高二数学组合数的两个性质

高二数学组合数的两个性质
高二数学组合数的两个性质

组合数的两个性质 教学目的:熟练掌握组合数的计算公式;

掌握组合数的两个性质,

并且能够运用它解决一些简单的应用问题。

教学重点:组合数的两个性质的理解和应用。 教学难点:利用组合数性质进行一些证明。 教学过程:

一、复习回顾:

1

强调:排列——次序性;组合——无序性. 2.练习

1:求证:11--=

m n m

n C m

n C . (本式也可变形为:1

1--=m n m n nC mC )

2:计算:① 3

10C 和7

10C ; ② 2637C C -与36C ;③ 5

11411C C +

(此练习的目的为下面学习组合数的两个性质打好基础.)

二、新授容:

1.组合数的 性质1:m n n m n C C -=.

理解: 一般地,从n 个不同元素中取出m 个元素后,剩下n - m 个元素.因

为从n 个不同元素中取出m 个元素的每一个组合,与剩下的n - m 个元素的每一个组合一一对应....

,所以从n 个不同元素中取出m 个元素的组合数,等于从这n 个元素中取出n - m 个元素的组合数,即:m

n n m n C C -=.在这里,我们主要体现:

“取法”与“剩法”是“一一对应”的思想.

证明:∵)!

(!!

)]!([)!(!m n m n m n n m n n C m

n n -=

---=

- 又 )!

(!!m n m n C m

n -=

∴m n n m n C C -=

注:1? 我们规定 10

=n C

2? 等式特点:等式两边下标同,上标之和等于下标. 3? 此性质作用:当2

n m >时,计算m n C 可变为计算m

n n C -,能够使运算简化. 例如:2001

2002C =2001

20022002

-C =1

2002C =2002.

4? y

n x n C C =y x =?或n y x =+

2.例4一个口袋装有大小相同的7个白球和1个黑球.

⑴ 从口袋取出3个球,共有多少种取法?

⑵ 从口袋取出3个球,使其中含有1个黑球,有多少种取法? ⑶ 从口袋取出3个球,使其中不含黑球,有多少种取法?

解:⑴ 5638=C ⑵ 2127=C ⑶ 353

7=C 引导学生发现:=38C +27C 3

7C .为什么呢?

我们可以这样解释:从口袋的8个球中所取出的3个球,可以分为两类:一类含有1个黑球,一类不含有黑球.因此根据分类计数原理,上述等式成立.

一般地,从121,,,+n a a a 这n +1个不同元素中取出m 个元素的组合数是m

n C 1+,这些组合可以分为两类:一类含有元素1a ,一类不含有1a .含有1a 的组合是从132,,,+n a a a 这n 个元素中取出m -1个元素与1a 组成的,共有1

-m n

C 个;不含有1a 的组合是从

132,,,+n a a a 这n 个元素中取出m 个元素组成的,共有m n C 个.根据分类计数原理,可

以得到组合数的另一个性质.在这里,我们主要体现从特殊到一般的归纳思想,“含与不含其元素”的分类思想.

3.组合数的 性质2:m n C

1+=m n C +1

-m n C .

证明: )]!

1([)!1(!)!(!!1

---+

-=

+-m n m n m n m n C C m n m n )!1(!!)1(!+-++-=m n m m n m n n

)!1(!!)1(+-++-=m n m n m m n

)!

1(!)!1(+-+=

m n m n m

n C 1+= ∴ m

n C 1+=m

n C +1

-m n

C .

注:1? 公式特征:下标相同而上标差1的两个组合数之和,等于下标比原下标多1

而上标与高的相同的一个组合数.

2? 此性质的作用:恒等变形,简化运算.在今后学习“二项式定理”时,我们

会看到它的主要应用.

4.补充例题

⑴ 计算:6

9584737C C C C +++

⑵ 求证:n m C 2+=n m C +12-n m C +2

-n m C

⑶ 解方程:3

213113-+=x x C C

⑷ 解方程:3

33

22210

1+-+-+=

+x x x x x A C C ⑸ 计算:4

434241404C C C C C ++++和554535251505C C C C C C +++++ 推广:n

n n n n n n n C C C C C 21210=+++++-

5.组合数性质的简单应用: 证明下列等式成立:

⑴ (讲解)1

1321++---=+++++k n k k k k k n k n k n C C C C C C ⑵ (练习)1

121++++++=++++k k n k n k k k k k k k C C C C C

⑶ )(2

3210321n n n n n

n n n n C C C n nC C C C +++=

++++ 三、作业: 课堂作业:P 103 1#,2#

课外作业:课本习题10.3;5#—8#

四、小结:1.组合数的两个性质;

2.从特殊到一般的归纳思想.

