴a=1,∵函数为奇函数,∴f(﹣x)==﹣,即b•2x﹣1=﹣b+2x,∴b=1.即a+b=2,故答案为:2.18.【答案】2300【解析】111]试题分析:根据题意设租赁甲设备,乙设备,则⎪⎪⎩⎪⎪⎨⎧≥+≥+≥≥14020y 10x 506y 5x 0y 0x ,求目标函数300y 200x Z +=的最小值.作出可行域如图所示,从图中可以看出,直线在可行域上移动时,当直线的截距最小时,取最小值2300.1111]考点:简单线性规划.【方法点晴】本题是一道关于求实际问题中的最值的题目,可以采用线性规划的知识进行求解;细查题意,设甲种设备需要生产天,乙种设备需要生产y 天,该公司所需租赁费为Z 元,则y x Z 300200+=,接下来列出满足条件的约束条件,结合目标函数,然后利用线性规划的应用,求出最优解,即可得出租赁费的最小值.三、解答题19.【答案】【解析】解:(1)由题意:集合A={x|2≤x ≤6},集合B={x|x ≥3}. 那么:A ∩B={x|6≥x ≥3}. ∴C R (A ∩B )={x|x <3或x >6}. (2)C={x|x ≤a}, ∵A ⊆C , ∴a ≥6∴故得实数a 的取值范围是[6,+∞).【点评】本题主要考查集合的基本运算,比较基础.20.【答案】【解析】(本题满分为12分)解:(Ⅰ)f(x)=2cosx(sinx+cosx)﹣1=2sinxcosx+2cos2x﹣1=sin2x+2×﹣1=sin2x+cos2x=sin(2x+),∵x∈[0,],∴2x+∈[,],∴当2x+=,即x=时,f(x)min=…6分(Ⅱ)由(Ⅰ)可知f(B)=sin(+)=1,∴sin(+)=,∴+=,∴B=,由正弦定理可得:b==∈[1,2)…12分【点评】本题主要考查了三角函数恒等变换的应用,正弦函数的图象和性质,正弦定理在解三角形中的综合应用,考查了计算能力和转化思想,属于中档题.21.【答案】【解析】(1)解:设点E(t,t),∵B(0,﹣1),∴A(2t,2t+1),∵点A在椭圆C上,∴,整理得:6t2+4t=0,解得t=﹣或t=0(舍去),∴E(﹣,﹣),A(﹣,﹣),∴直线AB的方程为:x+2y+2=0;(2)证明:设P(x0,y0),则,①直线AP方程为:y+=(x+),联立直线AP与直线y=x的方程,解得:x M=,直线BP的方程为:y+1=,联立直线BP与直线y=x的方程,解得:x N=,∴OM•ON=|x M||x N|=2•||•||=||=||=||=.②设直线MB的方程为:y=kx﹣1(其中k==),联立,整理得:(1+2k2)x2﹣4kx=0,∴x Q=,y Q=,∴k AN===1﹣,k AQ==1﹣,要证A、Q、N三点共线,只需证k AN=k AQ,即3x N+4=2k+2,将k=代入,即证:x M•x N=,由①的证明过程可知:|x M|•|x N|=,而x M与x N同号,∴x M•x N=,即A、Q、N三点共线.【点评】本题是一道直线与圆锥曲线的综合题,考查求直线的方程、线段乘积为定值、三点共线等问题,考查运算求解能力,注意解题方法的积累,属于中档题.22.【答案】【解析】【专题】综合题;概率与统计.【分析】(Ⅰ)依据茎叶图,确定甲、乙班数学成绩集中的范围,即可得到结论;(Ⅱ)由茎叶图知成绩为86分的同学有2人,其余不低于80分的同学为4人,ξ=0,1,2,求出概率,可得ξ的分布列和数学期望;(Ⅲ)根据成绩不低于85分的为优秀,可得2×2列联表,计算K2,从而与临界值比较,即可得到结论.【解答】解:(Ⅰ)由茎叶图知甲班数学成绩集中于60﹣9之间,而乙班数学成绩集中于80﹣100分之间,所以乙班的平均分高┉┉┉┉┉┉(Ⅱ)由茎叶图知成绩为86分的同学有2人,其余不低于80分的同学为4人,ξ=0,1,2P(ξ=0)==,P(ξ=1)==,P(ξ=2)==┉┉┉┉┉┉则随机变量ξ的分布列为ξ0 1 2P数学期望Eξ=0×+1×+2×=人﹣┉┉┉┉┉┉┉┉(Ⅲ)2×2列联表为甲班乙班合计优秀 3 10 13不优秀17 10 27合计20 20 40┉┉┉┉┉K2=≈5.584>5.024因此在犯错误的概率不超过0.025的前提下可以认为成绩优秀与教学方式有关.┉┉【点评】本题考查概率的计算,考查独立性检验知识,考查学生的计算能力,属于中档题.23.【答案】【解析】解:∵直线x+ay﹣2=0与圆x2+y2=1有公共点∴≤1⇒a2≥1,即a≥1或a≤﹣1,命题p为真命题时,a≥1或a≤﹣1;∵点(a,1)在椭圆内部,∴,命题q为真命题时,﹣2<a<2,由复合命题真值表知:若命题“p且¬q”是真命题,则命题p,¬q都是真命题即p真q假,则⇒a≥2或a≤﹣2.故所求a的取值范围为(﹣∞,﹣2]∪[2,+∞).24.【答案】【解析】解:(1)y=﹣2x2+40x﹣98,x∈N*.(2)由﹣2x2+40x﹣98>0解得,,且x∈N*,所以x=3,4,,17,故从第三年开始盈利.(3)由,当且仅当x=7时“=”号成立,所以按第一方案处理总利润为﹣2×72+40×7﹣98+30=114(万元).由y=﹣2x2+40x﹣98=﹣2(x﹣10)2+102≤102,所以按第二方案处理总利润为102+12=114(万元).∴由于第一方案使用时间短,则选第一方案较合理.。
吉林省延边第二中学近年-近年学年高二数学下学期期中试题理(含解析)(最新整理)

延边第二中学2018—2019学年度第二学期期中考试高二年级数学试卷(理)一、选择题(共12小题,每小题4分,共48分,每题只有一个选项正确)1.已知复数满足,则复数的共轭复数为()A。
B。
C。
D。
【答案】D【解析】【分析】把给出的等式两边同时乘以i,然后利用复数的乘法运算化简,取虚部为相反数得到z的共轭复数.【详解】由,得.∴复数z的共轭复数为.故选:D.【点睛】本题考查了复数代数形式的乘法运算,考查了复数的基本概念,是基础题.2.设函数f(x)在x=1处存在导数为2,则=( )A。
2 B. 1 C. D。
6【答案】C【解析】【分析】利用导数概念直接求解.【详解】解:∵函数f(x)在x=1处存在导数,∴f′(1)=.故选:C.【点睛】本题考查导数的概念,是基础题,解题时要认真审题,注意导数定义的合理运用.3.我国古代有着辉煌的数学研究成果.《周髀算经》、《九章算术》、《海岛算经》、《孙子算经》、……《缉古算经》等10部专著,有着十分丰富多彩的内容,是了解我国古代数学的重要文献.这10部专著中有7部产生于魏晋南北朝时期.某中学拟从这10部专著中选择2部作为“数学文化”校本课程学习内容,则所选2部专著中至少有一部是魏晋南北朝时期专著的选法为( )A. 45 种B。
42 种 C. 28 种 D. 16种【答案】B【解析】【分析】分成两类:2部都为魏晋南北朝时期的名著、只有1部为魏晋南北朝时期的名著,分别计算即可.【详解】解:2部都为魏晋南北朝时期的名著的方法数为=21种,的只有1部为魏晋南北朝时期名著的方法数为=21种,∴事件“所选两部名著中至少有一部是魏晋南北朝时期的名著”的选法为42种.故选:B【点睛】本题考查组合数的简单应用,属于基础题。
4.将A、B、C、D、E、F六个字母排成一排,且A、B均在C的同侧,则不同的排法共有()A。
480种B。
240 种 C. 960种 D. 720 种【答案】A【解析】【分析】分类讨论,考虑C排在左边第一、二、三个位置的情况,再利用对称性可得结论.【详解】解:第一类,字母C排在左边第一个位置,有种;第二类,字母C排在左边第二个位置,有种;第三类,字母C排在左边第三个位置,有种,由对称性可知共有2()=480种.故选:A.【点睛】本题考查利用排列知识解决实际问题,考查分类讨论的数学思想,考查学生的计算能力,属于中档题.5.下面几种推理是演绎推理的个数是()①两条直线平行,同旁内角互补。
延平区第一高级中学2018-2019学年上学期高二数学12月月考试题含答案

考 点:平面图形的直观图. 4. 【答案】B 【解析】解:因为 B={0,1,2,3},C={0,2,4},且 A⊆B,A⊆C; ∴A⊆B∩C={0,2} ∴集合 A 可能为{0,2},即最多有 2 个元素, 故最多有 4 个子集. 故选:B. 5. 【答案】B
【解析】解:由 z(1+i)=2,得
B.
