线性代数试题库(1)答案-(2)

合集下载

线性代数试题1及答案

线性代数试题1及答案

线性代数试题1及答案一. 填空题(每空3分,共15分)1. 设矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=333222111c b a c b a c b a A ,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=333222111d b a d b a d b a B 且4=A ,1=B 则=+B A 20 2. 二次型233222213214),,(x x tx x x x x x f +-+=是正定的,则t 的取值范围是44 t -3. A 为3阶方阵,且21=A ,则=--*12)3(A A 2716-4. 设n 阶矩阵A 的元素全为1,则A 的n 个特征值是0,21====n n λλλ5. 设A 为n 阶方阵,n βββ ,,21为A 的n 个列向量,若方程组0=AX 只有零解,则向量组(n βββ ,,21)的秩为 n二. 选择题(每题3分,共15分)6. 设线性方程组⎪⎩⎪⎨⎧=+=+--=-0322313221ax cx bc bx cx ab ax bx ,则下列结论正确的是(A ) (A)当c b a ,,取任意实数时,方程组均有解 (B)当a =0时,方程组无解 (C) 当b =0时,方程组无解 (D)当c =0时,方程组无解 7. A.B 同为n 阶方阵,则(C )成立(A) B A B A +=+ (B) BA AB =(C) BA AB = (D) 111)(---+=+B A B A8. 设⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=333231232221131211a a a a a a a a a A ,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+++=331332123111131211232221a a a a a a a a a a a a B ,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=1000010101P ,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=1010100012P 则(C )成立 (A)21P AP (B) 12P AP (C) A P P 21 (D) A P P 12 9. A ,B 均为n 阶可逆方阵,则AB 的伴随矩阵=*)(AB (D ) (A) **B A (B) 11--B A AB (C) 11--A B (D)**A B 10. 设A 为n n ⨯矩阵,r A r =)(<n ,那么A 的n 个列向量中(B ) (A )任意r 个列向量线性无关 (B) 必有某r 个列向量线性无关(C) 任意r 个列向量均构成极大线性无关组(D) 任意1个列向量均可由其余n -1个列向量线性表示三. 计算题(每题7分,共21分)11. 设⎪⎪⎪⎭⎫⎝⎛=300041003A 。

线性代数考试练习题带答案(2)

线性代数考试练习题带答案(2)

线性代数试题集与答案解析二、判断题(判断正误,共5道小题)9.设A ,B 是同阶方阵,则AB=BA 。

正确答案:说法错误解答参考:10. n维向量组{ α 1 , α 2 , α 3 , α 4 } 线性相关,则{ α 2 , α 3 , α 4 } 线性无关。

正确答案:说法错误解答参考:11.若方程组Ax=0 有非零解,则方程组Ax=b 一定有无穷多解。

正确答案:说法错误解答参考:12.若A ,B 均为n阶方阵,则当| A |>| B | 时,A ,B 一定不相似。

正确答案:说法正确解答参考:相似矩阵行列式值相同13.设A是m×n 阶矩阵且线性方程组Ax=b 有惟一解,则m≥n 。

正确答案:说法正确解答参考:(注意:若有主观题目,请按照题目,离线完成,完成后纸质上交学习中心,记录成绩。

在线只需提交客观题答案。

)三、主观题(共12道小题)14.设A是m×n 矩阵, B是p×m 矩阵,则A T B T 是×阶矩阵。

参考答案:A T B T是n×p 阶矩阵。

15.由m个n维向量组成的向量组,当m n时,向量组一定线性相关。

参考答案:m>n时向量组一定线性相关16.参考答案:a=6(R( A )=2⇒| A |=0)17._________________。

参考答案:( 1 2 3 4 ) T+k ( 2 0 −2 −4 ) T。

因为R ( A )=3 ,原方程组的导出组的基础解系中只含有一个解向量,取为η2+ η3−2 η1,由原方程组的通解可表为导出组的通解与其一个特解之和即得。

18.时方程组有唯一解。

参考答案:当a=−2 时方程组无解,当a=1 时方程组有无穷多个解,当a≠1,−2 时方程组有唯一解。

19.参考答案:2420.参考答案:t=6 21.参考答案:22.参考答案:23.参考答案:24.已知方阵(1)求a,b的值;(2)求可逆矩阵P及对角矩阵D,使得参考答案:25.参考答案:本次作业是本门课程本学期的第1次作业,注释如下:一、单项选择题(只有一个选项正确,共8道小题)1. 下列矩阵中,不是初等矩阵。

