高考数学二轮复习1与三角变换平面向量综合的三角形问题学案
高考数学(文)二轮专题复习篇教案:专题三 三角函数、解三角形、平面向量 第二讲 解三角形

tan 45°=1,sin2α+cos2α=1 等.
变式训练 1 (1)若 0<α<π2,-π2<β<0,cos4π+α=13,cosπ4-β2= 33,则 cosα+β2等于( )
3 A. 3
B.-
3 3
53 C. 9
D.-
6 9
(2)已知 sin α=12+cos α,且 α∈0,π2,则sincoαs-2απ4的值为________.
第二讲 三角变换与解三角形
1. 两角和与差的正弦、余弦、正切公式
(1)sin(α±β)=sin αcos β±cos αsin β.
(2)cos(α±β)=cos αcos β∓sin αsin β. (3)tan(α±β)=1t∓antaαn±αttaannββ.
2. 二倍角的正弦、余弦、正切公式
(1)sin 2α=2sin αcos α.
(2)cos 2α=cos2α-sin2α=2cos2α-1=1-2sin2α. (3)tan 2α=1-2tatnanα2α.
3. 三角恒等变换的基本思路
(1)“化异为同”,“切化弦”,“1”的代换是三角恒等变换的常用技巧.
“化异为同”是指“化异名为同名”,“化异次为同次”,“化异角为同角”.
a∶b∶c=sin A∶sin B∶sin C.
5. 余弦定理
a2=b2+c2-2bccos A,b2=a2+c2-2accos B,
c2=a2+b2-2abcos C. 推论:cos A=b2+2cb2c-a2,cos B=a2+2ca2c-b2, cos C=a2+2ba2b-c2.
6. 面积公式 S△ABC=12bcsin A=12acsin B=12absin C.
(通用版)2018年高考数学二轮复习 第一部分 专题一 平面向量、三角函数与解三角形教学案 理

专题一 平面向量、三角函数与解三角形[研高考·明考点]2016卷Ⅱ ———T 9·诱导公式、三角恒等变换求值问题T 13·同角三角函数的基本关系、两角和的正弦公[析考情·明重点]第一讲 小题考法——平面向量[典例感悟][典例] (1)(2017·合肥质检)已知向量a =(1,3),b =(-2,k ),且(a +2b )∥(3a -b ),则实数k =( )A .4B .-5C .6D .-6(2)(2018届高三·湘中名校联考)若点P 是△ABC 的外心,且PA ―→+PB ―→+λPC ―→=0,∠ACB =120°,则实数λ的值为( )A.12B .-12C .-1D .1[解析] (1)a +2b =(-3,3+2k ),3a -b =(5,9-k ),由题意可得-3(9-k )=5(3+2k ),解得k =-6.(2)设AB 的中点为D ,则PA ―→+PB ―→=2PD ―→.因为PA ―→+PB ―→+λPC ―→=0,所以2PD ―→+λPC ―→=0,所以向量PD ―→,PC ―→共线.又P 是△ABC 的外心,所以PA =PB ,所以PD ⊥AB ,所以CD ⊥AB .因为∠ACB =120°,所以∠APB =120°,所以四边形APBC 是菱形,从而PA ―→+PB ―→=2PD ―→=PC ―→,所以2PD ―→+λPC ―→=PC ―→+λPC ―→=0,所以λ=-1,故选C.[答案] (1)D (2)C[方法技巧]解决以平面图形为载体的向量线性运算问题的方法(1)充分利用平行四边形法则与三角形法则,结合平面向量基本定理、共线定理等知识进行解答.(2)如果图形比较规则,向量比较明确,则可考虑建立平面直角坐标系,利用坐标运算来解决.[演练冲关]1.(2017·南昌调研)设a ,b 都是非零向量,下列四个选项中,一定能使a |a |+b|b |=0成立的是( )A .a =2bB .a ∥bC .a =-13bD .a ⊥b解析:选C “a |a |+b|b |=0,且a ,b 都是非零向量”等价于“非零向量a ,b 共线且反向”,结合各选项可知选C.2.