C.
D. 4 2+2
4. 已知集合 A,B,C 中,A⊆B,A⊆C,若 B={0,1,2,3},C={0,2,4},则 A 的子集最多有 A.2 个 B.4 个 C.6 个 D.8 个 5. 设复数 z 满足 z(1+i)=2,i 为虚数单位,则复数 z 的虚部是( )
A1 B﹣1 Ci D﹣i
2
)
B.14
C.28
D.56
) B.①③ C.②③ D.③④
12.为调查某地区老人是否需要志愿者提供帮助,用简单随机抽样方法从该地区调查了 500 位老年人,结果如
男 40 160
女 30 270
n(ad bc) 2 500 (40 270 30 160) 2 2 9.967 算得 K (a b)(c d )(a c)(b d ) 200 300 70 430
,
第 7 页,共 18 页
∴复数 z 的虚部是﹣1. 故选:B.
考查方向
本题考查复数代数形式的乘除运算.
解题思路
把已知等式变形,然后利用复数代数形式的乘除运算化简得答案.
易错点
把﹣i 作为虚部. 6. 【答案】C 【解析】解:∵f(x)= 是 R 上的增函数,
∴
,
解得:a∈[2,3), 故选:C. 【点评】本题考查的知识点是分段函数的单调性,正确理解分段函数单调性的含义是解答的关键. 7. 【答案】A 【解析】解:因为两条直线 l1:(3+m)x+4y=5﹣3m,l2:2x+(5+m)y=8,l1 与 l2 平行. 所以 故选:A. 【点评】本题考查直线方程的应用,直线的平行条件的应用,考查计算能力. 8. 【答案】C ,解得 m=﹣7.
延平区高中2018-2019学年高二下学期第一次月考试卷数学
延平区高中2018-2019学年高二下学期第一次月考试卷数学一、选择题1.用反证法证明命题“a,b∈N,如果ab可被5整除,那么a,b至少有1个能被5整除.”则假设的内容是()A.a,b都能被5整除 B.a,b都不能被5整除C.a,b不能被5整除 D.a,b有1个不能被5整除2.已知函数y=x3+ax2+(a+6)x﹣1有极大值和极小值,则a的取值范围是()A.﹣1<a<2 B.﹣3<a<6 C.a<﹣3或a>6 D.a<﹣1或a>23.设b,c表示两条直线,α,β表示两个平面,则下列命题是真命题的是()A.若b⊂α,c∥α,则b∥cB.若c∥α,α⊥β,则c⊥βC.若b⊂α,b∥c,则c∥αD.若c∥α,c⊥β,则α⊥β4.等比数列的前n项,前2n项,前3n项的和分别为A,B,C,则()A.B2=AC B.A+C=2B C.B(B﹣A)=A(C﹣A)D.B(B﹣A)=C(C﹣A)5.十进制数25对应的二进制数是()A.11001 B.10011 C.10101 D.100016.已知函数f(x)=2x﹣+cosx,设x1,x2∈(0,π)(x1≠x2),且f(x1)=f(x2),若x1,x0,x2成等差数列,f′(x)是f(x)的导函数,则()A.f′(x0)<0 B.f′(x0)=0C.f′(x0)>0 D.f′(x0)的符号无法确定7.某程序框图如图所示,该程序运行后输出的S的值是()A.﹣3 B.﹣C.D.28.点A是椭圆上一点,F1、F2分别是椭圆的左、右焦点,I是△AF1F2的内心.若,则该椭圆的离心率为()班级_______________座号______姓名_______________分数__________________________________________________________________________________________________________________A.B.C.D.9.已知直线l∥平面α,P∈α,那么过点P且平行于l的直线()A.只有一条,不在平面α内B.只有一条,在平面α内C.有两条,不一定都在平面α内D.有无数条,不一定都在平面α内10.以A={2,4,6,7,8,11,12,13}中的任意两个元素分别为分子与分母构成分数,则这种分数是可约分数的概率是()A.B.C.D.11.函数y=x2﹣4x+1,x∈[2,5]的值域是()A.[1,6] B.[﹣3,1] C.[﹣3,6] D.[﹣3,+∞)12.某几何体三视图如下图所示,则该几何体的体积是()A.1+B.1+C.1+D.1+π二、填空题13.若与共线,则y=.14.在4次独立重复试验中,随机事件A恰好发生1次的概率不大于其恰好发生两次的概率,则事件A在一次试验中发生的概率P的取值范围是.15.在下列给出的命题中,所有正确命题的序号为.①函数y=2x3+3x﹣1的图象关于点(0,1)成中心对称;②对∀x,y∈R.若x+y≠0,则x≠1或y≠﹣1;③若实数x,y满足x2+y2=1,则的最大值为;④若△ABC为锐角三角形,则sinA<cosB.⑤在△ABC中,BC=5,G,O分别为△ABC的重心和外心,且•=5,则△ABC的形状是直角三角形.16.如图,△ABC是直角三角形,∠ACB=90°,PA⊥平面ABC,此图形中有个直角三角形.17.已知f(x+1)=f(x﹣1),f(x)=f(2﹣x),方程f(x)=0在[0,1]内只有一个根x=,则f(x)=0在区间[0,2016]内根的个数.18.在△ABC中,已知=2,b=2a,那么cosB的值是.三、解答题19.如图,已知AC,BD为圆O的任意两条直径,直线AE,CF是圆O所在平面的两条垂线,且线段AE=CF=,AC=2.(Ⅰ)证明AD⊥BE;(Ⅱ)求多面体EF﹣ABCD体积的最大值.20.已知函数f(x)=x|x﹣m|,x∈R.且f(4)=0(1)求实数m的值.(2)作出函数f(x)的图象,并根据图象写出f(x)的单调区间(3)若方程f(x)=k有三个实数解,求实数k的取值范围.21.(本题满分12分)已知数列}{n a 的前n 项和为n S ,233-=n n a S (+∈N n ). (1)求数列}{n a 的通项公式;(2)若数列}{n b 满足143log +=⋅n n n a b a ,记n n b b b b T ++++= 321,求证:27<n T (+∈N n ). 【命题意图】本题考查了利用递推关系求通项公式的技巧,同时也考查了用错位相减法求数列的前n 项和.重点突出运算、论证、化归能力的考查,属于中档难度.22.已知函数f (x )=|x ﹣5|+|x ﹣3|. (Ⅰ)求函数f (x )的最小值m ;(Ⅱ)若正实数a ,b 足+=,求证:+≥m .23.(本题满分15分)如图,已知长方形ABCD 中,2AB =,1AD =,M 为DC 的中点,将ADM ∆沿AM 折起,使得平面⊥ADM 平面ABCM .(1)求证:BM AD ⊥;(2)若)10(<<=λλDB DE ,当二面角D AM E --大小为3π时,求λ的值.【命题意图】本题考查空间点、线、面位置关系,二面角等基础知识,意在考查空间想象能力和运算求解能力.24.(本小题满分12分)设03πα⎛⎫∈ ⎪⎝⎭,αα=(1)求cos 6πα⎛⎫+ ⎪⎝⎭的值;(2)求cos 212πα⎛⎫+ ⎪⎝⎭的值.25.已知函数f (x )=x 3+2bx 2+cx ﹣2的图象在与x 轴交点处的切线方程是y=5x ﹣10. (1)求函数f (x )的解析式;(2)设函数g (x )=f (x )+mx ,若g (x )的极值存在,求实数m 的取值范围以及函数g (x )取得极值时对应的自变量x 的值.26.已知函数.(Ⅰ)若曲线y=f(x)在点P(1,f(1))处的切线与直线y=x+2垂直,求函数y=f(x)的单调区间;(Ⅱ)若对于∀x∈(0,+∞)都有f(x)>2(a﹣1)成立,试求a的取值范围;(Ⅲ)记g(x)=f(x)+x﹣b(b∈R).当a=1时,函数g(x)在区间[e﹣1,e]上有两个零点,求实数b的取值范围.延平区高中2018-2019学年高二下学期第一次月考试卷数学(参考答案)一、选择题1.【答案】B【解析】解:由于反证法是命题的否定的一个运用,故用反证法证明命题时,可以设其否定成立进行推证.命题“a,b∈N,如果ab可被5整除,那么a,b至少有1个能被5整除.”的否定是“a,b都不能被5整除”.故应选B.【点评】反证法是命题的否定的一个重要运用,用反证法证明问题大大拓展了解决证明问题的技巧.2.【答案】C【解析】解:由于f(x)=x3+ax2+(a+6)x﹣1,有f′(x)=3x2+2ax+(a+6).若f(x)有极大值和极小值,则△=4a2﹣12(a+6)>0,从而有a>6或a<﹣3,故选:C.【点评】本题主要考查函数在某点取得极值的条件.属基础题.3.【答案】D【解析】解:对于A,设正方体的上底面为α,下底面为β,直线c是平面β内一条直线因为α∥β,c⊂β,可得c∥α,而正方体上底面为α内的任意直线b不一定与直线c平行故b⊂α,c∥α,不能推出b∥c.