线性代数试题及答案

线性代数试题及答案

线性代数试题及答案一、选择题(每题5分,共20分)1. 下列矩阵中,哪个是可逆矩阵?A. \(\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}\)B. \(\begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}\)C. \(\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}\)D. \(\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}\)答案:C2. 矩阵\(A\)的行列式为0,那么\(A\)的秩是:A. 0B. 1C. 2D. 3答案:A3. 向量\(\vec{a} = (1, 2, 3)\)和向量\(\vec{b} = (4, 5, 6)\)的点积为:A. 14B. 32C. 8D. 22答案:A4. 矩阵\(A\)的转置矩阵记作\(A^T\),那么\((A^T)^T\)等于:A. \(A^T\)B. \(A\)C. \(A^{-1}\)D. \(A^2\)答案:B二、填空题(每题5分,共20分)1. 若矩阵\(A\)的行列式为-5,则\(A^{-1}\)的行列式为______。

答案:\(\frac{1}{5}\)2. 矩阵\(A\)的秩为2,那么\(A\)的零空间的维数为\(\_\_\_\_\)。

答案:\(n-2\)(其中n为\(A\)的列数)3. 向量\(\vec{a} = (1, 2)\)和向量\(\vec{b} = (3, 4)\)的叉积为______。

答案:\(-2\)4. 若\(\vec{a} = (1, 0, 0)\),\(\vec{b} = (0, 1, 0)\),\(\vec{c} = (0, 0, 1)\),则\(\vec{a} \times \vec{b} =\_\_\_\_\_\)。

线性代数试题及答案

线性代数试题及答案

线性代数试题及答案一、选择题(每题2分,共20分)1. 以下哪个矩阵是可逆的?A. [1 0; 0 0]B. [1 2; 3 4]C. [1 0; 0 1]D. [0 1; 1 0]2. 矩阵的秩是指什么?A. 矩阵的行数B. 矩阵的列数C. 矩阵中线性无关的行或列的最大数目D. 矩阵的对角线元素的个数3. 线性方程组有唯一解的条件是什么?A. 方程个数等于未知数个数B. 方程组是齐次的C. 方程组的系数矩阵是可逆的D. 方程组的系数矩阵的秩等于增广矩阵的秩4. 向量空间的基具有什么性质?A. 基向量的数量必须为1B. 基向量必须是正交的C. 基向量必须是线性无关的D. 基向量必须是单位向量5. 特征值和特征向量的定义是什么?A. 对于矩阵A,如果存在非零向量v,使得Av=λv,则λ是A的特征值,v是A的特征向量B. 对于矩阵A,如果存在非零向量v,使得A^Tv=λv,则λ是A 的特征值,v是A的特征向量C. 对于矩阵A,如果存在非零向量v,使得A^-1v=λv,则λ是A 的特征值,v是A的特征向量D. 对于矩阵A,如果存在非零向量v,使得Av=v,则λ是A的特征值,v是A的特征向量6. 线性变换的矩阵表示是什么?A. 线性变换的逆矩阵B. 线性变换的转置矩阵C. 线性变换的雅可比矩阵D. 线性变换的对角矩阵7. 以下哪个不是线性代数中的基本概念?A. 向量B. 矩阵C. 行列式D. 微积分8. 什么是线性方程组的齐次解?A. 方程组的所有解B. 方程组的特解C. 方程组的零解D. 方程组的非平凡解9. 矩阵的迹是什么?A. 矩阵的对角线元素的和B. 矩阵的行列式C. 矩阵的秩D. 矩阵的逆10. 什么是正交矩阵?A. 矩阵的转置等于其逆矩阵B. 矩阵的所有行向量都是单位向量C. 矩阵的所有列向量都是单位向量D. 矩阵的所有行向量都是正交的答案:1-5 C C C C A;6-10 D D C A A二、简答题(每题10分,共20分)11. 请简述线性代数中的向量空间(Vector Space)的定义。

线性代数模拟试题及答案(三套)

线性代数模拟试题及答案(三套)

第一套线性代数模拟试题解答一、填空题(每小题4分,共24分)1、 若12335544i j a a a a a 是五阶行列式中带正号的一项,则,12i j ==。

