(完整版)圆锥曲线解题技巧和方法综合(经典)
圆锥曲线解题技巧和方法综合全

圆锥曲线的解题技巧一、常规七大题型:〔1〕中点弦问题具有斜率的弦中点问题,常用设而不求法〔点差法〕:设曲线上两点为(,)x y 11,(,)x y 22,代入方程,然后两方程相减,再应用中点关系及斜率公式〔当然在这里也要注意斜率不存在的请款讨论〕,消去四个参数。
如:〔1〕)0(12222>>=+b a by a x 与直线相交于A 、B ,设弦AB 中点为M(*0,y 0),则有0220=+k b y a x 。
〔2〕)0,0(12222>>=-b a by a x 与直线l 相交于A 、B ,设弦AB 中点为M(*0,y 0)则有02020=-k by a x 〔3〕y 2=2p*〔p>0〕与直线l 相交于A 、B 设弦AB 中点为M(*0,y 0),则有2y 0k=2p,即y 0k=p.典型例题 给定双曲线x y 2221-=。
过A 〔2,1〕的直线与双曲线交于两点P 1 及P 2,求线段P 1P 2的中点P 的轨迹方程。
〔2〕焦点三角形问题椭圆或双曲线上一点P ,与两个焦点F 1、F 2构成的三角形问题,常用正、余弦定理搭桥。
典型例题 设P(*,y)为椭圆x a y b 22221+=上任一点,F c 10(,)-,F c 20(,)为焦点,∠=PF F 12α,∠=PF F 21β。
〔1〕求证离心率βαβαsin sin )sin(++=e ;〔2〕求|||PF PF 1323+的最值。
〔3〕直线与圆锥曲线位置关系问题直线与圆锥曲线的位置关系的根本方法是解方程组,进而转化为一元二次方程后利用判别式、根与系数的关系、求根公式等来处理,应特别注意数形结合的思想,通过图形的直观性帮助分析解决问题,如果直线过椭圆的焦点,结合三大曲线的定义去解。
典型例题抛物线方程,直线与轴的交点在抛物线准线的右边。
y p x p x y t x 210=+>+=()()〔1〕求证:直线与抛物线总有两个不同交点〔2〕设直线与抛物线的交点为A 、B ,且OA ⊥OB ,求p 关于t 的函数f(t)的表达式。
圆锥曲线解题技巧和方法综合

圆锥曲线解题技巧和方法综合
圆锥曲线解题方法技巧归纳
第一、知识储备: 1. 直线方程的形式
(1)直线方程的形式有五件:点斜式、两点式、斜截式、截距式、一般式。
(2)与直线相关的重要内容①倾斜角与斜率k tan , [0, )
②点到直线的距离d (3)弦长公式
直线y kx b上两点A(x1,y1),B(x2,y
2)间的距离:AB 1
x2
③夹角公式:tan
k2 k11 k2k1
或AB (4)两条直线的位置关系
1 y
2 ①l1 l2 k1k2=-1 ② l1//l2 k1 k2且b1 b2 2、圆锥曲线方程及性质 (1)、椭圆的方程的形式有几种?(三种形式)
x2y2
1(m 0,n 0且m n) 标准方程:
mn
2a
参数方程:x acos ,y bsin (2)、双曲线的方程的形式有两种
x2y2
标准方程: 1(m n 0)
mn
距离式方程: 2a
(3)、三种圆锥曲线的通径你记得吗? 2b22b2
2p ;抛物线:
aa。
圆锥曲线解题方法技巧归纳(整理)

圆锥曲线解题方法技巧归纳一、知识储备:1.直线方程的形式(1)直线方程的形式有五种:点斜式、两点式、斜截式、截距式、一般式。
(2 )与直线相关的重要内容(3 )弦长公式直线y kx b 与圆锥曲线两交点 A(x 1,y 1), B(x 2,y 2)间的距离:AB 1 k 2 X 1 X2I ,:(1 k 2 )[(x1 X 2)4x 1X 2]或 AB(若A 点为交点,另一点不在圆锥曲线上,上式仍然成立。
)(4)两条直线的位置关系① l 1 l 2 k 1 k 2 =-1 ② h 〃l 2 k 1 k 2且b 1 b 22、圆锥曲线方程及性质(1)、椭圆的方程的形式(三种形式)2 2x y —1(m 0,n 0 且 m n) m n距离式方程:.(x c)2y 2 , (x c)2 y 22a参数方程:x a cos , y bsin (2)、双曲线的方程的形式有两种2 2标准方程:——1(m n 0)m n①倾斜角与斜率k tan , [0,)②点到直线的距离Ax o By 。
