实验一 用递推公式计算定积分

实验一  用递推公式计算定积分
实验一  用递推公式计算定积分

实验一 用递推公式计算定积分

09信息 符文飞 0921121007

1、实验目的:

由于一个算法是否稳定,十分重要。如果算法不稳定,则数值计算的结果就会严重背离数学模型的真实结果,因此,在选择数值计算公式来进行近似计算时,我们应特别注意选用那些在数值计算过程中不会导致误差迅速增长的公式。体会稳定性在选择算法中的地位.误差扩张的算法是不稳定的,是我们所不期望的;误差衰竭的算法是稳定的.是我们努力寻求的,这是贯穿本课程的目标.通过上机计算,了解舍入误差所引起的数值不稳定性。

2、实验题目:

对n =0,1,2,…,20,计算定积分dx x x y n n ?+=10

5

3、实验原理

由于y(n)= = – 在计算时有两种迭代方法,如下:

方法一: y(n)= – 5*y(n-1),n=1,2,3, (20)

取y(0)= = ln6-ln5 ≈ 0.182322

方法二:

利用递推公式:y(n-1)=-*y(n),n=20,19, (1)

而且,由 = * ≤≤* = 可取:y(20)≈*()≈0.008730.

4、实验内容:

算法1的程序:

y0=log(6.0)-log(5.0);

y1=0;

n=1;

while n<=30

y1=1/n-5*y0;

fprintf('y[%d]=%-20f',n,y1);

y0=y1;

n=n+1;

if mod(n,1)==0;

fprintf('\n')

end

end

算法2的程序:

y0=(1/105+1/126)/2;

y1=0;

n=1;

while n<=30

y1=1/(5*n)-y0/5;

fprintf('y[%d]=%-20f',n,y1)

y0=y1;

n=n+1;

if mod(n,1)==0

fprintf('\n')

end

end

5、实验结果

对于算法1:

y[1]=0.088392

y[2]=0.058039

y[3]=0.043139

y[4]=0.034306

y[5]=0.028468

y[6]=0.024325

y[7]=0.021233

y[8]=0.018837

y[9]=0.016926

y[10]=0.015368

y[11]=0.014071

y[12]=0.012977

y[14]=0.011229

y[15]=0.010519

y[16]=0.009904

y[17]=0.009304

y[18]=0.009035

y[19]=0.007457

y[20]=0.012713

y[21]=-0.015946

y[22]=0.125183

y[23]=-0.582439

y[24]=2.953862

y[25]=-14.729311 y[26]=73.685015

y[27]=-368.388036 y[28]=1841.975892 y[29]=-9209.844979 y[30]=46049.258229 对于算法2:

y[1]=0.198254

y[2]=0.060349

y[3]=0.054597

y[5]=0.032184 y[6]=0.026897 y[7]=0.023192 y[8]=0.020362 y[9]=0.018150 y[10]=0.016370 y[11]=0.014908 y[12]=0.013685 y[13]=0.012648 y[14]=0.011756 y[15]=0.010982 y[16]=0.010304 y[17]=0.009704 y[18]=0.009170 y[19]=0.008692 y[20]=0.008262 y[21]=0.007871 y[22]=0.007517 y[23]=0.007192 y[24]=0.006895 y[25]=0.006621

y[27]=0.006134

y[28]=0.005916

y[29]=0.005713

y[30]=0.005524

6、实验结果分析:

由实验结果可以看到,算法1在计算过程中误差会增长,所以算法1不稳定。算法2在计算过程中误差逐渐减小,所以算法2稳定。为了不影响数值计算结果的精确度与真实性,在实际应用中,我们应选用数值稳定的算法2,尽量避免使用数值不稳定的算法1.

用递推公式计算定积分(matlab版)

用递推公式计算定积分 实验目的: 1.充分理解不稳定的计算方法会造成误差的积累,在计算过程中会导致误差的迅速增加,从而使结果产生较大的误差。 2.在选择数值计算公式来进行近似计算时,应学会选用那些在计算过程中不会导致误差迅速增长的计算公式。 3.理解不稳定的计算公式造成误差积累的来源及具体过程; 4.掌握简单的matlab语言进行数值计算的方法。 实验题目: 对n=0,1,2,…,20,计算定积分: 实验原理: 由于y(n)= = – 在计算时有两种迭代方法,如下: 方法一: y(n)=– 5*y(n-1),n=1,2,3, (20) 取y(0)= = ln6-ln5 ≈ 0.182322 方法二: 利用递推公式:y(n-1)=-*y(n),n=20,19, (1) 而且,由 = * ≤≤* =

可取:y(20)≈*()≈0.008730. 实验容: 对算法一,程序代码如下: function [y,n]=funa() syms k n t; t=0.182322; n=0; y=zeros(1,20); y(1)=t; for k=2:20 y(k)=1/k-5*y(k-1); n=n+1; end y(1:6) y(7:11) 对算法二,程序代码如下: %计算定积分; %n--表示迭代次数; %y用来存储结果; function [y,n]=f(); syms k y_20;

y=zeros(21,1); n=1; y_20=(1/105+1/126)/2; y(21)=y_20; for k=21:-1:2 y(k-1)=1/(5*(k-1))-y(k)/5; n=n+1; end 实验结果: 由于计算过程中,前11个数字太小,后9个数字比较大,造成前面几个数字只显示0.0000的现象,所以先输出前6个,再输出7—11个,这样就能全部显示出来了。 算法一结果: [y,n]=funa %先显示一y(1)—y(6) ans = 0.1823 -0.4116 2.3914 -11.7069 58.7346

定积分公式表

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) 对这些公式应正确熟记.可根据它们的特点分类来记. 公式(1)为常量函数0的积分,等于积分常数.