令1,2i j ==,(12354)(13524)134τπ+=+=,取正号。

2、 若将n 阶行列式D 的每一个元素添上负号得到新行列式D ,则D =(1)n D- 。

即行列式D 的每一行都有一个(-1)的公因子,所以D =(1)n D-。

3、设1101A ⎛⎫=⎪⎝⎭, 则100A =110001⎛⎫ ⎪⎝⎭。

23111112121113,,010*********A A ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫==== ⎪⎪ ⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭可得4、设A 为5 阶方阵,5A =,则5A =15n +。

由矩阵的行列式运算法则可知:1555n n A A +==。

5、A 为n 阶方阵,TAA E =且=+<E A A 则,0 0 。

由已知条件:211,1T T TAA E AA A A A E A A =⇒====⇒=±⇒=-, 而 :0TTA E A AA A E A A A E A E A E +=+=+=+=-+⇒+=。

6、设三阶方阵2000023A x y ⎛⎫⎪= ⎪ ⎪⎝⎭可逆,则,x y 应满足条件32x y ≠。

可逆,则行列式不等于零:2002(32)032023A x y x y x y ==⨯-≠⇒≠。

二、单项选择题(每小题4分,共24分) 7、设0333231232221131211≠=M a a a a a aa a a ,则行列式=---------232221333231131211222222222a a a a a a a a a A 。

A .M 8 B .M 2 C .M 2- D .M 8-由于 ()()111213111213111213331323331323321222321222321222331323322222228(1)8222a a a a a a a a a a a a a a a a a a M a a a a a a a a a ------=-=--=---8、设n 阶行列式n D ,则0n D =的必要条件是 D 。

线性代数试题及答案

线性代数试题及答案

线性代数试题及答案1. 题目:矩阵运算题目描述:给定两个矩阵A和B,计算它们的乘积AB。

答案解析:矩阵A的维度为m x n,矩阵B的维度为n x p,则矩阵AB的维度为m x p。

矩阵AB中的每个元素都可以通过矩阵A的第i行与矩阵B的第j列的内积来计算,即AB(i,j) =∑_{k=1}^{n}A(i,k)B(k,j)。

2. 题目:矩阵转置题目描述:给定一个矩阵A,求其转置矩阵AT。

答案解析:如果矩阵A的维度为m x n,则转置矩阵AT的维度为n x m。

转置矩阵AT中的每个元素都可以通过矩阵A的第i行第j列的元素来计算,即AT(j,i) = A(i,j)。

3. 题目:线性方程组求解题目描述:给定一个线性方程组Ax = b,其中A是一个m x n的矩阵,x和b是n维向量,求解x的取值。

答案解析:假设矩阵A的秩为r,则根据线性代数的理论,线性方程组有解的条件是r = rank(A) = rank([A | b])。

若方程组有解,则可以通过高斯消元法、LU分解等方法求解。

4. 题目:特征值与特征向量题目描述:给定一个矩阵A,求其特征值和对应的特征向量。

答案解析:设λ为矩阵A的特征值,若存在非零向量x,满足Ax = λx,则x为矩阵A对应于特征值λ的特征向量。

特征值可以通过解特征方程det(A - λI) = 0求得,其中I为单位矩阵。

5. 题目:行列式计算题目描述:给定一个方阵A,求其行列式det(A)的值。

答案解析:行列式是一个方阵的一个标量值。

行列式的计算可以通过Laplace展开、初等行变换等方法来进行。

其中,Laplace展开是将行列式按矩阵的某一行或某一列展开成若干个代数余子式的和。

6. 题目:向量空间与子空间题目描述:给定一个向量空间V和它的子集U,判断U是否为V的子空间。

答案解析:子空间U必须满足三个条件:(1)零向量属于U;(2)对于U中任意两个向量u和v,它们的线性组合u+v仍然属于U;(3)对于U中的任意向量u和标量c,它们的数乘cu仍然属于U。

(完整版)线性代数试题及答案

线性代数习题和答案第一部分 选择题 (共 28 分)、单项选择题(本大题共 14 小题,每小题 2 分,共 28 分)在每小题列出的四个选项中只有一个是符合题目要求的,请将其代码填在题后的括号内。

