2020年新疆高一(下)开学数学试卷
新疆石河子一中2016-2017学年高一(下)第一次月考数学试卷(解析版)

2016-2017学年新疆石河子一中高一(下)第一次月考数学试卷一、选择题(每题只有一个正确答案,每题5分,共60分)1.可以写成①+;②﹣;③﹣;④﹣.其中正确的是()A.①②B.②③C.③④D.①④2.下列说法中正确的是()A.若||>||,则>B.若||=||,则=C.若=,则∥ D.若≠,则与不是共线向量3.已知向量与的夹角为30°,且||=,||=2,则|﹣|等于()A.1 B. C.13 D.4.设向量=(2,m),=(1,﹣1),若⊥(+2),则实数m等于()A.2 B.4 C.6 D.﹣35.已知非零向量、,且=+2,=﹣5+6,=7﹣2,则一定共线的三点是()A.A、B、D B.A、B、C C.B、C、D D.A、C、D6.已知向量,满足||=1,⊥,则向量﹣2在向量﹣方向上的投影为()A.0 B.1 C.2 D.﹣17.如图,已知=,=,=4,=3,则=()A.﹣B.﹣C.﹣D.﹣8.在△ABC中,A、B、C所对的边分别为a、b、c,若bcosA+acosB=c2,a=b=2,则△ABC的周长为()A.7.5 B.7 C.6 D.59.在△ABC中,a=1,B=45°,面积S=2,则△ABC的外接圆的直径为()A.B.C.5 D.10.在△ABC中,角A,B,C的对边分别为a,b,c,若c=2,b=2,C=30°,则角B等于(A.30°B.60°C.30°或60°D.60°或120°11.北京2008年第29届奥运会开幕式上举行升旗仪式,在坡度15°的看台上,同一列上的第一排和最后一排测得旗杆顶部的仰角分别为60°和30°,看台上第一排和最后一排的距离米(如图所示),旗杆底部与第一排在一个水平面上,已知国歌长度约为50秒,升旗手匀速升旗的速度为()A.(米/秒) B.(米/秒)C.(米/秒)D.(米/秒)12.在△ABC中,a,b,c分别为∠A,∠B,∠C所对应三角形的边长,若,则cosB=()A.﹣B.C.D.﹣二、填空题(本大题共4小题,每小题5分,满分20分,把答案填在答题卡的横线上.)13.已知向量=(,),=(,),则∠ABC等于.14.已知a,b,c分别为△ABC的三个内角A,B,C对应的边长,A=60°,B=45°,,则a=.15.如图,在矩形ABCD中,M是BC的中点,N是CD的中点,若,则λμ=.16.若直线ax﹣y=0(a≠0)与函数图象交于不同的两点A,B,且点C(6,0),若点D(m,n)满足,则m+n=.三、解答题:解答应写出文字说明、证明过程或演算步骤.(共70分)17.已知向量(1)若为锐角,求x的范围;(2)当时,求x的值.18.已知函数f(x)=(1)求函数f(x)的最小值和最小正周期;(2)设△ABC的内角A、B、C的对边分别为a,b,c,且c=,f(C)=0,若向量与向量共线,求a,b的值.19.在△ABC中,角A,B,C的对边分别为a,b,c,.(1)若,求△ABC的面积;(2)设向量,,且,求角B的值.20.在△ABC中,点D为BC边上一点,且BD=1,E为AC的中点,.(1)求sin∠BAD;(2)求AD及DC的长.21.已知,满足.(Ⅰ)将y表示为x的函数f(x),并求f(x)的最小正周期:(Ⅱ)已知a,b,c分别为△ABC的三个内角A,B,C的对应边长,若,且a=2,求b+c的取值范围.22.已知其最小值为g(t).(1)若t=1,求的值;(2)求g(t)的表达式;(3)当时,要使关于t的方程g(t)=kt有一个实根,求实数k的取值范围.2016-2017学年新疆石河子一中高一(下)第一次月考数学试卷参考答案与试题解析一、选择题(每题只有一个正确答案,每题5分,共60分)1.可以写成①+;②﹣;③﹣;④﹣.其中正确的是()A.①②B.②③C.③④D.①④【考点】向量的减法及其几何意义;向量的加法及其几何意义.【分析】利用向量的运算法则即可判断出.【解答】解:∵①+=;②﹣=;③﹣=;④﹣=.因此其中正确的是①④.故选:D.2.下列说法中正确的是()A.若||>||,则>B.若||=||,则=C.若=,则∥ D.若≠,则与不是共线向量【考点】向量的物理背景与概念.【分析】根据平面向量的基本概念,对选项中的命题进行分析、判断即可.【解答】解:向量的模长能比较大小,但向量不能比较大小,故选项A错误;当||=||,方向不同时,=不成立,所以B错误;当=时,与方向相同,模长相等,所以∥,C正确;当≠时,与也可能是共线向量,所以D错误.故选:C.3.已知向量与的夹角为30°,且||=,||=2,则|﹣|等于()A .1 B. C.13 D.【考点】平面向量数量积的运算.【分析】由向量数量积的定义可得•,再由向量的模的平方即为向量的平方,计算即可得到所求值.【解答】解:向量与的夹角为30°,且||=,||=2,可得•=||•||•cos30°=•2•=3,则|﹣|====1.故选:A.4.设向量=(2,m),=(1,﹣1),若⊥(+2),则实数m等于()A.2 B.4 C.6 D.﹣3【考点】平面向量数量积的运算.【分析】运用向量的加减运算和数量积的坐标表示,解方程即可得到m的值.【解答】解:向量=(2,m),=(1,﹣1),若⊥(+2),则•(+2)=0,即为(1,﹣1)•(4,m﹣2)=0,即有4﹣m+2=0,解得m=6.故选:C.5.已知非零向量、,且=+2,=﹣5+6,=7﹣2,则一定共线的三点是()A.A、B、D B.A、B、C C.B、C、D D.A、C、D【考点】平行向量与共线向量.【分析】证明三点共线,借助向量共线证明即可,故解题目标是验证由三点组成的两个向量共线即可得到共线的三点【解答】解:由向量的加法原理知=+=﹣5+6+7﹣2=2+4=2,又两线段过同点B,故三点A,B,D一定共线.故选:A.6.已知向量,满足||=1,⊥,则向量﹣2在向量﹣方向上的投影为()A.0 B.1 C.2 D.﹣1【考点】平面向量数量积的运算.【分析】根据平面向量投影的定义,计算对应的投影即可.【解答】解:∵||=1,⊥,∴•=0,∴向量﹣2在向量﹣方向上的投影为﹣=﹣=﹣=﹣1.故选:D.7.如图,已知=,=,=4,=3,则=()A.﹣B.﹣C.﹣D.﹣【考点】平面向量的基本定理及其意义.【分析】根据向量的三角形法和加减的几何意义即可求出.【解答】解:∵=4,∴==(﹣)∴=+=(﹣)+=(﹣)﹣=﹣,故选:B8.在△ABC中,A、B、C所对的边分别为a、b、c,若bcosA+acosB=c2,a=b=2,则△ABC的周长为()A.7.5 B.7 C.6 D.5【考点】正弦定理.【分析】由已知利用余弦定理可求c的值,进而可得周长的值.【解答】解:∵bcosA+acosB=c2,a=b=2,∴由余弦定理可得:b×+a×=c2,整理可得:2c2=2c3,∴解得:c=1,则△ABC的周长为a+b+c=2+2+1=5.故选:D.9.在△ABC中,a=1,B=45°,面积S=2,则△ABC的外接圆的直径为()A.B. C.5 D.【考点】正弦定理.【分析】利用三角形面积计算公式、正弦定理余弦定理即可得出.【解答】解:∵,∴,由余弦定理得,∴b=5.由正弦定理(R为△ABC外接圆半径),故选:D.10.在△ABC中,角A,B,C的对边分别为a,b,c,若c=2,b=2,C=30°,则角B等于(A.30°B.60°C.30°或60°D.60°或120°【考点】余弦定理.【分析】由已知及正弦定理可求得sinB==,由范围B∈(30°,180°)利用特殊角的三角函数值即可得解.【解答】解:∵c=2,b=2,C=30°,∴由正弦定理可得:sinB===,∵b>c,可得:B∈(30°,180°),∴B=60°或120°.故选:D.11.北京2008年第29届奥运会开幕式上举行升旗仪式,在坡度15°的看台上,同一列上的第一排和最后一排测得旗杆顶部的仰角分别为60°和30°,看台上第一排和最后一排的距离米(如图所示),旗杆底部与第一排在一个水平面上,已知国歌长度约为50秒,升旗手匀速升旗的速度为()A.(米/秒) B.(米/秒)C.(米/秒)D.(米/秒)【考点】解三角形的实际应用.【分析】先根据题意可知∠DAB,∠ABD和∠ADB,AB,然后在△ABD利用正弦定理求得BD,进而在Rt△BCD求得CD,最后利用路程除以时间求得旗手升旗的速度.【解答】解:由条件得△ABD中,∠DAB=45°,∠ABD=105°,∠ADB=30°,AB=10,由正弦定理得BD=•AB=20则在Rt△BCD中,CD=20×sin60°=30所以速度V==米/秒故选A.12.在△ABC中,a,b,c分别为∠A,∠B,∠C所对应三角形的边长,若,则cosB=()A.﹣B.C.D.﹣【考点】解三角形.【分析】由已知及向量减法的平行四边形法则可得4a=即(4a﹣3c)+(2b﹣3c)=,根据向量的基本定理可得a,b,c之间的关系,然后利用余弦定理即可求cosB【解答】解:∵∴4a=∴(4a﹣3c)+(2b﹣3c)=∵,不共线∴即a=则cosB===﹣故选A二、填空题(本大题共4小题,每小题5分,满分20分,把答案填在答题卡的横线上.)13.已知向量=(,),=(,),则∠ABC等于.【考点】平面向量数量积的运算.【分析】运用向量的数量积的坐标表示可得可得•,由向量的模公式可得||=||,再由cos∠ABC=,计算即可得到所求值.【解答】解:向量=(,),=(,),可得•=×+×=,||=||==1,可得cos∠ABC==,由0≤∠ABC≤π,可得∠ABC=.故答案为:.14.已知a,b,c分别为△ABC的三个内角A,B,C对应的边长,A=60°,B=45°,,则a=3.【考点】正弦定理.【分析】利用正弦定理即可得出.【解答】解:由正弦定理可得:,可得a==3.故答案为:3.15.如图,在矩形ABCD中,M是BC的中点,N是CD的中点,若,则λμ=.【考点】平面向量的基本定理及其意义.【分析】以A为坐标原点建立坐标系,设矩形的长宽分别为2a,2b,得到A,B,C,M,N的坐标,利用向量相等得到关于λ,μ的方程组解之.【解答】解:以A为坐标原点建立坐标系,设矩形的长宽分别为2a,2b,得到A(0,0),B(2a,0),C(2a,2b),M(2a,b),N(a,2b),所以=(2a,2b),=(2a,b),=(﹣a,2b),由,则,解得,所以λμ=;故答案为:16.若直线ax﹣y=0(a≠0)与函数图象交于不同的两点A,B,且点C(6,0),若点D(m,n)满足,则m+n=2.【考点】函数的图象.【分析】函数是奇函数,A,B关于原点对称, +=2,利用,点C(6,0),求出D的坐标,即可得出结论.【解答】解:∵函数是奇函数,∴A,B关于原点对称,∴+=2,∵,点C(6,0),∴D(2,0),∴m+n=2.故答案为2.三、解答题:解答应写出文字说明、证明过程或演算步骤.(共70分)17.已知向量(1)若为锐角,求x的范围;(2)当时,求x的值.【考点】数量积判断两个平面向量的垂直关系;数量积表示两个向量的夹角.【分析】(1)利用向量夹角公式即可得出,注意去掉同方向情况;(2)利用向量垂直与数量积的关系即可得出.【解答】解:(1)若为锐角,则,且与不同方向.由=x+2>0,解得x>﹣2.当x=时,与同方向,∴x>﹣2且.(2)∵=(1+2x,4),=(2﹣x,3),.∴=(1+2x)(2﹣x)+12=0,化为﹣2x2+3x+14=0.解得或x=﹣2.18.已知函数f(x)=(1)求函数f(x)的最小值和最小正周期;(2)设△ABC的内角A、B、C的对边分别为a,b,c,且c=,f(C)=0,若向量与向量共线,求a,b的值.【考点】二倍角的余弦;两角和与差的正弦函数;余弦定理.【分析】(1)通过二倍角的余弦函数以及两角和与差的正弦函数,求出函数的最小值,求出函数的周期即可.(2)通过向量的共线以及正弦定理求出a,b的关系,通过f(c)=0求出C的大小,结合余弦定理即可求解a,b的值.【解答】解:(1)函数f(x)==sin(2x﹣)﹣1…∴当2x﹣=﹣+2kπ,k∈Z时,函数取得最小值:﹣2,最小正周期T=π…(2)因为向量与向量共线,所以sinB=3sinA,∴b=3a,f(C)=0=sin(2C﹣)﹣1,∵0<C<π,∴,∴即C=.…由余弦定理c2=a2+b2﹣2abcosC,解得a=1,b=3.…19.在△ABC中,角A,B,C的对边分别为a,b,c,.(1)若,求△ABC的面积;(2)设向量,,且,求角B的值.【考点】正弦定理;平面向量共线(平行)的坐标表示.【分析】(1)根据题意,由平面向量的数量积的计算公式,变形化简可得ab=15,借助三角函数基本关系计算可得sinC的值,由三角形面积公式计算可得答案;(2)由向量平行的坐标计算公式可得2sinB(1﹣2sin2)﹣(﹣)cos2B=0,化简可得,进而可得,即可得B的值,分析B、C 的大小关系,可得答案.【解答】解:(1)根据题意,∵,∴,∴ab=15,又∵,C∈(0,π),.所以.(2)根据题意,∵,∴2sinB(1﹣2sin2)﹣(﹣)cos2B=0,即,,即,显然cos2B≠0,所以,所以或,即或,因为,所以,所以(舍去),即.20.在△ABC中,点D为BC边上一点,且BD=1,E为AC的中点,.(1)求sin∠BAD;(2)求AD及DC的长.【考点】正弦定理;余弦定理.【分析】(1)由已知利用同角三角函数基本关系式可求sinB的值,由∠BAD=∠B+∠ADB,利用特殊角的三角函数值及两角和的正弦函数公式即可计算得解.(2)由正弦定理可求AD,得AC=2AE=3,在△ACD中,由余弦定理即可解得DC 的值.【解答】(本题满分为14分)解:(1)在△ABD中,因为,所以,即sinB=,…3分所以sin∠BAD=sin(∠B+∠ADB),因为:∠ADB=,所以:sin∠BAD=×=…7分(2)由正弦定理,得…依题意得AC=2AE=3,在△ACD中,由余弦定理得:AC2=AD2+DC2﹣2AD•CDcos∠ADC,即,所以DC2﹣2DC﹣5=0,解得:(负值舍去).…21.已知,满足.(Ⅰ)将y表示为x的函数f(x),并求f(x)的最小正周期:(Ⅱ)已知a,b,c分别为△ABC的三个内角A,B,C的对应边长,若,且a=2,求b+c的取值范围.【考点】解三角形;平面向量数量积的坐标表示、模、夹角;三角函数中的恒等变换应用.【分析】(Ⅰ)利用向量的数量积公式,结合二倍角、辅助角公式化简函数,从而可求函数的最小正周期;(Ⅱ)由,求得A=.由a=2,利用正弦定理可得b=,c=,从而b+c=+,化简,即可求b+c的取值范围.【解答】解:(Ⅰ)∵,满足.∴2cos2x+2sinxcosx﹣y=0∴y=2cos2x+2sinxcosx=cos2x+sin2x+1∴f(x)=2sin(2x+)+1,f(x)的最小正周期=π;(Ⅱ)∵,∴sin(A+)=1∵A∈(0,π),∴A=∵a=2,∴由正弦定理可得b=,c=∴b+c=+=+=4sin(B+)∵B∈,∴B+∈,∴sin(B+)∈(,1],∴b+c∈(2,4]∴b+c的取值范围为(2,4].22.已知其最小值为g(t).(1)若t=1,求的值;(2)求g(t)的表达式;(3)当时,要使关于t的方程g(t)=kt有一个实根,求实数k的取值范围.【考点】函数的最值及其几何意义.【分析】(1)若t=1,代入计算求的值;(2)分类讨论,求g(t)的表达式;(3)令h(t)=g(t)﹣kt,欲使g(t)=kt有一个实根,则只需或,即可求实数k的取值范围.【解答】解:(1)t=1,=1﹣6+1=﹣4 …(2)因为,所以,所以…()当时,则当sin(2x﹣)=﹣时,…当﹣≤t≤1时,则当sin(2x﹣)=t时,f(x)min=﹣6t+1 …当t>1时,则当sin(2x﹣)=1时,…故g(t)=…(3)当时,g(t)=﹣6t+1,令h(t)=g(t)﹣kt欲使g(t)=kt有一个实根,则只需或解得k≤﹣8或k≥﹣5.…2017年5月10日。
2020年新疆乌鲁木齐市中考数学试卷

2020年新疆乌鲁木齐市中考数学试卷一、选择题:本大题共10个小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(4分)如图,数轴上点A表示数a,则|a|是()A.2 B.1 C.﹣1 D.﹣22.(4分)如图,直线a∥b,∠1=72°,则∠2的度数是()A.118°B.108°C.98°D.72°3.(4分)计算(ab2)3的结果是()A.3ab2B.ab6C.a3b5 D.a3b64.(4分)下列说法正确的是()A.“经过有交通信号的路口,遇到红灯,”是必然事件B.已知某篮球运动员投篮投中的概率为0.6,则他投10次一定可投中6次C.处于中间位置的数一定是中位数D.方差越大数据的波动越大,方差越小数据的波动越小5.(4分)如果n边形每一个内角等于与它相邻外角的2倍,则n的值是()A.4 B.5 C.6 D.76.(4分)一次函数y=kx+b(k,b是常数,k≠0)的图象,如图所示,则不等式kx+b>0的解集是()A.x<2 B.x<0 C.x>0 D.x>27.(4分)2020年,在创建文明城市的进程中,乌鲁木齐市为美化城市环境,计划种植树木30万棵,由于志愿者的加入,实际每天植树比原计划多20%,结果提前5天完成任务,设原计划每天植树x万棵,可列方程是()A.﹣=5 B.﹣=5C.+5= D.﹣=58.(4分)如图,是一个几何体的三视图,根据图中所示数据计算这个几何体的侧面积是()A.πB.2πC.4πD.5π9.(4分)如图,在矩形ABCD中,点F在AD上,点E在BC上,把这个矩形沿EF折叠后,使点D恰好落在BC边上的G点处,若矩形面积为4且∠AFG=60°,GE=2BG,则折痕EF的长为()A.1 B.C.2 D.10.(4分)如图,点A(a,3),B(b,1)都在双曲线y=上,点C,D,分别是x轴,y轴上的动点,则四边形ABCD周长的最小值为()A.B.C.D.二、填空题(本大题5小题,每小题4分,满分20分,将答案填在答题纸上)11.(4分)计算|1﹣|+()0=.12.(4分)如图,在菱形ABCD中,∠DAB=60°,AB=2,则菱形ABCD的面积为.13.(4分)一件衣服售价为200元,六折销售,仍可获利20%,则这件衣服的进价是元.14.(4分)用等分圆周的方法,在半径为1的图中画出如图所示图形,则图中阴影部分面积为.15.(4分)如图,抛物线y=ax2+bx+c过点(﹣1,0),且对称轴为直线x=1,有下列结论:①abc<0;②10a+3b+c>0;③抛物线经过点(4,y1)与点(﹣3,y2),则y1>y2;④无论a,b,c取何值,抛物线都经过同一个点(﹣,0);⑤am2+bm+a ≥0,其中所有正确的结论是.三、解答题(本大题共9小题,共90分.解答应写出文字说明、证明过程或演算步骤.)16.(8分)解不等式组:.17.(8分)先化简,再求值:(﹣)÷,其中x=.18.(10分)我国古代数学名著《孙子算经》中有“鸡兔同笼”问题:“今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何”,意思是:鸡和兔关在一个笼子里,从上面看有35个头,从下面看有94条腿,问笼中鸡或兔各有多少只?19.(10分)如图,四边形ABCD是平行四边形,E,F是对角线BD上的两点,且BF=ED,求证:AE∥CF.20.(12分)现今“微信运动”被越来越多的人关注和喜爱,某兴趣小组随机调查了我市50名教师某日“微信运动”中的步数情况进行统计整理,绘制了如下的统计图表(不完整):请根据以上信息,解答下列问题:(1)写出a,b,c,d的值并补全频数分布直方图;(2)本市约有37800名教师,用调查的样本数据估计日行走步数超过12000步(包含12000步)的教师有多少名?(3)若在50名被调查的教师中,选取日行走步数超过16000步(包含16000步的两名教师与大家分享心得,求被选取的两名教师恰好都在20000步(包含20000步)以上的概率.21.(10分)一艘渔船位于港口A的北偏东60°方向,距离港口20海里B处,它沿北偏西37°方向航行至C处突然出现故障,在C处等待救援,B,C之间的距离(sin37°为10海里,救援船从港口A出发20分钟到达C处,求救援的艇的航行速度.≈0.6,cos37°≈0.8,≈1.732,结果取整数)22.(10分)一辆慢车从甲地匀速行驶至乙地,一辆快车同时从乙地出发匀速行驶至甲地,两车之间的距离y(千米)与行驶时间x(小时)的对应关系如图所示:(1)甲乙两地相距多远?(2)求快车和慢车的速度分别是多少?(3)求出两车相遇后y与x之间的函数关系式;(4)何时两车相距300千米.23.(10分)如图,AB是⊙O的直径,CD与⊙O相切于点C,与AB的延长线交于D.(1)求证:△ADC∽△CDB;(2)若AC=2,AB=CD,求⊙O半径.24.(12分)如图,抛物线y=ax2+bx+c(a≠0)与直线y=x+1相交于A(﹣1,0),B(4,m)两点,且抛物线经过点C(5,0).(1)求抛物线的解析式;(2)点P是抛物线上的一个动点(不与点A、点B重合),过点P作直线PD⊥x 轴于点D,交直线AB于点E.①当PE=2ED时,求P点坐标;②是否存在点P使△BEC为等腰三角形?若存在请直接写出点P的坐标;若不存在,请说明理由.2020年新疆乌鲁木齐市中考数学试卷参考答案与试题解析一、选择题:本大题共10个小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(4分)(2020•乌鲁木齐)如图,数轴上点A表示数a,则|a|是()A.2 B.1 C.﹣1 D.﹣2【分析】直接根据数轴上A点的位置可求a,再根据绝对值的性质即可得出结论.【解答】解:∵A点在﹣2处,∴数轴上A点表示的数a=﹣2,|a|=|﹣2|=2.故选A.【点评】本题考查的是绝对值和数轴,熟知数轴上各点与实数是一一对应关系是解答此题的关键.2.(4分)(2020•乌鲁木齐)如图,直线a∥b,∠1=72°,则∠2的度数是()A.118°B.108°C.98°D.72°【分析】根据平行线的性质,以及邻补角的定义进行计算即可.【解答】解:∵直线a∥b,∴∠2=∠3,∵∠1=72°,∴∠3=108°,∴∠2=108°,故选:B.【点评】本题主要考查了平行线的性质的运用,解题时注意:两直线平行,内错角相等.3.(4分)(2020•乌鲁木齐)计算(ab2)3的结果是()A.3ab2B.ab6C.a3b5 D.a3b6【分析】根据整式的运算即可求出答案.【解答】解:原式=a3b6,故选(D)【点评】本题考查整式的运算法则,解题的关键是熟练运用整式的运算法则,本题属于基础题型.4.(4分)(2020•乌鲁木齐)下列说法正确的是()A.“经过有交通信号的路口,遇到红灯,”是必然事件B.已知某篮球运动员投篮投中的概率为0.6,则他投10次一定可投中6次C.处于中间位置的数一定是中位数D.方差越大数据的波动越大,方差越小数据的波动越小【分析】根据概率的意义以及中位数的定义、方差的意义分别分析得出答案.【解答】解:A、“经过有交通信号的路口,遇到红灯,”是随机事件,故原题说法错误;B、已知某篮球运动员投篮投中的概率为0.6,则他投10次一定可投中6次,说法错误;C、处于中间位置的数一定是中位数,说法错误;D、方差越大数据的波动越大,方差越小数据的波动越小,说法正确;故选:D.【点评】此题主要考查了中位数、方差、随机事件以及概率,关键是掌握中位数、随机事件的定义,掌握概率和方差的意义.5.(4分)(2020•乌鲁木齐)如果n边形每一个内角等于与它相邻外角的2倍,则n的值是()A.4 B.5 C.6 D.7【分析】设出外角的度数,表示出内角的度数,根据一个内角与它相邻的外角互补列出方程,解方程得到答案.【解答】解:设外角为x,则相邻的内角为2x,由题意得,2x+x=180°,解得,x=60°,360÷60°=6,故选:C.【点评】本题考查的是多边形内、外角的知识,理解一个多边形的一个内角与它相邻外角互补是解题的关键.6.(4分)(2020•乌鲁木齐)一次函数y=kx+b(k,b是常数,k≠0)的图象,如图所示,则不等式kx+b>0的解集是()A.x<2 B.x<0 C.x>0 D.x>2【分析】从图象上得到函数的增减性及与x轴的交点的横坐标,即能求得不等式kx+b>0的解集.【解答】解:函数y=kx+b的图象经过点(2,0),并且函数值y随x的增大而减小,所以当x<2时,函数值大于0,即关于x的不等式kx+b>0的解集是x<2.故选A.【点评】此题主要考查了一次函数与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数y=kx+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.7.(4分)(2020•乌鲁木齐)2020年,在创建文明城市的进程中,乌鲁木齐市为美化城市环境,计划种植树木30万棵,由于志愿者的加入,实际每天植树比原计划多20%,结果提前5天完成任务,设原计划每天植树x万棵,可列方程是()A.﹣=5 B.﹣=5C.+5= D.﹣=5【分析】根据题意给出的等量关系即可列出方程.【解答】解:设原计划每天植树x万棵,需要天完成,∴实际每天植树(x+0.2x)万棵,需要天完成,∵提前5天完成任务,∴﹣=5,故选(A)【点评】本题考查分式方程的应用,解题的关键是利用题目中的等量关系,本题属于基础题型.8.(4分)(2020•乌鲁木齐)如图,是一个几何体的三视图,根据图中所示数据计算这个几何体的侧面积是()A.πB.2πC.4πD.5π【分析】由几何体的三视图可得出原几何体为圆锥,根据图中给定数据求出母线l的长度,再套用侧面积公式即可得出结论.【解答】解:由三视图可知,原几何体为圆锥,∵l==2,∴S=•2πr•l=×2π××2=2π.侧故选B.【点评】本题考查了由三视图判断几何体、圆锥的计算以及勾股定理,由几何体的三视图可得出原几何体为圆锥是解题的关键.9.(4分)(2020•乌鲁木齐)如图,在矩形ABCD中,点F在AD上,点E在BC 上,把这个矩形沿EF折叠后,使点D恰好落在BC边上的G点处,若矩形面积为4且∠AFG=60°,GE=2BG,则折痕EF的长为()A.1 B.C.2 D.【分析】由折叠的性质可知,DF=GF、HE=CE、GH=DC、∠DFE=∠GFE,结合∠AFG=60°即可得出∠GFE=60°,进而可得出△GEF为等边三角形,在Rt△GHE中,通过解含30度角的直角三角形及勾股定理即可得出GE=2EC、DC=EC,再由GE=2BG 结合矩形面积为4,即可求出EC的长度,根据EF=GE=2EC即可求出结论.【解答】解:由折叠的性质可知,DF=GF,HE=CE,GH=DC,∠DFE=∠GFE.∵∠GFE+∠DFE=180°﹣∠AFG=120°,∴∠GFE=60°.∵AF∥GE,∠AFG=60°,∴∠FGE=∠AFG=60°,∴△GEF为等边三角形,∴EF=GE.∵∠FGE=60°,∠FGE+∠HGE=90°,∴∠HGE=30°.在Rt△GHE中,∠HGE=30°,∴GE=2HE=CE,∴GH==HE=CE.∵GE=2BG,∴BC=BG+GE+EC=4EC.∵矩形ABCD的面积为4,∴4EC•EC=4,∴EC=1,EF=GE=2.故选C.【点评】本题考查了翻折变换、矩形的性质、等边三角形的判定及性质以及解含30度角的直角三角形,根据边角关系及解直角三角形找出BC=4EC、DC=EC是解题的关键.10.(4分)(2020•乌鲁木齐)如图,点A(a,3),B(b,1)都在双曲线y=上,点C,D,分别是x轴,y轴上的动点,则四边形ABCD周长的最小值为()A.B.C.D.【分析】先把A点和B点的坐标代入反比例函数解析式中,求出a与b的值,确定出A与B坐标,再作A点关于y轴的对称点P,B点关于x轴的对称点Q,根据对称的性质得到P点坐标为(﹣1,3),Q点坐标为(3,﹣1),PQ分别交x轴、y轴于C点、D点,根据两点之间线段最短得此时四边形PABQ的周长最小,然后利用两点间的距离公式求解可得.【解答】解:分别把点A(a,3)、B(b,1)代入双曲线y=得:a=1,b=3,则点A的坐标为(1,3)、B点坐标为(3,1),作A点关于y轴的对称点P,B点关于x轴的对称点Q,所以点P坐标为(﹣1,3),Q点坐标为(3,﹣1),连结PQ分别交x轴、y轴于C点、D点,此时四边形ABCD的周长最小,四边形ABCD周长=DA+DC+CB+AB=DP+DC+CQ+AB=PQ+AB=+=4+2=6,故选:B.【点评】本题考查了反比例函数的综合题:掌握反比例函数图象上点的坐标特征、熟练运用两点之间线段最短解决有关几何图形周长最短的问题是解题的关键.二、填空题(本大题5小题,每小题4分,满分20分,将答案填在答题纸上)11.(4分)(2020•乌鲁木齐)计算|1﹣|+()0=.【分析】先利用零指数幂的意义计算,然后去绝对值后合并.【解答】解:原式=﹣1+1=.故答案为.【点评】本题考查了实数的运算:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到有的顺序进行.12.(4分)(2020•乌鲁木齐)如图,在菱形ABCD中,∠DAB=60°,AB=2,则菱形ABCD的面积为2.【分析】由菱形ABCD,得到邻边相等,且对角线互相平分,再由一个角为60°的等腰三角形为等边三角形得到三角形ABD为等边三角形,求出BD的长,再由菱形的对角线垂直求出AC的长,即可求出菱形的面积.【解答】解:∵菱形ABCD,∴AD=AB,OD=OB,OA=OC,∵∠DAB=60°,∴△ABD为等边三角形,∴BD=AB=2,∴OD=1,在Rt△AOD中,根据勾股定理得:AO==,∴AC=2,则S=AC•BD=2,菱形ABCD故答案为:2【点评】此题考查了菱形的性质,等边三角形的判定与性质,勾股定理,熟练掌握菱形的性质是解本题的关键.13.(4分)(2020•乌鲁木齐)一件衣服售价为200元,六折销售,仍可获利20%,则这件衣服的进价是100元.【分析】此题的等量关系:实际售价=标价的六折=进价×(1+获利率),设未知数,列方程求解即可.【解答】解:设进价是x元,则(1+20%)x=200×0.6,解得:x=100.则这件衬衣的进价是100元.故答案为100.【点评】本题考查了一元一次方程应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程是解决问题的关键.14.(4分)(2020•乌鲁木齐)用等分圆周的方法,在半径为1的图中画出如图所示图形,则图中阴影部分面积为π﹣.【分析】连OA,OP,AP,求出AP直线和AP弧面积,即阴影部分面积,从而求解.【解答】解:如图,设的中点我P,连接OA,OP,AP,△OAP的面积是:×12=,=,扇形OAP的面积是:S扇形AP直线和AP弧面积:S弓形=﹣,=π﹣.阴影面积:3×2S弓形故答案为:π﹣.【点评】本题考查了扇形面积的计算,解题的关键是得到阴影部分面积=6(扇形OAP的面积﹣△OAP的面积).15.(4分)(2020•乌鲁木齐)如图,抛物线y=ax2+bx+c过点(﹣1,0),且对称轴为直线x=1,有下列结论:①abc<0;②10a+3b+c>0;③抛物线经过点(4,y1)与点(﹣3,y2),则y1>y2;④无论a,b,c取何值,抛物线都经过同一个点(﹣,0);⑤am2+bm+a ≥0,其中所有正确的结论是②④⑤.