酒钢三中高二数学组

高中数学-排列组合解法大全

排列组合解法大全 复习巩固 1.分类计数原理(加法原理) 完成一件事,有n类办法,在第 1类办法中有m1种不同的方法,在第 2 类办法中有m2种不同的方法,?,在第n 类办法中有m n种不同的方法,那么完成这件事共有: 种不同的方法. 2.分步计数原理(乘法原理) 完成一件事,需要分成n个步骤,做第 1步有m1种不同的方法,做第 2步有m2种不同的方法,做第n步有m n种不同的方法,那么完成这件事共有: 种不同的方法. 3.分类计数原理分步计数原理区别分类计数原理方法相互独立,任何一种方法都可以独立地完成这件事。分步计数原理各步相互依存,每步中的方法完成事件的一个阶段,不能完成整个事件. 解决排列组合综合性问题的一般过程如下 : 1.认真审题弄清要做什么事 2.怎样做才能完成所要做的事 , 即采取分步还是分类 , 或是分步与分类同时进行 , 确定分多少步及多少类。 3.确定每一步或每一类是排列问题(有序)还是组合(无序)问题, 元素总数是多少及取出多少个元素 . 4.解决排列组合综合性问题,往往类与步交叉,因此必须掌握一些常用的解题策略 一. 特殊元素和特殊位置优先策略 例 1. 由 0,1,2,3,4,5 可以组成多少个没有重复数字五位奇数 . 解: 由于末位和首位有特殊要求 , 应该优先安排 , 以免不合要求的元素占了这两个位置 . 先排末位共有C13 然后排首位共有C14 最后排其它位置共有A43 由分步计数原理得C41C13A43 288 练习题 :7 种不同的花种在排成一列的花盆里 , 若两种葵花不种在中间,也不种在两端的花盆里,问有多少不同的种法? 二. 相邻元素捆绑策略 例 2. 7 人站成一排 , 其中甲乙相邻且丙丁相邻 , 共有多少种不同的排法 . 解:可先将甲乙两元素捆绑成整体并看成一个复合元素,同时丙丁也看成一个复合元素,再与其它元素进行排列,同时对相邻元素部进行自排。由分步计数原理可得共有A55A22A22480种不同的排法 练习题 : 某人射击 8 枪,命中 4 枪, 4 枪命中恰好有 3 枪连在一起的情形的不同种数为20

高中数学《排列与排列数公式》公开课优秀教学设计

《排列与排列数公式》(第1课时)教学设计 一.教学内容解析 本节课是人教版A版《数学选修2-3》第一章第2节的第一节课,排列是一类特殊而重要的计数问题,教科书从简化运算的角度提出了排列的学习任务,通过具体实例概括而得出排列的概念,应用分步计数原理得出排列数公式,对于排列,有两个想法贯穿始终,一是根据一类问题的特点和规律寻找简便的计数方法,就像乘法作为加法的简便运算一样;二是注意应用两个计数原理思考和解决问题。 本节课具有承上启下的地位,理解排列的概念是应用分步计数原理推导排列数公式的前提,对具体的排列问题的分析又为排列数公式提供了基础。排列数公式的推导过程是分布计数原理的一个重要应用,同时,排列数公式又是推导组合数公式的主要依据。 基于学生的认知规律,本节课只是对排列和排列数公式的初步认识,在后面知识的学习过程中,逐步加深理解和灵活运用。 本节课的教学重点是排列的概念、排列数公式,教学难点是排列的概念,排列的概念有一定的抽象性,本节课结合教科书的编排,采取了由特殊到一般的归纳思想来建构概念的理解过程,通过引导学生分析三个典型事例,从中归纳出共同特征,再进一步概括出本质特征,得出排列的定义,再跟进10个具体事例多角度加深对概念的理解,并多次强调一个排列的特点,n个不同的元素,取出m个元素,元素的顺序,奠定学生对排列定义的理解基础,为后面组合概念的提出埋下伏笔。同时通过有规律的展示分步计数原理得到的一长串排列数,为后面水到渠成得到排列数公式作好铺垫,排列数公式的简单应用体现了排列简化步骤的优点,让学生直观感受学习排列的必要。 二.教学目标设置 1.通过几个具体实例归纳概括出排列的概念,并能运用排列的判断具体的的计数问题是否为排列问题;能利用分步计数原理推导排列数公式,能简化分步计数原理解决问题的步骤。在排列数符号及其公式的产生过程中体现简化的思想。学生学习后能够对排列或非排列问题作出准确的判断,能够分析原因,能够简单应用排列数公式。 2.在教学过程中,通过排列的概念、排列数公式的得到培养学生的抽象概括能力、逻辑思维能力,以及解决与计数有关的问题时主动联系排列相关知识的能力,体会排列知识在实际生活中的应用,增强学生学习数学的兴趣。 3.让学生学会通过对各种事情现象、本质的分析,得出一般的规律,通过由简到繁的着色问题、由繁到简的数学符号的引入过程体会丰富的数学文化. 三.学生学情分析 学生对两个计数原理已很好的掌握,但凡计数的问题能够往分类或分步的方向进行思考,学生的层次决定了学生有较强的理解、分析、解决问题的能力,有着大量的生活中诸如设置密码、车牌号、排队、参加活动、接力赛...与计数问题有关的经验,对数学中归纳化归、有特殊到一般的思想方法比较敏感,但抽象概括的能力较弱,排列概念的得到,要独立将颜色、数字、人抽象为元素,对着色的方案抽象出顺序有一定的困难,需在独立思考加协作讨论的基础上再由老师引导突破教学难点。 四.教学策略分析 在本节课的教学过程中将数学文化和数学知识、实际生活有机的融合,让抽象的数学概念形成的过程丰富多元,避免单调枯燥。

组合数的两个性质

组合数的两个性质 作者:万连飞 教学目的: 1. 使学生掌握组合数的两个性质及其证明方法,培养学生的逻辑思维能力; 2. 使学生能利用组合数的性质进行计算,培养学生的计算能力。 教学过程: 一、复习提问: 1. 组合数公式的两种形式是什么: 2. 利用组合数的公式的第二种形式计算 ,根据学生的回答,教师板书如下: (1) 组合数公式: )! (!!! )1()1(m n m n m m n n n c p p c m n m m m n m n -= --???-= = } (n,m ∈N,且m ≤N) 二、新课讲授: 1. 通过具体的实例,丰富学生对性质1的感性认识,并加以证明,再讲它的应用。 (1) 利用组合数的公式,考察: c 9 11与 c 2 11, c 7 10与 c 3 10, c 67 与c 1 7 的关系,并能发现什么规律?(可以逐个叫学生回答,板书) ∵ !210 11!2!9!119 11?== c , 又 !210112 11 ?=c , ∴ c 9 11 = c 2 11 ; ∵! 38 910!3!7!107 10??==c 又!389103 10 ??=c ∴ c c 3 10 710=; ∵ !1!6!76 7= c