得A项不正确;对于B,因为α⊥β,设α∩β=b,若直线c∥b,则满足c∥α,α⊥β,但此时直线c⊂β或c∥β,推不出c⊥β,故B项不正确;对于C,当b⊂α,c⊄α且b∥c时,可推出c∥α.但是条件中缺少“c⊄α”这一条,故C项不正确;对于D,因为c∥α,设经过c的平面γ交平面α于b,则有c∥b结合c⊥β得b⊥β,由b⊂α可得α⊥β,故D项是真命题故选:D【点评】本题给出空间位置关系的几个命题,要我们找出其中的真命题,着重考查了线面平行、线面垂直的判定与性质,面面垂直的判定与性质等知识,属于中档题.4.【答案】C【解析】解:若公比q=1,则B,C成立;故排除A,D;若公比q≠1,则A=S n=,B=S2n=,C=S3n=,B(B﹣A)=(﹣)=(1﹣q n)(1﹣q n)(1+q n)A(C﹣A)=(﹣)=(1﹣q n)(1﹣q n)(1+q n);故B(B﹣A)=A(C﹣A);故选:C.【点评】本题考查了等比数列的性质的判断与应用,同时考查了分类讨论及学生的化简运算能力.5.【答案】A【解析】解:25÷2=12 (1)12÷2=6 06÷2=3 03÷2=1 (1)1÷2=0 (1)故25(10)=11001(2)故选A.【点评】本题考查的知识点是十进制与其它进制之间的转化,其中熟练掌握“除k取余法”的方法步骤是解答本题的关键.6.【答案】A【解析】解:∵函数f(x)=2x﹣+cosx,设x1,x2∈(0,π)(x1≠x2),且f(x1)=f(x2),∴,∴存在x1<a<x2,f'(a)=0,∴,∴,解得a=,假设x1,x2在a的邻域内,即x2﹣x1≈0.∵,∴,∴f(x)的图象在a的邻域内的斜率不断减少小,斜率的导数为正,∴x0>a,又∵x>x0,又∵x>x0时,f''(x)递减,∴.故选:A.【点评】本题考查导数的性质的应用,是难题,解题时要认真审题,注意二阶导数和三阶导数的性质的合理运用.7.【答案】B【解析】解:由程序框图得:第一次运行S==﹣3,i=2;第二次运行S==﹣,i=3;第三次运行S==,i=4;第四次运行S==2,i=5;第五次运行S==﹣3,i=6,…S的值是成周期变化的,且周期为4,当i=2015时,程序运行了2014次,2014=4×503+2,∴输出S=﹣.故选:B.【点评】本题考查了循环结构的程序框图,根据程序的运行功能判断输出S值的周期性变化规律是关键.8.【答案】B【解析】解:设△AF1F2的内切圆半径为r,则S△IAF1=|AF1|r,S△IAF2=|AF2|r,S△IF1F2=|F1F2|r,∵,∴|AF1|r=2×|F1F2|r﹣|AF2|r,整理,得|AF|+|AF2|=2|F1F2|.∴a=2,1∴椭圆的离心率e===.故选:B.9.【答案】B【解析】解:假设过点P且平行于l的直线有两条m与n∴m∥l且n∥l由平行公理4得m∥n这与两条直线m与n相交与点P相矛盾又因为点P在平面内所以点P且平行于l的直线有一条且在平面内所以假设错误.故选B.【点评】反证法一般用于问题的已知比较简单或命题不易证明的命题的证明,此类题目属于难度较高的题型.10.【答案】D【解析】解:因为以A={2,4,6,7,8,11,12,13}中的任意两个元素分别为分子与分母共可构成个分数,由于这种分数是可约分数的分子与分母比全为偶数,故这种分数是可约分数的共有个,则分数是可约分数的概率为P==,故答案为:D【点评】本题主要考查了等可能事件的概率,用到的知识点为:概率=所求情况数与总情况数之比.11.【答案】C【解析】解:y=x2﹣4x+1=(x﹣2)2﹣3∴当x=2时,函数取最小值﹣3当x=5时,函数取最大值6∴函数y=x2﹣4x+1,x∈[2,5]的值域是[﹣3,6]故选C【点评】本题考查了二次函数最值的求法,即配方法,解题时要分清函数开口方向,辨别对称轴与区间的位置关系,仔细作答12.【答案】A【解析】解:由三视图知几何体的下部是正方体,上部是圆锥,且圆锥的高为4,底面半径为1;正方体的边长为1,∴几何体的体积V=V正方体+=13+××π×12×1=1+.故选:A.【点评】本题考查了由三视图求几何体的体积,解答此类问题的关键是判断几何体的形状及图中数据所对应的几何量.二、填空题13.【答案】﹣6.【解析】解:若与共线,则2y﹣3×(﹣4)=0解得y=﹣6故答案为:﹣6【点评】本题考查的知识点是平面向量共线(平行)的坐标表示,其中根据“两个向量若平行,交叉相乘差为零”的原则,构造关于y的方程,是解答本题的关键.14.【答案】[].【解析】解:由题设知C41p(1﹣p)3≤C42p2(1﹣p)2,解得p,∵0≤p≤1,∴,故答案为:[].15.【答案】:①②③【解析】解:对于①函数y=2x3﹣3x+1=的图象关于点(0,1)成中心对称,假设点(x0,y0)在函数图象上,则其关于①点(0,1)的对称点为(﹣x0,2﹣y0)也满足函数的解析式,则①正确;对于②对∀x,y∈R,若x+y≠0,对应的是直线y=﹣x以外的点,则x≠1,或y≠﹣1,②正确;对于③若实数x,y满足x2+y2=1,则=,可以看作是圆x2+y2=1上的点与点(﹣2,0)连线的斜率,其最大值为,③正确;对于④若△ABC为锐角三角形,则A,B,π﹣A﹣B都是锐角,即π﹣A﹣B<,即A+B>,B>﹣A,则cosB<cos(﹣A),即cosB<sinA,故④不正确.对于⑤在△ABC中,G,O分别为△ABC的重心和外心,取BC的中点为D,连接AD、OD、GD,如图:则OD⊥BC,GD=AD,∵=|,由则,即则又BC=5则有由余弦定理可得cosC<0,即有C为钝角.则三角形ABC为钝角三角形;⑤不正确.故答案为:①②③16.【答案】4【解析】解:由PA⊥平面ABC,则△PAC,△PAB是直角三角形,又由已知△ABC是直角三角形,∠ACB=90°所以BC⊥AC,从而易得BC⊥平面PAC,所以BC⊥PC,所以△PCB也是直角三角形,所以图中共有四个直角三角形,即:△PAC,△PAB,△ABC,△PCB.故答案为:4【点评】本题考查空间几何体的结构特征,空间中点线面的位置关系,线面垂直的判定定理和性质定理的熟练应用是解答本题的关键.17.【答案】2016.【解析】解:∵f(x)=f(2﹣x),∴f(x)的图象关于直线x=1对称,即f(1﹣x)=f(1+x).∵f(x+1)=f(x﹣1),∴f(x+2)=f(x),即函数f(x)是周期为2的周期函数,∵方程f(x)=0在[0,1]内只有一个根x=,∴由对称性得,f()=f()=0,∴函数f(x)在一个周期[0,2]上有2个零点,即函数f(x)在每两个整数之间都有一个零点,∴f(x)=0在区间[0,2016]内根的个数为2016,故答案为:2016.18.【答案】.【解析】解:∵=2,由正弦定理可得:,即c=2a.b=2a,∴==.∴cosB=.故答案为:.【点评】本题考查了正弦定理与余弦定理,考查了推理能力与计算能力,属于中档题.三、解答题19.【答案】【解析】(Ⅰ)证明:∵BD为圆O的直径,∴AB⊥AD,∵直线AE是圆O所在平面的垂线,∴AD⊥AE,∵AB∩AE=A,∴AD⊥平面ABE,∴AD⊥BE;(Ⅱ)解:多面体EF﹣ABCD体积V=V B﹣AEFC+V D﹣AEFC=2V B﹣AEFC.∵直线AE,CF是圆O所在平面的两条垂线,∴AE∥CF,∥AE⊥AC,AF⊥AC.∵AE=CF=,∴AEFC为矩形,∵AC=2,∴S AEFC=2,作BM⊥AC交AC于点M,则BM⊥平面AEFC,∴V=2V B﹣AEFC=2×≤=.∴多面体EF﹣ABCD体积的最大值为.【点评】本题考查线面垂直,线线垂直,考查体积的计算,考查学生分析解决问题的能力,难度中等.20.【答案】【解析】解:(1)∵f(4)=0,∴4|4﹣m|=0∴m=4,(2)f(x)=x|x﹣4|=图象如图所示:由图象可知,函数在(﹣∞,2),(4,+∞)上单调递增,在(2,4)上单调递减.(3)方程f(x)=k的解的个数等价于函数y=f(x)与函数y=k的图象交点的个数,由图可知k∈(0,4).21.【答案】【解析】22.【答案】【解析】(Ⅰ)解:∵f(x)=|x﹣5|+|x﹣3|≥|x﹣5+3﹣x|=2,…(2分)当且仅当x∈[3,5]时取最小值2,…(3分)∴m=2.…(4分)(Ⅱ)证明:∵(+)[]≥()2=3,∴(+)×≥()2,∴+≥2.…(7分)【点评】本题主要考查绝对值不等式和均值不等式等基础知识,考查运算求解能力,考查化归与转化思想.23.【答案】(1)详见解析;(2)233λ=-. 【解析】(1)由于2AB =,2AM BM ==,则AM BM ⊥,又∵平面⊥ADM 平面ABCM ,平面 ADM 平面ABCM =AM ,⊂BM 平面ABCM ,∴⊥BM 平面ADM ,…………3分又∵⊂AD 平面ADM ,∴有BM AD ⊥;……………6分24.