【分析】由开口方向、对称轴及抛物线与y轴交点位置可判断①;由x=3时的函数值及a>0可判断②;由抛物线的增减性可判断③;由当x=﹣时,y=a•(﹣)2+b•(﹣)+c=且a﹣b+c=0可判断④;由x=1时函数y取得最小值及b=﹣2a可判断⑤.【解答】解:由图象可知,抛物线开口向上,则a>0,顶点在y轴右侧,则b<0,抛物线与y轴交于负半轴,则c<0,∴abc>0,故①错误;∵抛物线y=ax2+bx+c过点(﹣1,0),且对称轴为直线x=1,∴抛物线y=ax2+bx+c过点(3,0),∴当x=3时,y=9a+3b+c=0,∵a>0,∴10a+3b+c>0,故②正确;∵对称轴为x=1,且开口向上,∴离对称轴水平距离越大,函数值越大,∴y1<y2,故③错误;当x=﹣时,y=a•(﹣)2+b•(﹣)+c==,∵当x=﹣1时,y=a﹣b+c=0,∴当x=﹣时,y=a•(﹣)2+b•(﹣)+c=0,即无论a,b,c取何值,抛物线都经过同一个点(﹣,0),故④正确;x=m对应的函数值为y=am2+bm+c,x=1对应的函数值为y=a+b+c,又∵x=1时函数取得最小值,∴am2+bm+c≥a+b+c,即am2+bm≥a+b,∵b=﹣2a,∴am2+bm+a≥0,故⑤正确;故答案为:②④⑤.【点评】本题考查了二次函数图象与系数的关系.二次函数y=ax2+bx+c(a≠0)系数符号由抛物线开口方向、对称轴、抛物线与y轴的交点、抛物线与x轴交点的个数确定.三、解答题(本大题共9小题,共90分.解答应写出文字说明、证明过程或演算步骤.)16.(8分)(2020•乌鲁木齐)解不等式组:.【分析】分别求出两个不等式的解集,求其公共解.【解答】解:,由①得,x>1,由②得,x<4,所以,不等式组的解集为1<x<4.【点评】本题主要考查了一元一次不等式组解集的求法,其简便求法就是用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).17.(8分)(2020•乌鲁木齐)先化简,再求值:(﹣)÷,其中x=.【分析】先把除法化为乘法,再根据运算顺序与计算方法先化简,再把x=代入求解即可.【解答】解:原式=(﹣)•=•=•=,当x=时,原式==.【点评】本题考查的是分式的化简求值及实数的运算,熟知分式混合运算的法则是解答此题的关键.18.(10分)(2020•乌鲁木齐)我国古代数学名著《孙子算经》中有“鸡兔同笼”问题:“今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何”,意思是:鸡和兔关在一个笼子里,从上面看有35个头,从下面看有94条腿,问笼中鸡或兔各有多少只?【分析】设笼中鸡有x只,兔有y只,本题中的等量关系有:鸡头+兔头=35头;鸡足+兔足=94足,需要注意的是,一只鸡有一头两足,一只兔有一头四足.【解答】解:设笼中鸡有x只,兔有y只,由题意得:,解得.答:笼中鸡有23只,兔有12只.【点评】本题考查二元一次方程组的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程组,再求解.需要注意的是,一只鸡有一头两足,一只兔有一头四足.19.(10分)(2020•乌鲁木齐)如图,四边形ABCD是平行四边形,E,F是对角线BD上的两点,且BF=ED,求证:AE∥CF.【分析】连接AC,交BD于点O,由“平行四边形ABCD的对角线互相平分”得到OA=OC,OB=OD;然后结合已知条件证得OE=OF,则“对角线互相平分的四边形是平行四边形”,即可得出结论.【解答】证明:连接AC,交BD于点O,如图所示:∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,∵BF=ED,∴OE=OF,∵OA=OC,∴四边形AECF是平行四边形,∴AE∥CF.【点评】本题考查了平行四边形的判定与性质,平行四边形的判定方法共有五种,应用时要认真领会它们之间的联系与区别,同时要根据条件合理、灵活地选择方法是解决问题的关键.20.(12分)(2020•乌鲁木齐)现今“微信运动”被越来越多的人关注和喜爱,某兴趣小组随机调查了我市50名教师某日“微信运动”中的步数情况进行统计整理,绘制了如下的统计图表(不完整):请根据以上信息,解答下列问题:(1)写出a,b,c,d的值并补全频数分布直方图;(2)本市约有37800名教师,用调查的样本数据估计日行走步数超过12000步(包含12000步)的教师有多少名?(3)若在50名被调查的教师中,选取日行走步数超过16000步(包含16000步的两名教师与大家分享心得,求被选取的两名教师恰好都在20000步(包含20000步)以上的概率.【分析】(1)根据频率=频数÷总数可得答案;(2)用样本中超过12000步(包含12000步)的频率之和乘以总人数可得答案;(3)画树状图列出所有等可能结果,根据概率公式求解可得.【解答】解:(1)a=8÷50=0.16,b=12÷50=0.24,c=50×0.2=10,d=50×0.04=2,补全频数分布直方图如下:(2)37800×(0.2+0.06+0.04)=11340,答:估计日行走步数超过12000步(包含12000步)的教师有11340名;(3)设16000≤x<20000的3名教师分别为A、B、C,20000≤x<24000的2名教师分别为X、Y,画树状图如下:由树状图可知,被选取的两名教师恰好都在20000步(包含20000步)以上的概率为=.【点评】此题考查了频率分布直方图,用到的知识点是频率=频数÷总数,用样本估计整体让整体×样本的百分比,读懂统计表,运用数形结合思想来解决由统计图形式给出的数学实际问题是本题的关键.21.(10分)(2020•乌鲁木齐)一艘渔船位于港口A的北偏东60°方向,距离港口20海里B处,它沿北偏西37°方向航行至C处突然出现故障,在C处等待救援,B,C之间的距离为10海里,救援船从港口A出发20分钟到达C处,求救援的艇的航行速度.(sin37°≈0.6,cos37°≈0.8,≈1.732,结果取整数)【分析】辅助线如图所示:BD⊥AD,BE⊥CE,CF⊥AF,在Rt△ABD中,根据勾股定理可求AD,在Rt△BCE中,根据三角函数可求CE,EB,在Rt△AFC中,根据勾股定理可求AC,再根据路程÷时间=速度求解即可.【解答】解:辅助线如图所示:BD⊥AD,BE⊥CE,CF⊥AF,有题意知,∠FAB=60°,∠CBE=37°,∴∠BAD=30°,∵AB=20海里,∴BD=10海里,在Rt△ABD中,AD==10≈17.32海里,在Rt△BCE中,sin37°=,∴CE=BC•sin37°≈0.6×10=6海里,∵cos37°=,∴EB=BC•cos37°≈0.8×10=8海里,EF=AD=17.32海里,∴FC=EF﹣CE=11.32海里,AF=ED=EB+BD=18海里,在Rt△AFC中,AC==≈21.26海里,21.26×3≈64海里/小时.答:救援的艇的航行速度大约是64海里/小时.【点评】考查了解直角三角形的应用﹣方向角问题,用到的知识点是方向角、勾股定理、解直角三角形、三角函数值,关键是做出辅助线,构造直角三角形.22.(10分)(2020•乌鲁木齐)一辆慢车从甲地匀速行驶至乙地,一辆快车同时从乙地出发匀速行驶至甲地,两车之间的距离y(千米)与行驶时间x(小时)的对应关系如图所示:(1)甲乙两地相距多远?(2)求快车和慢车的速度分别是多少?(3)求出两车相遇后y与x之间的函数关系式;(4)何时两车相距300千米.【分析】(1)由图象容易得出答案;(2)由题意得出慢车速度为=60(千米/小时);设快车速度为x千米/小时,由图象得出方程,解方程即可;(3)求出相遇的时间和慢车行驶的路程,即可得出答案;(4)分两种情况,由题意得出方程,解方程即可.【解答】解:(1)由图象得:甲乙两地相距600千米;(2)由题意得:慢车总用时10小时,∴慢车速度为=60(千米/小时);设快车速度为x千米/小时,由图象得:60×4+4x=600,解得:x=90,∴快车速度为90千米/小时,慢车速度为60千米/小时;(3)由图象得:=(小时),60×=400(千米),时间为小时时快车已到达甲地,此时慢车走了400千米,∴两车相遇后y与x的函数关系式为;(4)设出发x小时后,两车相距300千米.①当两车没有相遇时,由题意得:60x+90x=600﹣300,解得:x=2;②当两车相遇后,由题意得:60x+90x=600+300,解得:x=6;即两车2小时或6小时时,两车相距300千米.【点评】此题主要考查了一次函数的应用,解题的关键是正确理解题意,求出两车的速度.23.(10分)(2020•乌鲁木齐)如图,AB是⊙O的直径,CD与⊙O相切于点C,与AB的延长线交于D.(1)求证:△ADC∽△CDB;(2)若AC=2,AB=CD,求⊙O半径.【分析】(1)首先连接CO,根据CD与⊙O相切于点C,可得:∠OCD=90°;然后根据AB是圆O的直径,可得:∠ACB=90°,据此判断出∠CAD=∠BCD,即可推得△ADC∽△CDB.(2)首先设CD为x,则AB=x,OC=OB=x,用x表示出OD、BD;然后根据△ADC∽△CDB,可得:=,据此求出CB的值是多少,即可求出⊙O半径是多少.【解答】(1)证明:如图,连接CO,,∵CD与⊙O相切于点C,∴∠OCD=90°,∵AB是圆O的直径,∴∠ACB=90°,∴∠ACO=∠BCD,∵∠ACO=∠CAD,∴∠CAD=∠BCD,在△ADC和△CDB中,∴△ADC∽△CDB.(2)解:设CD为x,则AB=x,OC=OB=x,∵∠OCD=90°,∴OD===x,∴BD=OD﹣OB=x﹣x=x,由(1)知,△ADC∽△CDB,∴=,即,解得CB=1,∴AB==,∴⊙O半径是.【点评】此题主要考查了切线的性质和应用,以及勾股定理的应用,要熟练掌握.24.(12分)(2020•乌鲁木齐)如图,抛物线y=ax2+bx+c(a≠0)与直线y=x+1相交于A(﹣1,0),B(4,m)两点,且抛物线经过点C(5,0).(1)求抛物线的解析式;(2)点P是抛物线上的一个动点(不与点A、点B重合),过点P作直线PD⊥x 轴于点D,交直线AB于点E.①当PE=2ED时,求P点坐标;②是否存在点P使△BEC为等腰三角形?若存在请直接写出点P的坐标;若不存在,请说明理由.【分析】(1)由直线解析式可求得B点坐标,由A、B、C三点的坐标,利用待定系数法可求得抛物线解析式;(2)①可设出P点坐标,则可表示出E、D的坐标,从而可表示出PE和ED的长,由条件可知到关于P点坐标的方程,则可求得P点坐标;②由E、B、C三点坐标可表示出BE、CE和BC的长,由等腰三角形的性质可得到关于E点坐标的方程,可求得E点坐标,则可求得P点坐标.【解答】解:(1)∵点B(4,m)在直线y=x+1上,∴m=4+1=5,∴B(4,5),把A、B、C三点坐标代入抛物线解析式可得,解得,∴抛物线解析式为y=﹣x2+4x+5;(2)①设P(x,﹣x2+4x+5),则E(x,x+1),D(x,0),则PE=|﹣x2+4x+5﹣(x+1)|=|﹣x2+3x+4|,DE=|x+1|,∵PE=2ED,∴|﹣x2+3x+4|=2|x+1|,当﹣x2+3x+4=2(x+1)时,解得x=﹣1或x=2,但当x=﹣1时,P与A重合不合题意,舍去,∴P(2,9);当﹣x2+3x+4=﹣2(x+1)时,解得x=﹣1或x=6,但当x=﹣1时,P与A重合不合题意,舍去,∴P(6,﹣7);综上可知P点坐标为(2,9)或(6,﹣7);②设P(x,﹣x2+4x+5),则E(x,x+1),且B(4,5),C(5,0),∴BE==|x﹣4|,CE==,BC==,当△BEC为等腰三角形时,则有BE=CE、BE=BC或CE=BC三种情况,当BE=CE时,则|x﹣4|=,解得x=,此时P点坐标为(,);当BE=BC时,则|x﹣4|=,解得x=4+或x=4﹣,此时P点坐标为(4+,﹣4﹣8)或(4﹣,4﹣8);当CE=BC时,则=,解得x=0或x=4,当x=4时E点与B点重合,不合题意,舍去,此时P点坐标为(0,5);综上可知存在满足条件的点P,其坐标为(,)或(4+,﹣4﹣8)或(4﹣,4﹣8)或(0,5).【点评】本题为二次函数的综合应用,涉及待定系数法、勾股定理、等腰三角形的性质、方程思想及分类讨论思想等知识.在(1)中注意待定系数法的应用,在(2)①中用P点坐标分别表示出PE和ED的长是解题关键,在(2)②中用P 点坐标表示出BE、CE和BC的长是解题的关键,注意分三种情况讨论.本题考查知识点较多,综合性较强,难度适中.。
人教版高一下学期期中考试数学试卷及答案解析(共五套)

人教版高一下学期期中考试数学试卷(一)注意事项:本试卷满分150分,考试时间120分钟,试题共22题.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一、选择题(本大题共8小题,每小题5分,共40分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.点C是线段AB靠近点B的三等分点,下列正确的是()A.B.C.D.2.已知复数z满足z(3+i)=3+i2020,其中i为虚数单位,则z的共轭复数的虚部为()A.B.C.D.3.如图,▱ABCD中,∠DAB=60°,AD=2AB=2,延长AB至点E,且AB=BE,则•的值为()A.﹣1 B.﹣3 C.1 D.4.设i是虚数单位,则2i+3i2+4i3+……+2020i2019的值为()A.﹣1010﹣1010i B.﹣1011﹣1010iC.﹣1011﹣1012i D.1011﹣1010i5.如图,在正方体ABCD﹣A1B1C1D1中,异面直线A1B与CD所成的角为()A.30°B.45°C.60°D.135°6.在△ABC中,角A,B,C所对的边分别为a,b,c,若(a﹣2b)cos C=c(2cos B﹣cos A),△ABC的面积为a2sin,则C=()A.B.C.D.7.在正方体ABCD﹣A1B1C1D1中,下列四个结论中错误的是()A.直线B1C与直线AC所成的角为60°B.直线B1C与平面AD1C所成的角为60°C.直线B1C与直线AD1所成的角为90°D.直线B1C与直线AB所成的角为90°8.如图,四边形ABCD为正方形,四边形EFBD为矩形,且平面ABCD与平面EFBD互相垂直.若多面体ABCDEF的体积为,则该多面体外接球表面积的最小值为()A.6πB.8πC.12πD.16π二、多选题(本大题共4小题,每小题5分,选对得分,选错、少选不得分)9.在△ABC中,角A,B,C的对边分别为a,b,c,若a2=b2+bc,则角A可为()A.B.C.D.10.如图,四边形ABCD为直角梯形,∠D=90°,AB∥CD,AB=2CD,M,N分别为AB,CD的中点,则下列结论正确的是()A.B.C.D.11.下列说法正确的有()A.任意两个复数都不能比大小B.若z=a+bi(a∈R,b∈R),则当且仅当a=b=0时,z=0C.若z1,z2∈C,且z12+z22=0,则z1=z2=0D.若复数z满足|z|=1,则|z+2i|的最大值为312.如图,已知ABCD﹣A1B1C1D1为正方体,E,F分别是BC,A1C的中点,则()A.B.C.向量与向量的夹角是60°D.异面直线EF与DD1所成的角为45°三、填空题(本大题共4小题,每小题5分,共20分.不需写出解答过程,请把答案直接填写在横线上)13.已知正方形ABCD的边长为2,点P满足=(+),则||=;•=.14.若虛数z1、z2是实系数一元二次方程x2+px+q=0的两个根,且,则pq=.15.已知平面四边形ABCD中,AB=AD=2,BC=CD=BD=2,将△ABD沿对角线BD折起,使点A到达点A'的位置,当A'C=时,三棱锥A﹣BCD的外接球的体积为.16.已知一圆锥底面圆的直径为3,圆锥的高为,在该圆锥内放置一个棱长为a 的正四面体,并且正四面体在该几何体内可以任意转动,则a的最大值为.四、解答题(本大题共6小题,共70分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)17.在四边形ABCD中,AB∥CD,AD=BD=CD=1.(1)若AB=,求BC;(2)若AB=2BC,求cos∠BDC.18.(1)已知z1=1﹣2i,z2=3+4i,求满足=+的复数z.(2)已知z,ω为复数,(1+3i)﹣z为纯虚数,ω=,且|ω|=5.求复数ω.19.如图,墙上有一壁画,最高点A离地面4米,最低点B离地面2米.观察者从距离墙x(x>1)米,离地面高a(1≤a≤2)米的C处观赏该壁画,设观赏视角∠ACB=θ.(1)若a=1.5,问:观察者离墙多远时,视角θ最大?(2)若tanθ=,当a变化时,求x的取值范围.20.如图,已知复平面内平行四边形ABCD中,点A对应的复数为﹣1,对应的复数为2+2i,对应的复数为4﹣4i.(Ⅰ)求D点对应的复数;(Ⅱ)求平行四边形ABCD的面积.21.如图所示,等腰梯形ABFE是由正方形ABCD和两个全等的Rt△FCB和Rt△EDA组成,AB=1,CF=2.现将Rt△FCB沿BC所在的直线折起,点F移至点G,使二面角E﹣BC﹣G的大小为60°.(1)求四棱锥G﹣ABCE的体积;(2)求异面直线AE与BG所成角的大小.22.如图,四边形MABC中,△ABC是等腰直角三角形,AC⊥BC,△MAC是边长为2的正三角形,以AC为折痕,将△MAC向上折叠到△DAC的位置,使点D在平面ABC内的射影在AB上,再将△MAC向下折叠到△EAC的位置,使平面EAC⊥平面ABC,形成几何体DABCE.(1)点F在BC上,若DF∥平面EAC,求点F的位置;(2)求直线AB与平面EBC所成角的余弦值.参考答案一、选择题(本大题共8小题,每小题5分,共40分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.点C是线段AB靠近点B的三等分点,下列正确的是()A.B.C.D.【答案】D【分析】根据共线向量的定义即可得结论.【解答】解:由题,点C是线段AB靠近点B的三等分点,=3=﹣3,所以选项A错误;=2=﹣2,所以选项B和选项C错误,选项D正确.故选:D.【知识点】平行向量(共线)、向量数乘和线性运算2.已知复数z满足z(3+i)=3+i2020,其中i为虚数单位,则z的共轭复数的虚部为()A.B.C.D.【答案】D【分析】直接利用复数代数形式的乘除运算化简,然后利用共轭复数的概念得答案.【解答】解:∵z(3+i)=3+i2020,i2020=(i2)1010=(﹣1)1010=1,∴z(3+i)=4,∴z=,∴=,∴共轭复数的虚部为,故选:D.【知识点】复数的运算3.如图,▱ABCD中,∠DAB=60°,AD=2AB=2,延长AB至点E,且AB=BE,则•的值为()A.﹣1 B.﹣3 C.1 D.【答案】C【分析】利用图形,求出数量积的向量,然后转化求解即可.【解答】解:由题意,▱ABCD中,∠DAB=60°,AD=2AB=2,延长AB至点E,且AB=BE,可知=+=,=﹣=﹣2,所以•=()•(﹣2)=﹣2﹣2=1.故选:C.【知识点】平面向量数量积的性质及其运算4.设i是虚数单位,则2i+3i2+4i3+……+2020i2019的值为()A.﹣1010﹣1010i B.﹣1011﹣1010iC.﹣1011﹣1012i D.1011﹣1010i【答案】B【分析】利用错位相减法、等比数列的求和公式及其复数的周期性即可得出.【解答】解:设S=2i+3i2+4i3+ (2020i2019)∴iS=2i2+3i3+ (2020i2020)则(1﹣i)S=i+i+i2+i3+……+i2019﹣2020i2020.==i+==﹣2021+i,∴S==.故选:B.【知识点】复数的运算5.如图,在正方体ABCD﹣A1B1C1D1中,异面直线A1B与CD所成的角为()A.30°B.45°C.60°D.135°【答案】B【分析】易知∠ABA1即为所求,再由△ABA1为等腰直角三角形,得解.【解答】解:因为AB∥CD,所以∠ABA1即为异面直线A1B与CD所成的角,因为△ABA1为等腰直角三角形,所以∠ABA1=45°.故选:B.【知识点】异面直线及其所成的角6.在△ABC中,角A,B,C所对的边分别为a,b,c,若(a﹣2b)cos C=c(2cos B﹣cos A),△ABC的面积为a2sin,则C=()A.B.C.D.【答案】C【分析】先利用正弦定理将已知等式中的边化角,再结合两角和公式与三角形的内角和定理,可推出sin B=2sin A;然后利用三角形的面积公式、正弦定理,即可得解.【解答】解:由正弦定理知,==,∵(a﹣2b)cos C=c(2cos B﹣cos A),∴(sin A﹣2sin B)cos C=sin C(2cos B﹣cos A),即sin A cos C+sin C cos A=2(sin B cos C+cos B sin C),∴sin(A+C)=2sin(B+C),即sin B=2sin A.∵△ABC的面积为a2sin,∴S=bc sin A=a2sin,根据正弦定理得,sin B•sin C•sin A=sin2A•sin,化简得,sin B•sin cos=sin A•cos,∵∈(0,),∴cos>0,∴sin==,∴=,即C=.故选:C.【知识点】正弦定理、余弦定理7.在正方体ABCD﹣A1B1C1D1中,下列四个结论中错误的是()A.直线B1C与直线AC所成的角为60°B.直线B1C与平面AD1C所成的角为60°C.直线B1C与直线AD1所成的角为90°D.直线B1C与直线AB所成的角为90°【答案】B【分析】连接AB1,求出∠ACB1可判断选项A;连接B1D1,找出点B1在平面AD1C上的投影O,设直线B1C与平面AD1C所成的角为θ,由cosθ=可判断选项B;利用平移法找出选项C和D涉及的异面直线夹角,再进行相关运算,即可得解.【解答】解:连接AB1,∵△AB1C为等边三角形,∴∠ACB1=60°,即直线B1C与AC所成的角为60°,故选项A正确;连接B1D1,∵AB1=B1C=CD1=AD1,∴四面体AB1CD1是正四面体,∴点B1在平面AD1C上的投影为△AD1C的中心,设为点O,连接B1O,OC,则OC=BC,设直线B1C与平面AD1C所成的角为θ,则cosθ===≠,故选项B错误;连接BC1,∵AD1∥BC1,且B1C⊥BC1,∴直线B1C与AD1所成的角为90°,故选项C正确;∵AB⊥平面BCC1B1,∴AB⊥B1C,即直线B1C与AB所成的角为90°,故选项D正确.故选:B.【知识点】直线与平面所成的角、异面直线及其所成的角8.如图,四边形ABCD为正方形,四边形EFBD为矩形,且平面ABCD与平面EFBD互相垂直.若多面体ABCDEF的体积为,则该多面体外接球表面积的最小值为()A.6πB.8πC.12πD.16π【答案】A【分析】由题意可得AC⊥面EFBD,可得V ABCDEF=V C﹣EFBD+V A﹣EFBD=2V A﹣EFBD,再由多面体ABCDEF 的体积为,可得矩形EFBD的高与正方形ABCD的边长之间的关系,再由题意可得矩形EFBD的对角线的交点为外接球的球心,进而求出外接球的半径,再由均值不等式可得外接球的半径的最小值,进而求出外接球的表面积的最小值.【解答】解:设正方形ABCD的边长为a,矩形BDEF的高为b,因为正方形ABCD,所以AC⊥BD,设AC∩BD=O',由因为平面ABCD与平面EFBD互相垂直,AC⊂面ABCD,平面ABCD∩平面EFBD=BD,所以AC⊥面EFBD,所以V ABCDEF=V C﹣EFBD+V A﹣EFBD=2V A﹣EFBD=2•S EFBD•CO'=•a•b•a =a2b,由题意可得V ABCDEF=,所以a2b=2;所以a2=,矩形EFBD的对角线的交点O,连接OO',可得OO'⊥BD,而OO'⊂面EFBD,而平面ABCD⊥平面EFBD,平面ABCD∩平面EFBD=BD,所以OO'⊥面EFBD,可得OA=OB=OE=OF都为外接球的半径R,所以R2=()2+(a)2=+=+=++≥3=3×,当且仅当=即b=时等号成立.所以外接球的表面积为S=4πR2≥4π•3×=6π.所以外接球的表面积最小值为6π.故选:A.【知识点】球的体积和表面积二、多选题(本大题共4小题,每小题5分,选对得分,选错、少选不得分)9.在△ABC中,角A,B,C的对边分别为a,b,c,若a2=b2+bc,则角A可为()A.B.C.D.【答案】BC【分析】由已知利用余弦定理整理可得cos A=,对于A,若A=,可得b=<0,错误;对于B,若A=,可得b=>0,对于C,若A=,可得b=>0,对于D,若A=,可得c=0,错误,即可得解.【解答】解:因为在△ABC中,a2=b2+bc,又由余弦定理可得:a2=b2+c2﹣2bc cos A,所以b2+bc=b2+c2﹣2bc cos A,整理可得:c=b(1+2cos A),可得:cos A=,对于A,若A=,可得:﹣=,整理可得:b=<0,错误;对于B,若A=,可得:=,整理可得:b=>0,对于C,若A=,可得:cos==,整理可得:b=>0,对于D,若A=,可得:cos=﹣=,整理可得:c=0,错误.故选:BC.【知识点】余弦定理10.如图,四边形ABCD为直角梯形,∠D=90°,AB∥CD,AB=2CD,M,N分别为AB,CD的中点,则下列结论正确的是()A.B.C.D.【答案】ABC【分析】由向量的加减法法则、平面向量基本定理解决【解答】解:由,知A正确;由知B正确;由知C正确;由N为线段DC的中点知知D错误;故选:ABC.【知识点】向量数乘和线性运算、平面向量的基本定理11.下列说法正确的有()A.任意两个复数都不能比大小B.若z=a+bi(a∈R,b∈R),则当且仅当a=b=0时,z=0C.若z1,z2∈C,且z12+z22=0,则z1=z2=0D.若复数z满足|z|=1,则|z+2i|的最大值为3【答案】BD【分析】通过复数的基本性质,结合反例,以及复数的模,判断命题的真假即可.【解答】解:当两个复数都是实数时,可以比较大小,所以A不正确;复数的实部与虚部都是0时,复数是0,所以B正确;反例z1=1,z2=i,满足z12+z22=0,所以C不正确;复数z满足|z|=1,则|z+2i|的几何意义,是复数的对应点到(0,﹣2)的距离,它的最大值为3,所以D正确;故选:BD.【知识点】复数的模、复数的运算、虚数单位i、复数、命题的真假判断与应用12.如图,已知ABCD﹣A1B1C1D1为正方体,E,F分别是BC,A1C的中点,则()A.B.C.向量与向量的夹角是60°D.异面直线EF与DD1所成的角为45°【答案】ABD【分析】在正方体ABCD﹣A1B1C1D1中,建立合适的空间直角坐标系,设正方体的棱长为2,根据空间向量的坐标运算,以及异面直线所成角的向量求法,逐项判断即可.【解答】解:在正方体ABCD﹣A1B1C1D1中,以点A为坐标原点,分别以AB,AD,AA1为x 轴、y轴、z轴建立空间直角坐标系,设正方体的棱长为2,则A(0,0,0),A1(0,0,2),B(2,0,0),B1(2,0,2),C (2,2,0),D(0,2,0),D1(0,2,2),所以,故,故选项A正确;又,又,所以,,则,故选项B正确;,所以,因此与的夹角为120°,故选项C错误;因为E,F分别是BC,A1C的中点,所以E(2,1,0),F(1,1,1),则,所以,又异面直线的夹角大于0°小于等于90°,所以异面直线EF与DD1所成的角为45°,故选项D正确;故选:ABD.【知识点】异面直线及其所成的角三、填空题(本大题共4小题,每小题5分,共20分.不需写出解答过程,请把答案直接填写在横线上)13.已知正方形ABCD的边长为2,点P满足=(+),则||=;•=.【分析】根据向量的几何意义可得P为BC的中点,再根据向量的数量积的运算和正方形的性质即可求出.【解答】解:由=(+),可得P为BC的中点,则|CP|=1,∴|PD|==,∴•=•(+)=﹣•(+)=﹣2﹣•=﹣1,故答案为:,﹣1.【知识点】平面向量数量积的性质及其运算14.若虛数z1、z2是实系数一元二次方程x2+px+q=0的两个根,且,则pq=.【答案】1【分析】设z1=a+bi,则z2=a﹣bi,(a,b∈R),根据两个复数相等的充要条件求出z1,z2,再由根与系数的关系求得p,q的值.【解答】解:由题意可知z1与z2为共轭复数,设z1=a+bi,则z2=a﹣bi,(a,b∈R 且b≠0),又,则a2﹣b2+2abi=a﹣bi,∴(2a+b)+(a+2b)i=1﹣i,∴,解得.∴z1=+i,z2=i,(或z2=+i,z1=i).由根与系数的关系,得p=﹣(z1+z2)=1,q=z1•z2=1,∴pq=1.故答案为:1.【知识点】复数的运算15.已知平面四边形ABCD中,AB=AD=2,BC=CD=BD=2,将△ABD沿对角线BD折起,使点A到达点A'的位置,当A'C=时,三棱锥A﹣BCD的外接球的体积为.【分析】由题意画出图形,找出三棱锥外接球的位置,求解三角形可得外接球的半径,再由棱锥体积公式求解.【解答】解:记BD的中点为M,连接A′M,CM,可得A′M2+CM2=A′C2,则∠A′MC=90°,则外接球的球心O在△A′MC的边A′C的中垂线上,且过正三角形BCD的中点F,且在与平面BCD垂直的直线m上,过点A′作A′E⊥m于点E,如图所示,设外接球的半径为R,则A′O=OC=R,,A′E=1,在Rt△A′EO中,A′O2=A′E2+OE2,解得R=.故三棱锥A﹣BCD的外接球的体积为.故答案为:.【知识点】球的体积和表面积16.已知一圆锥底面圆的直径为3,圆锥的高为,在该圆锥内放置一个棱长为a的正四面体,并且正四面体在该几何体内可以任意转动,则a的最大值为.【分析】根据题意,该四面体内接于圆锥的内切球,通过内切球即可得到a的最大值.【解答】解:依题意,四面体可以在圆锥内任意转动,故该四面体内接于圆锥的内切球,设球心为P,球的半径为r,下底面半径为R,轴截面上球与圆锥母线的切点为Q,圆锥的轴截面如图:则OA=OB=,因为SO=,故可得:SA=SB==3,所以:三角形SAB为等边三角形,故P是△SAB的中心,连接BP,则BP平分∠SBA,所以∠PBO=30°;所以tan30°=,即r=R=×=,即四面体的外接球的半径为r=.另正四面体可以从正方体中截得,如图:从图中可以得到,当正四面体的棱长为a时,截得它的正方体的棱长为a,而正四面体的四个顶点都在正方体上,故正四面体的外接球即为截得它的正方体的外接球,所以2r=AA1=a=a,所以a=.即a的最大值为.故答案为:.【知识点】旋转体(圆柱、圆锥、圆台)四、解答题(本大题共6小题,共70分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)17.在四边形ABCD中,AB∥CD,AD=BD=CD=1.(1)若AB=,求BC;(2)若AB=2BC,求cos∠BDC.【分析】(1)直接利用余弦定理的应用求出结果;(2)利用余弦定理的应用建立等量关系式,进一步求出结果.【解答】解:(1)在四边形ABCD中,AD=BD=CD=1.