(2017·福州模拟)已知△ABC 和点M 满足MA ―→+MB ―→+MC ―→=0.若存在实数m ,使得AB ―→+AC ―→=m AM ―→成立,则m =( )A .2B .3C .4D .5解析:选B 由MA ―→+MB ―→+MC ―→=0知,点M 为△ABC 的重心,设点D 为边BC 的中点,则AM ―→=23AD ―→=23×12(AB ―→+AC ―→)=13(AB ―→+AC ―→),所以AB ―→+AC ―→=3AM ―→,则m =3,故选B. 3.(2017·沈阳质检)已知向量AC ―→,AD ―→和AB ―→在正方形网格中的位置如图所示,若AC ―→=λAB ―→+μAD ―→,则λμ=( )A .-3B .3C .-4D .4解析:选A 建立如图所示的平面直角坐标系xAy ,设网格中小正方形的边长为1,则AC ―→=(2,-2),AB ―→=(1,2),AD ―→=(1,0),由题意可知(2,-2)=λ(1,2)+μ(1,0),即⎩⎪⎨⎪⎧2=λ+μ,-2=2λ,解得⎩⎪⎨⎪⎧λ=-1,μ=3,所以λμ=-3.故选A.[典例感悟][典例] (1)(2018届高三·广西三市联考)已知向量a ,b 满足|a |=1,|b |=23,a 与b 的夹角的余弦值为sin 17π3,则b ·(2a -b )=( )A .2B .-1C .-6D .-18(2)(2017·全国卷Ⅱ)已知△ABC 是边长为2的等边三角形,P 为平面ABC 内一点,则PA ―→·(PB ―→+PC ―→)的最小值是( )A .-2B .-32C .-43D .-1(3)(2018届高三·湖北七市(州)联考)平面向量a ,b ,c 不共线,且两两所成的角相等,若|a |=|b |=2,|c |=1,则|a +b +c |=________.[解析] (1)∵|a |=1,|b |=23,a 与b 的夹角的余弦值为sin 17π3=-32,∴a ·b =-3,则b ·(2a -b )=2a ·b -b 2=-18.(2)如图,以等边三角形ABC 的底边BC 所在直线为x 轴,以BC的垂直平分线为y 轴建立平面直角坐标系,则A (0,3),B (-1,0),C (1,0),设P (x ,y ),则PA ―→=(-x, 3-y ),PB ―→=(-1-x ,-y ),PC ―→=(1-x ,-y ),所以PA ―→·(PB ―→+PC ―→)=(-x ,3-y )·(-2x ,-2y )=2x 2+2⎝ ⎛⎭⎪⎫y -322-32,故当x =0,y =32时,PA ―→·(PB ―→+PC ―→)取得最小值,为-32.(3)∵平面向量a ,b ,c 不共线,且两两所成的角相等,∴它们两两所成的角为120°,∴|a+b +c |2=(a +b +c )2=a 2+b 2+c 2+2a ·b +2b ·c +2a ·c =|a |2+|b |2+|c |2+2|a ||b |·cos120°+2|b ||c |cos 120°+2|a ||c |cos 120°=22+22+12+2×2×2×⎝ ⎛⎭⎪⎫-12+2×2×1×⎝ ⎛⎭⎪⎫-12+2×2×1×⎝ ⎛⎭⎪⎫-12=1,故|a +b +c |=1.[答案] (1)D (2)B (3)1[方法技巧]解决以平面图形为载体的向量数量积问题的方法(1)选择平面图形中的模与夹角确定的向量作为一组基底,用该基底表示构成数量积的两个向量,结合向量数量积运算律求解.(2)若已知图形中有明显的适合建立直角坐标系的条件,可建立直角坐标系将向量数量积运算转化为代数运算来解决.[演练冲关]1.(2017·云南调研)平面向量a 与b 的夹角为45°,a =(1,1),|b |=2,则|3a +b |=( ) A .13+6 2 B .2 5 C.30D.34解析:选D 依题意得|a |=2,a ·b =2×2×cos 45°=2,则|3a +b |=a +b2=9a 2+6a ·b +b 2=18+12+4=34,故选D.2.