错选或未选均无分。

C. 3D. 46.设两个向量组 α1,α2,⋯, αs 和β 1,β2,⋯, βs 均线性相关,则()A. 有不全为 0 的数λ 1,λ2,⋯,λs 使λ1α1+λ2α2+⋯+λs αs =0 和λ 1β 1+λ 2β 2+⋯λ s βs =0B. 有不全为 0 的数λ 1,λ 2,⋯,λ s 使λ 1(α1+β1)+λ2(α2+β2)+⋯+λs ( α s + β s )=0C. 有不全为 0 的数λ 1,λ 2,⋯,λ s 使λ1(α 1- β1)+λ2(α2- β2)+⋯+λs (αs - βs )=0D.有不全为 0的数λ 1,λ 2,⋯,λ s 和不全为 0的数μ 1,μ 2,⋯,μ s 使λ1α1+λ2α2+⋯+ λ s α s =0 和μ 1β1+μ2β2+⋯+μ s βs =07.设矩阵 A 的秩为 r ,则 A 中( )A. 所有 r- 1阶子式都不为 0B.所有 r- 1阶子式全为 0C.至少有一个 r 阶子式不等于 0D.所有 r 阶子式都不为 08. 设 Ax=b 是一非齐次线性方程组, η1,η2是其任意 2 个解,则下列结论错误的是( )A. m+n C. n- m a 11a 12a 13 a 11=m ,a 21a 22a 23 a 21a 11 a 12 a 13等于(2.设矩阵 A=0 ,则 A - 1 等于( 3A. 0 1 3C. 03.设矩阵 A=a 21 a 22 a 23B. - (m+n) D. m- nB.D.21 ,A *是 A 的伴随矩阵,则 A *中位于 41,2)的元素是(A. –6 C. 2 4.设 A 是方阵,如有矩阵关系式 AB=AC ,则必有( A. A =0 C. A 0 时 B=C 5.已知 3×4 矩阵 A 的行向量组线性无关,则秩( A. 1B. 6 D. –2 ) B. B D. |A| 0 时 B=C C 时 A=0 A T )等于( )B. 21.设行列式 =n ,则行列式10.设 A 是一个 n (≥3)阶方阵,下列陈述中正确的是( )A. 如存在数λ和向量 α使 A α=λα,则α是 A 的属于特征值λ的特征向量B. 如存在数λ和非零向量 α,使(λE- A )α=0,则λ是 A 的特征值C. A 的 2 个不同的特征值可以有同一个特征向量D. 如λ 1,λ 2,λ 3是A 的 3个互不相同的特征值, α1,α2,α3依次是 A 的属于λ 1,λ2, λ3的特征向量,则 α 1,α 2, α 3有可能线性相关 11. 设λ 0是矩阵 A 的特征方程的 3重根, A 的属于λ 0的线性无关的特征向量的个数为 k ,则必有( )222(a 11A 21+a 12A 22+a 13A 23) +(a 21A 21+a 22A 22+a 23A 23) +(a 31A 21+a 32A 22+a 33A 23) =.18. 设向量( 2, -3, 5)与向量( -4, 6, a )线性相关,则 a= .19. 设A 是 3×4矩阵,其秩为 3,若η1,η2为非齐次线性方程组 Ax=b 的 2个不同的解,则它 的通解为 .20. 设 A 是 m ×n 矩阵, A 的秩为 r (<n ) ,则齐次线性方程组 Ax=0 的一个基础解系中含有解的个A. η1+η2 是 Ax=0 的一个解 C. η 1-η 2是 Ax=0 的一个解 9. 设 n 阶方阵 A 不可逆,则必有(A. 秩 (A )<n C.A=0 11B.η1+ η2是 Ax=b 的一个解22D. 2 η 1-η 2 是 Ax=b 的一个解 ) B. 秩 (A)=n- 1D. 方程组 Ax=0 只有零解A. k ≤ 3C. k=312. 设 A 是正交矩阵,则下列结论错误的是(A.| A| 2必为 1 C. A - 1=A T 13. 设 A 是实对称矩阵, C 是实可逆矩阵,A.A 与 B 相似B. A 与 B 不等价C. A 与 B 有相同的特征值D. A 与 B 合同 14.下列矩阵中是正定矩阵的为()23 A.34 1 0 0C. 0 2 30 3 5第二部分B. k<3 D. k>3 )B.|A|必为 1D.A 的行(列)向量组是正交单位向量组 B=C T AC .则( ) 34 B. 26 1 1 1 D. 1 2 0102 非选择题(共 72 分)2 分,共 20 分)不写解答过程,将正确的答案写在每1 1 115. 3 569 25 361 111 2 316.设 A=B=.则 A+2B=1 111 2 417. 设 A =(a ij )3 × 3 , |A|=2 , A ij 表示 |A|中 元 素a ij 的 代 数 余 子 式 ( i,j=1,2,3 ) , 则数为.21. 设向量α、β的长度依次为2和3,则向量α+β与α-β的内积(α+β,α- β)=22.设 3阶矩阵 A 的行列式 |A |=8,已知 A 有 2个特征值 -1和 4,则另一特征值为 .0 10 6223.设矩阵 A=1 3 3 ,已知 α = 1 是它的一个特征向量,则α 所对应的特征值2 10 82为24.设实二次型 f (x 1,x 2,x 3,x 4,x 5)的秩为 4,正惯性指数为 3,则其规范形为 三、计算题(本大题共 7 小题,每小题 6分,共 42分)26.试计算行列式4 2 327.设矩阵 A= 110, 求矩阵 B 使其满足矩阵方程AB=A+2B.12321 3 028.给定向量组α 1=1,3 α2=, α=, α10 2 2 =4.3419试判断 α 4 是否为 α 1, α2,α3 的线性组合;若是, 则求出组合系数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