公式(2)、(3)为幂函数的积分,应分为与. 当时,, 积分后的函数仍是幂函数,而且幂次升高一次. 特别当时,有. 当时, 公式(4)、(5)为指数函数的积分,积分后仍是指数函数,因为 ,故(,)式右边的是在分母,不在分子,应记清. 当时,有. 是一个较特殊的函数,其导数与积分均不变. 应注意区分幂函数与指数函数的形式,幂函数是底为变量,幂为常数;指数函数是底为常数,幂为变量.要加以区别,不要混淆.它们的不定积分所采用的公式不同. 公式(6)、(7)、(8)、(9)为关于三角函数的积分,通过后面的学习还会增加其他三角函数公式. 公式(10)是一个关于无理函数的积分 公式(11)是一个关于有理函数的积分

下面结合恒等变化及不定积分线性运算性质,举例说明如何利用基本积分公式求不定积分. 例1 求不定积分. 分析:该不定积分应利用幂函数的积分公式. 解: (为任意常数) 例2 求不定积分. 分析:先利用恒等变换“加一减一”,将被积函数化为可利用基本积分公式求积分的形式. 解:由于,所以 (为任意常数) 例3 求不定积分.

分析:将按三次方公式展开,再利用幂函数求积公式. 解: (为任意常数 ) 例4 求不定积分. 分析:用三角函数半角公式将二次三角函数降为一次. 解: (为任意常数) 例5 求不定积分. 分析:基本积分公式表中只有 但我们知道有三角恒等式: 解:

基本积分公式

§5.3基本积分公式 重点与难点提示 基本积分公式均直接由基本导数公式表得到,因此,导数运算的基础好坏直接影响积分的能力,应熟记一些常用的积分公式. 因为求不定积分是求导数的逆运算,所以由基本导数公式对应可以得到基本积分公式. (1) ( 5.6 ) (2) ( 5.7 ) (3) ( 5.8 ) (4) ( 5.9 ) (5) ( 5.10 ) (6) ( 5.11 ) (7) ( 5.12 ) (8) ( 5.13 ) (9) ( 5.14 )

(10) ( 5.15 ) (11) ( 5.16 ) 对这些公式应正确熟记.可根据它们的特点分类来记. 公式(1)为常量函数0的积分,等于积分常数. 公式(2)、(3)为幂函数的积分,应分为与. 当时,, 积分后的函数仍是幂函数,而且幂次升高一次. 特别当时,有. 当时, 公式(4)、(5)为指数函数的积分,积分后仍是指数函数,因为 ,故(,)式右边的是在分母,不在分子,应记清. 当时,有.

是一个较特殊的函数,其导数与积分均不变. 应注意区分幂函数与指数函数的形式,幂函数是底为变量,幂为常数;指数函数是底为常数,幂为变量.要加以区别,不要混淆.它们的不定积分所采用的公式不同. 公式(6)、(7)、(8)、(9)为关于三角函数的积分,通过后面的学习还会增加其他三角函数公式. 公式(10)是一个关于无理函数的积分 公式(11)是一个关于有理函数的积分 下面结合恒等变化及不定积分线性运算性质,举例说明如何利用基本积分公式求不定积分. 例1 求不定积分. 分析:该不定积分应利用幂函数的积分公式. 解: (为任意常数)

Romberg求积分公式

《MATLAB程序设计实践》课程考核 1、编程实现以下科学计算算法,并举一例应用之。“Romberg求积分公式” 2、编程解决以下科学计算和工程实际问题。 1)、给定半径的为r,重量为Q的均质圆柱,轴心的初始速度为v0,初始角速度为w0且v0>r*w0,地面的摩擦系数为f,问经过多少时间后,圆柱将无滑动地滚动,求此时的圆柱轴心的速度。 2)、在一丘陵地带测量高程,x和y方向每隔100m测一个点,得高程数据如下,试拟合一曲面确定合适的模型,并由此找出最高点和该点的高程。 100200300400 100636697624478 200698712630478 300680674598412 400662626552334 一、Romberg求积分公式 1、算法说明:此算法可自动改变积分步长,使其相临两个值的绝对误差或相对误差小于预先设定的允许误差.Romberg加速法公式 在等距节点的情况下,通过对求积区间(a,b)的逐次分半,由梯形公式出可逐次提高求积公式精度,这就是Romberg求积的基本思路,由于梯形公式余项只有精度,即 ,但当节点加密时可组合成其精度达到,如果再由与组合成则可使误差精度达到,于是 依赖于x,若在上各阶导数存在,将展开,可将展成的幂级数形式,即 ,记的计算精