又 !171 7= c ∴c 6 7=c 1 7。 由不完全归纳可得:从n 个不同的元素中取出m 个元素的组合数,等于从n 个不同的元素中取出n-m 个元素的组合数。即 定理1:c m n = c m n n -,(n,m ∈N,且m ≤N) (2)定理1的证明。要证明这个等式成立,即证明两个量相等。那么,证明两个量相等有声么方法呢?(指明学生回答) 方法一:“若两个数都等于第三个数,则这两个数相等 ”。 我们知道, )!(!! m n m n c m n -= , !)!(! )]!([)!(!m m n n m n n m n n c m n n -= ---= - 显然, !)!(!m m n n -等于!)!(! m m n n -。于是可得下面的证明。 证明:∵)!(!! m n m n c m n -= , 又!)!(! )]!([)!(!m m n n m n n m n n c m n n -= ---= -, ∴ c m n =c m n n -。 (3)性质1的另一种解释:从n 个不同的元素中取出m 个元素,并成一组,那么,剩下的n-m 个元素也成一组;反之,从n 个不同的元素中取出n-m 个元素并组成一组,那么剩下的m 个元素也成一组。所以,它们的组合是一一对应的,故有从n 个不同的元素中取出m 个的组合数是c m n 等于从 n 个不同的元素中取出n-m 个元素的组合数 c m n n -,即c m n =c m n n -。 (4)当 2 n m > 时,利用这个公式,可是 c m n 的计算简化。如: 36218 92 97 997 9=??= ==-c c c ,

组合与组合数公式及性质

10.3组合与组合数公式及性质 达标要求 1.理解组合的概念. 2.掌握组合数公式. 3.理解排列与组合的区别和联系。 4.熟练掌握组合数的计算公式;掌握组合数的两个性质,并且能够运用它解决一些简单的 应用问题. 基础回顾 1.组合的概念:一般地,从n 个不同元素中取出m (m n ≤)个元素并成一组,叫做从n 个不同元素中取出m 个元素的一个组合. 2.组合数的概念:从n 个不同元素中取出m (m n ≤)个元素的所有组合的个数,叫做 从n 个不同元素中取出m 个元素的组合数.用符号m n C 表示.. 3.组合数的公式: (1)(2)(1)!m m n n m m A n n n n m C A m ---+== 或()!!! m n n C m n m =-(,n m N +∈且m n ≤) 4.组合数性质: (1)m n m n n C C -= (2)111m m m n n n C C C ++++= 典型例题 例题1 4名男生和6名女生选三人,组成三人实践活动小组。 (1) 共有多少种选法? (2) 其中男生甲不能参加,有多少种选法? (3) 若至少有1个男生,问组成方法共有多少种? 解:(1) 共有310120C =种。 (2) 共有3984C =种 (3) 解法一:(直接法)小组构成有三种情形:3男,2男1女,1男2女, 分别有34C ,2146C C ,12 46C C , 所以一共有3211244646100C C C C C ++= 种方法. 解法二:(间接法)33106100C C -= 例题2 100件产品中有合格品90件,次品10件,现从中抽取4件检查. (1) 都不是次品的取法有多少种? (2) 至少有1件次品的取法有多少种?

人教A版高中数学选修2-3同步练习-第一章排列与排列数公式

第一章 计数原理 1.2 排列与组合 1.2.1 排列 第1课时 排列与排列数公式 A 级 基础巩固 一、选择题 1.从集合{3,5,7,9,11}中任取两个元素:①相加可得多少 个不同的和?②相除可得多少个不同的商?③作为椭圆x 2a 2+y 2 b 2=1中的a ,b ,可以得到多少个焦点在x 轴上的椭圆方程?④作为双曲线x 2 a 2-y 2 b 2=1中的a ,b ,可以得到多少个焦点在x 轴上的双曲线方程? 上面四个问题属于排列问题的是( ) A .①②③④ B .②④ C .②③ D .①④ 解析:因为加法满足交换律,所以①不是排列问题;除法不满足 交换律,如53≠35 ,所以②是排列问题. 若方程x 2a 2+y 2 b 2=1表示焦点在x 轴上的椭圆,则必有a >b ,a ,b 的大小一定;在双曲线x 2a 2-y 2 b 2=1中不管a >b 还是a

是排列问题. 答案:B 2.甲、乙、丙三人排成一排去照相,甲不站在排头的所有排列种数为() A.6 B.4 C.8 D.10 解析:先排甲,有2种方法,排乙,丙共有A22种方法, 所以由分步乘法原理,不同的排列为2A22=4(种). 答案:B 3.已知A2n+1-A2n=10,则n的值为() A.4 B.5 C.6 D.7 解析:因为A2n -A2n=10,则(n+1)n-n(n-1)=10, +1 整理得2n=10,所以n=5. 答案:B 4.若从6名志愿者中选出4名分别从事翻译、导游、导购、保洁四项不同的工作,则选派方案有() A.180种B.360种 C.15种D.30种 解析:由排列定义知选派方案有A46=6×5×4×3=360(种). 答案:B 5.用1,2,3,4,5这五个数字,组成没有重复数字的三位数,其中偶数共有() A.24个B.30个C.40个D.60个 解析:将符合条件的偶数分为两类:一类是2作个位数,共有A24个,另一类是4作个位数,也有A24个.因此符合条件的偶数共有A24+A24=24(个).