线性代数试题库(1)答案 一、选择题:(3×7=21分) 1.n 阶行列式D的元素aij的余子式Mij与aij的代数余子式Aij的关系是( C )

A. Aij=Mij B。 Aij=(-1) nMij C。Aij=(-1)jiMij D。Aij=-Mij 2.设A是数域F上m x n矩阵,则齐次线性方程组AX=O ( A ) A. 当m < n时,有非零解 B.当m > n时,无解C.当m=n 时,只有零解D.当m=n 时,只有非零解

3.在n维向量空间V中,如果,L(V)关于V的一个基{n,,1}的矩阵分别为A,B.那么对

于a,bF,a+b关于基{n,,1}的矩阵是( C ) A.A+B B.aA+B C.aA+bB D.A+Bb 4.已知数域F上的向量321,, 线性无关,下列不正确的是( D )

A1,2线性无关 B.32,线性无关 C.13,线性无关 D.321,,



中必有一个向量是其余向量的线性组合。 5.Rn中下列子集,哪个不是子空间( C )

A.Rn B.niiinaniRaaa11}0,,1,|),,{(且

C.niiinaniRaaa11}1,,1,|),,{(且 D.{0} 6.两个二次型等价当且仅当它们的矩阵( A ) A 。相似 B.合同 C.相等 D.互为逆矩阵

7.向量空间R3的如下变换中,为线性变换的是( C )

A.)1,1|,(|),,(1321xxxx B.),,1(),,(321321xxxxxx C.)0,,(),,(32321xxxxx D.),,(),,(232221321xxxxxx 二.填空题(3X10=30分)

1.当且仅当k=(-1或3)时,齐次线性方程组09030322132`1321xkxxkxxxxxx有非零解

2.设A=0,,,0321321bbbBaaa,则秩(AB)为(1)。 3.向量(x,y,z)关于基(0,1/2,0),(1/3,0,0),(0,0,1/4)的坐标为 。 4.设向量空间F2的线性变换

题号 一 二 三 四 五 六 总分 得分 评卷人



41,21,31),)((),0,(),(),,(),(,21212122121xxxxxxxxxxx则为(2x1,x2)。 5.已知V=02|),,,(4214321xxxxxxx,则dimV=(3)。

6.已知实矩阵A= 是正交阵,则b=(0)。 7.设,,V43214321,,,的一个标准正交基是四维欧氏空间 .1),(,6,3,,2||,321d的夹角与则

三、计算题 1.求矩阵方程的解 3113101121101x , (10分) 解:x= 2.设 (10分)

解:由 TTXXAE1,1,1,1,3,1,02121分别单位化,得 , ,所以

3.设二次型32312123222132162252),,(xxxxxxxxxxxxf,回答下列问题: (1)将它化为典范型。 (2)二次型的秩为何? (3)二次型的正、负惯性指标及符号差为何? (4)二次型是否是正定二次型? (10分)