若AB=,所以:cos∠ADB==,由于AB∥CD,所以∠BDC=∠ABD,即cos∠BDC=cos∠ABD=,所以BC2=BD2+CD2﹣2•BD•CD•cos∠BDC==,所以BC=.(2)设BC=x,则AB=2BC=2x,由余弦定理得:cos∠ADB==,cos∠BDC===,故,解得或﹣(负值舍去).所以.【知识点】余弦定理18.(1)已知z1=1﹣2i,z2=3+4i,求满足=+的复数z.(2)已知z,ω为复数,(1+3i)﹣z为纯虚数,ω=,且|ω|=5.求复数ω.【分析】(1)把z1,z2代入=+,利用复数代数形式的乘除运算化简求出,进一步求出z;(2)设z=a+bi(a,b∈R),利用复数的运算及(1+3i)•z=(1+3i)(a+bi)=a﹣3b+(3a+b)i为纯虚数,可得,又ω==i,|ω|=5,可得,即可得出a,b,再代入可得ω.【解答】解:(1)由z1=1﹣2i,z2=3+4i,得=+==,则z=;(2)设z=a+bi(a,b∈R),∵(1+3i)•z=(1+3i)(a+bi)=a﹣3b+(3a+b)i为纯虚数,∴.又ω===i,|ω|=5,∴.把a=3b代入化为b2=25,解得b=±5,∴a=±15.∴ω=±(i)=±(7﹣i).【知识点】复数的运算19.如图,墙上有一壁画,最高点A离地面4米,最低点B离地面2米.观察者从距离墙x(x>1)米,离地面高a(1≤a≤2)米的C处观赏该壁画,设观赏视角∠ACB=θ.(1)若a=1.5,问:观察者离墙多远时,视角θ最大?(2)若tanθ=,当a变化时,求x的取值范围.【分析】(1)首项利用两角和的正切公式建立函数关系,进一步利用判别式确定函数的最大值;(2)利用两角和的正切公式建立函数关系,利用a的取值范围即可确定x的范围.【解答】解:(1)如图,作CD⊥AF于D,则CD=EF,设∠ACD=α,∠BCD=β,CD=x,则θ=α﹣β,在Rt△ACD和Rt△BCD中,tanα=,tanβ=,则tanθ=tan(α﹣β)==(x>0),令u=,则ux2﹣2x+1.25u=0,∵上述方程有大于0的实数根,∴△≥0,即4﹣4×1.25u2≥0,∴u≤,即(tanθ)max=,∵正切函数y=tan x在(0,)上是增函数,∴视角θ同时取得最大值,此时,x==,∴观察者离墙米远时,视角θ最大;(2)由(1)可知,tanθ===,即x2﹣4x+4=﹣a2+6a﹣4,∴(x﹣2)2=﹣(a﹣3)2+5,∵1≤a≤2,∴1≤(x﹣2)2≤4,化简得:0≤x≤1或3≤x≤4,又∵x>1,∴3≤x≤4.【知识点】解三角形20.如图,已知复平面内平行四边形ABCD中,点A对应的复数为﹣1,对应的复数为2+2i,对应的复数为4﹣4i.(Ⅰ)求D点对应的复数;(Ⅱ)求平行四边形ABCD的面积.【分析】(I)利用复数的几何意义、向量的坐标运算性质、平行四边形的性质即可得出.(II)利用向量垂直与数量积的关系、模的计算公式、矩形的面积计算公式即可得出.【解答】解:(Ⅰ)依题点A对应的复数为﹣1,对应的复数为2+2i,得A(﹣1,0),=(2,2),可得B(1,2).又对应的复数为4﹣4i,得=(4,﹣4),可得C(5,﹣2).设D点对应的复数为x+yi,x,y∈R.得=(x﹣5,y+2),=(﹣2,﹣2).∵ABCD为平行四边形,∴=,解得x=3,y=﹣4,故D点对应的复数为3﹣4i.(Ⅱ)=(2,2),=(4,﹣4),可得:=0,∴.又||=2,=4.故平行四边形ABCD的面积==16.【知识点】复数的代数表示法及其几何意义21.如图所示,等腰梯形ABFE是由正方形ABCD和两个全等的Rt△FCB和Rt△EDA组成,AB=1,CF=2.现将Rt△FCB沿BC所在的直线折起,点F移至点G,使二面角E﹣BC﹣G的大小为60°.(1)求四棱锥G﹣ABCE的体积;(2)求异面直线AE与BG所成角的大小.【分析】(1)推导出GC⊥BC,EC⊥BC,从而∠ECG=60°.连接DG,推导出DG⊥EF,由BC⊥EF,BC⊥CG,得BC⊥平面DEG,从而DG⊥BC,进而DG⊥平面ABCE,DG是四棱锥G ﹣ABCE的高,由此能求出四棱锥G﹣ABCE的体积.(2)取DE的中点H,连接BH、GH,则BH∥AE,∠GBH既是AE与BG所成角或其补角.由此能求出异面直线AE与BG所成角的大小.【解答】解:(1)由已知,有GC⊥BC,EC⊥BC,所以∠ECG=60°.连接DG,由CD=AB=1,CG=CF=2,∠ECG=60°,有DG⊥EF①,由BC⊥EF,BC⊥CG,有BC⊥平面DEG,所以,DG⊥BC②,由①②知,DG⊥平面ABCE,所以DG就是四棱锥G﹣ABCE的高,在Rt△CDG中,.故四棱锥G﹣ABCE的体积为:.(2)取DE的中点H,连接BH、GH,则BH∥AE,故∠GBH既是AE与BG所成角或其补角.在△BGH中,,,则.故异面直线AE与BG所成角的大小为.【知识点】异面直线及其所成的角、棱柱、棱锥、棱台的体积22.如图,四边形MABC中,△ABC是等腰直角三角形,AC⊥BC,△MAC是边长为2的正三角形,以AC为折痕,将△MAC向上折叠到△DAC的位置,使点D在平面ABC内的射影在AB上,再将△MAC向下折叠到△EAC的位置,使平面EAC⊥平面ABC,形成几何体DABCE.(1)点F在BC上,若DF∥平面EAC,求点F的位置;(2)求直线AB与平面EBC所成角的余弦值.【分析】(1)点F为BC的中点,设点D在平面ABC内的射影为O,连接OD,OC,取AC 的中点H,连接EH,由题意知EH⊥AC,EH⊥平面ABC,由题意知DO⊥平面ABC,得DO∥平面EAC,取BC的中点F,连接OF,则OF∥AC,从而OF∥平面EAC,平面DOF∥平面EAC,由此能证明DF∥平面EAC.(2)连接OH,由OF,OH,OD两两垂直,以O为坐标原点,OF,OH,OD所在直线分别为x,y,z轴,建立空间直角坐标系,利用向量法能求出直线AB与平面EBC所成角的余弦值.【解答】解:(1)点F为BC的中点,理由如下:设点D在平面ABC内的射影为O,连接OD,OC,∵AD=CD,∴OA=OC,∴在Rt△ABC中,O为AB的中点,取AC的中点H,连接EH,由题意知EH⊥AC,又平面EAC⊥平面ABC,平面EAC∩平面ABC=AC,∴EH⊥平面ABC,由题意知DO⊥平面ABC,∴DO∥EH,∴DO∥平面EAC,取BC的中点F,连接OF,则OF∥AC,又OF⊄平面EAC,AC⊂平面EAC,∴OF∥平面EAC,∵DO∩OF=O,∴平面DOF∥平面EAC,∵DF⊂平面DOF,∴DF∥平面EAC.(2)连接OH,由(1)可知OF,OH,OD两两垂直,以O为坐标原点,OF,OH,OD所在直线分别为x,y,z轴,建立如图所示空间直角坐标系,则B(1,﹣1,0),A(﹣1,1,0),E(0,1,﹣),C(1,1,0),∴=(2,﹣2,0),=(0,2,0),=(﹣1,2,﹣),设平面EBC的法向量=(a,b,c),则,取a=,则=(,0,﹣1),设直线与平面EBC所成的角为θ,则sinθ===.∴直线AB与平面EBC所成角的余弦值为cosθ==.【知识点】直线与平面平行、直线与平面所成的角人教版高一下学期期中考试数学试卷(二)注意事项:本试卷满分150分,考试时间120分钟,试题共22题.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一、选择题(本大题共8小题,每小题5分,共40分)在每小题所给出的四个选项中,只有一项是符合题目要求的.(2﹣i)z对应的点位于虚轴的正半轴上,则复数z对应的点位于()1.已知复平面内,A.第一象限B.第二象限C.第三象限D.第四象限2.平行四边形ABCD中,点E是DC的中点,点F是BC的一个三等分点(靠近B),则=()A.B.C.D.3.已知向量=(6t+3,9),=(4t+2,8),若(+)∥(﹣),则t=()A.﹣1 B.﹣C.D.14.已知矩形ABCD的一边AB的长为4,点M,N分别在边BC,DC上,当M,N分别是边BC,DC的中点时,有(+)•=0.若+=x+y,x+y=3,则线段MN的最短长度为()A.B.2 C.2D.25.若z∈C且|z+3+4i|≤2,则|z﹣1﹣i|的最大和最小值分别为M,m,则M﹣m的值等于()A.3 B.4 C.5 D.96.已知球的半径为R,一等边圆锥(圆锥母线长与圆锥底面直径相等)位于球内,圆锥顶点在球上,底面与球相接,则该圆锥的表面积为()A.R2B.R2C.R2D.R27.农历五月初五是端午节,民间有吃粽子的习惯,粽子又称粽籺,俗称“粽子”,古称“角黍”,是端午节大家都会品尝的食品,传说这是为了纪念战国时期楚国大臣、爱国主义诗人屈原.小明在和家人一起包粽子时,想将一丸子(近似为球)包入其中,如图,将粽叶展开后得到由六个边长为4的等边三角形所构成的平行四边形,将粽叶沿虚线折起来,可以得到如图所示的粽子形状的六面体,则放入丸子的体积最大值为()A.πB.πC.πD.π8.已知半球O与圆台OO'有公共的底面,圆台上底面圆周在半球面上,半球的半径为1,则圆台侧面积取最大值时,圆台母线与底面所成角的余弦值为()A.B.C.D.二、多选题(本大题共4小题,每小题5分,选对得分,选错、少选不得分)9.下列有关向量命题,不正确的是()A.若||=||,则=B.已知≠,且•=•,则=C.若=,=,则=D.若=,则||=||且∥10.若复数z满足,则()A.z=﹣1+i B.z的实部为1 C.=1+i D.z2=2i11.如图,在平行四边形ABCD中,E,F分别为线段AD,CD的中点,AF∩CE=G,则()A.B.C.D.12.已知正方体ABCD﹣A1B1C1D1,棱长为2,E为线段B1C上的动点,O为AC的中点,P 为棱CC1上的动点,Q为棱AA1的中点,则以下选项中正确的有()A.AE⊥B1CB.直线B1D⊥平面A1BC1C.异面直线AD1与OC1所成角为D.若直线m为平面BDP与平面B1D1P的交线,则m∥平面B1D1Q三、填空题(本大题共4小题,每小题5分,共20分.不需写出解答过程,请把答案直接填写在横线上)13.已知向量=(m,1),=(m﹣6,m﹣4),若∥,则m的值为.14.将表面积为36π的圆锥沿母线将其侧面展开,得到一个圆心角为的扇形,则该圆锥的轴截面的面积S=.15.如图,已知有两个以O为圆心的同心圆,小圆的半径为1,大圆的半径为2,点A 为小圆上的动点,点P,Q是大圆上的两个动点,且•=1,则||的最大值是.16.如图,在三棱锥A﹣BCD的平面展开图中,已知四边形BCED为菱形,BC=1,BF=,若二面角A﹣CD﹣B的余弦值为﹣,M为BD的中点,则CD=,直线AD与直线CM所成角的余弦值为.四、解答题(本大题共6小题,共70分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)17.已知,.(1)若与同向,求;(2)若与的夹角为120°,求.18.已知a、b、c是△ABC中∠A、∠B、∠C的对边,a=4,b=6,cos A=﹣.(1)求c;(2)求cos2B的值.19.已知:复数z1与z2在复平面上所对应的点关于y轴对称,且z1(1﹣i)=z2(1+i)(i为虚数单位),|z1|=.(Ⅰ)求z1的值;(Ⅱ)若z1的虚部大于零,且(m,n∈R),求m,n的值.20.(Ⅰ)在复数范围内解方程|z|2+(z+)i=(i为虚数单位)(Ⅱ)设z是虚数,ω=z+是实数,且﹣1<ω<2.(1)求|z|的值及z的实部的取值范围;(2)设,求证:μ为纯虚数;(3)在(2)的条件下求ω﹣μ2的最小值.21.如图,直三棱柱A1B1C1﹣ABC中,AB=AC=1,,A1A=4,点M为线段A1A 的中点.(1)求直三棱柱A1B1C1﹣ABC的体积;(2)求异面直线BM与B1C1所成的角的大小.(结果用反三角表示)22.如图所示,在正方体ABCD﹣A1B1C1D1中,点G在棱D1C1上,且D1G=D1C1,点E、F、M分别是棱AA1、AB、BC的中点,P为线段B1D上一点,AB=4.(Ⅰ)若平面EFP交平面DCC1D1于直线l,求证:l∥A1B;(Ⅱ)若直线B1D⊥平面EFP.(i)求三棱锥B1﹣EFP的表面积;(ii)试作出平面EGM与正方体ABCD﹣A1B1C1D1各个面的交线,并写出作图步骤,保留作图痕迹.设平面EGM与棱A1D1交于点Q,求三棱锥Q﹣EFP的体积.答案解析一、选择题(本大题共8小题,每小题5分,共40分)在每小题所给出的四个选项中,只有一项是符合题目要求的.(2﹣i)z对应的点位于虚轴的正半轴上,则复数z对应的点位于()1.已知复平面内,A.第一象限B.第二象限C.第三象限D.第四象限【答案】B【分析】直接利用复数的运算和几何意义的应用求出该点所表示的位置.【解答】解:设z=a+bi(a,b∈R),所以(2﹣i)(a+bi)=2a+b+(2b﹣a)i,由于对应的点在虚轴的正半轴上,所以,即,所以a<0,b>0.故该点在第二象限.故选:B.【知识点】复数的代数表示法及其几何意义2.平行四边形ABCD中,点E是DC的中点,点F是BC的一个三等分点(靠近B),则=()A.B.C.D.【答案】D【分析】利用平行四边形的性质以及向量相等的概念,再利用平面向量基本定理进行转化即可.【解答】解:因为ABCD为平行四边形,所以,故.故选:D.【知识点】平面向量的基本定理3.已知向量=(6t+3,9),=(4t+2,8),若(+)∥(﹣),则t=()A.﹣1 B.﹣C.D.1【答案】B【分析】根据平面向量的坐标表示和共线定理,列方程求出t的值.【解答】解:向量=(6t+3,9),=(4t+2,8),所以+=(6t+3,11),﹣=(4t+2,5).又(+)∥(﹣),所以5(6t+3)﹣11(4t+2)=0,解得t=﹣.故选:B.【知识点】平面向量共线(平行)的坐标表示4.已知矩形ABCD的一边AB的长为4,点M,N分别在边BC,DC上,当M,N分别是边BC,DC的中点时,有(+)•=0.若+=x+y,x+y=3,则线段MN的最短长度为()A.B.2 C.2D.2【答案】D【分析】先根据M,N满足的条件,将(+)•=0化成的表达式,从而判断出矩形ABCD为正方形;再将+=x+y,左边用表示出来,结合x+y =3,即可得NC+MC=4,最后借助于基本不等式求出MN的最小值.【解答】解:当M,N分别是边BC,DC的中点时,有(+)•===,所以AD=AB,则矩形ABCD为正方形,设,,则=.则x=2﹣λ,y=2﹣μ.又x+y=3,所以λ+μ=1.故NC+MC=4,则MN==(当且仅当MC=NC=2时取等号).故线段MN的最短长度为2.故选:D.【知识点】平面向量数量积的性质及其运算5.若z∈C且|z+3+4i|≤2,则|z﹣1﹣i|的最大和最小值分别为M,m,则M﹣m的值等于()A.3 B.4 C.5 D.9【答案】B【分析】由题意画出图形,再由复数模的几何意义,数形结合得答案.【解答】解:由|z+3+4i|≤2,得z在复平面内对应的点在以Q(﹣3,﹣4)为圆心,以2为半径的圆及其内部.如图:|z﹣1﹣i|的几何意义为区域内的动点与定点P得距离,则M=|PQ|+2,m=|PQ|﹣2,则M﹣m=4.故选:B.【知识点】复数的运算6.已知球的半径为R,一等边圆锥(圆锥母线长与圆锥底面直径相等)位于球内,圆锥顶点在球上,底面与球相接,则该圆锥的表面积为()A.R2B.R2C.R2D.R2【答案】B【分析】设圆锥的底面半径为r,求得圆锥的高,由球的截面性质,运用勾股定理可得r,由圆锥的表面积公式可得所求.【解答】解:如图,设圆锥的底面半径为r,则圆锥的高为r,则R2=r2+(r﹣R)2,解得r=R,则圆锥的表面积为S=πr2+πr•2r=3πr2=3π(R)2=πR2,故选:B.【知识点】球内接多面体、旋转体(圆柱、圆锥、圆台)7.农历五月初五是端午节,民间有吃粽子的习惯,粽子又称粽籺,俗称“粽子”,古称“角黍”,是端午节大家都会品尝的食品,传说这是为了纪念战国时期楚国大臣、爱国主义诗人屈原.小明在和家人一起包粽子时,想将一丸子(近似为球)包入其中,如图,将粽叶展开后得到由六个边长为4的等边三角形所构成的平行四边形,将粽叶沿虚线折起来,可以得到如图所示的粽子形状的六面体,则放入丸子的体积最大值为()A.πB.πC.πD.π【答案】A【分析】先根据题意求得正四面体的体积,进而得到六面体的体积,再由图形的对称性得,内部的丸子要是体积最大,就是丸子要和六个面相切,设丸子的半径为R,则,由此求得R,进而得到答案.【解答】解:由题意可得每个三角形面积为,由对称性可知该六面体是由两个正四面体合成的,可得该四面体的高为,故四面体的体积为,∵该六面体的体积是正四面体的2倍,。
新疆喀什地区2020版中考数学试卷D卷(新版)

新疆喀什地区2020版中考数学试卷D卷姓名:________ 班级:________ 成绩:________一、选择题:本大题共10小题,每小题3分,共30分 (共10题;共20分)1. (2分)如图所示,根据有理数a、b、c在数轴上的位置,下列关系正确的是()A .B .C .D .2. (2分)(2017·赤峰) 下面几何体的主视图为()A .B .C .D .3. (2分) (2019七上·揭西期末) 中国国家图书馆藏书数用科学记数法表示为2.7×107册,这个数原来是()A . 270万册B . 270000000册C . 2700万册D . 27万册4. (2分)下列运算正确的是()A . (ab)2=ab2B . 3a+2a2=5a2C . 2(a+b)=2a+bD . a•a=a25. (2分)(2013·梧州) 如图,把矩形ABCD沿直线EF折叠,若∠1=20°,则∠2=()A . 80°B . 70°C . 40°D . 20°6. (2分)点A(2,﹣5)关于x轴的对称点B的坐标为()A . (﹣2,5)B . (2,5)C . (﹣2,﹣5)D . (5,﹣2)7. (2分)已知关于x的分式方程的解是负数,则m的取值范围是()A . m≤3B . m≤3且m≠2C . m<3D . m<3且m≠28. (2分)(2016·藁城模拟) 下列说法正确的是()A . “买一张电影票,座位号为偶数”是必然事件B . 若甲、乙两组数据的方差分别为s =0.3、s =0.1,则甲组数据比乙组数据稳定C . 一组数据2,4,5,5,3,6的众数是5D . 若某抽奖活动的中奖率为,则参加6次抽奖一定有1次能中奖9. (2分) (2020九上·吴兴月考) 关于抛物线y=x2﹣6x+9,下列说法错误的是()A . 开口向上B . 顶点在x轴上C . 对称轴是x=3D . x>3时,y随x增大而减小10. (2分) (2019九上·宁波期末) 如图,在平面直角坐标系中,点,的坐标分别为,,过,,三点作圆,点在第一象限部分的圆上运动,连结,过点作的垂线交的延长线于点,下列说法:① ;② ;③ 的最大值为10.其中正确的是()A . ①②B . ②③C . ①③D . ①②③二、填空题:本大题共4个小题,每小题4分,共16分 (共4题;共5分)11. (2分)已知一个正数x的两个平方根是a+1和a﹣3,则a=________,x=________.12. (1分) (2019八上·潢川期中) 如果△ABC≌△DEF,∠A=40°,∠B=55°,那么∠E=________.13. (1分)(2019·义乌模拟) 如图,在直角坐标系中,,边、都在轴的正半轴上,点的坐标为,,.反比例函数的图象经过点,交边于点.则的值为________.14. (1分)(2017·营口) 在矩形纸片ABCD中,AD=8,AB=6,E是边BC上的点,将纸片沿AE折叠,使点B 落在点F处,连接FC,当△EFC为直角三角形时,BE的长为________.三、解答题:本大共6小题,共54分 (共6题;共56分)15. (10分)(2016·兴化模拟) 解答题。
2024年新高一数学初升高衔接《基本不等式》含答案解析

第07讲 基本不等式模块一 思维导图串知识模块二 基础知识全梳理(吃透教材)模块三 核心考点举一反三模块四 小试牛刀过关测1.了解基本不等式的证明过程;2.能利用基本不等式证明简单的不等式及比较代数式的大小;3.熟练掌握利用基本不等式求函数的最值问题;4.会用基本不等式求解实际应用题.知识点 1 基本不等式1、重要不等式(1)公式:对于任意的实数,a b ,有222a b ab +≥,当且仅当a b =时,等号成立.【说明】22222()0202a b a b ab a b ab -≥⇔+-≥⇔+≥,当且仅当a b =时,等号成立.(2)常见变形:2222()()a b a b +≥+、222a b ab +≤、2242ab a b ab ≤++.2、基本不等式(1)公式:如果0a >,0b >2a b+≤,当且仅当a b =时,等号成立.【说明】2ba +叫做正数,ab 的算术平均数,ab 叫做正数,a b 的几何平均数.因此基本不等式表明:两个正数的算术平均数不小于它们的几何平均数.(2)常见变形:a b +≥;2.2a b ab +⎛⎫≤ ⎪⎝⎭(3)常用结论:①2b aa b+≥(,a b 同号),当且仅当a b =时取等号;2b aa b+≤-(,a b 异号),当且仅当a b =-时取等号.②12a a+≥(0a >),当且仅当1a =时取等号;12a a+≤-(0a <),当且仅当1a =-时取等号;知识点 2 最值定理1、最值定理:已知,x y 都是正数,(1)若x +y =s (和s 为定值),则当x=y 时,积xy 有最大值,且这个值为s 24.(2)若xy =p (积p 为定值),则当x=y 时,和x +y 有最小值,且这个值为2p .最值定理简记为:积定和最小,和定积最大.2、在用基本不等式求函数的最值时,要满足三个条件:一正二定三取等.①一正:各项均为正数;②二定:含变数的各项的和或积必须有一个为定值;③三相等:含变数的各项均相等,取得最值.知识点 3 基本不等式的变式与拓展1、基本不等式链20,0)112a b a b a b +≤≤≤>>+或222()(0,0)22a b a b ab a b ++≤≤>>.当且仅当a b =时等号成立.其中,2211aba b a b=++为,a b 的调和平均值,222a b +为,a b 的平方平均值2、基本不等式的拓展(1)三元基本不等式:3a b c ++≥,,a b c 均为正实数),当且仅当a b c ==时等号成立.(2)n元基本不等式:12n a a a n+++ 12,,n a a a 均为正实数),当且仅当12n a a a === 时等号成立.考点一:对基本不等式的理解例1.(22-23高一上·河北邯郸·月考)不等式(x -2y )+12x y-≥2成立的前提条件为( )A .x ≥2yB .x >2yC .x ≤2yD .x <2y【变式1-1】(23-24高一上·西藏林芝·期中)下列命题中正确的是( )A .若0,0a b >>,且16a b +=,则64ab ≤B .若0a ≠,则44a a +≥=C .若,R a b ∈,则2()2a b ab +≥D .对任意,R a b ∈,222,a b ab a b +≥+≥.【变式1-2】(23-24高一上·山西运城·月考)(多选)已知,a b ∈R ,且0ab >,则下列不等式中,恒成立的是( )A.2a b+≥B .()()2222a b a b +≥+C .2b a a b +≥D .114a b a b ⎛⎫⎛⎫++≥ ⎪⎪⎝⎭⎝⎭【变式1-3】(23-24高一上·新疆巴音郭楞·期末)(多选)《几何原本》中的几何代数法是以几何方法研究代数问题,这种方法是数学家处理问题的重要依据,通过这一原理,很多的代数公理或定理都能够通过图形实现证明,也称之为无字证明.现有图形如图所示,C 为线段AB 上的点,且AC a =,BC b =,O 为AB 的中点,以AB 为直径作半圆,过点C 作AB 的垂线交半圆于D ,连接OD 、AD 、BD ,过点C 作OD 的垂线,垂足为E .则该图形可以完成的所有的无字证明为( )A.)0,02a ba b +≥>>B .()2230,0a b ab a b +>>>C()20,011a b a b≥>>+D .()220,022a b a ba b ++≥>>考点二:利用基本不等式比较大小例2. (23-24高一上·甘肃会宁·期中)设n mA m n=+(m 、n 为互不相等的正实数),242B x x =-+-,则A 与B 的大小关系是( )A .A B>B .A B≥C .A B<D .A B≤【变式2-1】(23-24高一上·江苏淮安·期中)已知实数a ,b ,c 满足22c b a a-=+-,2222c b a a a+=++,且0a >,则a ,b ,c 的大小关系是( )A .b c a>>B .c b a>>C .a c b>>D .c a b>>【变式2-2】(23-24高一上·福建莆田·期末)(多选)若170,139a b <<<<,则,a b +22,2a b +中不可能是最大值的是( )A .222a b +B.C.D .a b+【变式2-3】(23-24高一上·全国·专题练习)(多选)若0a b >>,则下列不等式成立的是( )A.2a b+>B .22ab a ba b +<+C .22ab a ba b +>+D 2aba b>+考点三:利用基本不等式求最值例3. (23-24高一下·贵州贵阳·月考)已知02x <<,则()32x x -的最大值是( )A .3-B .3C .1D .6【变式3-1】(23-24高一上·广东韶关·月考)已知100x >>,则2的最小值为( )A .3-B .2-C .1-D .0【变式3-2】(23-24高一下·河南周口·月考)已知正数,a b 满足1ab =,则22(1)(1)T a b =+++的最小值为( )A .4B .6C .8D .16【变式3-3】(23-24高一下·陕西榆林·月考)若正数x ,y 满足44x y +=,则11x y+的最小值为( )A .2B .94C .3D .83【变式3-4】(23-24高一下·广西·开学考试)已知0a >,0b >,且a b ab +=,则27ab a b -+的最小值是( )A .6B .9C .16D .19考点四:利用基本不等式证明不等式例4. (23-24高一上·安徽马鞍山·期中)已知0,0,1a b a b >>+=,求证:(1)114a b+≥;(2)12118a b ⎛⎫⎛⎫++≥+ ⎪⎪⎝⎭⎝⎭.【变式4-1】(23-24高一上·四川雅安·期中)已知0a >,0b >,且1a b +=,证明:(1)22221a b +≥;(2)1916a b+≥.【变式4-2】(23-24高一上·全国·专题练习)设a ,b ,c 均为正数,求证:()11192a b c a b b c a c ⎛⎫++++≥⎪+++⎝⎭.【变式4-3】(23-24高一上·安徽淮南·期中)已知,,a b c 是正实数.(1)证明:a b c ++≥(2)若2a b c ++=,证明:11192a b c ++≥.(3)已知,a b 是正数,且1a b +=,求证:()()ax by bx ay xy ++≥.考点五:基本不等式恒成立问题例5. (23-24高一上·贵州安顺·≥数m 的最大值为( )A .2B .3C .4D .9【变式5-1】(23-24高一上·吉林延边·月考)已知0x >,0y >,且2x y +=.若410x mxy +-≥恒成立,则实数m 的最大值是()A .4B .8C .3D .6【变式5-2】(23-24高一上·广东揭阳·期中)已知0x >,0y >,且9x y xy +=,若不等式a x y ≤+恒成立,则a 的取值范围是( )A .(],6-∞B .(],16-∞C .(],8∞-D .(],9-∞【变式5-3】(23-24高一下·湖南株洲·开学考试)(多选)若对于任意0x >,231xax x ≤++恒成立,则实数a 的取值可以是( )A .15B .110C .12D .13考点六:基本不等式在实际中的应用例6. (23-24高一下·浙江·月考)如图,某灯光设计公司生产一种长方形线路板,长方形()ABCD AB AD >的周长为4,沿AC 折叠使点B 到点B '位置,AB '交DC 于点P .研究发现当ADP △的面积最大时用电最少,则用电最少时,AB 的长度为( )A .54B C .32D 【变式6-1】(23-24高一上·江苏连云港·月考)某工厂建造一个无盖的长方体贮水池,其容积为48003m ,深度为3m .如果池底每平方米的造价为100元,池壁每平方米的造价为80元,怎样设计水池能使总造价最低?最低总造价为多少元?【变式6-2】(23-24高一上·广东佛山·月考)某工厂拟造一座平面图(如图)为长方形且面积为2150m 的三级污水处理池.由于地形限制,该处理池的长、宽都不能超过16 m ,且高度一定.如果四周池壁的造价为400元/2m ,中间两道隔墙的造价为248元/2m ,池底造价为80元/2m ,那么如何设计该处理池的长和宽,才能使总造价最低?(池壁的厚度忽略不计)【变式6-3】(23-24高一上·四川乐山·期中)用篱笆在一块靠墙的空地围一个面积为2的等腰梯形菜园,如图所示,用墙的一部分做下底AD ,用篱笆做两腰及上底,且腰与墙成60︒,当等腰梯形的腰长为多少时,所用篱笆的长度最小?并求出所用篱笆长度的最小值.一、单选题1.(23-24高一上·陕西宝鸡·期中)221x x +取最小值时x 的取值为( )A .1B .1±C .2D .2±2.(23-24高一上·湖南娄底·期末)若0x >,0y >,且1x y +=,则xy 的最大值是( )A .116B .14C .12D .13.(22-23高一上·江苏宿迁·月考)若0x >,则22y x x=+的最小值是( )A .B .C .4D .24.(23-24高一下·云南丽江·开学考试)已知a ,b 为正数,41a b +=,则114a b+的最小值为( )A .1B .2C .4D .85.(23-24高一上·湖南娄底·期末)已知0x >,则24-+x x x 的最小值为( )A .5B .3C .5-D .5-或36.(23-24高一上·山东济南·期末)如图所示,线段AB 为半圆的直径,O 为圆心,,C F 为半圆弧上不与,A B 重合的点,OF AB ⊥.作CD AB ⊥于,D DE OC ⊥于E ,设,AD a BD b ==,则下列不等式中可以直接表示CE DF ≤的是( )A .2aba b≤+B 2a b +≤C .2a b +≤D .2ab a b ≤+二、多选题7.(23-24高一下·云南昆明·期中)下列说法正确的是( )A .1x x+的最小值为2B .(2)x x -的最大值为2C .22x x -+的最小值为2D .2272x x ++最小值为28.(23-24高一上·全国·单元测试)已知,R a b ∈,且0ab ≠,则下列四个不等式中,恒成立的为( )A .222a b ab +≥B .2b a a b+≥C .2a b ab +⎛⎫≤ ⎪⎝⎭2D .22222a b a b ++⎛⎫≤⎪⎝⎭三、填空题9.(23-24高一上·广西百色·期末)若1x >,则2161x x x -+-的最小值为.10.(23-24高一上·北京·期中)某快递公司为提高效率,引进智能机器人分拣系统,以提高分拣效率和降低物流成本.