高中数学排列组合经典题型全面总结版

高中数学排列与组合 (一)典型分类讲解 一.特殊元素和特殊位置优先策略 例1.由0,1,2,3,4,5可以组成多少个没有重复数字五位奇数. 解:由于末位和首位有特殊要求,应该优先安排, 先排末位共有1 3C 然后排首位共有1 4C 最后排其它位置共有 34A 由分步计数原理得1 1 3 434 288C C A = 练习题:7种不同的花种在排成一列的花盆里,若两种葵花不种在中间,也不种在两端的花盆里,问有多少不同的种法? 二.相邻元素捆绑策略 例2. 7人站成一排 ,其中甲乙相邻且丙丁相邻, 共有多少种不同的排法. 解:可先将甲乙两元素捆绑成整体并看成一个复合元素,同时丙丁也看成一个复合元素,再与其它元素进行排列,同时对相邻元 素内部进行自排。由分步计数原理可得共有 522522480A A A =种不同的排法 练习题:某人射击8枪,命中4枪,4枪命中恰好有3枪连在一起的情形的不同种数为 20 三.不相邻问题插空策略 例3.一个晚会的节目有4个舞蹈,2个相声,3个独唱,舞蹈节目不能连续出场,则节目的出场顺序有多少种? 解:分两步进行第一步排2个相声和3个独唱共有55A 种, 第二步将4舞蹈插入第一步排好的6个元素中间包含首尾两个空位共有种 46 A 不同的方法,由分步计数原理,节目的不同顺序共有54 56A A 种 练习题:某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目.如果将这两个新节目插入原节目单中,且两个新节目不相邻,那么不同插法的种数为 30 四.定序问题倍缩空位插入策略 例4. 7人排队,其中甲乙丙3人顺序一定共有多少不同的排法 解:(倍缩法)对于某几个元素顺序一定的排列问题,可先把这几个元素与其他元素一起进行排列,然后用总排列数除以这几个元素 之间的全排列数,则共有不同排法种数是: 73 73/A A (空位法)设想有7把椅子让除甲乙丙以外的四人就坐共有 47 A 种方法,其余的三个位置甲乙丙共有 1种坐法,则共有4 7A 种方法。 思考:可以先让甲乙丙就坐吗? (插入法)先排甲乙丙三个人,共有1种排法,再把其余4四人依次插入共有 方法 练习题:10人身高各不相等,排成前后排,每排5人,要求从左至右身高逐渐增加,共有多少排法? 5 10C 五.重排问题求幂策略 例5.把6名实习生分配到7个车间实习,共有多少种不同的分法 解:完成此事共分六步:把第一名实习生分配到车间有 7 种分法.把第二名实习生分配到车间也有7种分依此类推,由分步计数原 理共有6 7种不同的排法 练习题: 1. 某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目.如果将这两个节目插入原节目单中,那么不同插 法的种数为 42 4 4 3 允许重复的排列问题的特点是以元素为研究对象,元素不受位置的约束,可以逐一安排各个元素的位置,一般地n 不同的元素没有限制地安排在m 个位置上的排列数为n m 种

全排列算法解析(完整版)

全排列以及相关算法 在程序设计过程中,我们往往要对一个序列进行全排列或者对每一个排列进行分析。全排列算法便是用于产生全排列或者逐个构造全排列的方法。当然,全排列算法不仅仅止于全排列,对于普通的排列,或者组合的问题,也可以解决。本文主要通过对全排列以及相关算法的介绍和讲解、分析,让读者更好地了解这一方面的知识,主要涉及到的语言是C和C++。本文的节数: 1.全排列的定义和公式: 2.时间复杂度: 3.列出全排列的初始思想: 4.从第m个元素到第n个元素的全排列的算法: 5.全排列算法: 6.全排列的字典序: 7.求下一个字典序排列算法: 8.C++ STL库中的next_permutation()函数:(#include) 9.字典序的中介数,由中介数求序号: 10.由中介数求排列: 11.递增进位制数法: 12.递减进位制数法: 13.邻位对换法: 14.邻位对换法全排列: 15.邻位对换法的下一个排列: 16.邻位对换法的中介数: 17.组合数的字典序与生成: 由于本文的,内容比较多,所以希望读者根据自己的要求阅读,不要一次性读完,有些章节可以分开读。第1节到第5节提供了全排列的概念和一个初始的算法。第6节到第8节主要讲述了字典序的全排列算法。第9到第10节讲了有关字典序中中介数的概念。第11到第12节主要介绍了不同的中介数方法,仅供扩展用。第13节到15节介绍了邻位对换法的全排的有关知识。16节讲了有关邻位对换法的中介数,仅供参考。第17节讲了组合数生成的算法。 1.全排列的定义和公式: 从n个数中选取m(m<=n)个数按照一定的顺序进行排成一个列,叫作从n个元素中取m 个元素的一个排列。由排列的定义,显然不同的顺序是一个不同的排列。从n个元素中取m 个元素的所有排列的个数,称为排列数。从n个元素取出n个元素的一个排列,称为一个全排列。全排列的排列数公式为n!,通过乘法原理可以得到。 2.时间复杂度: n个数(字符、对象)的全排列一共有n!种,所以全排列算法至少时O(n!)的。如果要对全排列进行输出,那么输出的时间要O(n*n!),因为每一个排列都有n个数据。所以实际上,全排列算法对大型的数据是无法处理的,而一般情况下也不会要求我们去遍历一个大型数据的全排列。 3.列出全排列的初始思想: 解决一个算法问题,我比较习惯于从基本的想法做起,我们先回顾一下我们自己是如何写一组数的全排列的:1,3,5,9(为了方便,下面我都用数进行全排列而不是字符)。

排列和组合计算公式

排列组合公式/排列组合计算公式 排列A------和顺序有关 组合 C -------不牵涉到顺序的问题 排列分顺序,组合不分 例如把5本不同的书分给3个人,有几种分法. "排列" 把5本书分给3个人,有几种分法"组合" 1.排列及计算公式 从n个不同元素中,任取m(m≤n)个元素按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列;从n个不同元素中取出m(m≤n)个元素的所有排列的个数,叫做从n个不同元素中取出m个元素的排列数,用符号A(n,m) 或P(n,m)表示. A(n,m)= n!/(n-m)!(规定0!=1). 2.组合及计算公式 从n个不同元素中,任取m(m≤n)个元素并成一组,叫做从n个不同元素中取出m个元素的一个组合;从n个不同元素中取出m(m≤n)个元素的所有组合的个数,叫做从n个不同元素中取出m个元素的组合数.用符号c(n,m) 表示. c(n,m)=A(n,m)/m!=n!/((n-m)!*m!);c(n,m)=c(n,n-m);