度,可利用外推原理逐次消去式右端只要将步长h逐次分半,利用及组合消去,重复同一过程最后可得 到递推公式,此时 .说明用其误差阶为,这里表示m次加速。计算时用序列表示区间分半次数,即具体计算公式为,就是Romberg求积方法。2、程序代码:M文件 1)、Romberg加速法 function [s,n]=rbg1(a,b,eps) if nargin<3,eps=1e-6;end s=10; s0=0; k=2; t(1,1)=(b-a)*(f(a)+f(b))/2; while (abs(s-s0)>eps) h=(b-a)/2^(k-1); w=0; if (h~=0) for i=1:(2^(k-1)-1) w=w+f(a+i*h); end t(k,1)=h*(f(a)/2+w+f(b)/2); for l=2: k for i=1:(k-l+1)

定积分的性质与计算方法

定积分的性质与计算方法 摘要: 定积分是微积分学中的一个重要组成部分,其计算方法和技巧非常 丰富。本文主要给出定积分的定义及讨论定积分的性质和计算方法,并通过一些很有代表性的例题说明了其计算方法在简化定积分计算中的强大功能。 关键词:定积分 性质 计算方法 定积分的定义 设函数f(x) 在区间[a,b]上连续,将区间[a,b]分成n 个子区间[x 0,x 1], (x 1,x 2], (x 2,x 3], …, (x n-1,x n ],其中x 0=a ,x n =b 。可知各区间的长度依次是:△x 1=x 1-x 0, △x 2=x 2-x 1, …, △x n =x n -x n-1。在每个子区间(x i-1,x i ]中任取一点i ξ(1,2,...,n ),作和式1()n i i f x ι=ξ?∑。设λ=max{△x 1, △x 2, …, △x n }(即λ是 最大的区间长度),则当λ→0时,该和式无限接近于某个常数,这个常数叫做函数f(x) 在区间[a,b]的定积分,记为: ()b a f x dx ?。 其中:a 叫做积分下限,b 叫做积分上限,区间[a, b]叫做积分区间,函数f(x)叫做被积函数,x 叫做积分变量,f(x)dx 叫做被积表达式,∫ 叫做积分号。 对于定积分,有这样一个重要问题:函数()f x 在[a,b]上满足怎样的条件, ()f x 在[a,b]上一定可积?下面给出两个充分条件: 定理1: 设()f x 在区间[a,b]上连续,则()f x 在[a,b]上可积。 定理2: 设()f x 在区间[a,b]上有界,且只有有限个间断点,则 ()f x 在[a,b]上可积。 例:利用定义计算定积分1 20x dx ?. 解:因为被积函数2()f x x =在积分区间[0,1]上连续,而连续函数是可积的,所以积分与区间[0,1]的分法及点i ξ的取法无关。因此,为了 便于计算,不妨把区间[0,1]分成n 等份,分点为i i x n = ,1,2,,1i n =?-;这样,

不定积分公式大全

Ch4、不定积分 §1、不定积分的概念与性质 1、 原函数与不定积分 定义1:若)()(x f x F =',则称)(x F 为)(x f 的原函数。 ① 连续函数一定有原函数; ② 若)(x F 为)(x f 的原函数,则C x F +)(也为)(x f 的原函数; 事实上,())()()('' x f x F C x F ==+ ③ )(x f 的任意两个原函数仅相差一个常数。 事实上,由[]0)()()()()()('2'1' 11=-=-=-x f x f x F x F x F x F ,得C x F x F =-)()(21 故C x F +)(表示了)(x f 的所有原函数,其中)(x F 为)(x f 的一个原函数。 定义2:)(x f 的所有原函数称为)(x f 的不定积分,记为?dx x f )(,?-积分号,-)(x f 被积函数,-x 积分变量。 显然C x F dx x f +=?)()( 例1、 求下列函数的不定积分 ①?+=C kx kdx ②??? ???-=+-≠++=+1 ln 11 1 1μμμμμ C x C x dx x 2、 基本积分表(共24个基本积分公式) 3、 不定积分的性质 ①[]???±=±dx x g dx x f dx x g x f )()()()( ②??≠=)0()()(k dx x f k dx x kf 例2、 求下列不定积分 ①? ?+-=++-==+--C x C x dx x x dx 11)2(11 )2(22

②? ?+=++-= =+--C x C x dx x x dx 21 )21(1 1)21(21 ③?+-=??? ? ??+--C x x dx x x arctan 3arcsin 5131522 ⑤()???++-=-=-C x x xdx x xdx dx x x x csc cot cot csc csc cot csc csc 2 ⑥????++-=+=+=C x x xdx xdx dx x x x x x x dx tan cot sec csc cos sin cos sin cos sin 2 2222222 ⑦() ??+--=-=C x x dx x dx x cot 1 csc cot 22 §2、不定积分的换元法 一、 第一类换元法(凑微分法) 1、()()()()b ax d a dx b ax d b ax f a dx b ax f +=++= +??1 ,1即 例1、求不定积分 ①()C x udu u x x xd xdx +-===???)5cos(5 1 sin 51555sin 515sin ②()()()()??+--=+-+? -=---=-+C x C x x d x dx x 8177 72116 12117121)21(212121 ③())20(arctan 111222C a x a a x a x d a x a dx +?? ? ??=+=+?? ④()() )23(arcsin 12 2 2 C a x a x a x d x a dx +?? ? ??=-=-? ? 2、()()n n n n n n dx dx x dx x f n dx x x f == --??11,1 即 例2、求不定积分 ①( )() () () C x C x x d x dx x x +--=+-+?-=---=-+??2 32 12 12 212 2 12 2 13 1 11 121112 1 1