C .■ A 2 B 2③夹角公式:tan 1 k 2k 1④两直线距离公式I CT -C S I标准方程:参数方程:u 二atane , y = b⑶、三种圆锥曲线的通径⑹、记住焦半径公式:(1)椭圆焦点在x 轴上时为a ex o ;焦点在y 轴上时为a ey 0 ,可简记为“左加右减,上加下减”。
(2)双曲线焦点在x 轴上时为e|X o | a(3)抛物线焦点在x 轴上时为|X i | $焦点在y 轴上时为|%|(6)、椭圆和双曲线的基本量三角形 二、方法储备 1点差法(中点弦问题)2、联立消元法:你会解直线与圆锥曲线的位置关系一类的问题吗?经典套路是什么?如果有两个参数怎么办?设直线的方程,并且与曲线的方程联立, 消去一个未知数,得到一个二次方程,使用判 别式 0,以及根与系数的关系,代入弦长公式,设曲线上的两点 A(x ,, y 1), B(x 2, y 2), 将这两点代入曲线方程得到 ①②两个式子,然后01 -②,整体消元•母未知数,则要找到它们的联系,消去一个,比如直线过焦点,则可以利用三点椭圆:空;双曲线: a 竺;抛物线:2pa⑷、 圆锥曲线的定义 ⑸、 焦点三角形面积公式:P 在椭圆上时,S F 1PF 2P 在双曲线上时,S F 1PF 2(其中F 1PF 2,cos 卅护b 2cot —2,P F 1?P F 2|P F1设A X i , y i 、B X 2, y2 ,yi 为椭圆专+詈二L ab的弦AB 中点则有x 1 x 2 x 1X 2Vi T =1;两式相减得y 1 y 2 屮 y_K AB =,若有两个字F共线解决之。
圆锥曲线解题技巧与方法综合如何通过直角坐标系解析法解决圆锥曲线问题

圆锥曲线解题技巧与方法综合如何通过直角坐标系解析法解决圆锥曲线问题圆锥曲线是数学中的重要概念之一,在几何学和代数学领域都有广泛的应用。
通过直角坐标系解析法,我们可以用简洁而准确的方式解决与圆锥曲线相关的问题。
本文将介绍圆锥曲线的基本知识,并以解析法为重点,总结圆锥曲线解题的技巧与方法。
一、圆锥曲线的基本概念圆锥曲线是由平面与圆锥相交而形成的曲线。
常见的圆锥曲线包括椭圆、双曲线和抛物线。
这些曲线在直角坐标系中有各自的特点和方程。
1. 椭圆椭圆是圆锥和平面相交所形成的曲线。
在直角坐标系中,椭圆的标准方程为:(x-h)²/a² + (y-k)²/b² = 1其中,(h, k)为椭圆的中心坐标,a为椭圆长轴的一半长度,b为椭圆短轴的一半长度。
2. 双曲线双曲线同样是由圆锥和平面相交所形成的曲线。
在直角坐标系中,双曲线的标准方程为:(x-h)²/a² - (y-k)²/b² = 1其中,(h, k)为双曲线的中心坐标,a为双曲线长轴的一半长度,b为双曲线短轴的一半长度。
3. 抛物线抛物线是由圆锥和平面相交所形成的曲线。
在直角坐标系中,抛物线的标准方程为:y = ax² + bx + c其中,a、b、c为常数,决定了抛物线的形状和位置。
二、通过直角坐标系解析法解决圆锥曲线问题的技巧与方法通过直角坐标系解析法,我们可以通过曲线的方程和几何特征来解决与圆锥曲线相关的问题。
以下是一些解题的常用技巧与方法:1. 求解曲线的方程通过已知的几何信息,我们可以得到曲线的方程。
根据曲线的类型,选择合适的标准方程,并通过已知点或其他条件来确定方程中的参数。
2. 求解曲线的焦点和准线对于椭圆和双曲线,焦点和准线是重要的几何特征。
通过方程中的参数,我们可以计算焦点和准线的坐标。
3. 求解曲线的顶点和开口方向抛物线的顶点和开口方向也是重要的几何特征。
圆锥曲线解题技巧和方法综合方法

圆锥曲线的解题技巧一、常规七大题型:(1) 中点弦问题具有斜率的弦中点问题,常用设而不求法(点差法):设曲线上两 点为(X i ,yJ , (x 2 ,y 2),代入方程,然后两方程相减,再应用中点关系 及斜率公式(当然在这里也要注意斜率不存在的请款讨论),消去四个参 数。