解:(1)25242322213215),,(yyyyyxxxf ,(2)r=5 ,(3)p=3;s=1 ,(4)A=6>0,是正定二次型 。 四、证明题 1.设V是数域F上一个一维向量空间。证明V的变换σ是线性变换的充要条件是:对于任意ξV,都有σ(ξ)=aξ,a为F中一个定数。(10分)

证明:,是线性变换,则,由,此时得基,存在的是假设1F V所以

aa则,令a

1111

2121212121FVaaaa,由,,任意

是线性变换。1111kakakk

2。行列式2221112222221111112cbacbacbabaaccbbaaccbbaaccb ,(10分)

证:原式=2221112221112221112221112221112cbacbacbacbacbacbacbacbacbabacbacbacacbacbacb

)0(,3131ab

a



2112A为对角形使求可逆矩阵ATTT1

T

22,2

2

1

T

22,2

2

2





22222222T 线性代数试题库(2 )答案 2005—2006学年 第一学期 考试时间 120分钟

一、选择题:(3X5=15分) 1.n 阶行列式D的元素aij的余子式Mij与aij的代数余子式Aij的关系是( C ) A. Aij=Mij B。 Aij=(-1) nMij C。Aij=(-1)jiMij D。Aij=-Mij 2.设A是数域F上m x n矩阵,则齐次线性方程组AX=O ( A ) A. 当m < n时,有非零解 B.当m > n时,无解 C.当m=n 时,只有零解D.当m=n 时,只有非零解 3.已知n维向量321,, 线性无关,下列不正确的是( D) A1,2线性无关 B.32,线性无关 C.13,线性无关 D.321,,中必有一个向量是其余向量的线性组合。

题号 一 二 三 四 五 六 总分 得分 评卷人 4.若A是mxn矩阵,且r(A)=r,则A中( D) A. 至少有一个r阶子式不等于0,但没有等于0的r-1阶子式; B. 必有等于0的r-1阶子式,有不等于0的r阶子式; C. 有等于0的r-1阶子式,没有等于0的r阶子式; D. 有不等于0的r阶子式,所有r+1阶子式均等于0。 5.4.设A是三阶矩阵,|A|=1,则|2A2|=( A)A.2,B,1,C8 ,D 4 二.填空题(3X6=18分) 1.当且仅当k=(-1或3)时,齐次线性方程组 有非零解 2.设A= ,则秩(AB)为(1)。 3.行列式 4.已知实矩阵A= 是正交阵,则b=(0)。 5.向量(x,y,z)关于基(0,1/2,0),(1/3,0,0),(0,0,1/4)的坐标为 。

6.设A,B为n阶可逆矩阵,则1BooA11BooA。(10分) 三、计算题 1.求矩阵方程的解 3113101121101x , (10分) 解:x=

2.设 (15分)

解:由 TTXXAE1,1,1,1,3,1,02121分别单位化,得 , ,所以

3.设二次型32312123222132162252),,(xxxxxxxxxxxxf,回答下列问题: (1)将它化为典范型。 (2)二次型的秩为何? (3)二次型的正、负惯性指标及符号差为何?





09030322132`1321xkxxkxxxxxx

0,,,0321321bbbBaa

a

.0000zyzx

yx

)0(,3131ab

a



41,21,31

T

22,2

2

1

T

22,2

2

2





22222222T



2112A为对角形使求可逆矩阵ATTT1(4)二次型是否是正定二次型? (12分) 解:(1)25242322213215),,(yyyyyxxxf ,(2)r=5 ,(3)p=3;s=1 ,(4)A=6>0,是正定二次型 。

4.设向量组 求向量组的秩及其一个极大无关组。(10分) 解: A=

其中 由此r(A)=3, 是一个极大无关组, 四、证明题 1. A是正交矩阵,证明AAA,,,。(10分) 证明:,,TTTTTTAAAAAAAA, ,,AAA

2。行列式2221112222221111112cbacbacbabaaccbbaaccbbaaccb ,(10分)

证:原式=2221112221112221112221112221112cbacbacbacbacbacbacbacbacbabacbacbacacbacbacb

线性代数试题库(3)答案 题号 一 二 三 四 五 六 总分 得分



0211,6512,14703,2130,4211

54321

2141521421321151413215

4

321223000040000000213042112340002130213021304211021165121470321304211aaaaaaaaaaaaaaaaaaaaaaaaaa



02,0341412213aaaaa

421,,a



4215213,3aaaa

相关文档
最新文档