公式A是指排列,从N个元素取R个进行排列。 公式C是指组合,从N个元素取R个,不进行排列。 N-元素的总个数 R参与选择的元素个数 !-阶乘,如9!=9*8*7*6*5*4*3*2*1 从N倒数r个,表达式应该为n*(n-1)*(n-2)..(n-r+1); 因为从n到(n-r+1)个数为n-(n-r+1)=r 举例: Q1: 有从1到9共计9个号码球,请问,可以组成多少个三位数?A1: 123和213是两个不同的排列数。即对排列顺序有要求的,既属于“排列A”计算范畴。 以上问题中,任何一个号码只能用一次,显然不会出现988,997之类的组合,我们可以这么看,百位数有9种可能,十位数则应该

高二数学组合数的两个性质

高二数学组合数的两个性质

组合数的两个性质 教学目的:熟练掌握组合数的计算公式; 掌握组合数的两个性质, 并且能够运用它解决一些简单的应用 问题。 教学重点:组合数的两个性质的理解和应用。 教学难点:利用组合数性质进行一些证明。 教学过程: 一、复习回顾: 1.复习排列和组合的有关内容: 强调:排列——次序性;组合——无序性. 2.练习 1:求证:1 1--= m n m n C m n C . (本式也可变形为: 11 --=m n m n nC mC ) 2:计算:① 3 10 C 和710 C ; ② 2 637 C C -与36 C ;③ 511 411 C C +

(此练习的目的为下面学习组合数 的两个性质打好基础.) 二、新授内容 : 1 m n n m n C C -=. 理解: 一般地,从n 个不同元素中取出 m 个元素后,剩下n - m 个元素.因 为从n 个不同元素中取出m 个元素的每一个组合,与剩下的n - m 个元素 的每一个组合一一对应....,所以从n 个不同元素中取出m 个元素的组合数,等于从这n 个元素中取出n - m 个元素的组合数,即:m n n m n C C -=.在这里, 我们主要体现:“取法”与“剩法”是“一一对应”的思想. 证明:∵)! (!! )]!([)!(!m n m n m n n m n n C m n n -= ---= - 又 )! (!!m n m n C m n -= ∴m n n m n C C -= 注:1? 我们规定 1 0=n C 2? 等式特点:等式两边下标同,上标之和等于下标. 3? 此性质作用:当2 n m >时,计算m n C 可变为

10.1 排列、组合的定义,排列数A ,组合数C 的计算

§10.1 排列、组合的定义,排列数A m n ,组合数C m n 的计算 班级 姓名 学号 例1:例:计算①121235 7122A A A ②k n C C C C k n k n k m m n -- ③n n C C 862+- 例2:计算:①n n nA A A A ++++ 332211321 ②! 1!43!32!21n n -++++ 例3:解关于x 的方程①5A x A 2534= ②124 244456-+=-x x C C C C 例4:解不等式121 221421---<=n n A ,则A 是 ( ) A 、C 3 3 B 、C 3-n n C 、A 3n D 、3-n n A 2、8711n n n C C C =-+,则n 等于 ( ) A 、12 B 、13 C 、14 D 、15 3、315353433C C C C ++++ 等于: ( ) A 、415C B 、416 C C 、317C D 、417C 4、n 是不小于17的自然数,则(n -16)(n -15)…(n -7)(n -6)= (用排列数表示) 5、已知C 3218 18-=k k C ,则k= 。 6、已知6424n n C A ≥的解集是 。 【拓展练习】 1、填空 (1)55 0564662335555A C C A C A ++-+= 。 (2)1010 3102101101032C C C C ++++ = 。

(3)99 3322119A A A A ++++ = (4)不等x x C C 6 4<等的解集是 (5)333x A xA <解集是 (6)方程218 18++x x C C 的解是 (7)=∈++-)(321183N n C C n n n n 2、313416151,----+<+∈n n n n C C C C N n 且,求n 。 3、计算 ! )2(1!351!241!131n n +++?+?+? 4、化简m m m m m m A A A 21++++ 5、已知1 16.022122+++++==y x y x y x C C C ,求x, y 。 6、计算:1·2·3…k+2·3·4…(k+1)+…n(n+1)(n+2)…(n+k -1)(k ≥3,k ∈N)

排列组合排列组计算公式

排列组合排列组计算公式

————————————————————————————————作者:————————————————————————————————日期:

排列组合公式/排列组合计算公式 排列P------和顺序有关 组合 C -------不牵涉到顺序的问题 排列分顺序,组合不分 例如把5本不同的书分给3个人,有几种分法. "排列" 把5本书分给3个人,有几种分法"组合" 1.排列及计算公式 从n个不同元素中,任取m(m≤n)个元素按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列;从n个不同元素中取出m(m≤n)个元素的所有排列的个数,叫做从n个不同元素中取出m个元素的排列数,用符号p(n,m)表示. p(n,m)=n(n-1)(n-2)……(n-m+1)= n!/(n-m)!(规定0!=1). 2.组合及计算公式 从n个不同元素中,任取m(m≤n)个元素并成一组,叫做从n 个不同元素中取出m个元素的一个组合;从n个不同元素中取出m(m≤n)个元素的所有组合的个数,叫做从n个不同元素中取出m个元素的组合数.用符号

c(n,m) 表示. c(n,m)=p(n,m)/m!=n!/((n-m)!*m!);c(n,m)=c(n,n-m); 3.其他排列与组合公式 从n个元素中取出r个元素的循环排列数=p(n,r)/r=n!/r(n-r)!. n个元素被分成k类,每类的个数分别是n1,n2,...nk这n个元素的全排列数为 n!/(n1!*n2!*...*nk!). k类元素,每类的个数无限,从中取出m个元素的组合数为 c(m+k-1,m). 排列(Pnm(n为下标,m为上标)) Pnm=n×(n-1)....(n-m+1);Pnm=n!/(n-m)!(注:!是阶乘符号);Pnn(两个n分别为上标和下标)=n!;0!=1;Pn1(n为下标1为上标)=n