【答案】(110;(2)302+.【解析】试题分析:(1623αα=⇒ 6sin 6πα⎛⎫+= ⎪⎝⎭03πα⎛⎫∈ ⎪⎝⎭,⇒662πππα⎛⎫+∈ ⎪⎝⎭,⇒10cos 6πα⎛⎫+=⎪⎝⎭2)由(1)可得21cos 22cos 1364ππαα⎛⎫⎛⎫+=+-= ⎪ ⎪⎝⎭⎝⎭⇒15sin 23πα⎛⎫+= ⎪⎝⎭⇒cos 2cos 2cos 2cos sin 2sin 12343434πππππππαααα⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫+=+-=+++ ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦=.试题解析:(1αα∴sin 6πα⎛⎫+= ⎪⎝⎭,………………………………3分∵03πα⎛⎫∈ ⎪⎝⎭,,∴662πππα⎛⎫+∈ ⎪⎝⎭,,∴cos 6πα⎛⎫+= ⎪⎝⎭.………………………………6分(2)由(1)可得221cos 22cos 121364ππαα⎛⎫⎛⎫+=+-=⨯-= ⎪ ⎪⎝⎭⎝⎭⎝⎭.………………………………8分∵03πα⎛⎫∈ ⎪⎝⎭,,∴233ππαπ⎛⎫+∈ ⎪⎝⎭,,∴sin 23πα⎛⎫+=⎪⎝⎭.……………………………………10分 ∴cos 2cos 2cos 2cos sin 2sin 12343434πππππππαααα⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫+=+-=+++ ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦=.………………………………………………………………………………12分 考点:三角恒等变换.25.【答案】【解析】解:(1)由已知,切点为(2,0),故有f (2)=0, 即4b+c+3=0.①f ′(x )=3x 2+4bx+c ,由已知,f ′(2)=12+8b+c=5. 得8b+c+7=0.②联立①、②,解得c=1,b=﹣1,于是函数解析式为f (x )=x 3﹣2x 2+x ﹣2.(2)g (x )=x 3﹣2x 2+x ﹣2+mx ,g ′(x )=3x 2﹣4x+1+,令g ′(x )=0.当函数有极值时,△≥0,方程3x 2﹣4x+1+=0有实根,由△=4(1﹣m )≥0,得m ≤1.①当m=1时,g ′(x )=0有实根x=,在x=左右两侧均有g ′(x )>0,故函数g (x )无极值. ②当m <1时,g ′(x )=0有两个实根,x 1=(2﹣),x 2=(2+),当x=(2﹣)时g (x )有极大值;当x=(2+)时g(x)有极小值.【点评】本题考查利用导函数来研究函数的极值.在利用导函数来研究函数的极值时,分三步①求导函数,②求导函数为0的根,③判断根左右两侧的符号,若左正右负,原函数取极大值;若左负右正,原函数取极小值.26.【答案】【解析】解:(Ⅰ)直线y=x+2的斜率为1,函数f(x)的定义域为(0,+∞),因为,所以,,所以,a=1.所以,,.由f'(x)>0解得x>2;由f'(x)<0,解得0<x<2.所以f(x)的单调增区间是(2,+∞),单调减区间是(0,2).(Ⅱ),由f'(x)>0解得;由f'(x)<0解得.所以,f(x)在区间上单调递增,在区间上单调递减.所以,当时,函数f(x)取得最小值,.因为对于∀x∈(0,+∞)都有f(x)>2(a﹣1)成立,所以,即可.则.由解得.所以,a的取值范围是.(Ⅲ)依题得,则.由g'(x)>0解得x>1;由g'(x)<0解得0<x<1.所以函数g(x)在区间(0,1)为减函数,在区间(1,+∞)为增函数.又因为函数g(x)在区间[e﹣1,e]上有两个零点,所以,解得.所以,b的取值范围是.【点评】本题考查导数与曲线上某点的切线斜率的关系,利用导数求函数的单调区间以及函数的最值.。
最新2019学年高二数学下学期期中试题 文(新版)人教版
2019学年第二学期期中考试高二文科数学一、选择题(每题只有一个正确选项,每题5分,共60分)1.观察下列各式:a +b =1,a 2+b 2=3,a 3+b 3=4,a 4+b 4=7,a 5+b 5=11,…,则a 10+b 10等于( )A .28B .76C .123D .1992. 已知x >0,若x +81x的值最小,则x 为( ). A . 81 B . 9 C . 3 D .163. 若2()31f x x x =-+,2()21g x x x =+-,则()f x 与()g x 的大小关系为( ). A .()()f x g x > B .()()f x g x = C .()()f x g x < D .随x 值变化而变化4. 点P 的直角坐标为(1,-3),则点P 的极坐标为( )A.⎪⎭⎫⎝⎛-32π,B. ⎪⎭⎫ ⎝⎛32π,C.⎪⎭⎫⎝⎛322π, D.()π,2 5. 点M 的极坐标⎪⎭⎫⎝⎛66π,化成直角坐标为( )A.()33,3B.()3,1C.()13,D.()333,6.若,x y R +∈,且1x y +=,则11x y+的最小值是( ) A .1 B .2 C .3 D .47.已知1,,10,10++==<<<<y x Q xy P y x ,则P,Q 的大小关系是( ) A.Q P < B.Q P = C.Q P > D.不确定8.如图是一商场某一个时间制订销售计划时的局部结构图,则直接影响“计划” 要素有( )A .1个B .2个C .3个D .4个9. ,0,0>>b a 比较 2b a +,b a ab +2,222b a +,ab 大小关系( )A.222b a +≤ab ≤2b a +≤b a ab +2 B.ab ≤b a ab +2≤2b a +≤222b a + C.b a ab +2≤2ba +≤ab ≤222b a + D.b a ab +2≤ab ≤2b a +≤222b a + 10.根据如下样本数据:得到的回归方程为y =bx +a ,则( )A.0a > ,0<bB.0a > ,0>bC.0a < ,0<bD.0a < ,0>b 11.下表是某厂1~4月份用水量(单位:百吨)的一组数据:由散点图可知,用水量yy =-0.7x +a ,则a =( )A .10.5B .5.15C .5.2D .5.2512. 为了考察高中生的性别与是否喜欢数学课程之间的关系,北京市西城区教育研修学院在西城区的高中学生中随机地抽取300名学生调查,得到下表:则通过计算,可得统计量χ2的值是( ) χ2=n ad -bc 2a +bc +d a +cb +dA.4.512B.6.735C.3.325D.12.624二、填空题(每小题5分,共20分) 13.已知3x >,则1()3f x x x =+-的最小值为 . 14. 若0<x<3,则函数f(x)=x(3-x)的最大值为 . 15.不等式|x-5|+|x+3|≥10的解集是_______. (区间的形式)16.已知不等式|x+1|+|x-2|≥m 的解集是R ,则实数m 的取值范围是_______. (区间的形式) 三、解答题(写出必要的推理计算过程,17题10分,其他每题12分,共70分))用分析法证明:(2)设0>x ,求证:12162≥+xx .18.已知函数f (x )=|x +1|-|2x -3|.(1)写出y =f (x )的分段函数形式并画出y =f (x )的图象; (2)求不等式|f (x )|>9的解集.19.设函数f (x )=|2x +1|-|x -4|.(1)解不等式f (x )>0;(2)若f (x )+3|x -4|>m 对一切实数x 均成立,求实数m 的取值范围.20. 设边长为3的正方形白铁片,在它的四角各剪去一个小正方形(剪去的四个小正方形全等).然后弯折成一只无盖的盒子,问:剪去的小正方形边长为多少时,制成的盒子容积最大?21.某车间为了规定工时定额,需要确定加工零件所花费的时间,为此做了4次试验,得到数据如下:2 5 (1)画出散点图;(2)求y 关于x 的线性回归方程y =bx +a ; (3)试预测加工10个零件需要的时间. 附:回归方程y =bx +a 中:1122211()(),().n niii ii i nniii i x x y y x y nx yb x x xnxa y bx ====⎧---⎪⎪==⎪⎨--⎪⎪=-⎪⎩∑∑∑∑22.(1)已知a >0,b >0,且a +b =1.