积分公式表,常用积分公式表

积分公式表 1、基本积分公式: (1) (2) (3) (4) (5) (6) (7) (8) (8) (10) (11) 2、积分定理: (1)()()x f dt t f x a ='??????? (2)()()()()[]()()[]()x a x a f x b x b f dt t f x b x a '-'='??????? (3)若F (x )是f (x )的一个原函数,则)()()()(a F b F x F dx x f b a b a -==? 3、积分方法 ()()b ax x f +=1;设:t b ax =+

()()222x a x f -=;设:t a x sin = ()22a x x f -=;设:t a x s e c = ()22x a x f +=;设:t a x t a n = ()3分部积分法:??-=vdu uv udv 附:理解与记忆 对这些公式应正确熟记.可根据它们的特点分类来记. 公式(1)为常量函数0的积分,等于积分常数. 公式(2)、(3)为幂函数 的积分,应分为与 . 当 时, , 积分后的函数仍是幂函数,而且幂次升高一次. 特别当 时,有 . 当 时, 公式(4)、(5)为指数函数的积分,积分后仍是指数函数,因为 ,故 ( , )式右边的 是在分 母,不在分子,应记清. 当 时,有 . 是一个较特殊的函数,其导数与积分均不变.

应注意区分幂函数与指数函数的形式,幂函数是底为变量,幂为常数;指数函数是底为常数,幂为变量.要加以区别,不要混淆.它们的不定积分所采用的公式不同. 公式(6)、(7)、(8)、(9)为关于三角函数的积分,通过后面的学习还会增加其他三角函数公式. 公式(10)是一个关于无理函数的积分 公式(11)是一个关于有理函数的积分 下面结合恒等变化及不定积分线性运算性质,举例说明如何利用基本积分公式求不定积分. 例1 求不定积分. 分析:该不定积分应利用幂函数的积分公式. 解: (为任意常数) 例2 求不定积分. 分析:先利用恒等变换“加一减一”,将被积函数化为可利用基本积分公式求积分的形式.

不定积分的基本公式和运算法则直接积分法

·复习 1 原函数的定义。2 不定积分的定义。3 不定积分的性质。4 不定积分的几何意义。 ·引入在不定积分的定义、性质以及基本公式的基础上,我们进一步来讨论不定积分的计算问题,不定积分的计算方法主要有三种:直接积分法、换元积分法和分部积分法。 ·讲授新课 第二节不定积分的基本公式和运算直接积分法 一基本积分公式 由于求不定积分的运算是求导运算的逆运算,所以有导数的基本公式相应地可以得到积分的基本公式如下:

以上十五个公式是求不定积分的基础,必须熟记,不仅要记右端的结果,还要熟悉左端被积函数的的形式。 求函数的不定积分的方法叫积分法。 例1.求下列不定积分.(1)dx x ?2 1 (2) dx x x ? 解:(1) dx x ? 21 =2121 21x x dx C C x -+-=+=-+-+? (2)dx x x ? =C x dx x +=? 25 235 2 此例表明,对某些分式或根式函数求不定积分时,可先把它们化为x α 的形式,然后应用幂函 数的积分公式求积分。 二 不定积分的基本运算法则

法则1 两个函数代数和的积分,等于各函数积分的代数和,即 dx x g dx x f dx x g x f ???±=±)()()]()([ 法则1对于有限多个函数的和也成立的. 法则2 被积函数中不为零的常数因子可提到积分号外,即 dx x f k dx x kf ??=)()( (0≠k ) 例2 求3(21)x x e dx +-? 解 3(21)x x e d x +-?=23x dx ?+dx ?-x e dx ? = 4 12 x x x e C +-+。 注 其中每一项的不定积分虽然都应当有一个积分常数,但是这里并不需要在每一项后面加上一个积分常数,因为任意常数之和还是任意常数,所以这里只把它的和C 写在末尾,以后仿此。 注 检验解放的结果是否正确,只把结果求导,看它的导数是否等于被积函数就行了。如上例 由于41()2 x x x e C '+-+=321x x e +-,所以结果是正确的。 三 直接积分法 在求积分的问题中,可以直接按基本积分公式和两个基本性质求出结果(如上例)但有时,被积函数常需要经过适当的恒等变形(包括代数和三角的恒等变形)再利用积分的性质和公式求出结果,这样的积分方法叫直接积分法。 例3 求下列不定积分. (1) 1)(x dx ? (2)dx x x ?+-1 122 解:(1)首先把被积函数 1)()x 化为和式,然后再逐项积分得 1)((1x dx x dx - =+-- ??