2 2X 7 如:(1) r T =1(ab 0)与直线相交于A 、B ,设弦AB 中点为a b M(x o ,y o ),则有畤 2k = O 。
a b 2 2 (2) 笃-% fa 0,b 0)与直线I 相交于A 、B ,设弦AB 中点为 a b(3) y 2=2px (p>o )与直线I 相交于A 、B 设弦AB 中点为M(x °,y o ),则有 2y o k=2p,即 y o k=p.2典型例题 给定双曲线X 2 -亍=1。
过A (2,1)的直线与双曲线交于 两点P i 及P 2,求线段P i P 2的中点P 的轨迹方程。
(2) 焦点三角形问题椭圆或双曲线上一点P ,与两个焦点F i 、F 2构成的三角形问题,常用 正、余弦定理搭桥。
2 2典型例题 设P(x,y)为椭圆 J 七二1上任一点,F i (-c ,o), F 2(c,o )a b 为焦点,• PF/?二〉,PF 2F 1 二。
sin (口 + P )(1) 求证离心率e 二sina + sin P M(x o ,y o)则有 直 Yoa 2b 2(2)求IPF J PF2|3的最值。
(3)直线与圆锥曲线位置关系问题直线与圆锥曲线的位置关系的基本方法是解方程组,进而转化为一元二次方程后利用判别式、根与系数的关系、求根公式等来处理,应特别注意数形结合的思想,通过图形的直观性帮助分析解决问题,如果直线过椭圆的焦点,结合三大曲线的定义去解。
典型例题抛物线方程2=p(x 1)(p 0),直线y = t与轴的交点在抛物线准线的右边。
(1)求证:直线与抛物线总有两个不同交点(2)设直线与抛物线的交点为A、B,且0A丄OB,求p关于t的函数f(t)的表达式。
(完整版)解圆锥曲线问题常用方法及性质总结

解圆锥曲线问题常用方法+椭圆与双曲线的经典结论+椭圆与双曲线的对偶性质总结解圆锥曲线问题常用以下方法:1、定义法(1)椭圆有两种定义。
第一定义中,r 1+r 2=2a 。
第二定义中,r 1=ed 1 r 2=ed 2。
(2)双曲线有两种定义。
第一定义中,a r r 221=-,当r 1>r 2时,注意r 2的最小值为c-a :第二定义中,r 1=ed 1,r 2=ed 2,尤其应注意第二定义的应用,常常将 半径与“点到准线距离”互相转化。
(3)抛物线只有一种定义,而此定义的作用较椭圆、双曲线更大,很多抛物线问题用定义解决更直接简明。
2、韦达定理法因直线的方程是一次的,圆锥曲线的方程是二次的,故直线与圆锥曲线的问题常转化为方程组关系问题,最终转化为一元二次方程问题,故用韦达定理及判别式是解决圆锥曲线问题的重点方法之一,尤其是弦中点问题,弦长问题,可用韦达定理直接解决,但应注意不要忽视判别式的作用。
3、解析几何的运算中,常设一些量而并不解解出这些量,利用这些量过渡使问题得以解决,这种方法称为“设而不求法”。
设而不求法对于直线与圆锥曲线相交而产生的弦中点问题,常用“点差法”,即设弦的两个端点A(x 1,y 1),B(x 2,y 2),弦AB 中点为M(x 0,y 0),将点A 、B 坐标代入圆锥曲线方程,作差后,产生弦中点与弦斜率的关系,这是一种常见的“设而不求”法,具体有:(1))0(12222>>=+b a b y a x 与直线相交于A 、B ,设弦AB 中点为M(x 0,y 0),则有02020=+k b y a x 。
(2))0,0(12222>>=-b a b y a x 与直线l 相交于A 、B ,设弦AB 中点为M(x 0,y 0)则有02020=-k by a x (3)y 2=2px (p>0)与直线l 相交于A 、B 设弦AB 中点为M(x 0,y 0),则有2y 0k=2p,即y 0k=p.椭圆与双曲线的对偶性质总结椭 圆1. 点P 处的切线PT 平分△PF 1F 2在点P 处的外角.2. PT 平分△PF 1F 2在点P 处的外角,则焦点在直线PT 上的射影H 点的轨迹是以长轴为直径的圆,除去长轴的两个端点.3. 以焦点弦PQ 为直径的圆必与对应准线相离.4. 