组合数的两个性质

组合数的两个性质 Coca-cola standardization office【ZZ5AB-ZZSYT-ZZ2C-ZZ682T-ZZT18】

组合数的两个性质 作者:万连飞 教学目的: 1.使学生掌握组合数的两个性质及其证明方法,培养学生的逻辑思维能力; 2.使学生能利用组合数的性质进行计算,培养学生的计算能力。 教学过程: 一、 复习提问: 1.组合数公式的两种形式是什么: 2.利用组合数的公式的第二种形式计算 ,根据学生的回答,教师板书如下: (1) 组合数公式: )! (!!! )1()1(m n m n m m n n n c p p c m n m m m n m n -= --???-= = } (n,m ∈N,且m ≤ N) 二、新课讲授: 1.通过具体的实例,丰富学生对性质1的感性认识,并加以证明,再讲它 的应用。 (1) 利用组合数的公式,考察: c 9 11与c 2 11, c 7 10与c 3 10, c 6 7与c 1 7 的关系,并能发现什么规律(可以逐个叫学生回答,板书) ∵ !210 11!2!9!119 11?== c , 又 !210112 11 ?=c , ∴c 9 11= c 2 11 ; ∵! 38910!3!7!107 10??==c 又 !38 9103 10??= c

∴ c c 3 10 710=; ∵ !1!6!76 7=c 又 !171 7= c ∴c 6 7=c 1 7。 由不完全归纳可得:从n 个不同的元素中取出m 个元素的组合数,等于从n 个不同的元素中取出n-m 个元素的组合数。即 定理1:c m n =c m n n -,(n,m ∈N,且m ≤N) (2)定理1的证明。要证明这个等式成立,即证明两个量相等。那么,证明两个量相等有声么方法呢(指明学生回答) ”。 我们知道, )!(!! m n m n c m n -= , !)!(! )]!([)!(!m m n n m n n m n n c m n n -= ---= - 显然,!)!(!m m n n -等于!)!(! m m n n -。于是可得下面的证明。 证明:∵)!(!! m n m n c m n -= , 又!)!(! )]!([)!(!m m n n m n n m n n c m n n -= ---= -, ∴ c m n =c m n n -。 (3)性质1的另一种解释:从n 个不同的元素中取出m 个元素,并成一组,那么,剩下的n-m 个元素也成一组;反之,从n 个不同的元素中取出n-m 个元素并组成一组,那么剩下的m 个元素也成一组。所以,它们的组合是一一对应的,故有从n 个不同的元素中取出m 个的组合数是c m n 等于 从 n 个不同的元素中取出n-m 个元素的组合数 c m n n -,即 c m n =c m n n -。

组合数的两个性质教案

组合数的两个性质 教学目的:熟练掌握组合数的计算公式; 掌握组合数的两个性质, 并且能够运用它解决一些简单的应用问题。 教学重点:组合数的两个性质的理解和应用。 教学难点:利用组合数性质进行一些证明。 教学过程: 一、复习回顾: 1.复习排列和组合的有关内容: 强调:排列——次序性;组合——无序性. 2.练习 1:求证:11--= m n m n C m n C . (本式也可变形为:11--=m n m n nC mC ) 2:计算:① 310C 和7 10C ; ② 2637C C -与36C ;③ 511 411C C + (此练习的目的为下面学习组合数的两个性质打好基 础.) 二、新授内容: 1.组合数的 m n n -. 理解: 一般地,从n 个不同元素中取出m 个元素后,剩下n - m 个元素.因 为从n 个不同元素中取出m 个元素的每一个组合,与剩

下的n - m 个元素的每一个组合一一对应....,所以从n 个不同元素中取出m 个元素的组合数,等于从这n 个元素中取出n - m 个元素的组合数,即:m n n m n C C -=.在这里,我们主要体现:“取法”与“剩法”是“一一对应”的思想. 证明:∵)! (!! )]!([)!(!m n m n m n n m n n C m n n -= ---=- 又 )! (!!m n m n C m n -= ∴m n n m n C C -= 注:1? 我们规定 10=n C 2? 等式特点:等式两边下标同,上标之和等于下标. 3? 此性质作用:当2 n m >时,计算m n C 可变为计算m n n C -,能够 使运算简化. 例如:20012002C =200120022002-C =1 2002C =2002. 4? y n x n C C =y x =?或n y x =+ 2.例4一个口袋内装有大小相同的7个白球和1个黑球. ⑴ 从口袋内取出3个球,共有多少种取法? ⑵ 从口袋内取出3个球,使其中含有1个黑球,有多少种取法? ⑶ 从口袋内取出3个球,使其中不含黑球,有多少种取法? 解:⑴ 5638=C ⑵ 2127=C ⑶ 3537=C 引导学生发现:=38C +27C 37C .为什么呢? 我们可以这样解释:从口袋内的8个球中所取出的3个球,可以分为两类:一类含有1个黑球,一类不含有黑球.因此根据分类计数原理,上述等式成立.