定积分计算公式和性质

第二节 定积分计算公式和性质 一、变上限函数 设函数在区间上连续,并且设x 为上的任一点, 于是, 在区间 上的定积分为 这里x 既是积分上限,又是积分变量,由于定积分与积分变量无关,故可将此改为 如果上限x 在区 间上任意变动,则对 于每一个取定的x 值,定积分有一个确定值与之对应,所以定积分在 上定义了一个以x 为自变量的函数,我们把 称为函数 在区间 上 变上限函数 记为 从几何上看,也很显然。因为X 是上一个动点, 从而以线段 为底的曲边梯形的面积,必然随着底数 端点的变化而变化,所以阴影部分的面积是端点x 的函数(见图5-10) 图 5-10

定积分计算公式 利用定义计算定积分的值是十分麻烦的,有时甚至无法计算。因此,必须寻求计算定积分的简便方法。 我们知道:如果物体以速度作直线运动,那么在时间区间上所经过的路程s 为 另一方面,如果物体经过的路程s 是时间t 的函数,那么物体 从t=a 到t=b 所经过的路程应该是(见图5-11) 即 由导数的物理意义可知:即 是 一个原函数,因此,为了求出定积分,应先求出被积函数 的原函数 , 再求 在区间 上的增量 即可。 如果抛开上面物理意义,便可得出计算定积分的一般 方法: 设函数在闭区间上连续, 是 的一个原函数, 即 ,则 图 5-11

这个公式叫做牛顿-莱布尼兹公式。 为了使用方便,将公式写成 牛顿-莱布尼兹公式通常也叫做微积分基本公式。它表示一个函数定积分等于这个函数的原函数在积分上、下限处函数值之差。它揭示了定积分和不定积分的内在联系,提供了计算定积分有效而简便的方法,从而使定积分得到了广泛的应用。 例1 计算 因为是的一个原函数所以 例 2 求曲线 和直线x=0、x= 及y=0所围成图形面积A(5-12) 解 这个图形的面积为 二、定积分的性质 设 、 在相应区间上连续,利用前面学过的知识,可以 得到定积分以下几个简单性质: 图 5-12

(完整版)定积分公式

二、基本积分表(188页1—15,205页16—24) (1)kdx kx C =+? (k 是常数) (2)1 ,1 x x dx C μμ μ+= ++? (1)u ≠- (3)1 ln ||dx x C x =+? (4)2 tan 1dx arl x C x =++? (5) arcsin x C =+? (6)cos sin xdx x C =+? (7)sin cos xdx x C =-+? (8)21 tan cos dx x C x =+? (9)21 cot sin dx x C x =-+? (10)sec tan sec x xdx x C =+? (11)csc cot csc x xdx x C =-+? (12)x x e dx e C =+? (13)ln x x a a dx C a =+?,(0,1)a a >≠且 (14)shxdx chx C =+? (15)chxdx shx C =+? (16)22 11tan x dx arc C a x a a =++?

(17)2211ln ||2x a dx C x a a x a -=+-+? (18) sin x arc C a =+? (19) ln(x C =+ (20) ln |x C =+? (21)tan ln |cos |xdx x C =-+? (22)cot ln |sin |xdx x C =+? (23)sec ln |sec tan |xdx x x C =++? (24)csc ln |csc cot |xdx x x C =-+? 注:1、从导数基本公式可得前15个积分公式,(16)-(24)式后几节证。 2、以上公式把x 换成u 仍成立,u 是以x 为自变量的函数。 3、复习三角函数公式: 2222sin cos 1,tan 1sec ,sin 22sin cos ,x x x x x x x +=+==21cos 2cos 2 x x += , 21cos 2sin 2 x x -= 。 注:由[()]'()[()]()f x x dx f x d x ????=??,此步为凑微分过程,所以第一类换元法也叫凑微分法。此方法是非常重要的一种积分法,要运用自如,务必熟记基本积分表,并掌握常见的凑微分形式及“凑”的技巧。

定积分的基本公式

第三讲 定积分的基本公式 【教学内容】 1.变上限积分函数 2.牛顿-莱布尼兹公式 【教学目标】 1.掌握变上限积分函数 2.掌握牛顿-莱布尼兹公式 【教学重点与难点】 牛顿-莱布尼兹公式 【教学过程】 一、引例 一物体作变速直线运动时,其速度)(t v v =,则它从时刻a t =到时刻b t =所经过的路程S : dt t v S b a ? = )( 另一方面,如果物体运动时的路程函数)(t S S =,则它从时刻a t =到时刻b t =所经过的路程 S 等于函数)(t S S =在],[b a 上的增量 )()(a S b S - 同一物理量(路程)的两种不同数学表达式应该是相等的, ∴ dt t v S b a ? = )()()(a S b S -= ∵ )()(/ t v t S = ∴ ? ? = = b a b a dt t S dt t v S )()(/)()(a S b S -= 二、变上限积分函数 1.定义:如果函数)(x f 在区间],[b a 上连续,那么对于区间],[b a 上的任一点x 来说,)(x f 在区间],[x a 上仍连续,所以函数)(x f 在],[x a 上的定积分 ? x a dx x f )( 存在。也就是说,对于每一个确定的x 值,这个积分将有一个确定的值与之对应,因此它是积分上限x 的函数,此函数定义在区间],[b a 上,把它叫做变上限积分函数,记为)(x Φ。即 )()()()(b x a dt t f dx x f x x a x a ≤≤==Φ?? 2.定理1 如果函数)(x f y =在区间],[b a 上连续,则变上限积分函数 )()()(b x a dt t f x x a ≤≤=Φ? 是函数)(x f y =的原函数,即