以焦点半径PF 1为直径的圆必与以长轴为直径的圆内切.5. 若000(,)P x y 在椭圆22221x y a b +=上,则过0P 的椭圆的切线方程是00221x x y ya b +=.6. 若000(,)P x y 在椭圆22221x y a b+=外 ,则过Po 作椭圆的两条切线切点为P 1、P 2,则切点弦P 1P 2的直线方程是00221x x y y a b +=. 7. 椭圆22221x y a b+= (a >b >0)的左右焦点分别为F 1,F 2,点P 为椭圆上任意一点12F PF γ∠=,则椭圆的焦点角形的面积为122tan2F PF S b γ∆=.8. 椭圆22221x y a b+=(a >b >0)的焦半径公式:10||MF a ex =+,20||MF a ex =-(1(,0)F c - , 2(,0)F c 00(,)M x y ).9. 设过椭圆焦点F 作直线与椭圆相交 P 、Q 两点,A 为椭圆长轴上一个顶点,连结AP 和AQ 分别交相应于焦点F 的椭圆准线于M 、N 两点,则MF ⊥NF.10. 过椭圆一个焦点F 的直线与椭圆交于两点P 、Q, A 1、A 2为椭圆长轴上的顶点,A 1P 和A 2Q 交于点M ,A 2P和A 1Q 交于点N ,则MF ⊥NF.11. AB 是椭圆22221x y a b +=的不平行于对称轴的弦,M ),(00y x 为AB 的中点,则22OM AB b k k a ⋅=-,即0202y a x b K AB -=。
圆锥曲线解题技巧和方法综合方法(精心排版)之欧阳索引创编

圆锥曲线的解题技巧欧阳家百(2021.03.07)一、常规七大题型:(1)中点弦问题具有斜率的弦中点问题,常用设而不求法(点差法):设曲线上两点为(,)x y 11,(,)x y 22,代入方程,然后两方程相减,再应用中点关系及斜率公式(当然在这里也要注意斜率不存在的请款讨论),消去四个参数。
如:(1))0(12222>>=+b a by a x 与直线相交于A 、B ,设弦AB 中点为M(x0,y0),则有02020=+k by a x 。
(2))0,0(12222>>=-b a by a x 与直线l 相交于A 、B ,设弦AB 中点为M(x0,y0)则有02020=-k by a x (3)y2=2px (p>0)与直线l 相交于A 、B 设弦AB 中点为M(x0,y0),则有2y0k=2p,即y0k=p.典型例题 给定双曲线x y 2221-=。
过A (2,1)的直线与双曲线交于两点P 1 及P 2,求线段P 1P 2的中点P 的轨迹方程。
(2)焦点三角形问题椭圆或双曲线上一点P ,与两个焦点F 1、F 2构成的三角形问题,常用正、余弦定理搭桥。
典型例题 设P(x,y)为椭圆x a y b22221+=上任一点,F c 10(,)-,F c 20(,)为焦点,∠=PF F 12α,∠=PF F 21β。
(1)求证离心率βαβαsin sin )sin(++=e ; (2)求|||PF PF 1323+的最值。
(3)直线与圆锥曲线位置关系问题直线与圆锥曲线的位置关系的基本方法是解方程组,进而转化为一元二次方程后利用判别式、根与系数的关系、求根公式等来处理,应特别注意数形结合的思想,通过图形的直观性帮助分析解决问题,如果直线过椭圆的焦点,结合三大曲线的定义去解。
典型例题抛物线方程,直线与轴的交点在抛物线准线的右边。
y p x p x y t x 210=+>+=()()(1)求证:直线与抛物线总有两个不同交点(2)设直线与抛物线的交点为A 、B ,且OA ⊥OB ,求p 关于t 的函数f(t)的表达式。
圆锥曲线(4大易错点分析+解题模板+举一反三+易错题通关)-备战2024年高考数学考试易错(原卷版)

D.3
变式
3.过双曲线
C
:
x a
2 2
y2 b2
1(a
0,b
0)
的右焦点 F2 作双曲线一条渐近线的垂线,垂
足为
A
,且与另一条渐近线交于点
B
,若
|
AF2
|
1 3
|
F2 B
|
,则双曲线
C