求ab 的最大值;(2)设a ,b ,c 为正数,且a +b +c =1,求证:3100111≥⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛+c c b b a a .北京临川学校2017--2019学年第二学期期中考试高二文科数学参考答案一、选择题(每题只有一个正确选项,每题5分,共60分)二、填空题(每小题5分,共20分) 13. 5 14.4915.(-∞,-4]∪[6,+∞) 16.(-∞,3] 三、解答题(写出必要的推理或计算过程,共70分) 17. (1)略(2)略 18.解 (1)f (x )=⎩⎪⎨⎪⎧x -4,x ≤-1,3x -2,-1<x ≤ 32,-x +4,x >32,y =f (x )的图象如图所示.(2)由f (x )的表达式及图象,当f (x )=-9时,可得x =5,f (x )<-1的解集为{}5-<x x .所以|f (x )|>1的解集为{}5-<x x . 19.解:(1)当x ≥4时,f (x )=2x +1-(x -4)=x +5>0,得x >-5,所以x ≥4.当-12≤x <4时,f (x )=2x +1+x -4=3x -3>0,得x >1,所以1<x <4.当x <-12时,f (x )=-x -5>0,得x <-5,所以x <-5.综上,原不等式的解集为(-∞,-5)∪(1,+∞).(2)f (x )+3|x -4|=|2x +1|+2|x -4|≥|2x +1-(2x -8)|=9, 当-12≤x ≤4时等号成立,所以m <9,即m 的取值范围为(-∞,9). 20.221.解:(1)散点图如图所示:(2)由题中表格数据得x -=3.5,y -=3.5, ∑4i =1 (x i -x -)(y i -y -)=3.5,∑4i =1(x i -x -)2=5, 由公式计算得b ^=0.7,a ^=y --b ^x -=1.05,所以所求线性回归方程为y ^=0.7x +1.05. (3)当x =10时,y ^=0.7×10+1.05=8.05, 所以预测加工10个零件需要8.05小时.(2)当x =10时,y ^=1.23×10+0.08=12.38(万元),即当使用10年时,估计维修费用是12.38万元.22. 解析 (1)∵a>0,b>0,且a+b=1,∴≤=,∴ab≤当且仅当a=b=时,等号成立,即ab 的最大值为.(2)证明:∵a,b,c为正数,且a+b+c=1,∴(a+)2+(b+)2+(c+)2====,当且仅当时取等号.所以原不等式成立.。
吉林省延边第二中学2018_2019学年高二数学下学期期中试题理
延边第二中学2018—2019学年度第二学期期中考试高二年级数学试卷(理)一、选择题(共12小题,每小题4分,共48分,每题只有一个选项正确)1.已知复数满足,则复数的共轭复数为()A.B.C.D.2.设函数f(x)在x=1处存在导数为2,则=( )A.2 B. 1 C. D.63.我国古代有着辉煌的数学研究成果.《周髀算经》、《九章算术》、《海岛算经》、《孙子算经》、……《缉古算经》等10部专著,有着十分丰富多彩的内容,是了解我国古代数学的重要文献.这10部专著中有7部产生于魏晋南北朝时期.某中学拟从这10部专著中选择2部作为“数学文化”校本课程学习内容,则所选2部专著中至少有一部是魏晋南北朝时期专著的选法为()A.45 种 B.42 种 C.28 种 D.16种4. 将A、B、C、D、E、F六个字母排成一排,且A、B均在C的同侧,则不同的排法共有( )A.480种 B.240 种 C.960种 D.720 种5. 下面几种推理是演绎推理的个数是()①两条直线平行,同旁内角互补。
如果∠A与∠B是两条平行直线的同旁内角,那么∠A+∠B=180o;②猜想数列1,3,5,7,9,11,…的通项公式为;③由正三角形的性质得出正四面体的性质;④半径为的圆的面积,则单位圆的面积.A.1个 B.2个 C. 3 个 D.4个6.用数学归纳法证明不等式“”时的过程中,由到时,不等式的左边()A.增加了一项B.增加了两项C.增加了两项,又减少了一项D.增加了一项,又减少了一项7.若函数恰好有三个单调区间,则实数的取值范围是( )A. B. C. D.8.若二项式(其中且)的展开式中的系数与的系数相等,则=()A.6 B.7 C.8 D.99.有4名学生要到某公司实践学习,该公司共有5个科室,由公司人事部门安排他们到其中任意3个科室实践,每个科室至少安排一人,则不同的安排方案种数为()A.120 B.240 C.360 D.48010. 一个正方形花圃,被分为5份A、B、C、D、E,种植红、黄、蓝、绿4种颜色不同的花,要求相邻两部分种植不同颜色的花,则不同的种植方法有()..48 种 C.84 种 D.96种11. 若函数在区间上有两个极值点,则实数的取值范围是()A.B.C.D.12.已知函数,,若成立,则的最小值为()A. B. C.﹣ D. e2﹣二、填空题(包括4小题,每小题4分,共16分,请将答案写在答题纸上)13.若,则的值是14.七个人站成一排,则甲乙两人之间恰好间隔3人的站法有种.15.设函数在区间上单调递减,则实数的取值范围是16.对于任意,当时 , 恒有成立,则实数的取值范围是三、解答题(包括6个题,17、18题各10分,19、20、21题12分,22题为附加题20分,共76分,请写必要的解答过程)17.(本小题满分10分)(1)若, ,求的值(2)求的值(用数字作答)18.(本题满分10分)(1)设常数,若的二项展开式中项的系数为,求的值(2)若求的值19.(本小题满分12分)某商场销售某种商品的经验表明,该商品每日的销售量 (单位:千克)与销售价格 (单位:元/千克)满足关系式,其中为常数.已知销售价格为5元/千克时,每日可售出该商品13千克.(1)求的值;(2)若该商品的成本为3元/千克,试确定销售价格的值,使商场每日销售该商品所获得的利润最大,并求出最大利润.20.(本题满分12分)设函数.(1)当,时,求函数的最值;(2)令,其图象上存在一点,使此处切线的斜率,求实数的取值范围.21. (本小题满分12分)已知函数和(1)若是的导函数,求的值(2)当时,不等式恒成立,其中是导函数,求正整数的最大值.22.附加题:(本题满分20分)已知函数,.(1)求最大正整数n,使得对任意个实数时,都有恒成立;(2)设的图象上是否存在不同的两点,使得成立.17. 【答案】(1)7详解:(1)即:解得:或舍去)(2) 16418. (1)-2(2)219. (Ⅰ)a=4(Ⅱ),最大值46试题解析:解:(Ⅰ)因为时,y=13,所以,故a=6(Ⅱ)由(Ⅰ)可知,该商品每日的销售量所以商场每日销售该商品所获得的利润为从而由上表可得,是函数在区间内的极大值点,也是最大值点.所以,当时,函数取得最大值,且最大值等于46答:当销售价格为4元/千克时,商场每日销售该商品所获得的利润最大.20 (1)函数的最大值为,无最小值;(2)试题解析:(1)依题意,的定义域为,当,时,,,由,得,解得;由,得,解得或.在单调递增,在单调递减;所以的极大值为,此即为最大值;无最小值;(2),,则有在上有解,,所以当时,取得最小值,所以21.(I)(II)当时,不等式恒成立即对于恒成立设,则,在区间上是增函数,且存在唯一实数根,满足,即由时,;时,知的最小值为故正整数的最大值为3。
延平区第一中学2018-2019学年下学期高二期中数学模拟题