积分常用公式

积分常用公式 一.基本不定积分公式: 1.C x dx +=? 2.111++= ? αα αx dx x 1(-≠α) 3.C x dx x +=?ln 1 4.C a a dx a x x +=?ln )1,0(≠>a a 5.C e dx e x x +=? 6.C x xdx +-=? cos sin 7.C x xdx +=? sin cos 8.C x dx x xdx +== ?? tan cos 1sec 22 9.C x dx x xdx +-==??cot sin 1csc 22 10.C x xdx x +=??sec tan sec 11.C x xdx x +-=?? csc cot csc 12. C x dx x +=-? arcsin 112 (或12 arccos 11C x dx x +-=-? ) 13. C x dx x +=+?arctan 112 (或12cot 11 C x arc dx x +-=+?) 14.C x xdx +=?cosh sinh 15.C x xdx +=? sinh cosh 二.常用不定积分公式和积分方法: 1.C x xdx +-=?cos ln tan 2.C x xdx +=? sin ln cot 3. C a x a x a dx +=+?arctan 122 4.C a x a x a a x dx ++-=-?ln 2122 5.C x x xdx ++=?tan sec ln sec 6.C x x xdx +-=? cot csc ln csc 7. C a x x a dx +=-? arcsin 2 2 8.C a x x a x dx +±+=±?222 2ln 9. C a x a x a x dx x a ++-=-?arcsin 2222 22 2 10. C a x x a a x x dx a x +±+ ±±= ±? 222 2 2 2 2 ln 2 2 11.第一类换元积分法(凑微分法):

一个不定积分问题(用分部积分得递推公式)

求?xdx x 4sin 设?=xdx x I n n sin , 则?-=dx x x x I n n )sin (sin 1 ?-= -)cos (sin sin 1 x x x xd n ??----=--xdx x x x x n x x x x n n cos ))(sin cos (sin )1()cos (sin sin 2 1 ??--?-=--xdx x n x x x x n n n cos sin )1(sin cos sin 1 1 ??-+-xdx x x n n 2 2 cos sin )1( ?----?-=)(sin sin )1(sin cos sin 11x xd n x x x x n n n ?-?-+-dx x x x n n )sin 1(sin )1(2 2 x n n x x x x n n n sin 1sin cos sin 1 -- ?-=-?--+xdx x n n 2 sin )1(?--xdx x n n sin )1( x n n x x x x n n n sin 1sin cos sin 1 --?-=-2)1(--+n I n n I n )1(-- 所以x n n n x x x x I n n n n sin 1sin cos sin 2 1 -- ?-= -21--+ n I n n 上述公式作为递推公式,由C x xdx I += = ?22 0得 x x x x x I 2 2 2sin 4 12 sin cos sin - ?-= 4 2 x + 所以 x x x x x I 4 3 4 4sin 16 34 sin cos sin - ?-= 4 3+x x x x x 2 2 sin 4 12 sin cos sin ( - ?-C x ++ )4 2 即x x x x I 3 4 4sin cos 4(sin 16 1?-=x x x x sin cos 6sin 32 ?-+C x ++)32

高等数学积分公式大全

常 用 积 分 公 式 (一)含有ax b +的积分(0a ≠) 1.d x ax b +? =1 ln ax b C a ++ 2.()d ax b x μ+?=11 ()(1) ax b C a μμ++++(1μ≠-) 3.d x x ax b +? =21 (ln )ax b b ax b C a +-++ 4.2d x x ax b +? =22311()2()ln 2ax b b ax b b ax b C a ?? +-++++???? 5.d () x x ax b +?=1ln ax b C b x +-+ 6.2 d () x x ax b +?=21ln a ax b C bx b x +-++ 7.2d ()x x ax b +? =21(ln )b ax b C a ax b ++++ 8.22 d ()x x ax b +?=2 31(2ln )b ax b b ax b C a ax b +-+-++ 9.2 d ()x x ax b +? = 211ln ()ax b C b ax b b x +-++ 的积分 10.x C + 11.x ?=2 2(3215ax b C a -+ 12.x x ?=2223 2 (15128105a x abx b C a -+ 13.x =22 (23ax b C a - 14.2x =2223 2(34815a x abx b C a -+

15 . =(0) (0) C b C b ?+>< 16 . 2a b - 17 .x =b +18 .x =2a x -+ (三)含有22x a ±的积分 19.22d x x a +?=1arctan x C a a + 20.22d ()n x x a +?=2221222123d 2(1)()2(1)()n n x n x n a x a n a x a ---+-+-+? 21.22 d x x a -? =1ln 2x a C a x a -++ (四)含有2(0)ax b a +>的积分 22.2d x ax b +? =(0) (0) C b C b ?+>+< 23.2 d x x ax b +? =2 1ln 2ax b C a ++ 24.22d x x ax b +?=2d x b x a a ax b -+? 25.2d ()x x ax b +?=2 2 1ln 2x C b ax b ++ 26.22d ()x x ax b +? =21d a x bx b ax b --+?