的离心率是(
)
A. 6 2
B. 3 或 6 2
C. 3 6 2
D. 3 3
1.已知圆 C1 : x2
y2
b2 b
)
A. 1+ 5 2
B. 3 1 2
C. 3
D.2
变式
2.已知双曲线 E :
y2 a2
x2 8
1(a
0) 的上焦点为 F1 ,点
P
在双曲线的下支上,若
A(4, 0) ,且 PF1 | PA | 的最小值为 7,则双曲线 E 的离心率为( )
A.2 或 697 25
B.3 或 697 25
C.2
A. 3
B.2
C. 2 3
D. 13
8.已知双曲线
x2 a2
y2 b2
1(a
0,b
0)
的左、右焦点分别为 F1, F2 ,以 F1F2 为直径的圆与双
曲线在第二象限的部分交于点
P
,若双曲线上的点
Q
满足
F1P
2 3
F2Q
,则双曲线的离
心率为( )
A. 37 5
B. 35 5
C. 37
4
D. 15 3
专题 11 圆锥曲线
易错点一:求轨迹方程时忽略变量的取值范围(求动点轨迹 方程)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
圆锥曲线解题方法技巧归纳第一、知识储备:1. 直线方程的形式(1) 直线方程的形式有五件:点斜式、两点式、斜截式、截距式、 一般式。
(2) 与直线相关的重要内容①倾斜角与斜率 k tan , [0, )② 点 到 直 线 的 距 离 d Ax 0 By 0 CA 2B 2tan3)弦长公式直线 y kx b 上两点 A(x 1, y 1), B( x 2 , y 2 )间的距离: AB 1 k 2 x 1 x 2(1 k 2 )[( x 1 x 2)2 4x 1x 2] 或 AB 1 k 12 y 1 y 2 (4)两条直线的位置关系①l 1 l 2 k 1k 2=-1 ② l 1 //l 2 k 1 k 2且b 1 b 22、圆锥曲线方程及性质(1)、椭圆的方程的形式有几种?(三种形式)标准方程:22x y1(m 0,n 0且 m n) mn 距离式方程:(x c)2 y 2 (x c)2 y 22a 参数方程:x acos ,y bsin(2)、双曲线的方程的形式有两种③夹角公式:k21222标准方程:x y1(m n 0)mn距离式方| (x c)2 y 2 (x c) 2 y 2 | 2a(3) 、三种圆锥曲线的通径你记得吗?椭圆:2b;双曲线:2b;抛物线:2 p aa(4) 、圆锥曲线的定义你记清楚了吗?b 2tan2 P 在双曲线上时, S F PF b cot| PF |2 | PF |2 4c 2 uuur uuuur uuur uuuur 其中 F 1PF 2,cos |PF 1||PF 1||P |F P 2F |2 | 4c ,u P u F ur1?u P u Fuur 2|u P uu F r 1 ||uu P u Fur2|cos(6) 、 记 住 焦 半 径 公 式 : ( 1 )椭圆焦点在 x 轴上时为 a ex 0 ;焦点在 y 轴上时为 a ey 0,可简记为“左加右减,上加下减”(2)双曲线焦点在 x 轴上时为 e|x 0 | a(3) 抛物线焦点在 x 轴上时为 | x 1 | 2p ,焦点在 y 轴上时为 | y 1 | 2p(6)、椭圆和双曲线的基本量三角形你清楚吗?第二、方法储备1、点差法(中点弦问题)2y1的弦 AB 中点则有3如: 已知 F 1、 22F2是椭圆 x4 y3 1的两个焦点, 平面内一个动点 M 足 MF 1MF 2 2 则动点 M 的轨迹是(A 、双曲线;B 、双曲线的一支;C 、两条射线;D 、一条射线(5)、焦点三角形面积公式: P 在椭圆上时, S F 1PF 2设 A x 1, y 1B x 2,y 2 , M a,b 为椭圆 x42 2 2 2 2 2 2 2 x 1 y 1 1, x 2 y 2 1;两式相减得 x 1 x 2y 1 y 24 3 4 3 4 3x 1 x 2 x 1 x 2y 1 y 2 y 1 y 23a4 3kAB =4b2、联立消元法:你会解直线与圆锥曲线的位置关系一类的问题吗?经典套路是什么?如果有两个参数怎么办? 设直线的方程,并且与曲线的方程联立,消去一个未知数,得到 一个二次方程, 使用判别式 0,以及根与系数的关系, 代入弦 长公式,设曲线上的两点 A( x 1, y 1), B(x 2 , y 2 ) ,将这两点代入曲线方 程得到 ○1 ○2 两个式子,然后 ○1-○2 ,整体消元······,若有两个 字母未知数, 则要找到它们的联系, 消去一个,比如直线过焦点, 则可以利用三点 A 、B 、 F 共线解决之。