已知购买x 台机器人的总成本为21()150600P x x x =++(单位:万元).若要使每台机器人的平均成本最低,则应买机器人 台.11.(23-24高一上·吉林延边·月考)若x a ∀>,关于x 的不等式225x x a+≥-恒成立,则实数a 的取值范围是.四、解答题12.(23-24高一上·山东菏泽·月考)(1)已知01x <<,则(43)x x -取得最大值时x 的值为?(2)函数22(1)1x y x x +=>- 的最小值为?(3)已知x ,y 是正实数,且4x y +=,求13x y+的最小值.13.(23-24高一上·安徽马鞍山·月考)如图,我国古代的“弦图”是由四个全等的直角三角形围成的.设直角三角形ABC 的直角边长为,a b ,且直角三角形ABC 的周长为2.(已知正实数,x y2x y +≤x y =时等号成立)(1)求直角三角形ABC 面积的最大值;(2)求正方形ABDE 面积的最小值.第07讲 基本不等式模块一 思维导图串知识模块二 基础知识全梳理(吃透教材)模块三 核心考点举一反三模块四 小试牛刀过关测1.了解基本不等式的证明过程;2.能利用基本不等式证明简单的不等式及比较代数式的大小;3.熟练掌握利用基本不等式求函数的最值问题;4.会用基本不等式求解实际应用题.知识点 1 基本不等式1、重要不等式(1)公式:对于任意的实数,a b ,有222a b ab +≥,当且仅当a b =时,等号成立.【说明】22222()0202a b a b ab a b ab -≥⇔+-≥⇔+≥,当且仅当a b =时,等号成立.(2)常见变形:2222()()a b a b +≥+、222a b ab +≤、2242ab a b ab ≤++.2、基本不等式(1)公式:如果0a >,0b >2a b+≤,当且仅当a b =时,等号成立.【说明】2ba +叫做正数,ab 的算术平均数,ab 叫做正数,a b 的几何平均数.因此基本不等式表明:两个正数的算术平均数不小于它们的几何平均数.(2)常见变形:a b +≥;2.2a b ab +⎛⎫≤ ⎪⎝⎭(3)常用结论:①2b aa b+≥(,a b 同号),当且仅当a b =时取等号;2b aa b+≤-(,a b 异号),当且仅当a b =-时取等号.②12a a+≥(0a >),当且仅当1a =时取等号;12a a+≤-(0a <),当且仅当1a =-时取等号;知识点 2 最值定理1、最值定理:已知,x y 都是正数,(1)若x +y =s (和s 为定值),则当x=y 时,积xy 有最大值,且这个值为s 24.(2)若xy =p (积p 为定值),则当x=y 时,和x +y 有最小值,且这个值为2p .最值定理简记为:积定和最小,和定积最大.2、在用基本不等式求函数的最值时,要满足三个条件:一正二定三取等.①一正:各项均为正数;②二定:含变数的各项的和或积必须有一个为定值;③三相等:含变数的各项均相等,取得最值.知识点 3 基本不等式的变式与拓展1、基本不等式链20,0)112a b a b a b +≤≤≤>>+或222()(0,0)22a b a b ab a b ++≤≤>>.当且仅当a b =时等号成立.其中,2211aba b a b=++为,a b 的调和平均值,222a b +为,a b 的平方平均值2、基本不等式的拓展(1)三元基本不等式:3a b c ++≥,,a b c 均为正实数),当且仅当a b c ==时等号成立.(2)n元基本不等式:12n a a a n+++ 12,,n a a a 均为正实数),当且仅当12n a a a === 时等号成立.考点一:对基本不等式的理解例1.(22-23高一上·河北邯郸·月考)不等式(x -2y )+12x y-≥2成立的前提条件为( )A .x ≥2yB .x >2yC .x ≤2yD .x <2y【答案】B【解析】由均值不等式的条件“一正、二定,三相等”,即均值不等式成立的前提条件是各项均为正数,所以不等式()1222x y x y-+≥-成立的前提条件为20x y ->,即2x y >.故选:B.【变式1-1】(23-24高一上·西藏林芝·期中)下列命题中正确的是( )A .若0,0a b >>,且16a b +=,则64ab ≤B .若0a ≠,则44a a +≥=C .若,R a b ∈,则2()2a b ab +≥D .对任意,R a b ∈,222,a b ab a b +≥+≥.【答案】A【解析】A 选项,2642a b ab +⎛⎫≤= ⎪⎝⎭,当且仅当8a b ==时等号成立,A 选项正确.B 选项,当a<0时,40a a+<,所以B 选项错误.C 选项,当0,0a b ><时,()20,02a b ab +<≥,所以C 选项错误.D 选项,当0,0a b <<时,0a b +<,a b +≥不成立,所以D 选项错误. 故选:A【变式1-2】(23-24高一上·山西运城·月考)(多选)已知,a b ∈R ,且0ab >,则下列不等式中,恒成立的是( )A .2a b+≥B .()()2222a b a b +≥+C .2b a a b +≥D .114a b a b ⎛⎫⎛⎫++≥ ⎪⎪⎝⎭⎝⎭【答案】BCD【解析】对于A ,当,a b 为负数时不成立,故A 错误,对于B ,()()22222()0a b a b a b +-+=-≥,则()()2222a b a b +≥+,故B 正确,对于C ,0ab >,则,b aa b 都为正数,2b a a b +≥,当且仅当b a ab=,即a b =时等号成立,故C 正确,对于D ,111224b a a b ab a b ab a b ⎛⎫⎛⎫++=+++≥+= ⎪⎪⎝⎭⎝⎭,当且仅当1ab ab =和b aa b=同时成立,即1a b ==±时等号成立,故D 正确,故选:BCD 【变式1-3】(23-24高一上·新疆巴音郭楞·期末)(多选)《几何原本》中的几何代数法是以几何方法研究代数问题,这种方法是数学家处理问题的重要依据,通过这一原理,很多的代数公理或定理都能够通过图形实现证明,也称之为无字证明.现有图形如图所示,C 为线段AB 上的点,且AC a =,BC b =,O 为AB 的中点,以AB 为直径作半圆,过点C 作AB 的垂线交半圆于D ,连接OD 、AD 、BD ,过点C 作OD 的垂线,垂足为E .则该图形可以完成的所有的无字证明为( )A.)0,02a ba b +≥>>B .()2230,0a b ab a b +>>>C()20,011a b a b≥>>+D .()220,022a b a ba b ++≥>>【答案】AC【解析】由题意可知AB AC BC a b =+=+,2a bOA OB OD +===,因为90CBD CAD ADC ∠=-∠=∠ ,90ACD DCB ∠=∠= ,则Rt Rt ACD DCB ∽ ,所以,CD ACBC CD= ,即2CD AC BC ab =⋅=,所以CD =在Rt OCD △中,OD CD >,即)0,02a ba b +>>当OD AB ⊥时,O 、C 点重合,a b =,此时)0,02a ba b +=>>,则)0,02a ba b +≥>>,所以A 正确;对于C 选项,在Rt OCD △中,CE OD ⊥,则90DCE CDE DOC ∠=-∠=∠ ,又因为90DEC DCO ∠=∠= ,所以,Rt Rt DEC DCO ∽ ,可得CD DE DO CD=,即2CD DE OD =⋅,所以222112CD ab ab DE a b OD a b a b====+++,由于CD DE >111a b >+,当a b =时,CD DE =111a b=+,()20,011a ba b>>+,所以C正确;由于22a b+在该图中没有相应的线段与之对应,故BD中的不等式无法通过这种几何方法来证明,故选:AC.考点二:利用基本不等式比较大小例2. (23-24高一上·甘肃会宁·期中)设n mAm n=+(m、n为互不相等的正实数),242B x x=-+-,则A与B的大小关系是()A.A B>B.A B≥C.A B<D.A B≤【答案】A【解析】m、n为互不相等的正实数,则m nn m≠,所以2n mAm n=+>=,2242(2)22B x x x=-+-=--+≤,=2x时,max2B=,所以A B>.故选:A.【变式2-1】(23-24高一上·江苏淮安·期中)已知实数a,b,c满足22c b aa-=+-,2222c b a aa+=++,且0a>,则a,b,c的大小关系是()A.b c a>>B.c b a>>C.a c b>>D.c a b>>【答案】B【解析】因为0a>,由基本不等式得22220c b aa-=+-≥=>,故c b>,因为2222c b a aa+=++,22c b aa-=+-,两式相减得,2222222222a a a aabaa++-=-+++=,故2112a ab+=+,所以220141151216ab aa a⎛⎫-⎪-+-+⎝=⎭=>,故b a>,所以c b a>>.故选:B【变式2-2】(23-24高一上·福建莆田·期末)(多选)若170,139a b <<<<,则,a b +22,2a b +中不可能是最大值的是( )A .222a b +B .C .D .a b+【答案】ABC【解析】由于170,139a b <<<<,则a b ¹,故a b +>222a b +>,则不可能是最大值,B ,C 符合题意;由于22221132)2()()428(a b a b a b ++=--+--,当170,139a b <<<<时,221112()2(0448a -<-=,22111()(1224b -<-=,故221131132((0428848a b -+--<+-=,即222a b a b +<+,故222a b +不可能是最大值,A 符合题意,故选:ABC【变式2-3】(23-24高一上·全国·专题练习)(多选)若0a b >>,则下列不等式成立的是( )A .2a b+>B .22ab a ba b +<+C .22ab a ba b +>+D 2aba b>+【答案】ABD【解析】对于选项A ,因为0a b >>,则20>,所以2a b+A 正确;因为0a b >>,所以0a b +>,0ab >,又2a b +>,得到01<<故22ab a ba b +<<+,所以选项B 和D 正确,对于选项C ,取2,1a b ==,满足0a b >>,但243322ab a ba b +=<=+,所以C 错误,故选:ABD.考点三:利用基本不等式求最值例3. (23-24高一下·贵州贵阳·月考)已知02x <<,则()32x x -的最大值是( )A .3-B .3C .1D .6【答案】B【解析】()32x x -()213234x x ⎡⎤≤⨯+-=⎣⎦,当且仅当2x x =-,即1x =取得等号,满足题意.故选:B.【变式3-1】(23-24高一上·广东韶关·月考)已知100x >>,则2的最小值为( )A .3-B .2-C .1-D .0【答案】A【解析】因为100x >>,故()10x x +-≥5,当且仅当5x =时,等号成立,所以2253≥-=-.故选:A.【变式3-2】(23-24高一下·河南周口·月考)已知正数,a b 满足1ab =,则22(1)(1)T a b =+++的最小值为( )A .4B .6C .8D .16【答案】C【解析】因为()2222228T a b a b ab =++++≥++=,当且仅当1a b ==时取等号,所以T 的最小值为8.故选:C.【变式3-3】(23-24高一下·陕西榆林·月考)若正数x ,y 满足44x y +=,则11x y+的最小值为( )A .2B .94C .3D .83【答案】B【解析】由正数x ,y 满足44x y +=,得111111419(4)()(5)5)4444y x x y x y x y x y +=++=++≥=,当且仅当4y x x y =,即23x =,43y =时取等号,所以11x y +的最小值为94.故选:B【变式3-4】(23-24高一下·广西·开学考试)已知0a >,0b >,且a b ab +=,则27ab a b -+的最小值是( )A .6B .9C .16D .19【答案】C【解析】因为a b ab +=且0a >,0b >,所以111a b+=,则()1192722799101016b a ab a b a a b b a b a b a b a b ⎛⎫-+=-++=+=++=++≥+= ⎪⎝⎭,当且仅当9111b aa ba b ⎧=⎪⎪⎨⎪+=⎪⎩时,即当4a =,43b =时,等号成立.因此,27ab a b -+的最小值是16.故选:C.考点四:利用基本不等式证明不等式例4. (23-24高一上·安徽马鞍山·期中)已知0,0,1a b a b >>+=,求证:(1)114a b+≥;(2)12118a b ⎛⎫⎛⎫++≥+ ⎪⎪⎝⎭⎝⎭.【答案】(1)证明见解析;(2)证明见解析【解析】(1)0,0,1a b a b >>+= ,()1111224b a a b a b a b a b ⎛⎫∴+=++=++≥+= ⎪⎝⎭,当且仅当ba a b=,即12a b ==时等号成立.(2)0,0,1a b a b >>+= ,12212212()1111a b a b b a ab b a ab +⎛⎫⎛⎫∴++=+++=+++⎪⎪⎝⎭⎝⎭21223434111()a b b a a b a b a b ⎛⎫=++++=++=+++ ⎪⎝⎭3434134888b a b a a b a b =++++=++≥+=+当且仅当34b a ba =时,即3,4ab ==-时等号成立.【变式4-1】(23-24高一上·四川雅安·期中)已知0a >,0b >,且1a b +=,证明:(1)22221a b +≥;(2)1916a b+≥.【答案】(1)证明见解析;(2)证明见解析【解析】(1)因为1a b +=,所以()222212a b a b ab ab +=+-=-,因为0a >,0b >,所以2124a b ab +⎛⎫≤= ⎪⎝⎭,当且仅当12a b ==时,等号成立,所以11121242ab -≥-⨯=,即2212a b +≥,故22221a b +≥;(2)因为1a b +=,所以()1919910b aa b a b a b a b ⎛⎫+=++=++ ⎪⎝⎭,因为0a >,0b >,所以0b a>,90a b >,所以96b a a b +≥,当且仅当9b a a b =,即334b a ==时,等号成立,则91016b aa b ++≥,即1916a b+≥.【变式4-2】(23-24高一上·全国·专题练习)设a ,b ,c 均为正数,求证:()11192a b c a b b c a c ⎛⎫++++≥⎪+++⎝⎭.【答案】证明见解析【解析】∵a ,b ,c 均为正数,∴()()()0a b b c c a +++++≥>,当且仅当a b b c a c +=+=+,即a b c ==时,等号成立.1110a b b c a c ++≥>+++,当且仅当111a b b c a c==+++,即a b c ==时,等号成立.∴()11129a b c a b b c a c ⎛⎫++++≥= ⎪+++⎝⎭,故()11192a b c a b b c a c ⎛⎫++++≥ ⎪+++⎝⎭,当且仅当a b c ==时,等号成立.【变式4-3】(23-24高一上·安徽淮南·期中)已知,,a b c 是正实数.(1)证明:a b c ++≥(2)若2a b c ++=,证明:11192a b c ++≥.(3)已知,a b 是正数,且1a b +=,求证:()()ax by bx ay xy ++≥.【答案】(1)证明见解析;(2)证明见解析;(3)证明见解析.【解析】(1)由222()()()a b c a b b c a c ++=+++++≥++,当且仅当a b c ==时等号成立,即a b c ++≥.(2)由11111()(3)22a b c a b c a b c b c a c a ba b c a b c a a b b c c++++++++=⋅++=⋅++++++119(3(3222)222≥++=⋅+++=,当且仅当23a b c ===时等号成立,则11192a b c ++≥,得证.(3)由222222()()()()(2)()ax by bx ay ab x y xy a b ab xy xy a b ++=+++≥++2()xy a b xy =+=,当且仅当x y =时等号成立,不等式得证.考点五:基本不等式恒成立问题例5. (23-24高一上·贵州安顺·≥数m 的最大值为( )A .2B .3C .4D .9【答案】Dm ≥恒成立,即5m +≥恒成立.又559≥+=,当且仅当a b =时取等号.故实数m 的最大值为9.故选:D【变式5-1】(23-24高一上·吉林延边·月考)已知0x >,0y >,且2x y +=.若410x mxy +-≥恒成立,则实数m 的最大值是()A .4B .8C .3D .6【答案】A【解析】由410x mxy +-≥,则41828912222x x x x y m xy xy xy y x++++≤===+()9111991542222222221x y x y y x y x ⎛⎛⎫⎛⎫++==+++≥+= ⎪ ⎪ ⎝⎭⎝⎭⎝,当且仅当922x y y x =,即12x =,32y =时,等号成立.故选:A.【变式5-2】(23-24高一上·广东揭阳·期中)已知0x >,0y >,且9x y xy +=,若不等式a x y ≤+恒成立,则a 的取值范围是( )A .(],6-∞B .(],16-∞C .(],8∞-D .(],9-∞【答案】B【解析】9x y xy +=,故911x y +=,()91910x yx y x y x y y x ⎛⎫+=++=++ ⎪⎝⎭,0x >,0y >,故96x y y x +≥=,当且仅当9x y y x=,即12,4x y ==时取等号,故10616x y +≥+=,x y +最小值是16,由不等式a x y ≤+恒成立可得16a ≤.a 的取值范围是(],16-∞,故选:B.【变式5-3】(23-24高一下·湖南株洲·开学考试)(多选)若对于任意0x >,231xax x ≤++恒成立,则实数a 的取值可以是( )A .15B .110C .12D .13【答案】ACD【解析】因为0x >,所以21113153x x x x x =≤=++++,当且仅当1x x=,即1x =时等号成立,由任意0x >,231xa x x ≤++恒成立, 所以15a ≥,符合条件有15,12,13,故A 、C 、D 对;11015<,故B 错;故选:ACD考点六:基本不等式在实际中的应用例6. (23-24高一下·浙江·月考)如图,某灯光设计公司生产一种长方形线路板,长方形()ABCD AB AD >的周长为4,沿AC 折叠使点B 到点B '位置,AB '交DC 于点P .研究发现当ADP △的面积最大时用电最少,则用电最少时,AB 的长度为( )A .54B C .32D 【答案】B【解析】如图,设AB x =,由矩形()ABCD AB AD >的周长为4,可知(2)AD x =-.设PC a =,则()DP x a =-.,90,APD CPB ADP CB P AD CB '''∠=∠∠=∠=︒= ,,Rt ADP Rt CB P AP PC a '∴∴== ≌.在Rt ADP 中,由勾股定理得222AD DP AP +=,即222(2)()x x a a -+-=,解得222x x a x-+=,所以22x DP x a x-=-=.所以ADP △的面积11222(2)322x S AD DP x x x x -⎛⎫=⋅=-⋅=-+ ⎪⎝⎭.所以33S ≤-=-2x x =时,即当x =时,ADP △的面积最大,面积的最大值为3-B .【变式6-1】(23-24高一上·江苏连云港·月考)某工厂建造一个无盖的长方体贮水池,其容积为48003m ,深度为3m .如果池底每平方米的造价为100元,池壁每平方米的造价为80元,怎样设计水池能使总造价最低?最低总造价为多少元?【答案】当水池设计成底面边长为40m 的正方形时,总造价最低,为198400元.【解析】设池底的一边长为()m 0x x >,则另一边长为48001600m=m 3x x,总造价为y 元,则1600160016001003280160000480y x x x x ⎛⎫⎛⎫=⨯++⨯⨯⨯=+⨯+ ⎪ ⎪⎝⎭⎝⎭160000480198400≥+⨯=,当且仅当1600x x=,即40x =时,等号成立,所以当水池设计成底面边长为40m 的正方形时,总造价最低,最低为198400元.【变式6-2】(23-24高一上·广东佛山·月考)某工厂拟造一座平面图(如图)为长方形且面积为2150m 的三级污水处理池.由于地形限制,该处理池的长、宽都不能超过16 m ,且高度一定.如果四周池壁的造价为400元/2m ,中间两道隔墙的造价为248元/2m ,池底造价为80元/2m ,那么如何设计该处理池的长和宽,才能使总造价最低?(池壁的厚度忽略不计)【答案】长为时总造价最低.【解析】设处理池的长和宽分别为x ,y ,高为h ,总造价为z ,则150xy =,(016,016)x y <≤<≤,(22)400224815080(8001296)120001200012000z x y h yh x y h =+⨯+⨯+⨯=++≥+=+,当且仅当8001296x y =,又150xy =,即16x =<,16y 时取到等号,故长为时总造价最低.【变式6-3】(23-24高一上·四川乐山·期中)用篱笆在一块靠墙的空地围一个面积为2的等腰梯形菜园,如图所示,用墙的一部分做下底AD ,用篱笆做两腰及上底,且腰与墙成60︒,当等腰梯形的腰长为多少时,所用篱笆的长度最小?并求出所用篱笆长度的最小值.【答案】当等腰梯形的腰长为10m 时,所用篱笆长度最小,其最小值为30m .【解析】设()()m 0AB a a =>,上底()()m 0BC b b =>,分别过点,B C 作下底的垂线,垂足分别为,E F ,则BE ,2a AE DF ==,则下底22a aAD b a b =++=+,该等腰梯形的面积())22b a b S a b a ++==+=所以()2300a b a +=,则30022a b a =-,所用篱笆长为2l a b =+300222a a a =+-300322a a =+≥30=,当且仅当300322aa =,即()10m a =,()10mb =时取等号.所以,当等腰梯形的腰长为10m 时,所用篱笆长度最小,其最小值为30m .一、单选题1.(23-24高一上·陕西宝鸡·期中)221x x+取最小值时x 的取值为( )A .1B .1±C .2D .2±【答案】B【解析】由题意可知,20x >,∴2212x x +≥=,当且仅当221x x =,即1x =±时,等号成立,即221x x+取最小值时x 的取值为1±.故选:B .2.(23-24高一上·湖南娄底·期末)若0x >,0y >,且1x y +=,则xy 的最大值是( )A .116B .14C .12D .1【答案】B【解析】由题意1x y +=≥,解得14≤xy ,等号成立当且仅当12x y ==.故选:B.3.(22-23高一上·江苏宿迁·月考)若0x >,则22y x x=+的最小值是( )A .B .C .4D .2【答案】C【解析】因为0x >,所以224y x x =+=≥,当且仅当22x x=,即1x =时等号成立,所以22y x x=+的最小值是4.故选:C.4.(23-24高一下·云南丽江·开学考试)已知a ,b 为正数,41a b +=,则114a b+的最小值为( )A .1B .2C .4D .8【答案】C【解析】正数a ,b 满足41a b +=,则11114()2244444)(b a a b a b a a b b +=+=≥++++,当且仅当44b aa b =,即142a b ==时取等号,所以当11,82a b ==时,114a b +取得最小值4.故选:C5.(23-24高一上·湖南娄底·期末)已知0x >,则24-+x x x 的最小值为( )A .5B .3C .5-D .5-或3【答案】B【解析】由0x >,得244113x x x x x -+=+-≥=,当且仅当4x x =,即2x =时等号成立,所以24-+x x x的最小值为3.故选:B.6.(23-24高一上·山东济南·期末)如图所示,线段AB 为半圆的直径,O 为圆心,,C F 为半圆弧上不与,A B 重合的点,OF AB ⊥.作CD AB ⊥于,D DE OC ⊥于E ,设,AD a BD b ==,则下列不等式中可以直接表示CE DF ≤的是( )A .2aba b≤+B 2a b +≤C .2a b +≤D .2ab a b ≤+【答案】D【解析】因为,AD a BD b ==,所以,22a b a b OF OC OD +-===,在Rt DOF △中,DF ==又CD AB ⊥,所以CD ===在Rt CDO △中,DE OC ⊥,故ED OC OD DC ⋅=⋅,得到22a bOD DC ED a b OC -⋅===+所以2abCE a b===+,所以CE DF ≤,即2ab a b +,故选:D.二、多选题7.(23-24高一下·云南昆明·期中)下列说法正确的是( )A .1x x+的最小值为2B .(2)x x -的最大值为2C .22x x -+的最小值为2D .2272x x ++最小值为2【答案】CD【解析】对于选项A ,当=1x -时,12x x+=-,故A 错误;对于选项B ,()()222211x x x x x -=-+=--+,所以()2x x -的最大值为1,故B错误;对于选项C,122222x x x x -+=+≥=,当且仅当122xx=,即0x =时,等号成立,故C 正确.对于选项D ,222277222222x x x x ++=+-≥=-++,当且仅当22722x x+=+,即22x =时,等号成立,故D 正确.故选:CD.8.(23-24高一上·全国·单元测试)已知,R a b ∈,且0ab ≠,则下列四个不等式中,恒成立的为( )A .222a b ab +≥B .2b a a b+≥C .2a b ab +⎛⎫≤ ⎪⎝⎭2D .22222a b a b ++⎛⎫≤⎪⎝⎭【答案】ACD【解析】由,R a b ∈,则222a b ab +≥,得222a b ab +≥,A 正确;由,R a b ∈,取1,2a b =-=,则1202b a a b +=--<,故B 错误;由于,R a b ∈,则22()024a b a b ab +-⎛⎫-=-≤ ⎪⎝⎭,则2a b ab +⎛⎫≤ ⎪⎝⎭,故C 正确;由于2222()0224a b a ba b ++-⎛⎫-=-≤ ⎪⎝⎭,故D 正确,故选:ACD .三、填空题9.(23-24高一上·广西百色·期末)若1x >,则2161x x x -+-的最小值为.【答案】9【解析】由1x >,得10x ->,于是21616161119111x x x x x x x -+=+=-++≥=---,当且仅当1611x x -=-,即5x =时取等号,所以2161x x x -+-的最小值为9.故答案为:910.(23-24高一上·北京·期中)某快递公司为提高效率,引进智能机器人分拣系统,以提高分拣效率和降低物流成本.已知购买x 台机器人的总成本为21()150600P x x x =++(单位:万元).若要使每台机器人的平均成本最低,则应买机器人 台.【答案】300【解析】购买x 台机器人的总成本为21()150600P x x x =++,则平均成本()150112600P x x x x =++≥+=,当且仅当150600x x=,即300x =时,平均成本最低为2万元.故答案为:300.11.(23-24高一上·吉林延边·月考)若x a ∀>,关于x 的不等式225x x a+≥-恒成立,则实数a 的取值范围是 .【答案】1,2⎡⎫+∞⎪⎢⎣⎭【解析】若关于x 的不等式225x x a +≥-恒成立,则min 2(2)5x x a+≥-,因为x a >,故2222()2242x x a a a a x a x a +=-++≥=+--,当且仅当1x a =+时取等,故得425a +≥,解得12a ≥.故答案为:1,2⎡⎫+∞⎪⎢⎣⎭四、解答题12.(23-24高一上·山东菏泽·月考)(1)已知01x <<,则(43)x x -取得最大值时x 的值为?(2)函数22(1)1x y x x +=>- 的最小值为?(3)已知x ,y 是正实数,且4x y +=,求13x y +的最小值.【答案】(1)23;(2)2 ;(3)1+【解析】(1)2113434(43)(3)(43)[3323x x x x x x +--=⨯⨯-≤⨯=,当且仅当343x x =-,即2(0,1)3x =∈时取等号.故(43)x x -取得最大值43时,x 的值为23.(2)2222122311x x x x y x x +-++-+==--2(1)2(1)31x x x -+-+=-3(1)221x x =-++≥+-.(1x >)当且仅当311x x -=-,即1(1,)x =∈+∞时取等号.故函数的最小值为2.(3)x ,R y +∈,()1311313112144y x x y x y x y x y ⎛⎫⎛⎫∴+=++=++≥+= ⎪ ⎪⎝⎭⎝⎭当且仅当y =,即)21x =,(23y =时取等号.∴13x y +的最小值为113.(23-24高一上·安徽马鞍山·月考)如图,我国古代的“弦图”是由四个全等的直角三角形围成的.设直角三角形ABC 的直角边长为,a b ,且直角三角形ABC 的周长为2.(已知正实数数学31,x y2x y +≤x y =时等号成立)(1)求直角三角形ABC 面积的最大值;(2)求正方形ABDE 面积的最小值.【答案】(1)3-;(2)(43-【解析】(1)由题意得:(22a b =+=2≤=6ab ≤-所以132S ab =≤-a b =时,等号成立,所以直角三角形ABC面积的最大值为3-;(2)因为a b +≤所以21a b =+≤)21≥=,所以(2243S a b =+≥-,当且仅当a b =时,等号成立,所以正方形ABDE 面积的最小值为(43-.。
2020年新疆中考数学试卷