(2018届高三·湖南五市十校联考)△ABC 是边长为2的等边三角形,向量a ,b 满足AB ―→=2a ,AC ―→=2a +b ,则向量a ,b 的夹角为( )A .30°B .60°C .120°D .150°解析:选C BC ―→=AC ―→-AB ―→=2a +b -2a =b ,则向量a ,b 的夹角即为向量AB ―→与BC ―→的夹角,故向量a ,b 的夹角为120°.3.(2017·天津高考)在△ABC 中,∠A =60°,AB =3,AC =2.若BD ―→=2DC ―→,AE ―→=λAC ―→-AB ―→ (λ∈R),且AD ―→·AE ―→=-4,则λ的值为________.解析:法一:AD ―→=AB ―→+BD ―→=AB ―→+23BC ―→=AB ―→+23(AC ―→-AB ―→)=13AB ―→+23AC ―→.又AB ―→·AC ―→=3×2×12=3,所以AD ―→·AE ―→=⎝ ⎛⎭⎪⎫13AB ―→+23AC ―→·(-AB ―→+λAC ―→)=-13AB ―→2+⎝ ⎛⎭⎪⎫13λ-23AB ―→·AC ―→+23λAC ―→2=-3+3⎝ ⎛⎭⎪⎫13λ-23+23λ×4=113λ-5=-4,解得λ=311.法二:以点A 为坐标原点,AB ―→的方向为x 轴正方向,建立平面直角坐标系(图略),不妨假设点C 在第一象限,则A (0,0),B (3,0),C (1,3). 由BD ―→=2DC ―→,得D ⎝ ⎛⎭⎪⎫53,233,由AE ―→=λAC ―→-AB ―→,得E (λ-3,3λ),则AD ―→·AE ―→=⎝ ⎛⎭⎪⎫53,233·(λ-3,3λ)=53(λ-3)+233×3λ=113λ-5=-4,解得λ=311.答案:311[必备知能·自主补缺] (一) 主干知识要记牢 1.平面向量的两个充要条件若两个非零向量a =(x 1,y 1),b =(x 2,y 2),则 (1)a ∥b ⇔a =λb (b ≠0)⇔x 1y 2-x 2y 1=0. (2)a ⊥b ⇔a ·b =0⇔x 1x 2+y 1y 2=0. 2.平面向量的性质(1)若a =(x ,y ),则|a |=a ·a =x 2+y 2. (2)若A (x 1,y 1),B (x 2,y 2),则|AB ―→|=x 2-x 12+y 2-y 12.(3)若a =(x 1,y 1),b =(x 2,y 2),θ为a 与b 的夹角,则cos θ=a ·b |a ||b |=x 1x 2+y 1y 2x 21+y 21 x 22+y 22. (4)|a ·b |≤|a |·|b |. (二) 二级结论要用好 1.三点共线的判定(1)A ,B ,C 三点共线⇔AB ―→,AC ―→共线.(2)向量PA ―→,PB ―→,PC ―→中三终点A ,B ,C 共线⇔存在实数α,β使得PA ―→=αPB ―→+βPC ―→,且α+β=1.[针对练1] 在▱ABCD 中,点E 是AD 边的中点,BE 与AC 相交于点F ,若EF ―→=m AB ―→+n AD ―→(m ,n ∈R),则mn=________.解析:如图,AD ―→=2AE ―→,EF ―→=m AB ―→+n AD ―→,∴AF ―→=AE ―→+EF―→=m AB ―→+(2n +1)AE ―→,∵F ,E ,B 三点共线,∴m +2n +1=1,∴mn=-2. 答案:-22.中点坐标和三角形的重心坐标(1)设P 1,P 2的坐标分别为(x 1,y 1),(x 2,y 2),则线段P 1P 2的中点P 的坐标为x 1+x 22,y 1+y 22.(2)三角形的重心坐标公式:设△ABC 的三个顶点的坐标分别为A (x 1,y 1),B (x 2,y 2),C (x 3,y 3),则△ABC 的重心坐标是G ⎝⎛⎭⎪⎫x 1+x 2+x 33,y 1+y 2+y 33.3.