定积分基本公式

定积分基本公式 定积分是高等数学中一个重要的基本概念,在几何、物理、经济学等各个领域中都有广泛的应用.本章将由典型实例引入定积分概念,讨论定积分性质和计算方法,举例说明定积分在实际问题中的具体运用等. 第二节 微积分基本公式 一、变上限的定积分 设函数()f x 在[[,]a b ] 上连续,x ∈[,]a b ,于是积分()d x a f x x ?是一个定数, 这种写法有一个不方便之处,就是 x 既表示积分上限,又表示积分变量.为避免 t ,于是这个积分就写成了 ()d x a f t t ? . x 值,积分()d x a f t t ?就有一个确定的的一个函数,记作 ()Φx =()d x a f t t ? ( a ≤x ≤ b )通常称函数 ()Φx 为变上限积分函数或变上限积分,其几何意义如图所示. 定理1 如果函数()f x 在区间[,]a b 上连续,则变上限积分 ()Φx =()d x a f t t ?在[,]a b 上可导,且其导数是 d ()()d ()d x a Φx f t t f x x '= =?( a ≤x ≤ b ). 推论 连续函数的原函数一定存在. 且函数()Φx =()d x a f t t ?即为其原函数.

例1 计算()Φx =2 0sin d x t t ?在x =0 ,处的导数. 解 因为2 d sin d d x t t x ?=2sin x ,故 2 (0)sin 00Φ'==; πsin 242Φ'==. 例2 求下列函数的导数: (1) e ln ()d (0)x a t Φx t a t =>? ; 解 这里()Φx 是x 的复合函数,其中中间变量e x u =,所以按复合函数求导 法则,有 d d ln d(e )ln e (d )e d d d e x x u x x a Φt t x x u t x ===?. (2) 2 1()(0) x Φx x θ=>? . 解 21d d d d x Φx x θ=-?2 2()x x ='=2sin 2sin 2x x x x x =- ?=-. 二、牛顿-莱布尼茨(Newton-Leibniz )公式 定理2 设函数()f x 在闭区间[,]a b 上连续,又 ()F x 是()f x 的任一个原函数,则有()d ()() b a f x x F b F a =-? . 证 由定理1知,变上限积分 ()()d x a Φx f t t =?也是()f x 的一个原函数,于 是知0()()Φx F x C -=, 0C 为一常数, 即 0 ()d ()x a f t t F x C =+?.

定积分常用公式

定积分常用公式 二、基本积分表(188页1—15,205页16—24) (1) (k是常数) kdxkxC,,, ,,1x,(2) xdxC,,,(1)u,,,,,1 1(3) dxxC,,ln||,x dx(4) ,,arlxCtan2,1,x dx(5) ,,arcsinxC,21,x (6)cossinxdxxC,, , (7)sincosxdxxC,,, , 1(8) dxxC,,tan2,cosx 1(9) dxxC,,,cot2,sinx sectansecxxdxxC,,(10) , csccotcscxxdxxC,,,(11) , xxedxeC,,(12) , xax(13), (0,1)aa,,且adxC,,,lna shxdxchxC,,(14) , chxdxshxC,,(15) , 11x(16) dxarcC,,tan22,axaa, 1 11xa,(17) dxC,,ln||22,xaaxa,,2 1x(18) dxarcC,,sin,22aax, 122(19) dxxaxC,,,,ln(),22ax, dx22(20) ,,,,ln||xxaC,22xa,

(21)tanln|cos|xdxxC,,, , (22)cotln|sin|xdxxC,, , )secln|sectan|xdxxxC,,, (23, cscln|csccot|xdxxxC,,,(24) , 注:1、从导数基本公式可得前15个积分公式,(16)-(24)式后几节证。 2、以上公式把换成仍成立,是以为自变量的函数。 xuux 3、复习三角函数公式: 1cos2,x22222, sincos1,tan1sec,sin22sincos,xxxxxxx,,,,,cosx,2 1cos2,x2。 sinx,2 fxxdxfxdx[()]'()[()](),,,,,注:由,此步为凑微分过程,所以第一,, 类换元法也叫凑微分法。此方法是非常重要的一种积分法,要运用自如,务必熟记基本积分表,并掌握常见的凑微分形式及“凑”的技巧。 2 小结: 1常用凑微分公式 积分类型换元公式11.f(ax,b)dx,f(ax,b)d(ax,b)(a,0)u,ax,b,,a u,x11,2.f(x)xdx,f(x)d(x)(,0),,,,,,,,,1u,lnx3.f(lnx),dx,f(lnx)d(lnx), ,x 4..f(e),edx,f(e)dexxxxu,ex,,第 1一5.f(a),adx,f(a)daxxxx,,lnau,ax换 6.f(sinx),cosxdx,f(sinx)dsinxu,sinx元,, u,cosx积7.f(cosx),sinxdx,,f(cosx)dcosx,,分 28.f(tanx)secxdx,f(tanx)dtanxu,tanx,,法 u,cotx29.f(cotx)cscxdx,,f(cotx)dcotx,,