2020年新疆中考数学试卷一、单项选择题(本大题共9小题,每小题5分,共45分.请按答题卷中的要求作答) 1.(5分)下列各数中,是负数的为( )A .1-B .0C .0.2D .122.(5分)如图所示,该几何体的俯视图是( )A .B .C .D .3.(5分)下列运算正确的是( )A .236x x x =B .633x x x ÷=C .3362x x x +=D .33(2)6x x -=- 4.(5分)实数a ,b 在数轴上的位置如图所示,下列结论中正确的是( )A .a b >B .||||a b >C .a b -<D .0a b +> 5.(5分)下列一元二次方程中,有两个不相等实数根的是( )A .2104x x -+= B .2240x x ++= C .220x x -+= D .220x x -=6.(5分)不等式组2(2)22323x x x x --⎧⎪++⎨>⎪⎩的解集是( )A .02x <B .06x <C .0x >D .2x 7.(5分)四张看上去无差别的卡片上分别印有正方形、正五边形、正六边形和圆,现将印有图形的面朝下,混合均匀后从中随机抽取两张,则抽到的卡片上印有的图形都是中心对称图形的概率为( )A .14B .13C .12D .348.(5分)二次函数2y ax bx c =++的图象如图所示,则一次函数y ax b =+和反比例函数cy x=在同一平面直角坐标系中的图象可能是( )A .B .C .D . 9.(5分)如图,在ABC ∆中,90A ∠=︒,D 是AB 的中点,过点D 作BC 的平行线交AC 于点E ,作BC 的垂线交BC 于点F ,若AB CE =,且DFE ∆的面积为1,则BC 的长为( )A .25B .5C .45D .10二、填空题(本大题共6小题,每小题5分,共30分) 10.(5分)如图,若//AB CD ,110A ∠=︒,则1∠= ︒.11.(5分)分解因式:22am an -= . 12.(5分)表中记录了某种苹果树苗在一定条件下移植成活的情况:移植的棵数n 200 500 800 200012000 成活的棵数m 187 446 730 179010836 成活的频率m n0.935 0.892 0.913 0.8950.903由此估计这种苹果树苗移植成活的概率约为 .(精确到0.1)13.(5分)如图,在x 轴,y 轴上分别截取OA ,OB ,使OA OB =,再分别以点A ,B 为圆心,以大于12AB长为半径画弧,两弧交于点P .若点P 的坐标为(,23)a a -,则a 的值为 .14.(5分)如图,O 的半径是2,扇形BAC 的圆心角为60︒.若将扇形BAC 剪下围成一个圆锥,则此圆锥的底面圆的半径为 .15.(5分)如图,在ABC ∆中,90A ∠=︒,60B ∠=︒,2AB =,若D 是BC 边上的动点,则2AD DC +的最小值为 .三、解答题(本大题共8小题,共75分) 16.(6分)计算:20(1)|2(3)4π-++--17.(7分)先化简,再求值:2(2)4(1)(21)(21)x x x x x ---++-,其中2x =-. 18.(8分)如图,四边形ABCD 是平行四边形,//DE BF ,且分别交对角线AC 于点E ,F ,连接BE ,DF . (1)求证:AE CF =;(2)若BE DE =,求证:四边形EBFD 为菱形.19.(10分)为了解某校九年级学生的体质健康状况,随机抽取了该校九年级学生的10%进行测试,将这些学生的测试成绩()x 分为四个等级:优秀85100x ;良好7585x <;及格6075x <;不及格060x <,并绘制成如图两幅统计图.根据以上信息,解答下列问题:(1)在抽取的学生中不及格人数所占的百分比是 ; (2)计算所抽取学生测试成绩的平均分;(3)若不及格学生的人数为2人,请估算出该校九年级学生中优秀等级的人数. 20.(9分)如图,为测量建筑物CD 的高度,在A 点测得建筑物顶部D 点的仰角为22︒,再向建筑物CD 前进30米到达B 点,测得建筑物顶部D 点的仰角为58(A ︒,B ,C 三点在一条直线上),求建筑物CD 的高度.(结果保留整数.参考数据:sin220.37︒≈,cos220.93︒≈,tan220.40︒≈,sin580.85︒≈,cos580.53︒≈,tan58 1.60)︒≈21.(11分)某超市销售A 、B 两款保温杯,已知B 款保温杯的销售单价比A 款保温杯多10元,用480元购买B 款保温杯的数量与用360元购买A 款保温杯的数量相同. (1)A 、B 两款保温杯的销售单价各是多少元?(2)由于需求量大,A 、B 两款保温杯很快售完,该超市计划再次购进这两款保温杯共120个,且A 款保温杯的数量不少于B 款保温杯数量的两倍.若A 款保温杯的销售单价不变,B 款保温杯的销售单价降低10%,两款保温杯的进价每个均为20元,应如何进货才能使这批保温杯的销售利润最大,最大利润是多少元? 22.(11分)如图,在O 中,AB 为O 的直径,C 为O 上一点,P 是BC 的中点,过点P 作AC 的垂线,交AC 的延长线于点D . (1)求证:DP 是O 的切线;(2)若5AC =,5sin 13APC ∠=,求AP 的长.23.(13分)如图,在平面直角坐标系中,点O 为坐标原点,抛物线2y ax bx c =++的顶点是(1,3)A ,将OA 绕点O 顺时针旋转90︒后得到OB ,点B 恰好在抛物线上,OB 与抛物线的对称轴交于点C . (1)求抛物线的解析式; (2)P 是线段AC 上一动点,且不与点A ,C 重合,过点P 作平行于x 轴的直线,与OAB ∆的边分别交于M ,N 两点,将AMN ∆以直线MN 为对称轴翻折,得到△A MN ',设点P 的纵坐标为m . ①当△A MN '在OAB ∆内部时,求m 的取值范围;②是否存在点P ,使56A MN OAB S S ''=,若存在,求出满足条件m 的值;若不存在,请说明理由.2020年新疆中考数学试卷参考答案一、单项选择题(本大题共9小题,每小题5分,共45分.请按答题卷中的要求作答) 1.(5分)下列各数中,是负数的为( )A .1-B .0C .0.2D .12【解答】解:1-是负数;0既不是正数也不是负数;0.2是正数;12是正数.故选:A . 2.(5分)如图所示,该几何体的俯视图是( )A .B .C .D .【解答】解:从上面看是四个正方形,符合题意的是C , 故选:C . 3.(5分)下列运算正确的是( ) A .236x x x =B .633x x x ÷=C .3362x x x +=D .33(2)6x x -=-【解答】解:A 、235x x x =,选项错误.不符合题意; B 、633x x x ÷=,选项正确,符合题意; C 、3332x x x +=,选项错误,不符合题意; D 、33(2)8x x -=-,选项错误,不符合题意; 故选:B . 4.(5分)实数a ,b 在数轴上的位置如图所示,下列结论中正确的是( )A .a b >B .||||a b >C .a b -<D .0a b +> 【解答】解:如图所示:A 、a b <,故此选项错误; B 、||||a b >,正确;C 、a b ->,故此选项错误;D 、0a b +<,故此选项错误; 故选:B . 5.(5分)下列一元二次方程中,有两个不相等实数根的是( )A .2104x x -+= B .2240x x ++= C .220x x -+= D .220x x -=【解答】解:A .此方程判别式△21(1)4104=--⨯⨯=,方程有两个相等的实数根,不符合题意;B .此方程判别式△22414120=-⨯⨯=-<,方程没有实数根,不符合题意;C .此方程判别式△2(1)41270=--⨯⨯=-<,方程没有实数根,不符合题意;D .此方程判别式△2(2)41040=--⨯⨯=>,方程有两个不相等的实数根,符合题意; 故选:D .6.(5分)不等式组2(2)22323x x x x --⎧⎪++⎨>⎪⎩的解集是( )A .02x <B .06x <C .0x >D .2x【解答】解:()2222323x x x x ⎧--⎪⎨++>⎪⎩①②,解不等式①,得:2x , 解不等式②,得:0x >,则不等式组的解集为02x <, 故选:A . 7.(5分)四张看上去无差别的卡片上分别印有正方形、正五边形、正六边形和圆,现将印有图形的面朝下,混合均匀后从中随机抽取两张,则抽到的卡片上印有的图形都是中心对称图形的概率为( )A .14B .13C .12D .34【解答】解:分别用A 、B 、C 、D 表示正方形、正五边形、正六边形和圆, 画树状图得:共有12种等可能的结果,抽到卡片上印有的图案都是中心对称图形的有6种情况,∴抽到卡片上印有的图案都是中心对称图形的概率为:61122=.故选:C .8.(5分)二次函数2y ax bx c =++的图象如图所示,则一次函数y ax b =+和反比例函数cy x=在同一平面直角坐标系中的图象可能是( )A .B .C .D .【解答】解:因为二次函数2y ax bx c =-+的图象开口向上,得出0a >,与y 轴交点在y 轴的正半轴,得出0c >,利用对称轴02bx a=->,得出0b <,所以一次函数y ax b =+经过一、三、四象限,反比例函数cy x=经过一、三象限,故选:D . 9.(5分)如图,在ABC ∆中,90A ∠=︒,D 是AB 的中点,过点D 作BC 的平行线交AC 于点E ,作BC 的垂线交BC 于点F ,若AB CE =,且DFE ∆的面积为1,则BC 的长为( )A .25B .5C .45D .10【解答】解:过A 作AH BC ⊥于H , D 是AB 的中点, AD BD ∴=, //DE BC , AE CE ∴=,12DE BC ∴=,DF BC ⊥,//DF AH ∴,DF DE ⊥, BF HF ∴=,12DF AH ∴=,DFE ∆的面积为1, ∴112DE DF =, 2DE DF ∴=,22428BC AH DE DF ∴==⨯=, 8AB AC ∴=, AB CE =,12AB AE CE AC ∴===,28AB AB ∴=,2AB ∴=(负值舍去), 4AC ∴=,2225BC AB AC ∴=+=. 故选:A .二、填空题(本大题共6小题,每小题5分,共30分) 10.(5分)如图,若//AB CD ,110A ∠=︒,则1∠= 70 ︒.【解答】解://AB CD , 2110A ∴∠=∠=︒. 又12180∠+∠=︒,1180218011070∴∠=︒-∠=︒-︒=︒. 故答案为:70.11.(5分)分解因式:22am an -= ()()a m n m n +- .【解答】解:原式22()()()a m n a m n m n =-=+-, 故答案为:()()a m n m n +- 12.(5分)表中记录了某种苹果树苗在一定条件下移植成活的情况:移植的棵数n 200 500 800 200012000 成活的棵数m 187446730179010836 成活的频率m n0.935 0.892 0.913 0.8950.903由此估计这种苹果树苗移植成活的概率约为 0.9 .(精确到0.1) 【解答】解:根据表格数据可知:苹果树苗移植成活的频率近似值为0.9,所以估计这种苹果树苗移植成活的概率约为0.9. 故答案为:0.9.13.(5分)如图,在x 轴,y 轴上分别截取OA ,OB ,使OA OB =,再分别以点A ,B 为圆心,以大于12AB长为半径画弧,两弧交于点P .若点P 的坐标为(,23)a a -,则a 的值为 3 .【解答】解:OA OB =,分别以点A ,B 为圆心,以大于12AB 长为半径画弧,两弧交于点P , ∴点P 在BOA ∠的角平分线上, ∴点P 到x 轴和y 轴的距离相等,又点P 在第一象限,点P 的坐标为(,23)a a -, 23a a ∴=-, 3a ∴=.故答案为:3. 14.(5分)如图,O 的半径是2,扇形BAC 的圆心角为60︒.若将扇形BAC 剪下围成一个圆锥,则此圆锥的底面圆的半径为 33.【解答】解:连接OA ,作OD AB ⊥于点D .在直角OAD ∆中,2OA =,1302OAD BAC ∠=∠=︒,则cos303AD OA =︒=. 则223AB AD ==,则扇形的弧长是:6023231803ππ⨯=,设底面圆的半径是r ,则2323r ππ⨯=,解得:33r =.故答案为:33.15.(5分)如图,在ABC ∆中,90A ∠=︒,60B ∠=︒,2AB =,若D 是BC 边上的动点,则2AD DC +的最小值为 6 .【解答】解:如图所示,作点A 关于BC 的对称点A ',连接AA ',A D ',过D 作DE AC ⊥于E , ABC ∆中,90BAC ∠=︒,60B ∠=︒,2AB =, 1BH ∴=,3AH =,23AA '=,30C ∠=︒,Rt CDE ∴∆中,12DE CD =,即2DE CD =,A 与A '关于BC 对称, AD A D '∴=,AD DE A D DE '∴+=+,∴当A ',D ,E 在同一直线上时,AD DE +的最小值等于A E '的长,此时,Rt △AA E '中,3sin 602332A E AA ''=︒⨯=⨯=,AD DE ∴+的最小值为3, 即2AD CD +的最小值为6, 故答案为:6.三、解答题(本大题共8小题,共75分) 16.(6分)计算:20(1)|2(3)4π-++--【解答】解:20(1)|2|(3)412122π-+-+--=++-=.17.(7分)先化简,再求值:2(2)4(1)(21)(21)x x x x x ---++-,其中2x =-.【解答】解:2(2)4(1)(21)(21)x x x x x ---++-222444441x x x x x =-+-++-23x =+,当2x =-时,原式2(2)35=-+=.18.(8分)如图,四边形ABCD 是平行四边形,//DE BF ,且分别交对角线AC 于点E ,F ,连接BE ,DF .(1)求证:AE CF =;(2)若BE DE =,求证:四边形EBFD 为菱形. 【解答】(1)证明:四边形ABCD 是平行四边形,AD CB ∴=,//AD CB ,DAE BCF ∴∠=∠,//DE BF ,DEF BFE ∴∠=∠,AED CFB ∴∠=∠,在ADE ∆和CBF ∆中,DAE BCF AED CFB AD CB ∠=∠⎧⎪∠=∠⎨⎪=⎩,()ADE CBF AAS ∴∆≅∆,AE CF ∴=;(2)证明:由(1)知ADE CBF ∆≅∆,则DE BF =,又//DE BF ,∴四边形EBFD 是平行四边形,BE DE =,∴四边形EBFD 为菱形.19.(10分)为了解某校九年级学生的体质健康状况,随机抽取了该校九年级学生的10%进行测试,将这些学生的测试成绩()x 分为四个等级:优秀85100x ;良好7585x <;及格6075x <;不及格060x <,并绘制成如图两幅统计图.根据以上信息,解答下列问题:(1)在抽取的学生中不及格人数所占的百分比是 5% ;(2)计算所抽取学生测试成绩的平均分;(3)若不及格学生的人数为2人,请估算出该校九年级学生中优秀等级的人数.【解答】解:(1)在抽取的学生中不及格人数所占的百分比120%25%50%5%=---=, 故答案为5%.(2)所抽取学生测试成绩的平均分9050%7825%6620%425%79.81⨯+⨯+⨯+⨯==(分). (3)由题意总人数25%40=÷=(人),4050%20⨯=,答:该校九年级学生中优秀等级的人数约为20人.20.(9分)如图,为测量建筑物CD 的高度,在A 点测得建筑物顶部D 点的仰角为22︒,再向建筑物CD 前进30米到达B 点,测得建筑物顶部D 点的仰角为58(A ︒,B ,C 三点在一条直线上),求建筑物CD 的高度.(结果保留整数.参考数据:sin220.37︒≈,cos220.93︒≈,tan220.40︒≈,sin580.85︒≈,cos580.53︒≈,tan58 1.60)︒≈【解答】解:在Rt BDC ∆中,tan CD DBC BC∠=, 1.60CD BC∴=, 1.60CD BC ∴=, 在Rt ACD ∆中,tan CD DAC AC∠=, 0.40CD AC∴=, 0.40CD AC ∴=, 300.400.60CD CD AB AC BC ∴=-=-=, 解得:18CD =(米),答:建筑物CD 的高度为18米.21.(11分)某超市销售A 、B 两款保温杯,已知B 款保温杯的销售单价比A 款保温杯多10元,用480元购买B 款保温杯的数量与用360元购买A 款保温杯的数量相同.(1)A 、B 两款保温杯的销售单价各是多少元?(2)由于需求量大,A 、B 两款保温杯很快售完,该超市计划再次购进这两款保温杯共120个,且A 款保温杯的数量不少于B 款保温杯数量的两倍.若A 款保温杯的销售单价不变,B 款保温杯的销售单价降低10%,两款保温杯的进价每个均为20元,应如何进货才能使这批保温杯的销售利润最大,最大利润是多少元?【解答】解:(1)设A 款保温杯的单价是a 元,则B 款保温杯的单价是(10)a +元, 48036010a a=+, 解得,30a =,经检验,30a =是原分式方程的解,则1040a +=,答:A 、B 两款保温杯的销售单价分别是30元、40元;(2)设购买A 款保温杯x 个,则购买B 款保温杯(120)x -个,利润为w 元,(3020)[40(110%)20](120)61920w x x x =-+⨯---=-+, A 款保温杯的数量不少于B 款保温杯数量的两倍,2(120)x x ∴-,解得,80x ,∴当80x =时,w 取得最大值,此时1440w =,12040x -=,答:当购买A 款保温杯80个,B 款保温杯40个时,能使这批保温杯的销售利润最大,最大利润是1440元.22.(11分)如图,在O 中,AB 为O 的直径,C 为O 上一点,P 是BC 的中点,过点P 作AC 的垂线,交AC 的延长线于点D .(1)求证:DP 是O 的切线;(2)若5AC =,5sin 13APC ∠=,求AP 的长.【解答】(1)证明:P 是BC 的中点,∴PC PB =, PAD PAB ∴∠=∠,OA OP =,APO PAO ∴∠=∠,DAP APO ∴∠=∠, //AD OP ∴,PD AD ⊥, PD OP ∴⊥,DP ∴是O 的切线;(2)解:连接BC 交OP 于E ,AB 为O 的直径,90ACB ∴∠=︒,P 是BC 的中点,OP BC ∴⊥,CE BE =,∴四边形CDPE 是矩形,CD PE ∴=,PD CE =,APC B ∠=∠,5sin sin 13AC APC APC AB ∴∠=∠==,5AC =,13AB ∴=,12BC ∴=, 6PD CE BE ∴===,1522OE AC ==,132OP =,135422CD PE ∴==-=, 9AD ∴=,222296313AP AD PD ∴=++=23.(13分)如图,在平面直角坐标系中,点O 为坐标原点,抛物线2y ax bx c =++的顶点是(1,3)A ,将OA 绕点O 顺时针旋转90︒后得到OB ,点B 恰好在抛物线上,OB 与抛物线的对称轴交于点C .(1)求抛物线的解析式;(2)P 是线段AC 上一动点,且不与点A ,C 重合,过点P 作平行于x 轴的直线,与OAB ∆的边分别交于M ,N 两点,将AMN ∆以直线MN 为对称轴翻折,得到△A MN ',设点P 的纵坐标为m . ①当△A MN '在OAB ∆内部时,求m 的取值范围;②是否存在点P ,使56A MN OAB S S ''=,若存在,求出满足条件m 的值;若不存在,请说明理由.【解答】解:(1)抛物线2y ax bx c =++的顶点是(1,3)A ,∴抛物线的解析式为2(1)3y a x =-+,OA ∴绕点O 顺时针旋转90︒后得到OB ,(3,1)B ∴-,把(3,1)B -代入2(1)3y a x =-+可得1a =-,∴抛物线的解析式为2(1)3y x =--+,即222y x x =-++,(2)①如图1中,(3,1)B -,∴直线OB 的解析式为13y x =-, (1,3)A ,1(1,)3C ∴-, (1,)P m ,AP PA =',(1,23)A m ∴'-, 由题意13233m >->-, 433m ∴>>. ②直线OA 的解析式为3y x =,直线AB 的解析式为25y x =-+, (1,)P m ,(3m M ∴,)m ,5(2mN -,)m ,5155236m m mMN --∴=-=, 56A MN OA B S S ''=,∴1155511(23)|23|326623m m m m --+=⨯⨯-+⨯,整理得269|68|m m m -+=-解得6m =6-∴满足条件的m 的值为6-。
2024年新疆中考数学试卷(附答案)
2024年新疆中考数学试卷(附答案)一、单项选择题(本大题共9小题,每小题4分,共36分)1.(4分)下列实数中,比0小的数是()A.﹣2B.0.2C.D.1 2.(4分)四个大小相同的正方体搭成的几何体如图所示,它的主视图是()A.B.C.D.3.(4分)下列运算正确的是()A.a2+2a2=3B.a2•a5=a7C.a8÷a2=a4D.(2a)3=2a34.(4分)估计的值在()A.2和3之间B.3和4之间C.4和5之间D.5和6之间5.(4分)某跳远队准备从甲、乙、丙、丁4名运动员中选取1名成绩优异且发挥稳定的运动员参加比赛,他们成绩的平均数和方差如下:丁=5.75,乙=丙=6.15,S甲2=S丙2=0.02,S乙2=S丁2=0.45,则应选择的运动员是()A.甲B.乙C.丙D.丁6.(4分)如图,AB是⊙O的直径,CD是⊙O的弦,AB⊥CD,垂足为E.若CD=8,OD=5,则BE的长为()A.1B.2C.3D.47.(4分)若一次函数y=kx+3的函数值y随x的增大而增大,则k的值可以是()A.﹣2B.﹣1C.0D.18.(4分)某校九年级学生去距学校20km的科技馆研学,一部分学生乘甲车先出发,5min后其余学生再乘乙车出发,结果同时到达.已知乙车的速度是甲车速度的1.2倍,设甲车的速度为x km /h ,根据题意可列方程()A.B.C .D .9.(4分)如图,在平面直角坐标系中,直线y =kx (k >0)与双曲线y=交于A ,B 两点,AC ⊥x 轴于点C ,连接BC 交y 轴于点D ,结合图象判断下列结论:①点A 与点B 关于原点对称;②点D 是BC 的中点;③在y =的图象上任取点P (x 1,y 1)和点Q (x 2,y 2),如果y 1>y 2,那么x 1>x 2;④S △BOD =.其中正确结论的个数是()A .1B .2C .3D .4二、填空题(本大题共6小题,每小题4分,共24分)10.(4分)若每个篮球30元,则购买n 个篮球需元.11.(4分)学校广播站要新招1名广播员,甲、乙两名同学经过选拔进入到复试环节,参加了口语表达、写作能力两项测试,成绩如表:项目应试者口语表达写作能力甲8090乙9080学校规定口语表达按70%,写作能力按30%计入总成绩,根据总成绩择优录取.通过计算,你认为同学将被录取.12.(4分)关于x 的一元二次方程x 2+3x +k =0有两个不相等的实数根,则k 的取值范围为.13.(4分)如图,在正方形ABCD中,若面积S矩形AEOH=12,周长C矩形OFCG=16,则S正方形EBFO+S正方形HOGD=.14.(4分)如图,在Rt△ABC中,∠C=90°,∠A=30°,AB=8.若点D在直线AB上(不与点A,B 重合),且∠BCD=30°,则AD的长为.15.(4分)如图,抛物线与y轴交于点A,与x轴交于点B,线段CD在抛物线的对称轴上移动(点C在点D下方),且CD=3.当AD+BC的值最小时,点C的坐标为.三、解答题(本大题共9小题,共90分.解答应写出必要的文字说明、证明过程或演算步骤)16.(12分)计算:(1);(2).17.(6分)解方程:2(x﹣1)﹣3=x.18.(6分)如图,已知平行四边形ABCD.①尺规作图:请用无刻度的直尺和圆规,作∠A的平分线交CD于点E;(要求:不写作法,保留作图痕迹,并把作图痕迹用黑色签字笔描黑)②在①的条件下,求证:△ADE是等腰三角形.19.(10分)为丰富学生的校园生活,提升学生的综合素质,某校计划开设丰富多彩的社团活动.为了解全校学生对各类社团活动的喜爱情况,该校随机抽取部分学生进行问卷调查(每名学生必选且只选一类),并根据调查结果制成如下统计图(不完整):结合调查信息,回答下列问题:(1)本次共调查了名学生,喜爱“艺术类”社团活动的学生人数是;(2)若该校有1000名学生,请估计其中大约有多少名学生喜爱“阅读类”社团活动?(3)某班有2名男生和1名女生参加“体育类”社团中“追风篮球社”的选拔,2名学生被选中.请用列表法或画树状图法求选中的2名学生恰好为1名男生和1名女生的概率.20.(10分)如图,△ABC的中线BD,CE交于点O,点F,G分别是OB,OC的中点.(1)求证:四边形DEFG是平行四边形;(2)当BD=CE时,求证:▱DEFG是矩形.21.(10分)数学活动课上为了测量学校旗杆的高度,某小组进行了以下实践活动:(1)准备测量工具①测角仪:把一根细线固定在半圆形量角器的圆心处,细线的另一端系一个小重物,制成一个简单的测角仪(图1),利用它可以测量仰角或俯角;②皮尺.(2)实地测量数据①将这个测角仪用手托起,拿到眼前,使视线沿着测角仪的直径刚好到达旗杆的最高点(图2);②用皮尺测出所站位置到旗杆底部的距离为16.8m,眼睛到地面的距离为1.6m.(3)计算旗杆高度①根据图3中测角仪的读数,得出仰角α的度数为;②根据测量数据,画出示意图4,AB=1.6m,BC=16.8m,求旗杆CD的高度(精确到0.1m);(参考数据:sin35°≈0.57,cos35°≈0.82,tan35°≈0.70,sin55°≈0.82,cos55°≈0.57,tan55°≈1.43)③若测量者仍站在原处(B点),能否用三角板替代测角仪测出仰角α?若能,请写出测量方法;若不能,该如何调整位置才能用三角板测出仰角α,请写出测量方法.22.(12分)某公司销售一批产品,经市场调研发现,当销售量在0.4吨至3.5吨之间时,销售额y1(万元)与销售量x(吨)的函数解析式为:y1=5x;成本y2(万元)与销售量x(吨)的函数图象是如图所示的抛物线的一部分,其中是其顶点.(1)求出成本y2关于销售量x的函数解析式;(2)当成本最低时,销售产品所获利润是多少?(3)当销售量是多少吨时,可获得最大利润?最大利润是多少?(注:利润=销售额﹣成本)23.(11分)如图,在⊙O中,AB是⊙O的直径,弦CD交AB于点E,.(1)求证:△ACD∽△ECB;(2)若AC=3,BC=1,求CE的长.24.(13分)【探究】(1)已知△ABC和△ADE都是等边三角形.①如图1,当点D在BC上时,连接CE.请探究CA,CE和CD之间的数量关系,并说明理由;②如图2,当点D在线段BC的延长线上时,连接CE.请再次探究CA,CE和CD之间的数量关系,并说明理由.【运用】出BD的长.参考答案一、单项选择题(本大题共9小题,每小题4分,共36分)1.A.2.C.3.B.4.A.5.C.6.B.7.【解答】解:由题意,得k>0,观察选项,只有选项D符合题意.故选:D.8.【解答】解:设甲车的速度为x km/h,则乙车的速度为1.2x km/h,由题意得:﹣=,即﹣=,故选:D.9.【解答】解:如图,作BE⊥x轴,垂足为E,①根据反比例函数图象关于原点成中心对称图形,故选项正确;②∵点A与点B关于原点对称,∴OA=OB,在△OBE和△OAC中,,∴△OBE≌△OAC(AAS),∴OE=OC,∵EB∥y轴,∴△OCD∽△ECB,∵OE=OC,∴=,∴D是CB的中点,∴OD是△BCE的中位线,故选项正确;③在每个象限内,y随x的增大而减小,故选项错误;④S△BOD=S△BOC=S△AOC==,故S△BOD=正确;其中正确结论的是①②④,共3个.故选:C.二、填空题(本大题共6小题,每小题4分,共24分)10.30n.11.【解答】解:根据题意可知,甲同学的成绩为:80×70%+90×30%=83(分);乙同学的成绩为:90×70%+80×30%=87(分);∵83<87,∴乙同学将被录取,故答案为:乙.12.【解答】解:由题意得:Δ=9﹣4k>0,解得:k<,故答案为:k<.13.【解答】解:设正方形EBFO的边长为x,正方形HOGD的边长为y,则S正方形EBFO=x2,S正方形HOGD =y2,由题意得:,由②得:x+y=8③,③2﹣2×②得:(x+y)2﹣2xy=82﹣2×12=40,整理得:x2+y2=40,+S正方形HOGD=40,即S正方形EBFO故答案为:40.14.【解答】解:在Rt△ABC中,sin A=,∴BC=,∴AC=.当点D在点B左上方时,如图所示,∵∠ACB=90°,∠A=30°,∴∠ABC=60°.又∵∠BCD=30°,∴∠BDC=60°﹣30°=30°,∴BD=BC=4,∴AD=8+4=12.当点D在点B的右下方时,如图所示,∵∠ABC=60°,∠BCD=30°,∴∠CDA=90°.在Rt△ACD中,cos A=,∴AD=.综上所述,AD的长为6或12.故答案为:6或12.15.【解答】解:作A点关于对称轴的对称点A′,A′向下平移3个单位,得到A″,连接A″B,交对称轴于点C,此时AD+BC的值最小,AD+BC=A″B,在中,令x=0,则y=6,∴点A(0,6),令y=0,则,解得x=2或x=6,∴点B(2,0),∵抛物线的对称轴为直线x=﹣=4,∴A′(8,6),∴A″(8,3),设直线A″B的解析式为y=kx+b,代入A″、B的坐标得,解得,∴直线A″B的解析式为y=x﹣1,当x=4时,y=1,∴C(4,1).故答案为:(4,1).三、解答题(本大题共9小题,共90分.解答应写出必要的文字说明、证明过程或演算步骤)16.【解答】解:(1)=1+9﹣4+1=7;(2)=•=1.17.【解答】解:2(x﹣1)﹣3=x,2x﹣2﹣3=x,2x﹣x=2+3,x=5.18.【解答】①解:如图,AE即为所求.②证明:∵AE为∠BAD的平分线,∴∠BAE=∠DAE.∵四边形ABCD为平行四边形,∴AB∥CD,∴∠BAE=∠DEA,∴∠DAE=∠DEA,∴DA=DE,∴△ADE是等腰三角形.19.【解答】解:(1)本次共调查了30÷30%=100(名)学生.喜爱“艺术类”社团活动的学生人数是100×25%=25(人).故答案为:100;25人.(2)1000×=150(名).∴估计其中大约有150名学生喜爱“阅读类”社团活动.(3)列表如下:男男女男(男,男)(男,女)男(男,男)(男,女)女(女,男)(女,男)共有6种等可能的结果,其中选中的2名学生恰好为1名男生和1名女生的结果有4种,∴选中的2名学生恰好为1名男生和1名女生的概率为=.20.【解答】(1)证明:∵BD和CE是△ABC的中线,∴点E和点D分别为AB和AC的中点,∴DE是△ABC的中位线,∴DE∥BC,DE=.同理可得,FG∥BC,FG=,∴DE∥FG,DE=FG,∴四边形DEFG是平行四边形.(2)证明:∵△ABC的中线BD,CE交于点O,∴点O是△ABC的重心,∴BO=2OD,CO=2OE.又∵点F,G分别是OB,OC的中点,∴OF=FB,OF=GC,∴DF=.∵BD=CE,∴DF=EG.又∵四边形DEFG是平行四边形,∴平行四边形DEFG是矩形.21.【解答】(1)根据测角仪得出度数为55°,所以α为90°﹣55°=35°;故答案为:35°;(2)∵BC=16.8m,∴AE=16.8m,在Rt△ADE中,tanα=,∴DE=AE•tanα≈16.8×0.7≈11.76m,∴CD=CE+DE≈13.4m.即旗杆的高度CD为13.4m.(3)∵三角板只有30°、60°的三角板和45°的三角板,而B点的仰角为35°,∴三角板测不出仰角α的度数;如图,作EF=DE,则△DEF为等腰直角三角形,∠DFE=45°,∴DE=EF=11.8m,∵AE=16.8m,∴AF=AE﹣EF=5m,∴向右走5m,用45°直角三角板测量即可(答案不唯一,向左走用30°三角板测量也可以).22.【解答】解:(1)由题意,∵顶点为(,),∴可设抛物线为y2=a(x﹣)2+.又抛物线过(2,4),∴a×+=4.∴a=1.∴y2=(x﹣)2+.(2)由题意,当销售量x=时,成本最低为,又销售量在0.4吨至3.5吨之间时,销售额y1(万元)与销售量x(吨)的函数解析式为:y1=5x,∴当x=时,销售额为y1=5x=5×=2.5.∴此时利润为2.5﹣=0.75(万元).答:当成本最低时,销售产品所获利润是0.75万元.(3)由题意,利润=y1﹣y2=5x﹣[(x﹣)2+]=﹣x2+6x﹣2=﹣(x﹣3)2+7.∵﹣1<0,∴当x=3时,利润取最大值,最大值为7.答:当销售量是3吨时,可获得最大利润,最大利润是7万元.23.【解答】(1)证明:∵,∴∠ACD=∠BCE,∵∠ADC=∠EBC,∴△ACD∽△ECB;(2)解:过B点作BH⊥CD于H点,如图,∵AB是⊙O的直径,∴∠ACB=∠ADB=90°,在Rt△ACB中,AB===,∵∠ACD=∠BCD=45°,∴∠ABD=∠BAD=45°,∴△ABD为等腰直角三角形,∴BD=AB=×=,在Rt△BCH中,∵∠BCH=45°,∴CH=BH=BC=,在Rt△BDH中,DH===,∴CD=CH+BH=+=2,∵△ACD∽△ECB,∴CA:CE=CD:CB,即3:CE=2:1,解得CE=,即CE的长为.24.【解答】解:(1)①CE+CD=CA.理由如下,∵△ABC和△ADE是等边三角形,∴AB=AC=BC,AD=AE=DE,∠BAC=∠DAE=60°,∴∠BAC﹣∠DAC=∠DAE﹣∠DAC,∴∠BAD=∠CAE,在△ABD和△ACE中,,∴△ABD≌△ACE(SAS),∴CE=BD∵BD+CD=BC,∴CE+CD=CA.②CA+CD=CE.理由如下,∵△ABC和△ADE是等边三角形,∴AB=AC=BC,AD=AE=DE,∠BAC=∠DAE=60°,∴∠BAC+∠DAC=∠DAE+∠DAC,∴∠BAD=∠CAE,在△ABD和△ACE中,,∴△ABD≌△ACE(SAS),∴CE=BD,∵CB+CD=BD,∴CA+CD=CE.(2)过E作EH∥AB,则△EHC为等边三角形.①当点D在H左侧时,如图1,∵ED=EF,∠DEH=∠FEC,EH=EC,∴△EDH≌△EFC(SAS),∴∠ECF=∠EHD=120°,此时△CEF不可能为直角三角形.②当点D在H右侧,且在线段CH上时,如图2,同理可得∴△EDH≌△EFC(SAS),∴∠FCE=∠EHD=60°,∠FEC=∠DHE<∠HEC=60°,此时只有∠CFE有可能为90°,当∠CFE=90°时,∠EDH=90°,∴ED⊥CH,∵CH=CE=2,∴CD=CH=,又∵AB=6,∴BD=6﹣.③当点D在H右侧,且HC延长线上时,如图3,此时只有∠CEF=90°,∵∠DEF=60°,∴∠CED=30°,∵∠ECH=60°,∴∠EDC=CED=30°,∴CD=CE=2,∴BD=6+2.综上:BD的长为6﹣或6+2.。