延平区第一中学2018-2019学年下学期高二期中数学模拟题一、选择题1. 某校新校区建设在市二环路主干道旁,因安全需要,挖掘建设了一条人行地下通道,地下通道设计三视图中的主(正)视力(其中上部分曲线近似为抛物)和侧(左)视图如图(单位:m ),则该工程需挖掘的总土方数为( )A .560m 3B .540m 3C .520m 3D .500m 32. 设k=1,2,3,4,5,则(x+2)5的展开式中x k 的系数不可能是( )A .10B .40C .50D .803. 等差数列{a n }中,a 2=3,a 3+a 4=9 则a 1a 6的值为( )A .14B .18C .21D .274. 已知表示数列的前项和,若对任意的满足,且,则( )A .B .C .D .5. 设函数f (x )在R 上的导函数为f ′(x ),且2f (x )+xf ′(x )>x 2,下面的不等式在R 内恒成立的是( )A .f (x )>0B .f (x )<0C .f (x )>xD .f (x )<x6. 若双曲线M 上存在四个点A ,B ,C ,D ,使得四边形ABCD 是正方形,则双曲线M 的离心率的取值范围是( ) A. B.C.D.7. 已知F 1,F 2是椭圆和双曲线的公共焦点,M 是它们的一个公共点,且∠F 1MF 2=,则椭圆和双曲线的离心率的倒数之和的最大值为( ) A .2B.C.D .48. 设x ,y ∈R ,且x+y=4,则5x +5y 的最小值是( )A .9B .25C .162D .509. 下列4个命题:①命题“若x 2﹣x=0,则x=1”的逆否命题为“若x ≠1,则x 2﹣x ≠0”; ②若“¬p 或q ”是假命题,则“p 且¬q ”是真命题;③若p :x (x ﹣2)≤0,q :log 2x ≤1,则p 是q 的充要条件;④若命题p :存在x ∈R ,使得2x <x 2,则¬p :任意x ∈R ,均有2x ≥x 2; 其中正确命题的个数是( )班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________A .1个B .2个C .3个D .4个10.若,则等于( )A .B .C .D .11.已知函数f (x )的图象如图,则它的一个可能的解析式为( )A .y=2B .y=log 3(x+1)C .y=4﹣D .y=12.已知在数轴上0和3之间任取一实数,则使“2log 1x <”的概率为( ) A .14 B .18 C .23 D .112二、填空题13.已知圆O :x 2+y 2=1和双曲线C :﹣=1(a >0,b >0).若对双曲线C 上任意一点A (点A 在圆O外),均存在与圆O 外切且顶点都在双曲线C 上的菱形ABCD ,则﹣= .14.【2017-2018学年度第一学期如皋市高三年级第一次联考】已知函数()1e e xxf x =-,其中e 为自然对数的底数,则不等式()()2240f x f x -+-<的解集为________.15.若直线y ﹣kx ﹣1=0(k ∈R )与椭圆恒有公共点,则m 的取值范围是 .16.已知条件p :{x||x ﹣a|<3},条件q :{x|x 2﹣2x ﹣3<0},且q 是p 的充分不必要条件,则a 的取值范围是 .17.已知椭圆+=1(a >b >0)上一点A 关于原点的对称点为B ,F 为其左焦点,若AF ⊥BF ,设∠ABF=θ,且θ∈[,],则该椭圆离心率e 的取值范围为 .18.抛物线y 2=4x 的焦点为F ,过F 且倾斜角等于的直线与抛物线在x 轴上方的曲线交于点A ,则AF 的长为 .三、解答题19.(1)设不等式2x ﹣1>m (x 2﹣1)对满足﹣2≤m ≤2的一切实数m 的取值都成立,求x 的取值范围;(2)是否存在m 使得不等式2x ﹣1>m (x 2﹣1)对满足﹣2≤x ≤2的实数x 的取值都成立.20.(本小题满分10分)选修4-1:几何证明选讲选修41-:几何证明选讲 如图,,,A B C 为O 上的三个点,AD 是BAC ∠的平分线,交O 于 点D ,过B 作O 的切线交AD 的延长线于点E .(Ⅰ)证明:BD 平分EBC ∠; (Ⅱ)证明:AE DC AB BE ⨯=⨯.21.已知函数f (x )=xlnx ,求函数f (x )的最小值.22.(1)求z=2x+y 的最大值,使式中的x 、y 满足约束条件(2)求z=2x+y 的最大值,使式中的x 、y 满足约束条件+=1.23.已知关x的一元二次函数f(x)=ax2﹣bx+1,设集合P={1,2,3}Q={﹣1,1,2,3,4},分别从集合P 和Q中随机取一个数a和b得到数对(a,b).(1)列举出所有的数对(a,b)并求函数y=f(x)有零点的概率;(2)求函数y=f(x)在区间[1,+∞)上是增函数的概率.24.在长方体ABCD﹣A1B1C1D1中,AB=BC=2,过A1、C1、B三点的平面截去长方体的一个角后,得到如图所示的几何体ABCD﹣A1C1D1,且这个几何体的体积为10.(Ⅰ)求棱AA1的长;(Ⅱ)若A1C1的中点为O1,求异面直线BO1与A1D1所成角的余弦值.延平区第一中学2018-2019学年下学期高二期中数学模拟题(参考答案)一、选择题1.【答案】A【解析】解:以顶部抛物线顶点为坐标原点,抛物线的对称轴为y轴建立直角坐标系,易得抛物线过点(3,﹣1),其方程为y=﹣,那么正(主)视图上部分抛物线与矩形围成的部分面积S1==2=4,下部分矩形面积S2=24,故挖掘的总土方数为V=(S1+S2)h=28×20=560m3.故选:A.【点评】本题是对抛物线方程在实际生活中应用的考查,考查学生的计算能力,属于中档题.2.【答案】 C【解析】二项式定理.【专题】计算题.【分析】利用二项展开式的通项公式求出展开式的x k的系数,将k的值代入求出各种情况的系数.【解答】解:(x+2)5的展开式中x k的系数为C5k25﹣k当k﹣1时,C5k25﹣k=C5124=80,当k=2时,C5k25﹣k=C5223=80,当k=3时,C5k25﹣k=C5322=40,当k=4时,C5k25﹣k=C54×2=10,当k=5时,C5k25﹣k=C55=1,故展开式中x k的系数不可能是50故选项为C【点评】本题考查利用二项展开式的通项公式求特定项的系数.3.【答案】A【解析】解:由等差数列的通项公式可得,a3+a4=2a1+5d=9,a1+d=3解方程可得,a1=2,d=1∴a1a6=2×7=14故选:A【点评】本题主要考查了等差数列的通项公式的简单应用,属于基础试题4.【答案】C【解析】令得,所以,即,所以是以1为公差的等差数列,首项为,所以,故选C答案:C5.【答案】A【解析】解:∵2f(x)+xf′(x)>x2,令x=0,则f(x)>0,故可排除B,D.如果f(x)=x2+0.1,时已知条件2f(x)+xf′(x)>x2成立,但f(x)>x 未必成立,所以C也是错的,故选A故选A.6.【答案】A【解析】解:∵双曲线M上存在四个点A,B,C,D,使得四边形ABCD是正方形,∴由正方形的对称性得,其对称中心在原点,且在第一象限的顶点坐标为(x,x),∴双曲线渐近线的斜率k=>1,∴双曲线离心率e=>.∴双曲线M的离心率的取值范围是(,+∞).故选:A.【点评】本题考查双曲线的离心率的取值的范围的求法,是中档题,解题时要认真审题,注意双曲线性质的合理运用.7.【答案】C【解析】解:设椭圆的长半轴为a,双曲线的实半轴为a1,(a>a1),半焦距为c,由椭圆和双曲线的定义可知,设|MF1|=r1,|MF2|=r2,|F1F2|=2c,椭圆和双曲线的离心率分别为e1,e2∵∠F1MF2=,∴由余弦定理可得4c2=(r1)2+(r2)2﹣2r1r2cos,①在椭圆中,①化简为即4c2=4a2﹣3r1r2,即=﹣1,②在双曲线中,①化简为即4c2=4a12+r1r2,即=1﹣,③联立②③得,+=4,由柯西不等式得(1+)(+)≥(1×+×)2,即(+)2≤×4=,即+≤,当且仅当e=,e2=时取等号.即取得最大值且为.1故选C.【点评】本题主要考查椭圆和双曲线的定义和性质,利用余弦定理和柯西不等式是解决本题的关键.难度较大.8.【答案】D【解析】解:∵5x>0,5y>0,又x+y=4,∴5x+5y≥2=2=2=50.故选D.【点评】本题考查基本不等式,关键在于在应用基本不等式时灵活应用指数运算的性质,属于基础题.9.【答案】C【解析】解:①命题“若x2﹣x=0,则x=1”的逆否命题为“若x≠1,则x2﹣x≠0”,①正确;②若“¬p或q”是假命题,则¬p、q均为假命题,∴p、¬q均为真命题,“p且¬q”是真命题,②正确;③由p:x(x﹣2)≤0,得0≤x≤2,由q:log2x≤1,得0<x≤2,则p是q的必要不充分条件,③错误;④若命题p:存在x∈R,使得2x<x2,则¬p:任意x∈R,均有2x≥x2,④正确.∴正确的命题有3个.故选:C.10.【答案】B【解析】解:∵,∴,∴(﹣1,2)=m(1,1)+n(1,﹣1)=(m+n,m﹣n)∴m+n=﹣1,m﹣n=2,∴m=,n=﹣,∴ 故选B .【点评】用一组向量来表示一个向量,是以后解题过程中常见到的,向量的加减运算是用向量解决问题的基础,要学好运算,才能用向量解决立体几何问题,三角函数问题等.11.【答案】C【解析】解:由图可得,y=4为函数图象的渐近线,函数y=2,y=log 3(x+1),y=的值域均含4,即y=4不是它们的渐近线,函数y=4﹣的值域为(﹣∞,4)∪(4,+∞),故y=4为函数图象的渐近线, 故选:C【点评】本题考查的知识点是函数的图象,函数的值域,难度中档.12.【答案】C 【解析】试题分析:由2log 1x <得02x <<,由几何概型可得所求概率为202303-=-.故本题答案选C. 考点:几何概型.二、填空题13.【答案】 1 .