若有向量的关系,则寻 找坐标之间的关系, 根与系数的关系结合消元处理。
一旦设直线 为 y kxb ,就意味着 k 存在。
例 1、已知三角形 ABC 的三个顶点均在椭圆 4x 2 5y 2 80上,且点 A 是椭圆短轴的一个端点(点 A 在 y 轴正半轴上) .(1)若三角形 ABC 的重心是椭圆的右焦点,试求直线 BC 的方程 ; (2)若角 A 为900,AD 垂直 BC 于 D ,试求点 D 的轨迹方程 . 分析:第一问抓住“重心” ,利用点差法及重心坐标公式可求出中点 弦 BC 的斜率,从而写出直线 BC 的方程。
第二问抓住角 A 为900可得 出AB ⊥AC ,从而得 x 1x 2 y 1y 2 14(y 1 y 2) 16 0 ,然后利用联立消元 法及交轨法求出点 D 的轨迹方程;解:(1)设 B ( x 1, y 1),C(x 2 , y 2 ),BC 中点为 ( x 0,y 0 ),F(2,0)则有2 2 2 2 x 1 y 1 1,x 2 y 220 16 1,2016AC 所成的比为 ,双曲线过 C 、D 、E 三点,且以 A 、B 为焦点当 23时,求双曲线离心率 e 的取值范围。
分析:本小题主要考查坐标法、定比分点坐标公式、双曲线的概念两式作差有(x 1 x 2)(x 1 x 2 )(y 1 y 2)(y 1 y 2)2016 0 x 0 y 0k5 40 (1)F(2,0)为三角形重心,所以由 x 1 x 232, 得x 03,由y13y 2 4 0得2,代入( 1)得 k 65直线 BC 的方程为 6x 5y 28y 02)由 AB ⊥AC 得 x 1x 2 y 1y 2 14(y 1 y 2)162)(4 直 线 BC 方 程 为 y5k 2)x 2 10bkx 5b 2 80 0 kx b,代入 4x 25y 280,得x 110kb5b 2 80x2 4 5k 2 , x 1x2 4 5k 2y 18ky 24 5k 2 ,y 1y 24b802k代入4 5k 22) 式得29b 232b 164 5k 20,解得 b 4(舍) 或b直线过定点0, 94) , 设 Dx,y ),则1,即229y 29x 2 32y16 0所以所求点 D 的轨迹方程是 x 2(y4、设而不求法例 2、如图,已知梯形 ABCD 中 AB 2CD ,点 E 分有向线段4y16 2 20)2( 196)2 (290)2(y和性质,推理、运算能力和综合运用数学知识解决问题的能力。
建f(a,b,c, ) 0,整理f(e, ) 0,此运算量可见是难上加难.我们对h可采取设而不求的解题策略,建立目标函数f(a,b,c, ) 0,整理f(e, ) 0 ,化繁为简.解法一:如图,以AB 为垂直平分线为y轴,直线AB 为x轴,建立直角坐标系xOy ,则CD⊥ y轴因为双曲线经过点C、D,且以A、由点C、E 在双曲线上,将点C、E 的坐标和 e c代入双曲线方a程得e2 4h21 ,b2 1,①e2 42 h22 11 1 b2 1②立直角坐标系xOy ,如图,若设 C c2,h,代入x222yb2 1,求得h L ,进而求得x E L ,y E2L , 再代入x22a22 y2b21,建立目标函数B 为焦点,由双曲线的对称性知C 、D 关于y 轴对称a b a2e 421,③由①式得h2b2将③式代入②式,整理得解得 7 e 10所以双曲线的离心率的取值范围为 7 , 10标表示,回避 h 的计算 , 达到设而不求的解题策略.设 3243得, 32 1 e 23 2 43解得 7 e 10所以双曲线的离心率的取值范围为 7 , 105、判别式法例3已知双曲线C:y 2 x 21,直线l 过点 A 2,0 ,斜率为 k ,当0 k 1 22时,双曲线的上支上有且仅有一点 B 到直线 l 的距离为 2 ,试求 k 的值及此时点 B 的坐标。