2024年新疆中考数学真题卷及答案解析
2024年新疆生产建设兵团中考数学试卷一、单项选择题(本大题共9小题,每小题4分,共36分)1.(4分)下列实数中,比0小的数是()A .﹣2B .0.2C .D .12.(4分)四个大小相同的正方体搭成的几何体如图所示,它的主视图是()A .B .C .D .3.(4分)下列运算正确的是()A .a 2+2a 2=3B .a 2•a 5=a 7C .a 8÷a 2=a 4D .(2a )3=2a 34.(4分)估计的值在()A .2和3之间B .3和4之间C .4和5之间D .5和6之间5.(4分)某跳远队准备从甲、乙、丙、丁4名运动员中选取1名成绩优异且发挥稳定的运动员参加比赛,他们成绩的平均数和方差如下:丁=5.75,乙=丙=6.15,S 甲2=S 丙2=0.02,S 乙2=S 丁2=0.45,则应选择的运动员是()A .甲B .乙C .丙D .丁6.(4分)如图,AB 是⊙O 的直径,CD 是⊙O 的弦,AB ⊥CD ,垂足为E .若CD =8,OD =5,则BE 的长为()A .1B .2C .3D .47.(4分)若一次函数y =kx +3的函数值y 随x 的增大而增大,则k 的值可以是()A .﹣2B .﹣1C .0D .18.(4分)某校九年级学生去距学校20km 的科技馆研学,一部分学生乘甲车先出发,5min后其余学生再乘乙车出发,结果同时到达.已知乙车的速度是甲车速度的1.2倍,设甲车的速度为x km/h,根据题意可列方程()A .B .C.D.9.(4分)如图,在平面直角坐标系中,直线y=kx(k>0)与双曲线y =交于A,B两点,AC⊥x轴于点C,连接BC交y轴于点D,结合图象判断下列结论:①点A与点B关于原点对称;②点D是BC的中点;③在y=的图象上任取点P(x1,y1)和点Q(x2,y2),如果y1>y2,那么x1>x2;④S△BOD =.其中正确结论的个数是()A.1B.2C.3D.4二、填空题(本大题共6小题,每小题4分,共24分)10.(4分)若每个篮球30元,则购买n个篮球需元.11.(4分)学校广播站要新招1名广播员,甲、乙两名同学经过选拔进入到复试环节,参加了口语表达、写作能力两项测试,成绩如表:项目应试者口语表达写作能力甲8090乙9080学校规定口语表达按70%,写作能力按30%计入总成绩,根据总成绩择优录取.通过计算,你认为同学将被录取.12.(4分)关于x的一元二次方程x2+3x+k=0有两个不相等的实数根,则k的取值范围为.13.(4分)如图,在正方形ABCD中,若面积S矩形AEOH=12,周长C矩形OFCG=16,则S正+S正方形HOGD=.方形EBFO14.(4分)如图,在Rt△ABC中,∠C=90°,∠A=30°,AB=8.若点D在直线AB上(不与点A,B重合),且∠BCD=30°,则AD的长为.15.(4分)如图,抛物线与y轴交于点A,与x轴交于点B,线段CD在抛物线的对称轴上移动(点C在点D下方),且CD=3.当AD+BC的值最小时,点C的坐标为.三、解答题(本大题共9小题,共90分.解答应写出必要的文字说明、证明过程或演算步骤)16.(12分)计算:(1);(2).17.(6分)解方程:2(x﹣1)﹣3=x.18.(6分)如图,已知平行四边形ABCD.①尺规作图:请用无刻度的直尺和圆规,作∠A的平分线交CD于点E;(要求:不写作法,保留作图痕迹,并把作图痕迹用黑色签字笔描黑)②在①的条件下,求证:△ADE是等腰三角形.19.(10分)为丰富学生的校园生活,提升学生的综合素质,某校计划开设丰富多彩的社团活动.为了解全校学生对各类社团活动的喜爱情况,该校随机抽取部分学生进行问卷调查(每名学生必选且只选一类),并根据调查结果制成如下统计图(不完整):结合调查信息,回答下列问题:(1)本次共调查了名学生,喜爱“艺术类”社团活动的学生人数是;(2)若该校有1000名学生,请估计其中大约有多少名学生喜爱“阅读类”社团活动?(3)某班有2名男生和1名女生参加“体育类”社团中“追风篮球社”的选拔,2名学生被选中.请用列表法或画树状图法求选中的2名学生恰好为1名男生和1名女生的概率.20.(10分)如图,△ABC的中线BD,CE交于点O,点F,G分别是OB,OC的中点.(1)求证:四边形DEFG是平行四边形;(2)当BD=CE时,求证:▱DEFG是矩形.21.(10分)数学活动课上为了测量学校旗杆的高度,某小组进行了以下实践活动:(1)准备测量工具①测角仪:把一根细线固定在半圆形量角器的圆心处,细线的另一端系一个小重物,制成一个简单的测角仪(图1),利用它可以测量仰角或俯角;②皮尺.(2)实地测量数据①将这个测角仪用手托起,拿到眼前,使视线沿着测角仪的直径刚好到达旗杆的最高点(图2);②用皮尺测出所站位置到旗杆底部的距离为16.8m,眼睛到地面的距离为1.6m.(3)计算旗杆高度①根据图3中测角仪的读数,得出仰角α的度数为;②根据测量数据,画出示意图4,AB=1.6m,BC=16.8m,求旗杆CD的高度(精确到0.1m);(参考数据:sin35°≈0.57,cos35°≈0.82,tan35°≈0.70,sin55°≈0.82,cos55°≈0.57,tan55°≈1.43)③若测量者仍站在原处(B点),能否用三角板替代测角仪测出仰角α?若能,请写出测量方法;若不能,该如何调整位置才能用三角板测出仰角α,请写出测量方法.22.(12分)某公司销售一批产品,经市场调研发现,当销售量在0.4吨至3.5吨之间时,销售额y1(万元)与销售量x(吨)的函数解析式为:y1=5x;成本y2(万元)与销售量x(吨)的函数图象是如图所示的抛物线的一部分,其中是其顶点.(1)求出成本y2关于销售量x的函数解析式;(2)当成本最低时,销售产品所获利润是多少?(3)当销售量是多少吨时,可获得最大利润?最大利润是多少?(注:利润=销售额﹣成本)23.(11分)如图,在⊙O中,AB是⊙O的直径,弦CD交AB于点E,.(1)求证:△ACD∽△ECB;(2)若AC=3,BC=1,求CE的长.24.(13分)【探究】(1)已知△ABC和△ADE都是等边三角形.①如图1,当点D在BC上时,连接CE.请探究CA,CE和CD之间的数量关系,并说明理由;②如图2,当点D在线段BC的延长线上时,连接CE.请再次探究CA,CE和CD之间的数量关系,并说明理由.【运用】(2)如图3,等边三角形ABC中,AB=6,点E在AC上,.点D是直线BC 上的动点,连接DE,以DE为边在DE的右侧作等边三角形DEF,连接CF.当△CEF 为直角三角形时,请直接写出BD的长.2024年新疆生产建设兵团中考数学试卷参考答案与试题解析一、单项选择题(本大题共9小题,每小题4分,共36分)1.(4分)下列实数中,比0小的数是()A.﹣2B.0.2C.D.1【分析】根据实数的相关定义进行大小比较即可.【解答】解:∵﹣2<1,∴比0小的数是﹣2,故选:A.【点评】本题考查的是实数大小比较,熟练掌握实数的相关定义是解题的关键.2.(4分)四个大小相同的正方体搭成的几何体如图所示,它的主视图是()A.B.C.D.【分析】根据从正面看得到的图形是主视图,可得答案.【解答】解:从正面看,底层是三个小正方形,上层的中间是一个小正方形,故选:C.【点评】本题考查了简单组合体的三视图.解题的关键是理解简单组合体的三视图的定义,明确从正面看得到的图形是主视图.3.(4分)下列运算正确的是()A.a2+2a2=3B.a2•a5=a7C.a8÷a2=a4D.(2a)3=2a3【分析】分别根据合并同类项的法则,同底数幂的乘法与除法法则,幂的乘方与积的乘方法则对各选项进行逐一计算即可.【解答】解:A、a2+2a2=3a2,原计算错误,不符合题意;B、a2•a5=a7,正确,符合题意;C、a8÷a2=a6,原计算错误,不符合题意;D、(2a)3=8a3,原计算错误,不符合题意.故选:B.【点评】本题考查的是合并同类项,同底数幂的乘法与除法,幂的乘方与积的乘方,熟知以上运算法则是解题的关键.4.(4分)估计的值在()A .2和3之间B .3和4之间C .4和5之间D .5和6之间【分析】利用逼近法进行估算即可.【解答】解:∵,∴2<<3,∴估计的值在2和3之间,故选:A .【点评】本题考查的是估算无理数的大小,熟练掌握其估算方法是解题的关键.5.(4分)某跳远队准备从甲、乙、丙、丁4名运动员中选取1名成绩优异且发挥稳定的运动员参加比赛,他们成绩的平均数和方差如下:丁=5.75,乙=丙=6.15,S 甲2=S 丙2=0.02,S 乙2=S 丁2=0.45,则应选择的运动员是()A .甲B .乙C .丙D .丁【分析】从平均数和方差两个角度进行分析即可.【解答】解:从平均数的角度来看,乙,丙的平均数成绩比甲,丁的平均数成绩高,成绩更优异;从方差的角度来看,甲,丙的方差成绩数值小,离散程度小,稳定性也越好;综上,从方差和平均数的两个角度来看,丙运动员的成绩不仅优异,且发挥稳定,应选丙运动员,故选:C .【点评】本题考查的是方差和算术平均数,熟练掌握方差和算术平均数的相关定义和计算方法是解题的关键.6.(4分)如图,AB 是⊙O 的直径,CD 是⊙O 的弦,AB ⊥CD ,垂足为E .若CD =8,OD =5,则BE 的长为()A.1B.2C.3D.4【分析】先根据垂径定理得出DE的长,再利用勾股定理求出OE的长即可解决问题.【解答】解:∵AB是⊙O的直径,且AB⊥CD,∴DE=.在Rt△DOE中,OE=,∴BE=5﹣3=2.故选:B.【点评】本题主要考查了垂径定理及勾股定理,熟知垂径定理及勾股定理是解题的关键.7.(4分)若一次函数y=kx+3的函数值y随x的增大而增大,则k的值可以是()A.﹣2B.﹣1C.0D.1【分析】根据一次函数的性质,可得答案.【解答】解:由题意,得k>0,观察选项,只有选项D符合题意.故选:D.【点评】本题考查了一次函数的性质,y=kx+b,当k>0时,函数值y随x的增大而增大.8.(4分)某校九年级学生去距学校20km的科技馆研学,一部分学生乘甲车先出发,5min 后其余学生再乘乙车出发,结果同时到达.已知乙车的速度是甲车速度的1.2倍,设甲车的速度为x km/h,根据题意可列方程()A.B.C.D.【分析】设甲车的速度为x km/h,则乙车的速度为1.2x km/h,根据一部分学生乘甲车先出发,5min后其余学生再乘乙车出发,结果同时到达.列出分式方程即可.【解答】解:设甲车的速度为x km/h,则乙车的速度为1.2x km/h,由题意得:﹣=,即﹣=,故选:D.【点评】本题考查了由实际问题抽象出分式方程,找准等量关系,正确列出分式方程是解题的关键.9.(4分)如图,在平面直角坐标系中,直线y=kx(k>0)与双曲线y=交于A,B两点,AC⊥x轴于点C,连接BC交y轴于点D,结合图象判断下列结论:①点A与点B关于原点对称;②点D是BC的中点;③在y=的图象上任取点P(x1,y1)和点Q(x2,y2),如果y1>y2,那么x1>x2;④S△BOD=.其中正确结论的个数是()A.1B.2C.3D.4【分析】根据反比例函数图象的中心对称性质及反比例函数的性质逐项分析解答即可.【解答】解:如图,作BE⊥x轴,垂足为E,①根据反比例函数图象关于原点成中心对称图形,故选项正确;②∵点A与点B关于原点对称,∴OA=OB,在△OBE和△OAC中,,∴△OBE≌△OAC(AAS),∴OE=OC,∵EB∥y轴,∴△OCD∽△ECB,∵OE=OC,∴=,∴D是CB的中点,∴OD是△BCE的中位线,故选项正确;③在每个象限内,y随x的增大而减小,故选项错误;④S△BOD=S△BOC=S△AOC==,故S△BOD=正确;其中正确结论的是①②④,共3个.故选:C.【点评】本题考查了一次函数与博览会上的交点问题,交点坐标满足两个函数解析式是关键.二、填空题(本大题共6小题,每小题4分,共24分)10.(4分)若每个篮球30元,则购买n个篮球需30n元.【分析】根据“总花费=篮球单价×购买个数“公式进行计算即可.【解答】解:∵每个篮球30元,∴购买n个篮球需:30×n=30n(元),故答案为:30n.【点评】本题考查的是列代数式,根据题意正确列出代数式是解题的关键.11.(4分)学校广播站要新招1名广播员,甲、乙两名同学经过选拔进入到复试环节,参加了口语表达、写作能力两项测试,成绩如表:项目应试者口语表达写作能力甲8090乙9080学校规定口语表达按70%,写作能力按30%计入总成绩,根据总成绩择优录取.通过计算,你认为乙同学将被录取.【分析】根据上述题目的比重,算出甲乙同学的总成绩,再进行比较即可.【解答】解:根据题意可知,甲同学的成绩为:80×70%+90×30%=83(分);乙同学的成绩为:90×70%+80×30%=87(分);∵83<87,∴乙同学将被录取,故答案为:乙.【点评】本题考查的是加权平均数,熟练掌握加权平均数的相关定义和计算方法是解题的关键.12.(4分)关于x 的一元二次方程x 2+3x +k =0有两个不相等的实数根,则k 的取值范围为k<.【分析】根据当Δ>0时,方程有两个不相等的两个实数根可得Δ=9﹣4k >0,再解即可.【解答】解:由题意得:Δ=9﹣4k >0,解得:k <,故答案为:k <.【点评】此题主要考查了根的判别式,关键是掌握一元二次方程ax 2+bx +c =0(a ≠0)的根与Δ=b 2﹣4ac 有如下关系:①当Δ>0时,方程有两个不相等的两个实数根;②当Δ=0时,方程有两个相等的两个实数根;③当Δ<0时,方程无实数根.13.(4分)如图,在正方形ABCD 中,若面积S 矩形AEOH =12,周长C 矩形OFCG =16,则S 正+S正方形HOGD=40.方形EBFO=【分析】设正方形EBFO的边长为x,正方形HOGD的边长为y,根据面积S矩形AEOH 12,周长C矩形OFCG=16,列出二元二次方程组,即可解决问题.=x2,【解答】解:设正方形EBFO的边长为x,正方形HOGD的边长为y,则S正方形EBFOS正方形HOGD=y2,由题意得:,由②得:x+y=8③,③2﹣2×②得:(x+y)2﹣2xy=82﹣2×12=40,整理得:x2+y2=40,+S正方形HOGD=40,即S正方形EBFO故答案为:40.【点评】本题考查了二元二次方程组的应用以及正方形的性质,找准等量关系,正确列出二元二次方程组是解题的关键.14.(4分)如图,在Rt△ABC中,∠C=90°,∠A=30°,AB=8.若点D在直线AB上(不与点A,B重合),且∠BCD=30°,则AD的长为6或12.【分析】根据题意画出示意图,结合所画图形即可解决问题.【解答】解:在Rt△ABC中,sin A=,∴BC=,∴AC=.当点D在点B左上方时,如图所示,∵∠ACB=90°,∠A=30°,∴∠ABC=60°.又∵∠BCD=30°,∴∠BDC=60°﹣30°=30°,∴BD=BC=4,∴AD=8+4=12.当点D在点B的右下方时,如图所示,∵∠ABC=60°,∠BCD=30°,∴∠CDA=90°.在Rt△ACD中,cos A=,∴AD=.综上所述,AD的长为6或12.故答案为:6或12.【点评】本题主要考查了含30度角的直角三角形及勾股定理,熟知特殊角的三角函数值及对点D的位置进行正确的分类讨论是解题的关键.15.(4分)如图,抛物线与y轴交于点A,与x轴交于点B,线段CD在抛物线的对称轴上移动(点C在点D下方),且CD=3.当AD+BC的值最小时,点C的坐标为(4,1).【分析】作A点关于对称轴的对称点A′,A′向下平移3个单位,得到A″,连接A″B,交对称轴于点C,此时,AD+BC的值最小,利用解析式求得A、B点的坐标,根据抛物线的对称性求得A′的坐标,进一步求得A″的坐标,利用待定系数法求得直线A″B 的解析式,即可求得点C的坐标.【解答】解:作A点关于对称轴的对称点A′,A′向下平移3个单位,得到A″,连接A″B,交对称轴于点C,此时AD+BC的值最小,AD+BC=A″B,在中,令x=0,则y=6,∴点A(0,6),令y=0,则,解得x=2或x=6,∴点B(2,0),∵抛物线的对称轴为直线x=﹣=4,∴A′(8,6),∴A″(8,3),设直线A″B的解析式为y=kx+b,代入A″、B的坐标得,解得,∴直线A″B的解析式为y=x﹣1,当x=4时,y=1,∴C(4,1).故答案为:(4,1).【点评】本题考查了抛物线与x轴的交点,二次函数的性质,二次函数图象上点的坐标特征,二次函数图象与几何变换,数形结合是解题的关键.三、解答题(本大题共9小题,共90分.解答应写出必要的文字说明、证明过程或演算步骤)16.(12分)计算:(1);(2).【分析】(1)先根据绝对值的性质,数的乘方及开方法则,零指数幂分别计算出各数,再根据实数的运算法则进行计算即可;(2)先把除法化为乘法,再约分即可.【解答】解:(1)=1+9﹣4+1=7;(2)=•=1.【点评】本题考查的是分式的混合运算,实数的运算,零指数幂,熟知运算法则是解题的关键.17.(6分)解方程:2(x﹣1)﹣3=x.【分析】先去括号,再移项,合并同类项即可.【解答】解:2(x﹣1)﹣3=x,2x﹣2﹣3=x,2x﹣x=2+3,x=5.【点评】本题考查的是解一元一次方程,熟知解一元一次方程的一般步骤是解题的关键.18.(6分)如图,已知平行四边形ABCD.①尺规作图:请用无刻度的直尺和圆规,作∠A的平分线交CD于点E;(要求:不写作法,保留作图痕迹,并把作图痕迹用黑色签字笔描黑)②在①的条件下,求证:△ADE是等腰三角形.【分析】①根据角平分线的作图方法作图即可.②根据角平分线的定义可得∠BAE=∠DAE,由平行四边形的性质可得AB∥CD,则∠BAE=∠DEA,即可得∠DAE=∠DEA,进而可得结论.【解答】①解:如图,AE即为所求.②证明:∵AE为∠BAD的平分线,∴∠BAE=∠DAE.∵四边形ABCD为平行四边形,∴AB∥CD,∴∠BAE=∠DEA,∴∠DAE=∠DEA,∴DA=DE,∴△ADE是等腰三角形.【点评】本题考查作图—基本作图、角平分线的定义、等腰三角形的判定、平行四边形的性质,熟练掌握等腰三角形的判定、平行四边形的性质、角平分线的定义以及作图方法是解答本题的关键.19.(10分)为丰富学生的校园生活,提升学生的综合素质,某校计划开设丰富多彩的社团活动.为了解全校学生对各类社团活动的喜爱情况,该校随机抽取部分学生进行问卷调查(每名学生必选且只选一类),并根据调查结果制成如下统计图(不完整):结合调查信息,回答下列问题:(1)本次共调查了100名学生,喜爱“艺术类”社团活动的学生人数是25人;(2)若该校有1000名学生,请估计其中大约有多少名学生喜爱“阅读类”社团活动?(3)某班有2名男生和1名女生参加“体育类”社团中“追风篮球社”的选拔,2名学生被选中.请用列表法或画树状图法求选中的2名学生恰好为1名男生和1名女生的概率.【分析】(1)用条形统计图中“体育类”的人数除以扇形统计图中“体育类”的百分比可得本次共调查的学生人数;用本次共调查的学生人数乘以扇形统计图中“艺术类”的百分比可得喜爱“艺术类”社团活动的学生人数.(2)根据用样本估计总体,用1000乘以样本中“阅读类”的学生人数所占的百分比,即可得出答案.(3)列表可得出所有等可能的结果数以及选中的2名学生恰好为1名男生和1名女生的结果数,再利用概率公式可得出答案.【解答】解:(1)本次共调查了30÷30%=100(名)学生.喜爱“艺术类”社团活动的学生人数是100×25%=25(人).故答案为:100;25人.(2)1000×=150(名).∴估计其中大约有150名学生喜爱“阅读类”社团活动.(3)列表如下:男男女男(男,男)(男,女)男(男,男)(男,女)女(女,男)(女,男)共有6种等可能的结果,其中选中的2名学生恰好为1名男生和1名女生的结果有4种,∴选中的2名学生恰好为1名男生和1名女生的概率为=.【点评】本题考查列表法与树状图法、条形统计图、扇形统计图、用样本估计总体,能够读懂统计图,掌握列表法与树状图法以及用样本估计总体是解答本题的关键.20.(10分)如图,△ABC的中线BD,CE交于点O,点F,G分别是OB,OC的中点.(1)求证:四边形DEFG是平行四边形;(2)当BD=CE时,求证:▱DEFG是矩形.【分析】(1)利用三角形的中位线定理可得出DE与FG平行且相等,据此可解决问题.(2)由BD=CE可得出DF=EG,再根据矩形的判定即可解决问题.【解答】(1)证明:∵BD和CE是△ABC的中线,∴点E和点D分别为AB和AC的中点,∴DE是△ABC的中位线,∴DE∥BC,DE=.同理可得,FG∥BC,FG=,∴DE∥FG,DE=FG,∴四边形DEFG是平行四边形.(2)证明:∵△ABC的中线BD,CE交于点O,∴点O是△ABC的重心,∴BO=2OD,CO=2OE.又∵点F,G分别是OB,OC的中点,∴OF=FB,OF=GC,∴DF=.∵BD=CE,∴DF=EG.又∵四边形DEFG是平行四边形,∴平行四边形DEFG是矩形.【点评】本题主要考查了三角形的重心、三角形中位线定理、平行四边形的判定与性质及矩形的判定,熟知三角形中位线定理、平行四边形的判定与性质及矩形的判定是解题的关键.21.(10分)数学活动课上为了测量学校旗杆的高度,某小组进行了以下实践活动:(1)准备测量工具①测角仪:把一根细线固定在半圆形量角器的圆心处,细线的另一端系一个小重物,制成一个简单的测角仪(图1),利用它可以测量仰角或俯角;②皮尺.(2)实地测量数据①将这个测角仪用手托起,拿到眼前,使视线沿着测角仪的直径刚好到达旗杆的最高点(图2);②用皮尺测出所站位置到旗杆底部的距离为16.8m,眼睛到地面的距离为1.6m.(3)计算旗杆高度①根据图3中测角仪的读数,得出仰角α的度数为35°;②根据测量数据,画出示意图4,AB=1.6m,BC=16.8m,求旗杆CD的高度(精确到0.1m);(参考数据:sin35°≈0.57,cos35°≈0.82,tan35°≈0.70,sin55°≈0.82,cos55°≈0.57,tan55°≈1.43)③若测量者仍站在原处(B点),能否用三角板替代测角仪测出仰角α?若能,请写出测量方法;若不能,该如何调整位置才能用三角板测出仰角α,请写出测量方法.【分析】(1)根据测角仪得出度数为55°,所以α为90°﹣55°=35°;(2)解直角三角形ADE即可求出答案.(3)由三角板的度数可知没有35°,所以直接测量不出,根据三角板的度数为45°或者30°可知,向右走或者向左走一定距离就可用三角板测量,再利用特殊角求长度即可.【解答】(1)根据测角仪得出度数为55°,所以α为90°﹣55°=35°;故答案为:35°;(2)∵BC=16.8m,∴AE=16.8m,在Rt△ADE中,tanα=,∴DE=AE•tanα≈16.8×0.7≈11.76m,∴CD=CE+DE≈13.4m.即旗杆的高度CD为13.4m.(3)∵三角板只有30°、60°的三角板和45°的三角板,而B点的仰角为35°,∴三角板测不出仰角α的度数;如图,作EF=DE,则△DEF为等腰直角三角形,∠DFE=45°,∴DE=EF=11.8m,∵AE=16.8m,∴AF=AE﹣EF=5m,∴向右走5m,用45°直角三角板测量即可(答案不唯一,向左走用30°三角板测量也可以).【点评】本题主要考查了三角形综合和锐角三角函数的实际应用,掌握解直角三角形和三角板的特征是解题关键.22.(12分)某公司销售一批产品,经市场调研发现,当销售量在0.4吨至3.5吨之间时,销售额y1(万元)与销售量x(吨)的函数解析式为:y1=5x;成本y2(万元)与销售量x(吨)的函数图象是如图所示的抛物线的一部分,其中是其顶点.(1)求出成本y2关于销售量x的函数解析式;(2)当成本最低时,销售产品所获利润是多少?(3)当销售量是多少吨时,可获得最大利润?最大利润是多少?(注:利润=销售额﹣成本)【分析】(1)依据题意,由顶点为(,),可设抛物线为y2=a(x﹣)2+,又抛物线过(2,4),从而可得a,进而得解;(2)依据题意,当销售量x=时,成本最低为,又销售量在0.4吨至3.5吨之间时,销售额y1(万元)与销售量x(吨)的函数解析式为:y1=5x,进而代入计算可以判断得解;(3)依据题意,利润=y 1﹣y 2=5x ﹣[(x ﹣)2+]=﹣(x ﹣3)2+7,再结合二次函数的性质即可判断得解.【解答】解:(1)由题意,∵顶点为(,),∴可设抛物线为y 2=a (x ﹣)2+.又抛物线过(2,4),∴a ×+=4.∴a =1.∴y 2=(x ﹣)2+.(2)由题意,当销售量x =时,成本最低为,又销售量在0.4吨至3.5吨之间时,销售额y 1(万元)与销售量x (吨)的函数解析式为:y 1=5x ,∴当x =时,销售额为y 1=5x =5×=2.5.∴此时利润为2.5﹣=0.75(万元).答:当成本最低时,销售产品所获利润是0.75万元.(3)由题意,利润=y 1﹣y 2=5x ﹣[(x ﹣)2+]=﹣x 2+6x ﹣2=﹣(x ﹣3)2+7.∵﹣1<0,∴当x =3时,利润取最大值,最大值为7.答:当销售量是3吨时,可获得最大利润,最大利润是7万元.【点评】本题主要考查了二次函数的应用,解题时要熟练掌握并能灵活运用二次函数的性质是关键.23.(11分)如图,在⊙O 中,AB 是⊙O 的直径,弦CD 交AB 于点E ,.(1)求证:△ACD ∽△ECB ;(2)若AC =3,BC =1,求CE 的长.【分析】(1)根据圆周角定理得到∠ACD=∠BCE,∠ADC=∠EBC,然后根据相似三角形的判定方法得到结论;(2)过B点作BH⊥CD于H点,如图,根据圆周角定理得到∠ACB=∠ADB=90°,则利用勾股定理可计算出AB=,再证明△ABD为等腰直角三角形得到BD=,接着在Rt△BCH中利用∠BCH=45°得到CH=BH=,然后利用勾股定理计算出DH =,最后证明△ACD∽△ECB,于是利用相似比可求出CE的长.【解答】(1)证明:∵,∴∠ACD=∠BCE,∵∠ADC=∠EBC,∴△ACD∽△ECB;(2)解:过B点作BH⊥CD于H点,如图,∵AB是⊙O的直径,∴∠ACB=∠ADB=90°,在Rt△ACB中,AB===,∵∠ACD=∠BCD=45°,∴∠ABD=∠BAD=45°,∴△ABD为等腰直角三角形,∴BD=AB=×=,在Rt△BCH中,∵∠BCH=45°,∴CH=BH=BC=,在Rt△BDH中,DH===,∴CD=CH+BH=+=2,∵△ACD∽△ECB,∴CA:CE=BC:CD,即3:CE=2:1,解得CE=,即CE的长为.【点评】本题考查了相似三角形的判定与性质:在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用;灵活运用相似三角形的性质计算相应线段的长或表示线段之间的关系是解决问题的关键.也考查了圆周角定理和勾股定理.24.(13分)【探究】(1)已知△ABC和△ADE都是等边三角形.①如图1,当点D在BC上时,连接CE.请探究CA,CE和CD之间的数量关系,并说明理由;②如图2,当点D在线段BC的延长线上时,连接CE.请再次探究CA,CE和CD之间的数量关系,并说明理由.【运用】(2)如图3,等边三角形ABC中,AB=6,点E在AC上,.点D是直线BC 上的动点,连接DE,以DE为边在DE的右侧作等边三角形DEF,连接CF.当△CEF 为直角三角形时,请直接写出BD的长.【分析】(1)①根据条件易证△ABD≌△ACE(SAS),再进行线段转化易得答案;②与第①小问思路一样,证出△ABD≌△ACE(SAS)即可;(2)由△CEF为直角三角形可知,需要分类讨论确定哪个角是直角三角形,再根据点D 的位置关系去讨论即可,因为点D是动点,所以按照前面两问带给我们的思路,去构造类似的全等三角形,进而讨论求解即可.【解答】解:(1)①CE+CD=CA.理由如下,∵△ABC和△ADE是等边三角形,∴AB=AC=BC,AD=AE=DE,∠BAC=∠DAE=60°,∴∠BAC﹣∠DAC=∠DAE﹣∠DAC,∴∠BAD=∠CAE,在△ABD和△ACE中,,∴△ABD≌△ACE(SAS),∴CE=BD∵BD+CD=BC,∴CE+CD=CA.②CA+CD=CE.理由如下,∵△ABC和△ADE是等边三角形,∴AB=AC=BC,AD=AE=DE,∠BAC=∠DAE=60°,∴∠BAC+∠DAC=∠DAE+∠DAC,∴∠BAD=∠CAE,在△ABD和△ACE中,,∴△ABD≌△ACE(SAS),∴CE=BD,∵CB+CD=BD,∴CA+CD=CE.(2)过E作EH∥AB,则△EHC为等边三角形.①当点D在H左侧时,如图1,∵ED=EF,∠DEH=∠FEC,EH=EC,∴△EDH≌△EFC(SAS),∴∠ECF=∠EHD=120°,此时△CEF不可能为直角三角形.②当点D在H右侧,且在线段CH上时,如图2,同理可得∴△EDH≌△EFC(SAS),∴∠FCE=∠EHD=60°,∠FEC=∠DHE<∠HEC=60°,此时只有∠FCE有可能为90°,当∠FCE=90°时,∠EDH=90°,∴ED⊥CH,∵CH=CE=2,∴CD=CH=,又∵AB=6,∴BD=6﹣.③当点D在H右侧,且HC延长线上时,如图3,此时只有∠CEF=90°,∵∠DEF=60°,∴∠CED=30°,∵∠ECH=60°,∴∠EDC=CED=30°,∴CD=CE=2,∴BD=6+2.综上:BD的长为6﹣或6+2.【点评】本题主要考查三角形综合题,熟练掌握全等三角形的性质和判定是解题的关键.。