三角形“四心”向量形式的充要条件设O 为△ABC 所在平面上一点,角A ,B ,C 所对的边长分别为a ,b ,c ,则 (1)O 为△ABC 的外心⇔|OA ―→|=|OB ―→|=|OC ―→|=a2sin A.(2)O 为△ABC 的重心⇔OA ―→+OB ―→+OC ―→=0.(3)O 为△ABC 的垂心⇔OA ―→·OB ―→=OB ―→·OC ―→=OC ―→·OA ―→. (4)O 为△ABC 的内心⇔a OA ―→+b OB ―→+c OC ―→=0. (三) 易错易混要明了1.要特别注意零向量带来的问题:0的模是0,方向任意,并不是没有方向;0与任意向量平行;λ0=0(λ∈R),而不是等于0;0与任意向量的数量积等于0,即0·a =0;但不说0与任意非零向量垂直.2.当a ·b =0时,不一定得到a ⊥b ,当a ⊥b 时,a ·b =0;a ·b =c ·b ,不能得到a =c ,即消去律不成立;(a ·b )·c 与a ·(b ·c )不一定相等,(a ·b )·c 与c 平行,而a ·(b·c )与a 平行.3.两向量夹角的范围为[0,π],向量的夹角为锐角与向量的数量积大于0不等价. [针对练2] 已知向量a =(-2,-1),b =(λ,1),若a 与b 的夹角为钝角,则λ的取值范围是________.解析:依题意,当a 与b 的夹角为钝角时,a ·b =-2λ-1<0,解得λ>-12.而当a 与b 共线时,有-2×1=-λ,解得λ=2,即当λ=2时,a =-b ,a 与b 反向共线,此时a 与b 的夹角为π,不是钝角,因此,当a 与b 的夹角为钝角时,λ的取值范围是⎝ ⎛⎭⎪⎫-12,2∪(2,+∞). 答案:⎝ ⎛⎭⎪⎫-12,2∪(2,+∞) [课时跟踪检测]A 组——12+4提速练一、选择题1.(2017·沈阳质检)已知平面向量a =(3,4),b =⎝ ⎛⎭⎪⎫x ,12,若a ∥b ,则实数x 为( ) A .-23B.23C.38D .-38解析:选C ∵a ∥b ,∴3×12=4x ,解得x =38,故选C.2.已知向量a =(1,2),b =(2,-3).若向量c 满足c ⊥(a +b ),且b ∥(a -c ),则c =( )A.⎝ ⎛⎭⎪⎫79,73B.⎝ ⎛⎭⎪⎫-79,73C.⎝ ⎛⎭⎪⎫79,-73D.⎝ ⎛⎭⎪⎫-79,-73解析:选A 设c =(x ,y ),由题可得a +b =(3,-1),a -c =(1-x,2-y ).因为c ⊥(a +b ),b ∥(a -c ),所以⎩⎪⎨⎪⎧3x -y =0,-y +-x =0,解得⎩⎪⎨⎪⎧x =79,y =73,故c =⎝ ⎛⎭⎪⎫79,73.3.已知平面直角坐标系内的两个向量a =(1,2),b =(m,3m -2),且平面内的任一向量c 都可以唯一的表示成c =λa +μb (λ,μ为实数),则实数m 的取值范围是( )A .(-∞,2)B .(2,+∞)C .(-∞,+∞)D .(-∞,2)∪(2,+∞)解析:选D 由题意知向量a ,b 不共线,故2m ≠3m -2,即m ≠2.4.(2017·西安模拟)已知向量a 与b 的夹角为120°,|a |=3,|a +b |=13,则|b |=( ) A .5 B .4 C .3D .1解析:选B 因为|a +b |=13,所以|a +b |2=a 2+2a ·b +b 2=13,即9+2×3×|b |cos 120°+|b |2=13,得|b |=4.5.(2018届高三·西安八校联考)已知点A (-1,1),B (1,2),C (-2,-1),D (3,4),则向量CD ―→在AB ―→方向上的投影是( )A.322B .-322C .3 5D .