【解析】解:若对双曲线C 上任意一点A (点A 在圆O 外), 均存在与圆O 外切且顶点都在双曲线C 上的菱形ABCD , 可通过特殊点,取A (﹣1,t ),则B (﹣1,﹣t ),C (1,﹣t ),D (1,t ), 由直线和圆相切的条件可得,t=1.将A (﹣1,1)代入双曲线方程,可得﹣=1.故答案为:1.【点评】本题考查双曲线的方程和运用,同时考查直线和圆相切的条件,属于基础题.14.【答案】()32-,【解析】∵()1e ,e x x f x x R =-∈,∴()()11xx x x f x e e f x e e --⎛⎫-=-=--=- ⎪⎝⎭,即函数()f x 为奇函数,又∵()0xxf x e e-=+>'恒成立,故函数()f x 在R 上单调递增,不等式()()2240f x f x -+-<可转化为()()224f x f x -<-,即224x x -<-,解得:32x -<<,即不等式()()2240f x f x -+-<的解集为()32-,,故答案为()32-,. 15.【答案】 [1,5)∪(5,+∞) .【解析】解:整理直线方程得y ﹣1=kx ,∴直线恒过(0,1)点,因此只需要让点(0.1)在椭圆内或者椭圆上即可,由于该点在y 轴上,而该椭圆关于原点对称,故只需要令x=0有 5y 2=5m得到y 2=m要让点(0.1)在椭圆内或者椭圆上,则y ≥1即是y 2≥1得到m ≥1∵椭圆方程中,m ≠5m 的范围是[1,5)∪(5,+∞) 故答案为[1,5)∪(5,+∞)【点评】本题主要考查了直线与圆锥曲线的综合问题.本题采用了数形结合的方法,解决问题较为直观.16.【答案】 [0,2] .【解析】解:命题p :||x ﹣a|<3,解得a ﹣3<x <a+3,即p=(a ﹣3,a+3);命题q :x 2﹣2x ﹣3<0,解得﹣1<x <3,即q=(﹣1,3).∵q 是p 的充分不必要条件,∴q ⊊p ,∴,解得0≤a ≤2, 则实数a 的取值范围是[0,2].故答案为:[0,2].【点评】本题考查了绝对值不等式的解法、一元二次不等式的解法、充分必要条件的判定与应用,考查了推理能力与计算能力,属于中档题17.【答案】 [,﹣1] .【解析】解:设点A (acos α,bsin α),则B (﹣acos α,﹣bsin α)(0≤α≤);F (﹣c ,0); ∵AF ⊥BF ,∴=0,即(﹣c ﹣acos α,﹣bsin α)(﹣c+acos α,bsin α)=0,故c2﹣a2cos2α﹣b2sin2α=0,cos2α==2﹣,故cosα=,而|AF|=,|AB|==2c,而sinθ===,∵θ∈[,],∴sinθ∈[,],∴≤≤,∴≤+≤,∴,即,解得,≤e≤﹣1;故答案为:[,﹣1].【点评】本题考查了圆锥曲线与直线的位置关系的应用及平面向量的应用,同时考查了三角函数的应用.18.【答案】4.【解析】解:由已知可得直线AF的方程为y=(x﹣1),联立直线与抛物线方程消元得:3x2﹣10x+3=0,解之得:x1=3,x2=(据题意应舍去),由抛物线定义可得:AF=x1+=3+1=4.故答案为:4.【点评】本题考查直线与抛物线的位置关系,考查抛物线的定义,考查学生的计算能力,属于中档题.三、解答题19.【答案】【解析】解:(1)令f (m )=2x ﹣1﹣m (x 2﹣1)=(1﹣x 2)m+2x ﹣1,可看成是一条直线,且使|m|≤2的一切 实数都有2x ﹣1>m (x 2﹣1)成立.所以,,即,即所以,.(2)令f (x )=2x ﹣1﹣m (x 2﹣1)=﹣mx 2+2x+(m ﹣1),使|x|≤2的一切实数都有2x ﹣1>m (x 2﹣1)成立.当m=0时,f (x )=2x ﹣1在时,f (x )≥0.(不满足题意)当m ≠0时,f (x )只需满足下式:或或或,解之得结果为空集. 故没有m 满足题意.【点评】本题以不等式为载体,恒成立问题,关键是构造函数,变换主元,考查解不等式的能力.属于中档题.20.【答案】【解析】【解析】(Ⅰ)因为BE 是⊙O 的切线,所以BAD EBD ∠=∠…………2分 又因为CAD BAD CAD CBD ∠=∠∠=∠,………………4分 所以CBD EBD ∠=∠,即BD 平分EBC ∠.………………5分 (Ⅱ)由⑴可知BAD EBD ∠=∠,且BED BED ∠=∠,BDE ∆∽ABE ∆,所以ABBDAE BE =,……………………7分 又因为DBC DBE BAE BCD ∠=∠=∠=∠,所以DBC BCD ∠=∠,CD BD =.……………………8分所以ABCDAB BD AE BE ==,……………………9分 所以BE AB DC AE ⋅=⋅.……………………10分21.【答案】【解析】解:函数的定义域为(0,+∞)求导函数,可得f′(x)=1+lnx令f′(x)=1+lnx=0,可得∴0<x<时,f′(x)<0,x>时,f′(x)>0∴时,函数取得极小值,也是函数的最小值∴f(x)min===﹣.【点评】本题考查导数知识的运用,考查函数的最值,考查学生分析解决问题的能力,属于中档题.22.【答案】【解析】解:(1)由题意作出可行域如下,,结合图象可知,当过点A(2,﹣1)时有最大值,故Z max=2×2﹣1=3;(2)由题意作图象如下,,根据距离公式,原点O到直线2x+y﹣z=0的距离d=,故当d有最大值时,|z|有最大值,即z有最值;结合图象可知,当直线2x+y﹣z=0与椭圆+=1相切时最大,联立方程化简可得,116x2﹣100zx+25z2﹣400=0,故△=10000z2﹣4×116×(25z2﹣400)=0,故z2=116,故z=2x+y的最大值为.【点评】本题考查了线性规划的应用及圆锥曲线与直线的位置关系的应用.23.【答案】【解析】解:(1)(a,b)共有(1,﹣1),(1,1),(1,2),(1,3),(1,4),(2,﹣1),(2,1),(2,2),(2,3),(2,4),(3﹣1),(3,1),(3,2),(3,3),(3,4),15种情况函数y=f(x)有零点,△=b2﹣4a≥0,有(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)共6种情况满足条件所以函数y=f(x)有零点的概率为(2)函数y=f(x)的对称轴为,在区间[1,+∞)上是增函数则有,(1,﹣1),(1,1),(1,2),(2,﹣1),(2,1),(2,2),(2,3),(2,4),(3,﹣1),(3,1),(3,2),(3,3),(3,4),共13种情况满足条件所以函数y=f(x)在区间[1,+∞)上是增函数的概率为【点评】本题主要考查概率的列举法和二次函数的单调性问题.对于概率是从高等数学下放的内容,一般考查的不会太难但是每年必考的内容要引起重视.24.【答案】【解析】解:(Ⅰ)设AA1=h,由题设=﹣=10,∴即,解得h=3.故A1A的长为3.(Ⅱ)∵在长方体中,A1D1∥BC,∴∠O1BC为异面直线BO1与A1D1所成的角(或其补角).在△O1BC中,AB=BC=2,A1A=3,∴AA1=BC1=,=,∴,则cos∠O1BC===.∴异面直线BO1与A1D1所成角的余弦值为.【点评】本题主要考查了点,线和面间的距离计算.解题的关键是利用了法向量的方法求点到面的距离.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
∴
,解得 x=4,y=﹣3,z=1,
∴C(4,﹣3,1). 故选:C. 8. 【答案】D 【解析】解:由等差数列的性质可得 a3+a13=2a8, 即有 a82=4a8, 解得 a8=4(0 舍去), 即有 b8=a8=4, 由等比数列的性质可得 b4b12=b82=16. 故选:D. 9. 【答案】C 【解析】解:如图, + 故选 C. + ( ).
)
6. 已知命题 p:∃x∈R,cosx≥a,下列 a 的取值能使“¬p”是真命题的是(
7. 空间直角坐标系中,点 A(﹣2,1,3)关于点 B(1,﹣1,2)的对称点 C 的坐标为( A.(4,1,1) B.(﹣1,0,5) C.(4,﹣3,1) D.(﹣5,3,4) 8. 已知等差数列{an}满足 2a3﹣a A.2 为( B.4 ) D.x= ,y=1 ) 的夹角大小为( D.135° ( B. C. ) D. C.8 D.16 + +2a13=0,且数列{bn} 是等比数列,若 b8=a8,则 b4b12=(
18.若命题“∃x∈R,x2﹣2x+m≤0”是假命题,则 m 的取值范围是 .
三、解答题
19.已知数列{an}满足 a1= ,an+1=an+ (Ⅰ)证明:bn∈(0,1) ,数列{bn}满足 bn=
(Ⅱ)证明:
=
(Ⅲ)证明:对任意正整数 n 有 an
.