求函数的定义域精练44题(解析版)—2024-2025学年高一数学
求函数的定义域精练44题一、单选题1.(24-25高一上·吉林松原·阶段练习)函数()12x f x =-的定义域是( )A .[)()3,22,-È+¥B .[)3,¥-+C .()2,+¥D .[)3,2-【答案】A【分析】根据函数解析式,列不等式组求解即可.【详解】由题意可得30,20,x x +³ìí-¹î解得32x -£<或2x >.所以函数的定义域为[)()3,22,-È+¥.故选:A2.(24-25高三上·河北张家口·阶段练习)函数1()2f x x =+-的定义域为( )A .2|2}3{x x x >¹且B .2{|2}3x x x <>且C .3{|2}2x x ££D .3{|2}2x x x ³¹且【答案】D【分析】利用函数有意义,列出不等式组求解即得.【详解】函数1()2f x x =+-的意义,则230x -³且20x -¹,解得32x ³且2x ¹,所以原函数的定义域为3{|2}2x x x ³¹且.故选:D3.(24-25高一上·吉林长春·阶段练习)若函数(21)f x -的定义域为[3,1]-,则y =)A .12ìüíýîþB .13,22æùçúèûC .15,22æùçèûD .15,22éö÷êëø【答案】D【分析】首先317211x x -££Þ-£-£,从而根据y =.【详解】若函数(21)f x -的定义域为[3,1]-,则317211x x -££Þ-£-£,要使得y =有意义,当且仅当73411552022x x x -£-£ìÛ£<í->î,所以y =的定义域为15,22éö÷êëø.故选:D.4.(20-21高一·全国·课后作业)一个等腰三角形的周长为20,底边长y 是一腰长x 的函数,则( )A .()10010y x x =-<£B .()10010y x x =-<<C .()202510y x x =-££D .()202510y x x =-<<【答案】D【分析】结合等腰三角形性质可得220x y +=,变形得y 关于x 表达式,再结合三角形三边性质确定自变量范围即可.【详解】∵220x y +=,∴202y x =-.由题意得2020,202,0,x x x x x ->ìï+>-íï>î解得510x <<.∴()202510y x x =-<<.故选:D.5.(23-24高一上·四川成都·26s 落到地面击中目标.炮弹的射高为845m ,且炮弹距地面的高度h (单位:m )与时间t (单位:s )的关系为21305h t t =-.该函数定义域为( )A .()0,¥+B .(]0,845C .[]0,26D .[]0,845【答案】C【分析】根据实际意义分析即可.【详解】由题意可知,炮弹发射后共飞行了26s ,所以026t ££,即函数21305h t t =-的定义域为[]0,26.故选:C6.(24-25高三上·山东聊城·阶段练习)函数()f x =的定义域是( )A .[)2,+¥B .[)5,-+¥C .[]5,2-D .][(),52,-¥-È+¥【答案】A【详解】依题意,2050x x -³ìí+³î,解得2x ³,所以函数的定义域为[)2,+¥.故选:A7.(2024高三·全国·专题练习)函数y = )A .[]3,3-B .()3,1(1,3)-ÈC .()3,3-D .()(),33,¥¥--È+【答案】C【分析】根据具体函数的解析式列不等式,解不等式可得解.【详解】由题知290->x ,解得33x -<<,所以函数的定义域为()3,3-,故选:C.8.(23-24高一上·陕西榆林·阶段练习)函数()f x = )A .[]22-,B .[)2,2-C .(]2,2-D .()2,2-【答案】A【分析】根据偶次方根的被开方数非负、分母不为零得到不等式组,解得即可.【详解】对于函数()f x =20010x ì+³¹,解得22x -££,所以函数()f x =[]22-,.故选:A9.(23-24高二下·河北秦皇岛·期末)函数()f x =的定义域为( )A.11é--ëB.1éëC.11é-ëD.[(),11¥¥--È-++【分析】根据函数形式得到2022x x -³-,解出即可.【详解】由题意得2022x x -³-,解得11x éÎ--ë,则其定义域为11é--ë.故选:A.10.(23-24高一上·安徽淮北·期中)函数1()1f x x=+的定义域为( )A .[3,)+¥B .(,1)(1,3]-¥--U C .(1,)-+¥D .[3,1)(1,)--È-+¥【答案】A【分析】利用函数有意义列出不等式求解即得.【详解】函数1()1f x x =+有意义,则3010x x -³ìí+¹î,解得3x ³,所以原函数的定义域为[3,)+¥.故选:A11.(15-16高三上·河北唐山·期末)函数()f x = )A .[)2,+¥B .[)5,¥-+C .[]5,2-D .(][),52,¥¥--È+【答案】A【分析】根据函数定义域的求法求得正确答案.【详解】依题意,2050x x -³ìí+³î,解得2x ³,所以函数的定义域为[)2,+¥.故选:A12.(2020高二上·新疆·学业考试)函数()11f x x =-的定义域是( )A .{}|1x x ¹B .{}|1x x >C .{}|1x x ³D .{}|1x x £【答案】A【分析】根据分母不为零计算可得.【详解】对于函数()11f x x =-,则10x -¹,解得1x ¹,所以函数()11f x x =-的定义域是{}|1x x ¹.13.(23-24高一上·福建龙岩·阶段练习)函数211x y x -=-的定义域是( )A .[)4,-+¥B .()4,-+¥C .[)()4,00,-+¥UD .[)()4,11,-+¥U 【答案】D【分析】根据给定条件,利用函数有意义列出不等式组求解即得.【详解】函数211x y x -=-有意义,则4010x x +³ìí-¹î,解得4x ³-且1x ¹,所以所求定义域为[)()4,11,-+¥U .故选:D14.(24-25高一上·吉林·阶段练习)函数()f x =的定义域为( )A .11é--ëB .1éëC .11é-ëD .(,11éù-¥--+¥ëûU 【答案】A【分析】令2022x x -³-,求出定义域.【详解】令2022x x -³-,即2220x +-£,其中2220x x +-=的两根为11--+故2220x x +-£的解集为11é--ë.故选:A15.(24-25高三上·重庆·阶段练习)函数()f x =的定义域为( )A .()(),21,-¥-+¥UB .()2,1-C .][(),21,¥¥--È+D .[]2,1-【答案】B【分析】根据函数()f x 的解析式有意义,列出不等式220x x -->,结合一元二次不等式的解法,即可求解.【详解】由函数()f x =有意义,则满足220x x -->,即22(1)(2)0x x x x +-=-+<,解得2<<1x -,所以函数()f x 的定义域为(2,1)-.故选:B.16.(24-25高一上·浙江丽水·阶段练习)已知函数()y f x =的定义域为[]1,4-,则y =)A .31,2éö-÷êëøB .31,2æùçúèûC .(]1,9D .35,2éù-êúëû【答案】B【分析】由已知()f x 的定义域,再根据函数成立的条件建立不等式进行求解即可.【详解】因为()y f x =的定义域是[]1,4-,所以要使得y =需满足121410x x -£+£ìí->î,解得312x <£.则函数y =31.2æùçúèû,故选:B17.(23-24高二下·辽宁·阶段练习)已知函数()f x 的定义域为[]22-,,则函数()()1f x F x x+=的定义域为( )A .[]1,3-B .[]3,1-C .[]1,0)(0,3-ÈD .[]3,0)(0,1-È【答案】D【分析】根据复合函数定义域的求法进行求解.【详解】由题意可知,要使F (x )有意义,则2120x x -£+£ìí¹î,解得310x x -££ìí¹î,所以函数F (x )的定义域为[)(]3,00,1-È.故选:D .18.(24-25高三上·福建宁德·开学考试)已知函数(21)y f x =-的定义域是[1,3]-,则y =的定义域是( )A .(2,5]-B .(2,3]-C .[1,3]-D .[2,5]-【答案】A【分析】根据给定条件,利用抽样函数定义域列式求解即得.【详解】由函数(21)y f x =-的定义域是[1,3]-,得3215x -£-£,因此在函数y =3520x x -££ìí+>î,解得25x -<£,所以所示函数的定义域为(2,5]-.故选:A19.(22-23高一上·福建福州·阶段练习)已知函数()21f x +的定义域为[]1,2,则函数()41f x +的定义域是( )A .[]3,5B .1,12éùêúëûC .[]5,9D .10,4éùêúëû【答案】B【分析】由[]1,2x Î求21x +的范围,然后解不等式3415x £+£可得.【详解】因为函数()21f x +的定义域为[]1,2,即[]1,2x Î,所以[]213,5x +Î,由3415x £+£解得112x ££,所以函数()41f x +的定义域为1,12éùêúëû.故选:B20.(24-25高一上·山东枣庄·阶段练习)已知函数()f x 的定义域为[)0,+¥,则函数()25f x y x -=-的定义域为( )A .()()2,55,-+¥U B .[)()2,55,-+¥U C .()()2,55,È+¥D .[)()2,55,+¥U 【答案】D【分析】应用求解抽象函数的定义域的方法即可.【详解】函数()f x 的定义域为[)0,+¥,则2050x x -³ìí-¹î,则2x ³且5x ¹,则函数()25f x y x -=-的定义域为[)()2,55,+¥U .故选:D.21.(24-25高一上·江西南昌·阶段练习)已知函数()f x 的定义域为[0,2],则函数(22)f x -的定义域为( )A .[2,2]-B .[0,2]C .[2,4]-D .[1,2]【答案】D【详解】因为函数()f x 的定义域为[0,2],所以,对于()22f x -有[]220,2x -Î,由0222x £-£,解得12x ££,所以函数(22)f x -的定义域为[1,2].故选:D22.(2023高一下·吉林·学业考试)函数y =)A .{0x x 且}1x ¹B .{|0x x ³且}1x ¹C .{}1x x ¹D .{}0x x ³【答案】B【分析】根据根式、分式的意义直接运算求解即可.【详解】由题意可得:010x x ³ìí-¹î,解得0x ³且1x ¹,所以函数y ={|0x x ³且}1x ¹.故选:B.23.(23-24高一上·江苏南京·阶段练习)已知函数()2y f x =-的定义域为[]0,4,则函数()()1f xg x x =-的定义域是( )A .[)(]1,11,3-ÈB .[]0,2C .[)(]2,11,2-ÈD .[)(]0,11,2È【答案】C【分析】利用定义域就是求自变量x 的取值范围进行求解即可.【详解】由函数()2y f x =-的定义域为[]0,4,可得函数y =f (x )的定义域为[]22-,,则函数()()1f xg x x =-的定义域是[)(]2,11,2-È,故选:C.24.(23-24高一下·北京·期末)函数()f x =)A .()1,1-B .()()1,12,-+¥U C .[)2,+¥D .()[)1,12,¥-È+【答案】D【分析】根据被开方数为非负数得到不等式,解得即可.【详解】函数()f x =,令2201x x -³-,等价于()()()()()2110110x x x x x ì-+-³ïí+-¹ïî,解得11x -<<或2x ³,所以函数()f x =()[)1,12,¥-È+.故选:D25.(23-24高二下·黑龙江·期末)已知函数()f x =()()()22g x f x f x =+的定义域为( )A .éëB .(-¥C .éëD .éùëû【答案】D【分析】由根式和复合函数的定义域求解即可.【详解】由题可知()f x =(],2-¥,则为使()()()22g x f x f x =+有意义必须且只需2222x x £ìí£î,解得1x ££,所以()g x 的定义域为éùëû.故选:D26.(23-24高一上·江西宜春·阶段练习)已知函数()f x =的定义域为R ,则实数a 的取值范围是( )A .(]0,1B .()0,¥+C .[)1,+¥D .[]0,1【答案】D【分析】将问题转化为不等式2210ax ax -+³恒成立问题,分类讨论0a =与0a ¹两种情况,结合根的判别式得到不等式,从而得解.【详解】因为()f x =R ,所以不等式2210ax ax -+³对任意的R x Î恒成立,当0a =时,10³恒成立,满足题意;当0a ¹时,则2Δ440a a a >ìí=-£î,解得01a <£;综上,01a ££,即a 的取值范围是[]0,1.故选:D.27.(23-24高一上·安徽马鞍山·阶段练习)若函数()y f x =的定义域是[]0,2023,则函数(1)()2f xg x x +=-的定义域是( )A .[1,2022]-B .[1,2)(2,2022]-UC .[1,2)(2,2024]UD .(1,2024]【答案】B【分析】根据函数特征得到不等式,求出12022x -££且2x ¹,得到定义域.【详解】由题意得012023x £+£且20x -¹,解得12022x -££且2x ¹,故(1)()2f xg x x +=-的定义域为[1,2)(2,2022]-U .故选:B28.(23-24高一下·广东湛江·期末)函数()0(3)f x x =-的定义域是( )A .[)1,3B .()3,+¥C .()()1,33,È+¥D .[)()1,33,È+¥【答案】C【分析】根据根式、分式以及零次方成立的条件分析求解.【详解】令1030x x ->ìí-¹î,解得1x >且3x ¹,所以函数()0(3)f x x =-的定义域是()()1,33,È+¥.故选:C.29.(23-24高一上·江苏常州·期中)函数y =的定义域是( )A .[]22-,B .()2,2-C .[)(]2,00,2-U D .[)(]4,00,4-È【答案】C【分析】由240x -³且0x ¹可求得结果.【详解】由题意得2400x x ì-³í¹î,解得22x -££且0x ¹,所以函数的定义域为[)(]2,00,2-U .故选:C30.(24-25高一上·广西钦州·开学考试)函数的定义域是指自变量的取值范围,则函数y =)A .{}|33x x -££B .{|33x x -<<且}1x ¹C .{}|33x x -<<D .{|3x x <-或}3x >【答案】C 【分析】根据题意知30x ->,解不等式即可求解.【详解】根据题意,要使函数有意义,需满足30x ->,即3x <,解得33x -<<,所以函数的定义域为{}|33x x -<<.故选:C31.(23-24高一上·重庆沙坪坝·期中)已知函数()f x =()()g x f x =-的定义域为( )A .[]1,4-B .][(,14,)¥¥--È+C .[]4,1-D .][(,41,)¥¥--È+【答案】A【分析】根据题意求出()g x 的解析式,由二次根式内部的代数式大于等于0即可求解()g x 的定义域.【详解】由题可得:()()g x f x =-=,所以2340x x -++³,解得:14x -££,则()g x 的定义域为[]1,4-;故选:A32.(24-25高一上·浙江·阶段练习)已知函数()f x 的定义域和值域都是[]0,1,则函数f的定义域和值域分别为( )A .éë和[]1,0-B .éë和[]0,1C .[]1,0-和[]1,0-D .[]1,0-和[]0,1【答案】D 【分析】根据抽象函数的定义域的求法及函数值域的概念求解即可.【详解】因为函数()f x 的定义域为[]0,1,则01££,即10x -≤≤,所以函数f 的定义域为[]1,0-.又函数()f x 的值域为[]0,1,所以f 的值域为[]0,1.故选:D.二、填空题33.(24-25高一上·吉林·有意义的x 的集合为 .【答案】{4x x £-或}3x ³.【分析】由根式与分式均有意义建立不等式组求解可得.【详解】要使式子有意义,则有212010x x x ì+-³í+¹î,解得,4x £-或3x ³.故使得式子有意义的x 的集合为{4x x £-或}3x ³.故答案为:{4x x £-或}3x ³..34.(24-25高一上·天津滨海新·阶段练习)函数()()032f x x =+的定义域为 【答案】22,,333¥æöæö--È-ç÷ç÷èøèø【分析】由分式的分母不为零,偶次根式的被开方数为非负数,零次幂的底数不为零,求解函数的定义域即可.【详解】由30320x x ->ìí+¹î,解得3x <且23x ¹-,所以函数()f x 的定义域为22,,333¥æöæö--È-ç÷ç÷èøèø,故答案为:22,,333¥æöæö--È-ç÷ç÷èøèø35.(24-25高一上·黑龙江哈尔滨·阶段练习)函数0()(21)f x x =-的定义域为 .【答案】11,,122æöæö-¥Èç÷ç÷èøèø【分析】利用二次根式与零指数幂的意义计算即可.【详解】由题意可知函数解析式有意义需10210x x ->ìí-¹î,解之得11,,122x æöæöÎ-¥ç÷ç÷èøèøU .故答案为:11,,122æöæö-¥Èç÷ç÷èøèø36.(24-25高一上·天津静海·阶段练习)已知函数y =R ,则a 的取值范围是 .【答案】3,15éù-êúëû【分析】通过210a -=和210a -¹两类情况讨论即可.【详解】当210a -=时,可得1a =或1a =-,当1a =时,1y =符合题意;当1a =-时,y =.当210a -¹时,由于定义域为R ,可得()()222141010a a a ì---£ïí->ïî,解得:315a -£<,综上所述:a 的取值范围是3,15éù-êúëû故答案为:3,15éù-êúëû三、解答题37.(23-24高一上·山西大同·阶段练习)(1)求函数()f x =(2)已知函数()y f x =的定义域为[2,3]-,求函数()372f x y x -=-的定义域.【答案】(1)(,3)(3,1][4,)-¥-È--È+¥;(2)510,22,33éöæù÷çêëøèûU 【分析】(1)只需使被开方数是非负数且分式的分母不为0,求解不等式组即得;(2)求抽象函数的定义域,只需将37x -看成整体,满足2373x -£-£,且分式的分母不为0,求解不等式组即得.【详解】(1)要使函数有意义,需使2340120x x x ì--³ïí+-¹ïî解得1x £-或4x ³且3x ¹-.故函数的定义域为(,3)(3,1][4,)-¥-È--È+¥.(2)因()y f x =的定义域为[2,3]-,要使函数()372f x y x -=-有意义,需使2373,20x x -£-£ìí-¹î解得510,332,x x 죣ïíï¹î()37f x -510éöæù38.(23-24高一上·全国·课后作业)设函数()y f x =的定义域是[1,3]-,求函数()()()211g x f x f x =++-的定义域.【答案】[0,1]【分析】根据复合函数定义域的求解方法,列出不等式组求解即可.【详解】∵函数()y f x =的定义域是[1,3]-,∴要使函数()g x 有意义,则1213113x x -£+£ìí-£-<î,解得01x ££.故函数()()()211g x f x f x =++-的定义域为[0,1].39.(23-24高一上·云南昆明·期中)已知函数()y f x =,设()()()22g x f x f x =-+.(1)若()y f x =的定义域是[]0,3,求函数()g x 定义域;(2)若()()223f x f x x +-=+,求函数()g x 解析式.【答案】(1)[]0,1(2)()24g x x =-+【分析】(1)由抽象函数定义域求法可知023023x x ££ìí£+£î,解得01x ££,即可求得函数()g x 定义域为[]0,1;(2)利用方程组法求得函数()f x 的解析式为()21f x x =-+,代入计算可得()24g x x =-+.【详解】(1)根据题意,由()f x 的定义域是[]0,3可得023023x x ££ìí£+£î,解得01x ££,即函数()g x 定义域为[]0,1.(2)由()()223f x f x x +-=+可知,将x -替换上式中的x 可得()()()223f x f x x -+=-+,联立两式消去()f x -可得()21f x x =-+,所以可得()()()()22221221g x f x f x x x =-+=-´+--++éùëû4124124x x x =-+++-=-+,即函数()g x 解析式为()24g x x =-+.40.(23-24高一上·辽宁大连·期中)求下列函数的定义域:(1)()f x =(2)已知函数(3)f x +的定义域为(1,0)-,则函数(21)f x +的定义域.【答案】(1){1x x £-且3x ¹-或x ≥4};(2)1,12æöç÷èø.【分析】(1)根据二次根式的被开方数是非负数以及分母非零即得不等式组,解出即得;(2)正确理解函数的定义域的含义以及抽象函数中的变量范围的整体替换,即可求得.【详解】(1)要使函数有意义,只需2340,120x x x ì--³ïí+-¹ïî解得:1x £-或4x ³且3x ¹-,所以函数定义域为{1x x £-且3x ¹-或x ≥4}.(2)由题意知10x -<<,所以233x <+<,即()f x 的定义域为(2,3),所以2213x <+<,解得112x <<.故函数(21)f x +的定义域是1,12æöç÷èø.41.(24-25高一上·上海·课堂例题)求下列函数的定义域:(1)0(23)y x =+;(2)2y =;(3)211x y x-=+.【答案】(1)32x x ìü¹-íýîþ(2){}14xx ££∣(3){}1xx ¹-∣(2)根据题意结合根式的意义分析求解;(3)根据题意结合分式的意义运算求解.【详解】(1)要使函数有意义,需满足230x +¹,解得32x ¹-,所以()023y x =+的定义域为32x x ìü¹-íýîþ.(2)要使函数有意义,需满足10,40,x x -³ìí-³î解得14x ££.所以函数2y =的定义域为{}14xx ££∣.(3)要使函数有意义,需满足10x +¹,解得1x ¹-.所以函数211x y x-=+的定义域为{}1x x ¹-∣.42.(23-24高一·上海·课堂例题)求函数12y x=-的定义域.【答案】{|1x x ³或1x £-,且}2x ¹【分析】根据条件,得到22010x x -¹ìí-³î,求解即可得出结果.【详解】由22010x x -¹ìí-³î,解得1x ³或1x £-,且2x ¹,所以函数12y x=-{|1x x ³或1x £-,且}2x ¹43.(24-25高一上·上海·课堂例题)(1)已知()f x 的定义域为[]3,15,求(22)f x x -的定义域;(2)若函数()2f x 的定义域为[]1,1-,求()1f x +的定义域.【答案】(1)[][]3,13,5--U ;(2)[]1,0-.【分析】(1)由()f x 的定义域,要求(22)f x x -的定义域,解不等式组2223215x x x x ì-³í-£î即可;(2)由()2f x 的定义域为[]1,1-,可得201x ££,则要求()1f x +的定义域,解不等式组1110x x +£ìí+³î即可.【详解】(1)∵()f x 的定义域为[]3,15,∴要求(22)f x x -的定义域,即解不等式组2223215x x x x ì-³í-£î,解得31x -££-或35x ££,故()22f x x -的定义域为[][]3,13,5--U .(2)∵()2f x 的定义域为[]1,1-,∴11x -££,则201x ££,即()f x 的定义域为[]0,1,∴要求()1f x +的定义域,即解不等式组1110x x +£ìí+³î,解得10x -≤≤,故()1f x +的定义域为[]1,0-.44.(23-24高一上·山东聊城·阶段练习)已知()242f x x x =-+,()g x (1)求()g x 的定义域;(2)求()2f ,()1f a +的值,()f x 的值域【答案】(1){4x x ³且}5x ¹(2)()22f =-,()2121f a a a +=--,值域为[)2,-+¥【分析】(1)要使该函数有意义,只需满足4050x x -³ìí-¹î,即可求得结果; (2)直接代入求值即可,求值域时,根据解析式的范围直接求解即可.【详解】(1)因为()g x 所以4050x x -³ìí-¹î,解得4x ³,且5x ¹,所以该函数的定义域为:{4x x ³且}5x ¹.(2)由()242f x x x =-+知,()2222422f =-´+=-,()()()221141221+=+-++=--f a a a a a ,()()2242222f x x x x =-+=--³-Q ,()[)2,f x \Î-+¥,即()f x 的值域为[)2,-+¥.。
新疆2020年中考数学试卷(解析版)