-3 5解析:选C 依题意得,AB ―→=(2,1),CD ―→=(5,5),AB ―→·CD ―→=(2,1)·(5,5)=15,|AB ―→|=5,因此向量CD ―→在AB ―→方向上的投影是AB ―→·CD ―→|AB ―→|=155=3 5.6.已知A ,B ,C 三点不共线,且点O 满足OA ―→+OB ―→+OC ―→=0,则下列结论正确的是( ) A .OA ―→=13AB ―→+23BC ―→B .OA ―→=23AB ―→+13BC ―→C .OA ―→=13AB ―→-23BC ―→D .OA ―→=-23AB ―→-13BC ―→解析:选D ∵OA ―→+OB ―→+OC ―→=0,∴O 为△ABC 的重心,∴OA ―→=-23×12(AB ―→+AC ―→)=-13(AB ―→+AC ―→)=-13(AB ―→+AB ―→+BC ―→)=-23AB ―→-13BC ―→,故选D. 7.已知向量a =(3,1),b 是不平行于x 轴的单位向量,且a ·b =3,则b =( ) A.⎝⎛⎭⎪⎫32,12 B.⎝ ⎛⎭⎪⎫12,32 C.⎝ ⎛⎭⎪⎫14,334 D .(1,0)解析:选B 设b =(cos α,sin α)(α∈(0,π)∪(π,2π)),则a ·b =(3,1)·(cos α,sin α)=3cos α+sin α=2sin π3+α=3,得α=π3,故b =⎝ ⎛⎭⎪⎫12,32.8.(2018届高三·广东五校联考)已知向量a =(λ,1),b =(λ+2,1),若|a +b |=|a -b |,则实数λ的值为( )A .-1B .2C .1D .-2解析:选A 由|a +b |=|a -b |可得a 2+b 2+2a ·b =a 2+b 2-2a ·b ,所以a ·b =0,即a ·b =(λ,1)·(λ+2,1)=λ2+2λ+1=0,解得λ=-1.9.(2017·惠州调研)若O 为△ABC 所在平面内任一点,且满足(OB ―→-OC ―→)·(OB ―→+OC ―→-2OA ―→)=0,则△ABC 的形状为( )A .等腰三角形B .直角三角形C .正三角形D .等腰直角三角形解析:选A (OB ―→-OC ―→)·(OB ―→+OC ―→-2OA ―→)=0,即CB ―→·(AB ―→+AC ―→)=0,∵AB ―→-AC ―→=CB ―→,∴(AB ―→-AC ―→)·(AB ―→+AC ―→)=0,即|AB ―→|=|AC ―→|,∴△ABC 是等腰三角形,故选A.10.(2017·日照模拟)如图,在△ABC 中,AB =BC =4,∠ABC =30°,AD 是BC 边上的高,则AD ―→·AC ―→=( )A .0B .4C .8D .-4解析:选B 因为AB =BC =4,∠ABC =30°,AD 是BC 边上的高,所以AD =4sin 30°=2,所以AD ―→·AC ―→=AD ―→·(AB ―→+BC ―→)=AD ―→·AB ―→+AD ―→·BC ―→=AD ―→·AB ―→=2×4×cos 60°=4,故选B.11.(2017·全国卷Ⅲ)在矩形ABCD 中,AB =1,AD =2,动点P 在以点C 为圆心且与BD 相切的圆上.若AP ―→=λAB ―→+μAD ―→,则λ+μ的最大值为( )A .3B .2 2 C. 5D .2解析:选A 以A 为坐标原点,AB ,AD 所在直线分别为x 轴,y 轴建立如图所示的平面直角坐标系,则A (0,0),B (1,0),C (1,2),D (0,2),可得直线BD 的方程为2x +y -2=0,点C 到直线BD 的距离为212+22=25,所以圆C :(x -1)2+(y -2)2=45. 因为P 在圆C 上,所以P ⎝⎛⎭⎪⎫1+255cos θ,2+255sin θ. 又AB ―→=(1,0),AD ―→=(0,2),AP ―→=λAB ―→+μAD ―→=(λ,2μ), 所以⎩⎪⎨⎪⎧1+255cos θ=λ,2+255sin θ=2μ,则λ+μ=2+255cos θ+55sin θ=2+sin(θ+φ)≤3(其中tan φ=2),当且仅当θ=π2+2k π-φ,k ∈Z 时,λ+μ取得最大值3. 