第 2 页,共 16 页
20.设函数 f(x)=mx2﹣mx﹣1. (1)若对一切实数 x,f(x)<0 恒成立,求 m 的取值范围; (2)对于 x∈[1,3],f(x)<﹣m+5 恒成立,求 m 的取值范围.
第 5 页,共 16 页
5. 【答案】D 【解析】解:设回归直线方程为 ∵样本点的中心为(4,5), ∴5=1.23×4+a ∴a=0.08 ∴回归直线方程为 故选 D. 【点评】本题考查线性回归方程,考查学生的计算能力,属于基础题. 6. 【答案】D 【解析】解:命题 p:∃x∈R,cosx≥a,则 a≤1. 下列 a 的取值能使“¬p”是真命题的是 a=2. 故选;D. 7. 【答案】C 【解析】解:设 C(x,y,z), ∵点 A(﹣2,1,3)关于点 B(1,﹣1,2)的对称点 C, =1.23x+0.08 =1.23x+a
第 9 页,共 16 页
解得 m>1, 故答案为:m>1
三、解答题
19.【答案】 【解析】证明:(Ⅰ)由 bn= ∴ ,且 an+1=an+ ,得 ,
,下面用数学归纳法证明:0<bn<1.
①由 a1= ∈(0,1),知 0<b1<1, ②假设 0<bk<1,则 ∵0<bk<1,∴ , ,则 0<bk+1<1.
综上,当 n∈N*时,bn∈(0,1); (Ⅱ)由 ∴ ,可得, = , = .
故
;
(Ⅲ)由(Ⅱ)得: , 故 由 . 知,当 n≥2 时,
=
.
【点评】本题考查了数列递推式,考查了用数学归纳法证明与自然数有关的命题,训练了放缩法证明数列不等 式,对递推式的循环运用是证明该题的关键,考查了学生的逻辑思维能力和灵活处理问题的能力,是压轴题. 20.【答案】 【解析】解:(1)当 m=0 时,f(x)=﹣1<0 恒成立, 当 m≠0 时,若 f(x)<0 恒成立,
15. 刘老师带甲、 乙、 丙、 丁四名学生去西安参加自主招生考试, 考试结束后刘老师向四名学生了解考试情况. 四 名学生回答如下: 甲说:“我们四人都没考好.” 乙说:“我们四人中有人考的好.” 丙说:“乙和丁至少有一人没考好.” 丁说:“我没考好.” 结果,四名学生中有两人说对 了,则这四名学生中的 两人说对了.
∴sinθ∈[ , ∴ ≤ ∴ ≤ +
∴
,
即
,
解得,
≤e≤
﹣1; , ﹣1].
故答案为:[
【点评】 本题考查了圆锥曲线与直线的位置关系的应用及平面向量的应用, 同时考查了三角函数的应用. 18.【答案】 m>1 . 【解析】解:若命题“∃x∈R,x2﹣2x+m≤0”是假命题, 则命题“∀x∈R,x2﹣2x+m>0”是真命题, 即判别式△=4﹣4m<0,
)
9. 已知正方体 ABCD﹣A1B1C1D1 中,点 E 为上底面 A1C1 的中心,若
,则 x、y 的值分别
A.x=1,y=1 B.x=1,y= C.x= ,y=
10.在下列区间中,函数 f(x)=( )x﹣x 的零点所在的区间为( A.(0,1) B.(1,2) C.(2,3 ) 11.如果向量 A.30° 12.设集合 A. 满足 B.45° D.(3,4) ,且 C.75° ,则
延平区一中 2018-2019 学年下学期高二期中数学模拟题 一、选择题
1. 已知回归直线的斜率的估计值为 1.23,样本点的中心为(4,5) ,则回归直线方程为( A. B. C. ) C. (1, ) ) C. D. D. ( , 0) U (1, ) D. =0.08x+1.23 )
21.在等比数列{an}中,a1a2a3=27,a2+a4=30 试求: (1)a1 和公比 q; (2)前 6 项的和 S6.
22.已知抛物线 C:x2=2y 的焦点为 F. (Ⅰ)设抛物线上任一点 P(m,n).求证:以 P 为切点与抛物线相切的方程是 mx=y+n; (Ⅱ)若过动点 M(x0,0)(x0≠0)的直线 l 与抛物线 C 相切,试判断直线 MF 与直线 l 的位置关系,并予以 证明.
2. 函数 y ln( 1) 的定义域为( A. ( , 0] 3. 双曲线 A. 4. 设双曲线 A. B.2 C. B. (0,1) 的渐近线方程是( B.
1 x
=1(a>0,b>0)的渐近线方程为 y= D.
x,则该双曲线的离心率为(
Hale Waihona Puke )5. 已知回归直线的斜率的估计值是 1.23,样本点的中心为(4,5) ,则回归直线的方程是( A. A.﹣1 =1.23x+4 B.0 B. C.1 =1.23x﹣0.08 D.2 ) C. =1.23x+0.8 D. =1.23x+0.08 )
1 1 x x 1 1 0 ,∴ 0 ,∴ 0 ,∴ 0 x 1 . x x x
,
3. 【答案】B 【解析】解:∵双曲线标准方程为 其渐近线方程是 整理得 y=± x. 故选:B. 【点评】本题考查双曲线的简单性质的应用,令标准方程中的“1”为“0”即可求出渐近线方程.属于基础题. 4. 【答案】C 【解析】解:由已知条件知: ∴ ∴ ∴ 故选 C. 【点评】考查双曲线的标准方程,双曲线的渐近线方程的表示,以及 c2=a2+b2 及离心率的概念与求法. . ; ; ; =0,
1. 【答案】C 【解析】解:法一: 由回归直线的斜率的估计值为 1.23,可排除 D 由线性回归直线方程样本点的中心为(4,5), 将 x=4 分别代入 A、B、C,其值依次为 8.92、9.92、5,排除 A、B 法二: 因为回归直线方程一定过样本中心点, 将样本点的中心(4,5)分别代入各个选项,只有 C 满足, 故选 C 【点评】本题提供的两种方法,其实原理都是一样的,都是运用了样本中心点的坐标满足回归直线方程. 2. 【答案】B 【解析】∵
【解析】解:设点 A(acosα,bsinα),则 B(﹣acosα,﹣bsinα)(0≤α≤ F(﹣c,0);
第 8 页,共 16 页
∵AF⊥BF, ∴ =0, 即(﹣c﹣acosα,﹣bsinα)(﹣c+acosα,bsinα)=0, 故 c2﹣a2cos2α﹣b2sin2α=0, cos2α= 故 cosα= 而|AF|= |AB|= 而 sinθ= = ∵θ∈[ , ], ], ≤ ≤ , , = , =2﹣ , , =2c, ,
班级_______________ 座号______ 姓名_______________ 分数_______________ ___________________________________________________________________________________________________
二、填空题
13.【答案】 .
【解析】解:已知数列 1,a1,a2,9 是等差数列,∴a1+a2 =1+9=10. 数列 1,b1,b2,b3,9 是等比数列,∴ ∴b2=3,则 , =1×9,再由题意可得 b2=1×q2>0 (q 为等比数列的公比) ,
=
第 7 页,共 16 页
故答案为
.
【点评】本题主要考查等差数列、等比数列的定义和性质应用,属于中档题. 14.【答案】 .
)
第 1 页,共 16 页
二、填空题
13.已知数列 1,a1,a2,9 是等差数列,数列 1,b1,b2,b3,9 是等比数列,则 14.已知 f(x),g(x)都是定义在 R 上的函数,且满足以下条件: ①f(x)=axg(x)(a>0,a≠1); ②g(x)≠0; ③f(x)g'(x)>f'(x)g(x); 若 ,则 a= . 的值为 .
﹣bx,函数 f(x)=x+alnx 在 x=1 处的切线 l 与直线 x+2y=0 垂直.
(2)若函数 g(x)存在单调递减区间,求实数 b 的取值范围; (3)设 x1、x2(x1<x2)是函数 g(x)的两个极值点,若 b ,求 g(x1)﹣g(x2)的最小值.
第 4 页,共 16 页
延平区一中 2018-2019 学年下学期高二期中数学模拟题(参考答案) 一、选择题
第 6 页,共 16 页
10.【答案】A 【解析】解:函数 f(x)=( )x﹣x, 可得 f(0)=1>0,f(1)=﹣ <0.f(2)=﹣ <0, 函数的零点在(0,1). 故选:A. 11.【答案】B 【解析】解:由题意 故两向量夹角的余弦值为 故两向量夹角的取值范围是 45° 故选 B 【点评】本题考点是数量积表示两个向量的夹角,考查利用向量内积公式的变形形式求向量夹角的余弦,并进 而求出两向量的夹角.属于基础公式应用题. 12.【答案】B 【解析】解:集合 A 中的不等式,当 x>0 时,解得:x> ;当 x<0 时,解得:x< , 集合 B 中的解集为 x> , 则 A∩B=( ,+∞). 故选 B 【点评】此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键. = 故 ,即