排列数的计算

排列数的计算 【概念复习】 1. 什么叫排列?从n 个不同元素中,任取m(n m ≤)个元素(这里的被取元素各 不相同)按照一定的顺序.....排成一列,叫做从n 个不同元素中取出m 个元素的一.个排列... .表示为 . 2. 什么叫不同的排列?元素和顺序至少有一个不同. 3. 什么叫相同的排列?元素和顺序都相同的排列. 4. 从n 个不同元素中取出m (n m ≤)个元素的排列数是 . 5. 什么叫全排列?n 个元素的全排列表示为 = ,这是 个 连续自然数的积,n 个元素的全排列叫做 ,表示为 . 6. 用全排列(或阶乘)表示的排列数公式为 . 【例题与练习】 1. 计算: ①38A = ②316A = 33A = ④44A = ⑤55A = ⑥66A = 22A = 2. 某段铁路上有12个车站,共需准备多少种普通客票? 3. 某信号兵用红、黄、蓝三面旗从上到下挂在竖直的旗杆上表示信号,每次可以 任挂一面、二面或三面,并且不同的顺序表示不同的信号,一共可以表示多少种不同的信号? 小结:解有关排列的应用题时,先将问题归结为排列问题,然后确定原有元素和取出元素的个数,即n 、m 的值. 4. 用0到9这十个数字,可以组成没有重复数字的三位数 个. 5. 用排列数表示下列各式: ① 10?9?8?7?6= ② 24?23?22?…?3?2?1= ③ n ?(n-1) ?(n-2) ?(n-3)= 6.①从x 个不同元素中任取3个的排列数为720,则x= ; ②1111++--=+n n n n n n xA A A ,求x 的值. 小结:解有关排列数的方程关键在于用排列数公式将方程转化为关于x 的一元方程. 【课后检测】 1.由数字1、2、3、4、5、6可以组成没有重复数字的五位数 个; 自然数 个;三位数 个. 2.5个人排成一排,共有 种不同的排法.

排列组合计算公式

. 1.排列及计算公式 从n个不同元素中,任取m(m≤n)个元素按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列;从n个不同元素中取出m(m≤n)个元素的所有排列的个数,叫做从n个不同元素中取出m个元素的排列数,用符号p(n,m)表示. p(n,m)=n(n-1)(n-2)……(n-m+1)= n!/(n-m)!(规定0!=1). 2.组合及计算公式 从n个不同元素中,任取m(m≤n)个元素并成一组,叫做从n个不同元素中取出m个元素的一个组合;从n个不同元素中取出m(m≤n)个元素的所有组合的个数,叫做从n个不同元素中取出m个元素的组合数.用符号 c(n,m) 表示. c(n,m)=p(n,m)/m!=n!/((n-m)!*m!);c(n,m)=c(n,n-m); 3.其他排列与组合公式 从n个元素中取出r个元素的循环排列数=p(n,r)/r=n!/r(n-r)!. n个元素被分成k类,每类的个数分别是n1,n2,...nk这n个元素的全排列数为 n!/(n1!*n2!*...*nk!). k类元素,每类的个数无限,从中取出m个元素的组合数为c(m+k-1,m). 排列(Pnm(n为下标,m为上标)) Pnm=n×(n-1)....(n-m+1);Pnm=n!/(n-m)!(注:!是阶乘符号);Pnn(两个n分别为上标和下标)=n!;0!=1;Pn1(n为下标1为上标)=n 组合(Cnm(n为下标,m为上标)) Cnm=Pnm/Pmm ;Cnm=n!/m!(n-m)!;Cnn(两个n分别为上标和下标)=1 ;Cn1(n为下标1为上标)=n;Cnm=Cnn-m .

高中数学选修2-3组合数的两个性质

组合数的两个性质 一、教学目的: 2 使学生掌握组合数的两个性质及其证明方法,培养学生的逻辑思维能力; 3 使学生能利用组合数的性质进行计算,培养学生的计算能力。 教学过程: 1、 复 2、 习提问: 1 组合数公式的两种形式是什么: 2 利用组合数的公式的第二种形式计算 ,根据学生的回答,教师板书如下: (1) 组合数公式: )!(!!! )1()1(m n m n m m n n n c p p c m n m m m n m n -=--???-== } (n,m ∈N,且m ≤N) 二、新课讲授: 4 通过具体的实例,丰富学生对性质1的感性认识,并加以证明,再讲它的应用。 (1) 利用组合数的公式,(2) 考察: c 911与c 211, c 710与c 310, c 67与c 1 7 的关系,并能发现什么规律?(可以逐个叫学生回答,板书) ∵!21011!2!9!11911?== c , 又 !21011211?=c , ∴c 911= c 211; ∵!38910!3!7!10710??==c 又!389103 10??=c ∴c c 310 710=; ∵!1!6!767=c

又!1717= c ∴c 67=c 17。 由不完全归纳可得:从n 个不同的元素中取出m 个元素的组合数,等于从n 个不同的元素中取出n-m 个元素的组合数。即 定理1:c m n =c m n n -,(n,m ∈N,且m ≤N) (2)定理1的证明。要证明这个等式成立,即证明两个量相等。那么,证明两个量相等有声么方法呢?(指明学生回答) 方法一:“若两个数都等于第三个数,则这两个数相等 ”。 我们知道, )!(!!m n m n c m n -=, !)!(!)]!([)!(!m m n n m n n m n n c m n n -=---=- 显然, !)!(!m m n n -等于!)!(! m m n n -。于是可得下面的证明。 证明:∵)!(!!m n m n c m n -=, 又!)!(!)]!([)!(!m m n n m n n m n n c m n n -=---=-, ∴c m n =c m n n -。 (3)性质1的另一种解释:从n 个不同的元素中取出m 个元素,并成一组,那么,剩下的n-m 个元素也成一组;反之,从n 个不同的元素中取出n-m 个元素并组成一组,那么剩下的m 个元素也成一组。所以,它们的组合是一一对应的,故有从n 个不同的元素中取出m 个的组合数是c m n 等于从 n 个不同的元素中取出n-m 个元素的组合数c m n n -,即c m n =c m n n -。 (4)当 2n m >时,利用这个公式,可是c m n 的计算简化。如: 3621892979979=??= ==-c c c , 49502199100210098 100=??==c c 。