2020年新疆中考数学试卷一、选择题1.下列各数中,是负数的为()A.﹣1B.0C.0.2D.2.如图所示,该几何体的俯视图是()A.B.C.D.3.下列运算正确的是()A.x2?x3=x6B.x6÷x3=x3C.x3+x3=2x6D.(﹣2x)3=﹣6x34.实数a,b在数轴上的位置如图所示,下列结论中正确的是()A.a>b B.|a|>|b|C.﹣a<b D.a+b>05.下列一元二次方程中,有两个不相等实数根的是()A.x2﹣x+=0B.x2+2x+4=0C.x2﹣x+2=0D.x2﹣2x=06.不等式组的解集是()A.0<x≤2B.0<x≤6C.x>0D.x≤27.四张看上去无差别的卡片上分别印有正方形、正五边形、正六边形和圆,现将印有图形的面朝下,混合均匀后从中随机抽取两张,则抽到的卡片上印有的图形都是中心对称图形的概率为()A.B.C.D.8.二次函数y=ax2+bx+c的图象如图所示,则一次函数y=ax+b和反比例函数y=在同一平面直角坐标系中的图象可能是()A.B.C.D.9.如图,在△ABC中,∠A=90°,D是AB的中点,过点D作BC的平行线交AC于点E,作BC的垂线交BC于点F,若AB=CE,且△DFE的面积为1,则BC的长为()A.2B.5C.4D.10二、填空题(本大题共6小题,每小题5分,共30分)10.如图,若AB∥CD,∠A=110°,则∠1=°.11.分解因式:am2﹣an2=.12.表中记录了某种苹果树苗在一定条件下移植成活的情况:移植的棵数n200500800200012000成活的棵数m187446730179010836成活的频率0.9350.8920.9130.8950.903由此估计这种苹果树苗移植成活的概率约为.(精确到0.1)13.如图,在x轴,y轴上分别截取OA,OB,使OA=OB,再分别以点A,B为圆心,以大于AB长为半径画弧,两弧交于点P.若点P的坐标为(a,2a﹣3),则a的值为.14.如图,⊙O的半径是2,扇形BAC的圆心角为60°.若将扇形BAC剪下围成一个圆锥,则此圆锥的底面圆的半径为.15.如图,在△ABC中,∠A=90°,∠B=60°,AB=2,若D是BC边上的动点,则2AD+DC 的最小值为.三、解答题(本大题共8小题,共75分)16.计算:(﹣1)2+|﹣|+(π﹣3)0﹣.17.先化简,再求值:(x﹣2)2﹣4x(x﹣1)+(2x+1)(2x﹣1),其中x=﹣.18.如图,四边形ABCD是平行四边形,DE∥BF,且分别交对角线AC于点E,F,连接BE,DF.(1)求证:AE=CF;(2)若BE=DE,求证:四边形EBFD为菱形.19.为了解某校九年级学生的体质健康状况,随机抽取了该校九年级学生的10%进行测试,将这些学生的测试成绩(x)分为四个等级:优秀85≤x≤100;良好75≤x<85;及格60≤x<75;不及格0≤x<60,并绘制成如图两幅统计图.根据以上信息,解答下列问题:(1)在抽取的学生中不及格人数所占的百分比是;(2)计算所抽取学生测试成绩的平均分;(3)若不及格学生的人数为2人,请估算出该校九年级学生中优秀等级的人数.20.如图,为测量建筑物CD的高度,在A点测得建筑物顶部D点的仰角为22°,再向建筑物CD前进30米到达B点,测得建筑物顶部D点的仰角为58°(A,B,C三点在一条直线上),求建筑物CD的高度.(结果保留整数.参考数据:sin22°≈0.37,cos22°≈0.93,tan22°≈0.40,sin58°≈0.85,cos58°≈0.53,tan58°≈1.60)21.某超市销售A、B两款保温杯,已知B款保温杯的销售单价比A款保温杯多10元,用480元购买B款保温杯的数量与用360元购买A款保温杯的数量相同.(1)A、B两款保温杯的销售单价各是多少元?(2)由于需求量大,A、B两款保温杯很快售完,该超市计划再次购进这两款保温杯共120个,且A款保温杯的数量不少于B款保温杯数量的两倍.若A款保温杯的销售单价不变,B款保温杯的销售单价降低10%,两款保温杯的进价每个均为20元,应如何进货才能使这批保温杯的销售利润最大,最大利润是多少元?22.如图,在⊙O中,AB为⊙O的直径,C为⊙O上一点,P是的中点,过点P作AC 的垂线,交AC的延长线于点D.(1)求证:DP是⊙O的切线;(2)若AC=5,sin∠APC=,求AP的长.23.如图,在平面直角坐标系中,点O为坐标原点,抛物线y=ax2+bx+c的顶点是A(1,3),将OA绕点O顺时针旋转90°后得到OB,点B恰好在抛物线上,OB与抛物线的对称轴交于点C.(1)求抛物线的解析式;(2)P是线段AC上一动点,且不与点A,C重合,过点P作平行于x轴的直线,与△OAB的边分别交于M,N两点,将△AMN以直线MN为对称轴翻折,得到△A′MN,设点P的纵坐标为m.①当△A′MN在△OAB内部时,求m的取值范围;②是否存在点P,使S△A′MN=S△OA′B,若存在,求出满足条件m的值;若不存在,请说明理由.参考答案一、单项选择题(本大题共9小题,每小题5分,共45分.请按答题卷中的要求作答)1.下列各数中,是负数的为()A.﹣1B.0C.0.2D.【分析】利用正数与负数的定义判断即可.解:﹣1是负数;0既不是正数也不是负数;0.2是正数;是正数.故选:A.2.如图所示,该几何体的俯视图是()A.B.C.D.【分析】根据从上面看得到的图形是俯视图,可得俯视图.解:从上面看是四个正方形,符合题意的是C,故选:C.3.下列运算正确的是()A.x2?x3=x6B.x6÷x3=x3C.x3+x3=2x6D.(﹣2x)3=﹣6x3【分析】根据同底数幂的乘法、除法和积的乘方以及合并同类项进行判断即可.解:A、x2?x3=x5,选项错误.不符合题意;B、x6÷x3=x3,选项正确,符合题意;C、x3+x3=2x3,选项错误,不符合题意;D、(﹣2x)3=﹣8x3,选项错误,不符合题意;故选:B.4.实数a,b在数轴上的位置如图所示,下列结论中正确的是()A.a>b B.|a|>|b|C.﹣a<b D.a+b>0【分析】直接利用数轴上a,b的位置进而比较得出答案.解:如图所示:A、a<b,故此选项错误;B、|a|>|b|,正确;C、﹣a>b,故此选项错误;D、a+b<0,故此选项错误;故选:B.5.下列一元二次方程中,有两个不相等实数根的是()A.x2﹣x+=0B.x2+2x+4=0C.x2﹣x+2=0D.x2﹣2x=0【分析】分别求出每个方程判别式的值,根据判别式的值与方程的解的个数间的关系得出答案.解:A.此方程判别式△=(﹣1)2﹣4×1×=0,方程有两个相等的实数根,不符合题意;B.此方程判别式△=22﹣4×1×4=﹣12<0,方程没有实数根,不符合题意;C.此方程判别式△=(﹣1)2﹣4×1×2=﹣7<0,方程没有实数根,不符合题意;D.此方程判别式△=(﹣2)2﹣4×1×0=4>0,方程有两个不相等的实数根,符合题意;故选:D.6.不等式组的解集是()A.0<x≤2B.0<x≤6C.x>0D.x≤2【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.解:,解不等式①,得:x≤2,解不等式②,得:x>0,则不等式组的解集为0<x≤2,故选:A.7.四张看上去无差别的卡片上分别印有正方形、正五边形、正六边形和圆,现将印有图形的面朝下,混合均匀后从中随机抽取两张,则抽到的卡片上印有的图形都是中心对称图形的概率为()A.B.C.D.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与抽到卡片上印有的图案都是中心对称图形的情况,再利用概率公式求解即可求得答案.解:分别用A、B、C、D表示正方形、正五边形、正六边形和圆,画树状图得:∵共有12种等可能的结果,抽到卡片上印有的图案都是中心对称图形的有6种情况,∴抽到卡片上印有的图案都是中心对称图形的概率为:=.故选:C.8.二次函数y=ax2+bx+c的图象如图所示,则一次函数y=ax+b和反比例函数y=在同一平面直角坐标系中的图象可能是()A.B.C.D.【分析】根据二次函数y=ax2﹣bx+c的图象开口向上,得出a>0,与y轴交点在y轴的正半轴,得出c>0,利用对称轴x=﹣>0,得出b<0,进而对照四个选项中的图象即可得出结论.解:因为二次函数y=ax2﹣bx+c的图象开口向上,得出a>0,与y轴交点在y轴的正半轴,得出c>0,利用对称轴x=﹣>0,得出b<0,所以一次函数y=ax+b经过一、三、四象限,反比例函数y=经过一、三象限,故选:D.9.如图,在△ABC中,∠A=90°,D是AB的中点,过点D作BC的平行线交AC于点E,作BC的垂线交BC于点F,若AB=CE,且△DFE的面积为1,则BC的长为()A.2B.5C.4D.10【分析】过A作AH⊥BC于H,根据已知条件得到AE=CE,求得DE=BC,求得DF =AH,根据三角形的面积公式得到DE?DF=2,得到AB?AC=8,求得AB=2(负值舍去),根据勾股定理即可得到结论.解:过A作AH⊥BC于H,∵D是AB的中点,∴AD=BD,∵DE∥BC,∴AE=CE,∴DE=BC,∵DF⊥BC,∴DF∥AH,DF⊥DE,∴BF=HF,∴DF=AH,∵△DFE的面积为1,∴DE?DF=1,∴DE?DF=2,∴BC?AH=2DE?2DF=4×2=8,∴AB?AC=8,∵AB=CE,∴AB=AE=CE=AC,∴AB?2AB=8,∴AB=2(负值舍去),∴AC=4,∴BC==2.故选:A.二、填空题(本大题共6小题,每小题5分,共30分)10.如图,若AB∥CD,∠A=110°,则∠1=70°.【分析】由AB∥CD,利用“两直线平行,同位角相等”可得出∠2的度数,再结合∠1,∠2互补,即可求出∠1的度数.解:∵AB∥CD,∴∠2=∠A=110°.又∵∠1+∠2=180°,∴∠1=180°﹣∠2=180°﹣110°=70°.故答案为:70.11.分解因式:am2﹣an2=a(m+n)(m﹣n).【分析】原式提取a,再利用平方差公式分解即可.解:原式=a(m2﹣n2)=a(m+n)(m﹣n),故答案为:a(m+n)(m﹣n)12.表中记录了某种苹果树苗在一定条件下移植成活的情况:移植的棵数n200500800200012000成活的棵数m187446730179010836成活的频率0.9350.8920.9130.8950.903由此估计这种苹果树苗移植成活的概率约为0.9.(精确到0.1)【分析】用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.解:根据表格数据可知:苹果树苗移植成活的频率近似值为0.9,所以估计这种苹果树苗移植成活的概率约为0.9.故答案为:0.9.13.如图,在x轴,y轴上分别截取OA,OB,使OA=OB,再分别以点A,B为圆心,以大于AB长为半径画弧,两弧交于点P.若点P的坐标为(a,2a﹣3),则a的值为3.【分析】根据作图方法可知点P在∠BOA的角平分线上,由角平分线的性质可知点P到x轴和y轴的距离相等,结合点P在第一象限,可得关于a的方程,求解即可.解:∵OA=OB,分别以点A,B为圆心,以大于AB长为半径画弧,两弧交于点P,∴点P在∠BOA的角平分线上,∴点P到x轴和y轴的距离相等,又∵点P在第一象限,点P的坐标为(a,2a﹣3),∴a=2a﹣3,∴a=3.故答案为:3.14.如图,⊙O的半径是2,扇形BAC的圆心角为60°.若将扇形BAC剪下围成一个圆锥,则此圆锥的底面圆的半径为.【分析】连接OA,作OD⊥AB于点D,利用三角函数以及垂径定理即可求得AB的长,然后利用扇形的弧长公式即可求得弧长,然后利用圆的周长公式即可求得半径.解:连接OA,作OD⊥AB于点D.在直角△OAD中,OA=2,∠OAD=∠BAC=30°,则AD=OA?cos30°=.则AB=2AD=2,则扇形的弧长是:=π,设底面圆的半径是r,则2π×r=π,解得:r=.故答案为:.15.如图,在△ABC中,∠A=90°,∠B=60°,AB=2,若D是BC边上的动点,则2AD+DC 的最小值为6.【分析】作点A关于BC的对称点A',连接AA',A'D,过D作DE⊥AC于E,依据A与A'关于BC对称,可得AD=A'D,进而得出AD+DE=A'D+DE,当A',D,E在同一直线上时,AD+DE的最小值等于A'E的长,依据AD+DE的最小值为3,即可得到2AD+CD 的最小值为6.解:如图所示,作点A关于BC的对称点A',连接AA',A'D,过D作DE⊥AC于E,∵△ABC中,∠BAC=90°,∠B=60°,AB=2,∴BH=1,AH=,AA'=2,∠C=30°,∴Rt△CDE中,DE=CD,即2DE=CD,∵A与A'关于BC对称,∴AD=A'D,∴AD+DE=A'D+DE,∴当A',D,E在同一直线上时,AD+DE的最小值等于A'E的长,此时,Rt△AA'E中,A'E=sin60°×AA'=×2=3,∴AD+DE的最小值为3,即2AD+CD的最小值为6,故答案为:6.三、解答题(本大题共8小题,共75分)16.计算:(﹣1)2+|﹣|+(π﹣3)0﹣.【分析】原式先计算乘方运算,再算加减运算即可得到结果.解:(﹣1)2+|﹣|+(π﹣3)0﹣=1++1﹣2=.17.先化简,再求值:(x﹣2)2﹣4x(x﹣1)+(2x+1)(2x﹣1),其中x=﹣.【分析】根据完全平方公式、单项式乘多项式和平方差公式可以化简题目中的式子,然后将x的值代入化简后的式子即可解答本题.解:(x﹣2)2﹣4x(x﹣1)+(2x+1)(2x﹣1)=x2﹣4x+4﹣4x2+4x+4x2﹣1=x2+3,当x=﹣时,原式=(﹣)2+3=5.18.如图,四边形ABCD是平行四边形,DE∥BF,且分别交对角线AC于点E,F,连接BE,DF.(1)求证:AE=CF;(2)若BE=DE,求证:四边形EBFD为菱形.【分析】(1)根据平行四边形的性质,可以得到AD=CB,AD∥CB,从而可以得到∠DAE=∠BCF,再根据DE∥BF和等角的补角相等,从而可以得到∠AED=∠CFB,然后即可证明△ADE和△CBF全等,从而可以得到AE=CF;(2)根据(1)中的△ADE和△CBF全等,可以得到DE=BF,再根据DE∥BF,即可得到四边形EBFD是平行四边形,再根据BE=DE,即可得到四边形EBFD为菱形.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AD=CB,AD∥CB,∴∠DAE=∠BCF,∵DE∥BF,∴∠DEF=∠BFE,∴∠AED=∠CFB,在△ADE和△CBF中,,∴△ADE≌△CBF(AAS),∴AE=CF;(2)证明:由(1)知△ADE≌△CBF,则DE=BF,又∵DE∥BF,∴四边形EBFD是平行四边形,∵BE=DE,∴四边形EBFD为菱形.19.为了解某校九年级学生的体质健康状况,随机抽取了该校九年级学生的10%进行测试,将这些学生的测试成绩(x)分为四个等级:优秀85≤x≤100;良好75≤x<85;及格60≤x<75;不及格0≤x<60,并绘制成如图两幅统计图.根据以上信息,解答下列问题:(1)在抽取的学生中不及格人数所占的百分比是5%;(2)计算所抽取学生测试成绩的平均分;(3)若不及格学生的人数为2人,请估算出该校九年级学生中优秀等级的人数.【分析】(1)根据百分比的和等于1求解即可.(2)利用加权平均数求解即可.(3)首先确定总人数,根据优秀人数=总人数×优秀率计算即可.解:(1)在抽取的学生中不及格人数所占的百分比=1﹣20%﹣25%﹣50%=5%,故答案为5%.(2)所抽取学生测试成绩的平均分==79.8(分).(3)由题意总人数=2÷5%=40(人),40×50%=20,答:该校九年级学生中优秀等级的人数约为20人.20.如图,为测量建筑物CD的高度,在A点测得建筑物顶部D点的仰角为22°,再向建筑物CD前进30米到达B点,测得建筑物顶部D点的仰角为58°(A,B,C三点在一条直线上),求建筑物CD的高度.(结果保留整数.参考数据:sin22°≈0.37,cos22°≈0.93,tan22°≈0.40,sin58°≈0.85,cos58°≈0.53,tan58°≈1.60)【分析】在Rt△BDC中,根据三角函数的定义得到 1.60=,求得BC=,在Rt △ACD中,根据三角函数的定义得到0.40=,求得AC=,列方程即可得到结论.解:在Rt△BDC中,∵tan∠DBC=,∴1.60=,∴BC=,在Rt△ACD中,∵tan∠DAC=,∴0.40=,∴AC=,∴AB=AC﹣BC=﹣=30,解得:CD=18(米),答:建筑物CD的高度为18米.21.某超市销售A、B两款保温杯,已知B款保温杯的销售单价比A款保温杯多10元,用480元购买B款保温杯的数量与用360元购买A款保温杯的数量相同.(1)A、B两款保温杯的销售单价各是多少元?(2)由于需求量大,A、B两款保温杯很快售完,该超市计划再次购进这两款保温杯共120个,且A款保温杯的数量不少于B款保温杯数量的两倍.若A款保温杯的销售单价不变,B款保温杯的销售单价降低10%,两款保温杯的进价每个均为20元,应如何进货才能使这批保温杯的销售利润最大,最大利润是多少元?【分析】(1)根据题意可以列出相应的分式方程,从而可以求得A、B两款保温杯的销售单价,注意分式方程要检验;(2)根据题意可以得到利润与购买A款保温杯数量的函数关系,然后根据A款保温杯的数量不少于B款保温杯数量的两倍,可以求得A款保温杯数量的取值范围,再根据一次函数的性质,即可求得应如何进货才能使这批保温杯的销售利润最大,最大利润是多少元.解:(1)设A款保温杯的单价是a元,则B款保温杯的单价是(a+10)元,,解得,a=30,经检验,a=30是原分式方程的解,则a+10=40,答:A、B两款保温杯的销售单价分别是30元、40元;(2)设购买A款保温杯x个,则购买B款保温杯(120﹣x)个,利润为w元,w=(30﹣20)x+[40×(1﹣10%)﹣20](120﹣x)=﹣6x+1920,∵A款保温杯的数量不少于B款保温杯数量的两倍,∴x≥2(120﹣x),解得,x≥80,∴当x=80时,w取得最大值,此时w=1440,120﹣x=40,答:当购买A款保温杯80个,B款保温杯40个时,能使这批保温杯的销售利润最大,最大利润是1440元.22.如图,在⊙O中,AB为⊙O的直径,C为⊙O上一点,P是的中点,过点P作AC 的垂线,交AC的延长线于点D.(1)求证:DP是⊙O的切线;(2)若AC=5,sin∠APC=,求AP的长.【分析】(1)根据已知条件得到∠PAD=∠PAB,推出AD∥OP,根据平行线的性质得到PD⊥OP,于是得到DP是⊙O的切线;(2)连接BC交OP于E,根据圆周角定理得到∠ACB=90°,推出四边形CDPE是矩形,得到CD=PE,PD=CE,解直角三角形即可得到结论.【解答】(1)证明:∵P是的中点,∴=,∴∠PAD=∠PAB,∵OA=OP,∴∠APO=∠PAO,∴∠DAP=∠APO,∴AD∥OP,∵PD⊥AD,∴PD⊥OP,∴DP是⊙O的切线;(2)解:连接BC交OP于E,∵AB为⊙O的直径,∴∠ACB=90°,∵P是的中点,∴OP⊥BC,CE=BE,∴四边形CDPE是矩形,∴CD=PE,PD=CE,∵∠APC=∠B,∴sin∠APC=sin∠APC==,∵AC=5,∴AB=13,∴BC=12,∴PD=CE=BE=6,∵OE=AC=,OP=,∴CD=PE=﹣=4,∴AD=9,∴AP===3.23.如图,在平面直角坐标系中,点O为坐标原点,抛物线y=ax2+bx+c的顶点是A(1,3),将OA绕点O顺时针旋转90°后得到OB,点B恰好在抛物线上,OB与抛物线的对称轴交于点C.(1)求抛物线的解析式;(2)P是线段AC上一动点,且不与点A,C重合,过点P作平行于x轴的直线,与△OAB的边分别交于M,N两点,将△AMN以直线MN为对称轴翻折,得到△A′MN,设点P的纵坐标为m.①当△A′MN在△OAB内部时,求m的取值范围;②是否存在点P,使S△A′MN=S△OA′B,若存在,求出满足条件m的值;若不存在,请说明理由.【分析】(1)抛物线y=ax2+bx+c的顶点是A(1,3),可以假设抛物线的解析式为y =a(x﹣1)2+3,求出点B的坐标,利用待定系数法即可解决问题.(2)①根据△A′MN在△OAB内部,构建不等式即可解决问题.②求出直线OA,AB的解析式,求出MN,利用面积关系构建方程即可解决问题.解:(1)∵抛物线y=ax2+bx+c的顶点是A(1,3),∴抛物线的解析式为y=a(x﹣1)2+3,∴OA绕点O顺时针旋转90°后得到OB,∴B(3,﹣1),把B(3,﹣1)代入y=a(x﹣1)2+3可得a=﹣1,∴抛物线的解析式为y=﹣(x﹣1)2+3,即y=﹣x2+2x+2,(2)①如图1中,∵B(3,﹣1),∴直线OB的解析式为y=﹣x,∵A(1,3),∴C(1,﹣),∵P(1,m),AP=PA′,∴A′(1,2m﹣3),由题意3>2m﹣3>﹣,∴3>m>.②∵直线OA的解析式为y=3x,直线AB的解析式为y=﹣2x+5,∵P(1,m),∴M(,m),N(,m),∴MN=﹣=,∵S△A′MN=S△OA′B,∴?(m﹣2m+3)?=××|2m﹣3+|×3,整理得m2﹣6m+9=|6m﹣8|解得m=6+(舍弃)或6﹣,∴满足条件的m的值为6﹣.21。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高一(下)开学数学试卷(2月份)一、选择题(本大题共12小题,共60.0分)1.已知集合A={1,2,3},B={x|2x-5≤0},则A∩B=()A. {1,2}B. {1,2,3}C. {-2,-1,0,1,2}D. {-2,-1,0,1,2,3}2.已知角α的终边经过点(3,-4),则cosα的值为()A. -B.C. -D. -3.已知tanα=3,那么tan(π+α)等于()A. -3B. -C.D. 34.“世界那么大,我们都想去看看!”现在越来越多的父母开始重视对教育的投入和亲子的互动,这也令亲子游市场快速升温.如果从2016年1月至2018年12月,中国亲子游增长率为a,那么从2016年1月至2018年12月,中国亲子游的年平均增长率为()A. -1B. -1C.D.5.函数y=的定义域是()A. (1,3]B. (1,3)C. (3,+∞)D. (-∞,3)6.若函数f(x)=,则f[f()]=()A. -1B. 1C. 2D. 37.下列函数中,在区间(0,+∞)上为增函数的是()A. y=B. y=(3x-1)2C. y=2-xD. y=log(x+1)8.已知a=(),b=log,c=log4,则()A. a>b>cB. b>c>aC. a>c>bD. b>a>c9.设m=log a3,log aπ=n,则a2m-n=()A. B. C. D.10.已知cos(-α)=,则sin(α+)=()A. ±B.C. -D.11.若函数f(x)=4sin(ωx+φ)+k对任意实数x有f(x+)=f(-x)成立,且f()=1,则实数k的值为()A. 3B. -3C. -3或5D. 512.已知符号函数sgn(x)=,则函数f(x)=sin(sgn(x)•x)-在(-4,4)上的零点个数为()A. 0B. 2C. 4D. 6二、填空题(本大题共4小题,共20.0分)13.已知sinαcosα=,且|cosα|=-cosα,则sinα+cosα=______.14.若θ∈(0,),sinθ与cosθ的大小关系是______.15.已知函数f(x)=A sin(ωx+φ)(A>0,ω>0,|φ|<)的部分图象如图所示,则f(x)的解析式是______.16.定义在R上的函数f(x)满足:f(x+2)=f(x),且当x∈[0,1]时,f(x)=x2;当x∈[-1,0]时,f(x)=-x2,g(x)=,则方程f(x)=g(x)在区间[-8,3]上的所有实根之和为______.三、解答题(本大题共6小题,共70.0分)17.利用定义判断并证明f(x)=2x3+1在R上的单调性.18.已知函数f(x)=sin2x+2sin2x-1(1)求函数f(x)的最小正周期;(2)求函数f(x)的最大值以及此时x的取值.19.已知0<α<<β<π,tanα=,cos(β-α)=.(1)求tan;(2)求角β的值.20.已知函数f(x)=2cos(x+φ)•cos(x+φ-)-,其中φ∈(0,),且函数f(x)的图象关于点(,0)对称,求函数f(x)的单调递增区间.21.已知函数f(x)=lg(-x2+mx+m+1).(1)函数f(x)的定义域是(-1,2),求m的值;(2)函数f(x)在区间(-1,2)上有意义,求m的取值范围.22.已知定义域为(0,+∞)的函数f(x)满足:f(m)+f(n)=f(mn)对任意m,n∈(0,+∞)均成立.(1)求f(1)的值;(2)若x>1时,总有f(x)>0,且关于x的方程2f(x+1)=f(kx)有且仅有一个实根,求实数k的取值集合.答案和解析1.【答案】A【解析】解:∵B={x|2x-5≤0}={x|x≤},∴A∩B={1,2,3}∩{x|x≤}={1,2}.故选:A.直接利用交集运算得答案.本题考查了交集及其运算,考查了一元一次不等式的解法,是基础题.2.【答案】B【解析】解:∵角α的终边经过点(3,-4),∴x=3,y=-4,r=5,则cosα==,故选:B.由条件利用本任意角的三角函数的定义,求得cosα的值.本题主要考查任意角的三角函数的定义,属于基础题.3.【答案】D【解析】解:∵tanα=3,∴tan(π+α)=tanα=3,故选:D.由题意利用利用诱导公式进行化简所给的式子,可得结果.本题主要考查利用诱导公式进行化简求值,属于基础题.4.【答案】A【解析】解:从2016年1月至2018年12月,中国亲子游增长率为a,从2016年1月至2018年12月,中国亲子游的年平均增长率为:-1=-1.故选:A.利用年平均增长率公式直接求解.本题考查年平均增长率的求法,考查年平均增长率的性质、计算公式等基础知识,考查运算求解能力,是基础题.5.【答案】B【解析】解:要使函数有意义,则,得,即1<x<3,即函数的定义域为(1,3),故选:B.根据函数成立的条件即可求函数的定义域.本题主要考查函数的定义域的求解,要求熟练掌握常见函数成立的条件.6.【答案】D【解析】解:.故选:D.根据f(x)的解析式即可求出,f(-1)=3,从而得出的值.考查分段函数的定义,已知函数求值的方法.7.【答案】A【解析】解:根据题意,依次分析选项:对于A,y=,在(-,+∞)为增函数,符合题意;对于B,y=(3x-1)2,为二次函数,在(0,1)上为减函数,不符合题意;对于C,y=2-x=()x,为指数函数,在R上为减函数,不符合题意;对于D,y=log(x+1)为对数函数,在(0,+∞)上为减函数,不符合题意;故选:A.根据题意,依次分析选项中函数的单调性,综合即可得答案.本题考查函数单调性的判定,关键是掌握常见函数的单调性,属于基础题.8.【答案】D【解析】解:,;∴b>a>c.故选:D.容易看出,,从而得出a,b,c的大小关系.考查指数函数、对数函数的单调性,增函数和减函数的定义.9.【答案】C【解析】解:∵m=log a3,log aπ=n;∴a m=3,a n=π;∴.故选:C.根据条件即可得出a m=3,a n=π,根据分数指数幂的运算即可求出a2m-n.考查对数的定义,对数式和指数式的互化,以及分数指数幂的运算.10.【答案】D【解析】解:∵已知cos(-α)=,则sin(α+)=cos[-(α+)]=cos(-α)=,故选:D.由条件利用利用诱导公式化简三角函数式,可得结果.本题主要考查利用诱导公式化简三角函数式,属于基础题.11.【答案】C【解析】解:函数f(x)=4sin(ωx+φ)+k对任意实数x,有f(x+)=f(-x)成立,则f(x)的图象关于直线x=对称,故f()为函数的最值,又f()=4sin(+φ)+k=1,∴sin(+φ)=,∴=1,或=-1,∴k=-3,或k=5,故选:C.由题意可得f(x)的图象关于直线x=对称,f()为函数的最值,由f()=1,可得sin(+φ)=为最值,从而求得实数k的值.本题主要考查正弦函数的图象和性质,属于中档题.12.【答案】C【解析】解:符号函数sgn(x)=,则函数f(x)=sin(sgn(x)•x)-=,函数的图象如图:所以函数的零点公式为4.故选:C.化简函数的解析式,通过数形结合求解函数的零点个数即可.本题考查分段函数的应用,考查数形结合以及计算能力.13.【答案】-【解析】解:由sinαcosα=>0,可知sinα和cosα同号,而|cosα|=-cosα,得到cosα<0,即sinα<0,∵(sinα+cosα)2=1+2sinαcosα=,∴sinα+cosα=.故答案为:.根据sinαcosα=>0,可知sinα和cosα同号,而|cosα|=-cosα,得到cosα<0,即sinα<0,由(sinα+cosα)2=1+2sinαcosα代值可求答案.本题考查了同角三角函数基本关系式的应用,解题的关键是根据已知判断出sinα和co sα的符号,是基础题.14.【答案】sinθ<cosθ【解析】解:作出单位圆,则角θ的正弦线为AP,即sinθ=AP,余弦线为OA,即cosθ=OA,当θ∈(0,)时,OA>AP,∴cosθ>sinθ,即sinθ<cosθ,故答案为:sinθ<cosθ利用单位圆,结合三角函数线的定义进行比较即可.本题主要考查是三角函数值的大小比较,结合三角函数线的性质是解决本题的关键.15.【答案】f(x)=2sin(2x-)【解析】【分析】由图象可知A=2,可求周期T,利用周期公式可求ω,从而可求f(x)=2sin(2x+φ),代入点(,2),结合范围|φ|<,可求φ,即可得解解析式.本题主要考查了函数y=A sin(ωx+φ)的图象变换,考查了正弦函数的图象和性质的应用,考查了数形结合思想,属于基础题.【解答】解:(1)由图象可知,A=2,周期T=[-(-)]=π,∴=π,ω>0,则ω=2,从而f(x)=2sin(2x+φ),代入点(,2),得sin(+φ)=1,则+φ=+2kπ,k∈Z,即φ=-+2kπ,k∈Z,又|φ|<,则φ=-,∴f(x)=2sin(2x-),故答案为:f(x)=2sin(2x-).16.【答案】-12【解析】解:∵f(x+2)=f(x),∴函数f(x)是周期为2的周期函数,∵g(x)=,∴g(x)关于直线x=-2对称.分别作出函数f(x),g(x)在[-8,3]上的图象,由图象可知两个函数的交点个数为个,设个交点的横坐标从小到大为x1,x2,x3,x4,x5,x6,且这6个交点分别关于(2,0)对称,则=-2,即x1+x6=-4所以x1+x2+x3+x4+x5+x6=3(x1+x6)=3×(-4)=-12,其中x=3时,不成立,则f(x)=g(x)在区间[-8,3]上的所有实根之和为-12,故答案为:-12.由f(x+2)=f(x),得到函数是周期为2的周期函数,分别作出函数f(x),g(x)在[-8,3]上的图象,利用图象观察交点的个数和规律,然后进行求解本题主要考查函数交点个数和取值的判断,利用数形结合是解决此类问题的基本方法.本题综合性较强,难度较大.17.【答案】证明:任取x1<x2,则f(x1)-f(x2)=2(x1-x2)(+x1x2+),∵x1<x2,∴x1-x2<0,+x1x2+=+>0,∴f(x1)-f(x2)<0,∴f(x1)<f(x2),∴f(x)=2x3+1在R上是增函数.【解析】根据函数的单调性的定义证明即可.本题考查了函数的单调性问题,考查函数的单调性的定义,是一道基础题.18.【答案】解:(1)∵函数f(x)=sin2x+2sin2x-1=sin2x-cos2x=sin(2x-),∴函数f(x)的最小正周期为=π.(2)函数f(x)的最大值为,此时,2x-=2kπ+,求得x=kπ+,k∈Z.【解析】(1)利用三角恒等变换化简函数的解析式,再根据正弦函数的周期性,得出结论.(2)利用正弦函数的最值,求出函数f(x)的最大值以及此时x的取值.本题主要考查三角恒等变换,正弦函数的周期性和最值,属于基础题.19.【答案】解:(1)∵tanα=,∴,解得或-2(舍去);(2)0<α<,tanα=,∴,sin,∵cos(β-α)=,∴sin(β-α)==.∴cosβ=cos(β-α+α)=cos(β-α)cosα-sin(β-α)sinα==.∴.【解析】(1)直接利用二倍角的正切函数公式求解即可;(2)利用同角三角函数基本关系式及两角和的余弦函数公式求解即可.本题考查二倍角的正切函数公式,考查同角三角函数基本关系式,考查两角和的余弦函数公式,属于中档题.20.【答案】解:∵函数f(x)=2cos(x+φ)•cos(x+φ-)-=2cos(x+φ)•[cos(x+φ)•cos+sin(x+φ)•sin]-=cos2(x+φ)+sin(x+φ)•cos(x+φ)-=+sin(2x+2φ)-=cos(2x+2φ-)+-=cos(2x+2φ-),其中φ∈(0,),∵函数f(x)的图象关于点(,0)对称,∴cos(+2φ-)=0,∴+2φ=π,∴φ=,故f(x)=cos(2x+2φ-)=cos(2x+).令2kπ-π≤2x+≤2kπ,求得kπ-≤x≤kπ-,可得函数f(x)的增区间为[kπ-,kπ-],k∈Z.【解析】利用三角恒等变换化简函数的解析式,再根据余弦函数的图象的对称性求得φ的值,可得函数的解析式,再利用余弦函数的单调性求出函数f(x)的单调递增区间.本题主要考查三角恒等变换,余弦函数的图象的对称性,余弦函数的单调性,属于中档题.21.【答案】解:(1)∵函数f(x)的定义域是(-1,2),∴-x2+mx+m+1>0的解集是(-1,2),即-1,2是方程-x2+mx+m+1=0的根,解得:m=1;………(6分)(2)函数f(x)在区间(-1,2)上有意义,⇔-x2+mx+m+1>0在区间(-1,2)恒成立,令g(x)=-x2+mx+m+1),即g(x)>0在区间(-1,2)恒成立,故,解得:m≥1…………(12分)【解析】(1)结合二次函数的性质求出m的值即可;(2)令g(x)=-x2+mx+m+1),即g(x)>0在区间(-1,2)恒成立,得到关于m的不等式组,解出即可.本题考查了二次函数的性质以及函数恒成立问题,考查转化思想,是一道常规题.22.【答案】解:(1)令m=n=1,则f(1)+f(1)=f(1),得f(1)=0,(2)因为f(m)+f(n)=f(mn),所以f(mn)-f(n)=f(m).任取x1,x2∈(0,+∞),且x1<x2,则f(x2)-f(x1)=f(),由条件,知>1,所以f()>0,从而f(x2)>f(x1),故f(x)是(0,+∞)上的单调增函数.令m=n,得:2f(n)=f(n2),所求方程等价于f[(x+1)2]=f(kx),又f(x)是(0,+∞)上的单调增函数,所以原方程可化为,即.若k>0,则原问题为方程x2+(2-k)x+1=0在(0,+∞)上有一个根,设其两根为x1,x2,则△=(2-k)2-4≥0,又注意到x1x2=1>0,∴只可能是二重正根,由△=0解得k=4或k=0(矛盾,舍去);若k<0,则原问题为方程x2+(2-k)x+1=0在(-1,0)上有一个根,仍有x1x2=1>0,记g(x)=x2+(2-k)x+1,易知g(0)=1>0,由根的分布原理,只需g(-1)<0,即k<0.综上,k∈(-∞,0)∪{4}.【解析】(1)利用赋值法结合抽象函数关系进行计算即可.(2)结合函数单调性的定义先证明f(x)是(0,+∞)上的单调增函数,结合抽象函数关系以及函数单调性的定义转化为一元二次方程,结合一元二次方程根与系数之间的关系进行求解即可.本题主要考查函数与方程的应用,结合抽象函数关系,利用赋值法以及函数单调性的定义证明函数的单调性是解决本题的关键.。