不定积分表

Y 卷终 公式表注解四 基本不定积分表 序言: 微积分创立之初,牛顿与莱布尼茨分享荣誉。虽其间发生很多在优先权上的争论,但最终依然走向了发展之正轨。在微积分公式体系上,莱布尼茨对之要求甚严,并总结其基本微分表和基本积分表。如今随微积分之发展,公式表逐渐全面,分类亦几乎覆盖各种不定积分。积分表的编订对于积分运算可以说是必要,亦是数学发展之必要结果。 本表给出常用不定积分的计算公式和运算方法,以及每个积分的简要推演方法,其中引入了除一般之换元法,凑微分法,分部积分法之外,亦引入虚数单位,并使用虚数单位推演某些复杂的不定积分运算。而对于简单的不定积分运算和基本的微分公式之反用,或均不在此给出推演方法,或仅以推演步骤简要之说明。 本表收录公式16组,151式。 公式一 基本初等函数的不定积分18式: 反三角函数 上述公式均为基本初等函数之不定积分,其中部分公式均可以由分部积分公式给出,特别的,对于正切函数,余切函数,正割函数与余割函数的不定积分,使用了诸多三角变换完成。 公式二 含ax b +的积分(要指出a 非零)10式: 对于其中的第二式,是利用换元积分完成的。 对于第一者,可以利用凑的方式,我们考虑分式11x b ax b a ax b ??=- ?++?? ,则得其积分是显的:111()ln ||x b b dx x d ax x ax b aC ax b a a ax b a a ????=-=-++ ? ?++??????。而第二式依然采取类似的方式,可借由带余多项式除法算得:22211()2x x ax b ab b ax b a ax b ax b ??=+-+??+++?? ,然后利用第一个积分式即可得到结论。 对于分母是二次多项式或者更高者,常常分成多个低次多项式之和,这两个积分便是沿用了此结论所得 到的。我们注意第一式中有 111111()(/)/b x ax b a x x b a a x x b a a ??==- ?+++??,积分即得。对于第二式依然可用分

实验一用递推公式计算定积分

实验一 用递推公式计算定积分 09信息 符文飞 07 1、实验目的: 由于一个算法是否稳定,十分重要。如果算法不稳定,则数值计算的结果就会严重背离数学模型的真实结果,因此,在选择数值计算公式来进行近似计算时,我们应特别注意选用那些在数值计算过程中不会导致误差迅速增长的公式。体会稳定性在选择算法中的地位.误差扩张的算法是不稳定的,是我们所不期望的;误差衰竭的算法是稳定的.是我们努力寻求的,这是贯穿本课程的目标.通过上机计算,了解舍入误差所引起的数值不稳定性。 2、实验题目: 对n =0,1,2,…,20,计算定积分dx x x y n n ?+=10 5 3、实验原理 由于y(n)= = – 在计算时有两种迭代方法,如下: 方法一: y(n)= – 5*y(n-1),n=1,2,3, (20) 取y(0)= = ln6-ln5 ≈ 0.182322 方法二:

利用递推公式:y(n-1)=-*y(n),n=20,19, (1) 而且,由 = * ≤≤* = 可取:y(20)≈*()≈0.008730. 4、实验内容: 算法1的程序: y0=log(6.0)-log(5.0); y1=0; n=1; while n<=30 y1=1/n-5*y0; fprintf('y[%d]=%-20f',n,y1); y0=y1; n=n+1; if mod(n,1)==0; fprintf('\n') end end 算法2的程序: y0=(1/105+1/126)/2;

y1=0; n=1; while n<=30 y1=1/(5*n)-y0/5; fprintf('y[%d]=%-20f',n,y1) y0=y1; n=n+1; if mod(n,1)==0 fprintf('\n') end end 5、实验结果 对于算法1: y[1]=0.088392 y[2]=0.058039 y[3]=0.043139 y[4]=0.034306 y[5]=0.028468 y[6]=0.024325 y[7]=0.021233 y[8]=0.018837 y[9]=0.016926

定积分计算的总结论文

定积分计算的总结 闫佳丽 摘 要:本文主要考虑定积分的计算,对一些常用的方法和技巧进行了归纳和总结.在定积分的计算中,常用的计算方法有四种:(1)定义法、(2)牛顿—莱布尼茨公式、(3)定积分的分部积分法、(4)定积分的换元积分法. 关键词:定义、牛顿—莱布尼茨公式、分部积分、换元. 1前言 17世纪后期,出现了一个崭新的数学分支—数学分析.它在数学领域中占据着主导地位.这种新数学思想的特点是非常成功地运用了无限过程的运算即极限运算.而其中的微分和积分这两个过程,则构成系统微积分的核心.并奠定了全部分析学的基础.而定积分是微积分学中的一个重要组成部分. 2正文 那么,究竟什么是定积分呢?我们给定积分下一个定义:设函数()f x 在[],a b 有定义,任给[],a b 一个分法T 和一组{}k ξξ=,有积分和 1 (,)()n k k k T f x σξξ==?∑,若当()0l T →时,积分和(,)T σξ存在有限极限,设 ()0 ()0 1 lim (,)lim ()n k k l T l T k T f x I σξξ→→==?=∑,且数I 与分法T 无关,也与k ξ在[] 1,k k x x -的取法无关,即{}0,0,:(),k T l T εδδξξ?>?>?

相关文档
最新文档