排列组合计算公式

排列组合计算公式 2008-07-08 13:30 公式P是指排列,从N个元素取R个进行排列。 公式C是指组合,从N个元素取R个,不进行排列。 N-元素的总个数 R参与选择的元素个数 !-阶乘,如 9!=9*8*7*6*5*4*3*2*1 从N倒数r个,表达式应该为n*(n-1)*(n-2)..(n-r+1); 因为从n到(n-r+1)个数为n-(n-r+1)=r 举例: Q1:有从1到9共计9个号码球,请问,可以组成多少个三位数? A1: 123和213是两个不同的排列数。即对排列顺序有要求的,既属于“排列P”计算范畴。 上问题中,任何一个号码只能用一次,显然不会出现988,997之类的组合,我们可以这么看,百位数有9种可能,十位数则应该有9-1种可能,个位数则应该只有9-1-1种可能,最终共有9*8*7个三位数。计算公式=P(3,9)=9*8*7,(从9倒数3个的乘积) Q2: 有从1到9共计9个号码球,请问,如果三个一组,代表“三国联盟”,可以组合成多少个“三国联盟”? A2: 213组合和312组合,代表同一个组合,只要有三个号码球在一起即可。即不要求顺序的,属于“组合C”计算范畴。 上问题中,将所有的包括排列数的个数去除掉属于重复的个数即为最终组合数C(3,9)=9*8*7/3*2*1 排列、组合的概念和公式典型例题分析 例1设有3名学生和4个课外小组.(1)每名学生都只参加一个课外小组;(2)每名学生都只参加一个课外小组,而且每个小组至多有一名学生参加.各有多少种不同方法?

解(1)由于每名学生都可以参加4个课外小组中的任何一个,而不限制每个课外小组的人数,因此共有种不同方法. (2)由于每名学生都只参加一个课外小组,而且每个小组至多有一名学生参加,因此共有种不同方法. 点评由于要让3名学生逐个选择课外小组,故两问都用乘法原理进行计算. 例2 排成一行,其中不排第一,不排第二,不排第三,不排第四的不同排法共有多少种? 解依题意,符合要求的排法可分为第一个排、、中的某一个,共3类,每一类中不同排法可采用画“树图”的方式逐一排出: ∴ 符合题意的不同排法共有9种. 点评按照分“类”的思路,本题应用了加法原理.为把握不同排法的规律,“树图”是一种具有直观形象的有效做法,也是解决计数问题的一种数学模型. 例3判断下列问题是排列问题还是组合问题?并计算出结果. (1)高三年级学生会有11人:①每两人互通一封信,共通了多少封信?②每两人互握了一次手,共握了多少次手? (2)高二年级数学课外小组共10人:①从中选一名正组长和一名副组长,共有多少种不同的选法?②从中选2名参加省数学竞赛,有多少种不同的选法? (3)有2,3,5,7,11,13,17,19八个质数:①从中任取两个数求它们的商可以有多少种不同的商?②从中任取两个求它的积,可以得到多少个不同的积? (4)有8盆花:①从中选出2盆分别给甲乙两人每人一盆,有多少种不同的选法?②从中选出2盆放在教室有多少种不同的选法? 分析(1)①由于每人互通一封信,甲给乙的信与乙给甲的信是不同的两封信,所以与顺序有关是排列;②由于每两人互握一次手,甲与乙握手,乙与甲握手是同一次握手,与顺序无关,所以是组合问题.其他类似分析. (1)①是排列问题,共用了封信;②是组合问题,共需握手(次). (2)①是排列问题,共有(种)不同的选法;②是组合问题,共有种不同的选法. (3)①是排列问题,共有种不同的商;②是组合问题,共有种不同的积. (4)①是排列问题,共有种不同的选法;②是组合问题,共有种不同的选法. 例4证明. 证明左式 右式.

排列及计算公式

1.排列及计算公式 从n个不同元素中,任取m(m≤n)个元素按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列;从n个不同元素中取出m(m≤n)个元素的所有排列的个数,叫做从n个不同元素中取出m个元素的排列数,用符号p(n,m)表示. p(n,m)=n(n-1)(n-2)……(n-m+1)= n!/(n-m)!(规定0!=1). 2.组合及计算公式 从n个不同元素中,任取m(m≤n)个元素并成一组,叫做从n个不同元素中取出m个元素的一个组合;从n个不同元素中取出m(m≤n)个元素的所有组合的个数,叫做从n个不同元素中取出m个元素的组合数.用符号 c(n,m) 表示. c(n,m)=p(n,m)/m!=n!/((n-m)!*m!);c(n,m)=c(n,n-m); 3.其他排列与组合公式 从n个元素中取出r个元素的循环排列数=p(n,r)/r=n!/r(n-r)!. n个元素被分成k类,每类的个数分别是n1,n2,...nk这n个元素的全排列数为 n!/(n1!*n2!*...*nk!). k类元素,每类的个数无限,从中取出m个元素的组合数为c(m+k-1,m). 两个基本计数原理及应用 (1)加法原理和分类计数法 1.加法原理 2.加法原理的集合形式 3.分类的要求 每一类中的每一种方法都可以独立地完成此任务;两类不同办法中的具体方法,互不相同(即分类不重);完成此任务的任何一种方法,都属于某一类(即分类不漏) (2)乘法原理和分步计数法 1.乘法原理 2.合理分步的要求 任何一步的一种方法都不能完成此任务,必须且只须连续完成这n步才能完成此任务;各步计数相互独立;只要有一步中所采取的方法不同,则对应的完成此事的方法也不同[例题分析]排列组合思维方法选讲 1.首先明确任务的意义 例1. 从1、2、3、……、20这二十个数中任取三个不同的数组成等差数列,这样的不同等差数列有________个。 分析:首先要把复杂的生活背景或其它数学背景转化为一个明确的排列组合问题。 设a,b,c成等差,∴2b=a+c, 可知b由a,c决定,