分析 1:解析几何是用代数方法来研究几何图形的一门学科,因 此,数形结合必然是研究解析几何问题的重要手段 . 从“有且仅有” 这个微观入手,对照草图,不难想到:过点 B 作与 l 平行的直线,必 与双曲线 C 相切 . 而相切的代数表现形式是所构造方e 24 441 2132e 134得,2 1 33 3 2 e 2 4故 由题设 23分析:考虑 AE , AC 为焦半径 ,可用焦半径公式 , AE, AC 用 E,C 的横坐 解法二:建系同解法一, x EAEa ex E , ACex C ,,又 A A E C 1 ,代入整理e 231,由题程的判别式0. 由此出发,可设计如下解题思路:l : y k(x 2) 0 k 1直线 l '在 l 的上方且到直线 l 的距离为 2l': y kx 2k 2 2 2k把直线 l '的方程代入双曲线方程,消去 y ,令判别式解得k 的值解题过程略 .分析 2:如果从代数推理的角度去思考,就应当把距离用代数式表达,即所谓“有且仅有一点 B 到直线 l 的距离为 2 ”,相当于化归 的方程有唯一解 . 据此设计出如下解题思路:简解:设点 M(x, 2 x 2) 为双曲线 C 上支上任一点,则点 M 到直 线l 的距离为:kx 2 x 22k2 k 2 1于是,问题即可转化为如上关于 x 的方程 . 由于 0 k 1,所以 2 x 2 x kx ,从而有0k1转化为一元二次方程根的问题 求解kx 2 x 2 2k kx 2 x 2 2k.于是关于 x 的方程kx 2 x 2 2k 2(k 2 1)22 x 2( 2(k 2 1) 2k kx)2 ,2(k 2 1) 2k kx 02k 2 1 x 2 2k 2(k 2 1) 2k x 2(k 2 1) 2k 2 0, 2(k 2 1) 2k kx 0.由 0 k 1 可知:2方程 k 2 1x 2 2k 2(k 2 1) 2k x 2(k 2 1) 2k 2 0的二根同 正,故 2(k 2 1) 2k kx 0 恒成立,于是 等价于2k 2 1 x 2 2k 2(k 2 1) 2k x 2(k 2 1) 2k 2 0.由如上关于 x 的方程有唯一解,得其判别式0 ,就可解得25k .5 点评:上述解法紧扣解题目标,不断进行问题转换,充分体现了 全局观念与整体思维的优越性 .例 4 已知椭圆 C:x 2 2y 2 8和点 P (4,1),过 P 作直线交椭圆于在曲线的方程 .分析:这是一个轨迹问题,解题困难在于多动点的困扰,学生往 往不知从何入手。
其实,应该想到轨迹问题可以通过参数法求解 . 因 此,首先是选定参数,然后想方设法将点 Q 的横、纵坐标用参数表 达,最后通过消参可达到解题的目的 .A 、B 两点,在线段 AB 上取点 Q ,使 APPBAQQB求动点 Q 的轨迹所由于点 Q( x, y)的变化是由直线 AB 的变化引起的,自然可选择直线 AB 的斜率 k 作为参数,如何将 x, y 与k 联系起来?一方面利用点 Q 在P 、Q 四点共线,不难得到 x4(x A x B ) 2x A x B,要建立 x 与k 的关系,只需 8 (x A x B)将直线 AB 的方程代入椭圆 C 的方程,利用韦达定理即可 .通过这样的分析,可以看出,虽然我们还没有开始解题,但对于 如何解决本题,已经做到心中有数 .直线 AB 上;另一方面就是运用题目条件:APPBAQQB来转化.由 A 、B 、在得到 x f k 之后,如果能够从整体上把握,认识到:所谓消参, 目的不过是得到关于 x, y 的方程(不含 k ),则可由 y k(x 4) 1 解得 k y 1 ,直接代入 x f k 即可得到轨迹方程。