12.如图,△ABC 的外接圆的圆心为O ,AB =2,AC =7,BC =3,则AO ―→·BC ―→的值为( )A.32B.52 C .2D .3解析:选A 取BC 的中点为D ,连接AD ,OD ,则OD ⊥BC ,AD ―→=12(AB―→+AC ―→),BC ―→=AC ―→-AB ―→,所以AO ―→·BC ―→=(AD ―→+DO ―→)·BC ―→=AD ―→·BC ―→+DO ―→·BC ―→=AD ―→·BC ―→=12(AB ―→+AC ―→)·(AC ―→-AB ―→)=12(AC―→2-AB ―→2)=12×(7)2-22=32.故选A.二、填空题13.(2017·山东高考)已知e 1,e 2是互相垂直的单位向量.若3e 1-e 2与e 1+λe 2的夹角为60°,则实数λ的值是________.解析:因为3e 1-e 2与e 1+λe 2的夹角为60°,所以cos 60°=3e 1-e 2e 1+λe 2|3e 1-e 2|·|e 1+λe 2|=3-λ21+λ2=12, 解得λ=33. 答案:3314.已知非零向量m ,n 满足4|m |=3|n |,且m ,n 夹角的余弦值为13,若n ⊥(tm +n ),则实数t 的值为________.解析:∵n ⊥(tm +n ),∴n ·(tm +n )=0,即tm ·n +|n |2=0.又4|m |=3|n |,∴t ×34|n |2×13+|n |2=0,解得t =-4.答案:-415.(2017·石家庄质检)已知AB ―→与AC ―→的夹角为90°,|AB ―→|=2,|AC ―→|=1,AM ―→=λAB ―→+μAC ―→ (λ,μ∈R),且AM ―→·BC ―→=0,则λμ的值为________.解析:根据题意,建立如图所示的平面直角坐标系,则A (0,0),B (0,2),C (1,0),所以AB ―→=(0,2),AC ―→=(1,0),BC ―→=(1,-2).设M (x ,y ),则AM ―→=(x ,y ),所以AM ―→·BC ―→=(x ,y )·(1,-2)=x -2y =0,所以x =2y ,又AM ―→=λAB ―→+μAC ―→,即(x ,y )=λ(0,2)+μ(1,0)=(μ,2λ),所以x =μ,y =2λ,所以λμ=12y x =14.答案:1416.(2017·北京高考)已知点P 在圆x 2+y 2=1上,点A 的坐标为(-2,0),O 为原点,则AO ―→·AP ―→的最大值为________.解析:法一:由题意知,AO ―→=(2,0),令P (cos α,sin α),则AP ―→=(cos α+2,sin α),AO ―→·AP ―→=(2,0)·(cos α+2,sin α)=2cos α+4≤6,当且仅当cos α=1,即α=0,P (1,0)时等号成立,故AO ―→·AP ―→的最大值为6.法二:由题意知,AO ―→=(2,0),令P (x ,y ),-1≤x ≤1,则AO ―→·AP ―→=(2,0)·(x +2,y )=2x +4≤6,当且仅当x =1,P (1,0)时等号成立,故AO ―→·AP ―→的最大值为6.答案:6B 组——能力小题保分练1.已知△ABC 是边长为1的等边三角形,点D ,E 分别是边AB ,BC 的中点,连接DE 并延长到点F ,使得DE =2EF ,则AF ―→·BC ―→的值为( )A .-58B.18C.14D.118解析:选B 如图所示,AF ―→=AD ―→+DF ―→.又D ,E 分别为AB ,BC 的中点,且DE =2EF ,所以AD ―→=12AB ―→,DF―→=12AC ―→+14AC ―→=34AC ―→,所以AF ―→=12AB ―→+34AC ―→.又BC ―→=AC ―→-AB ―→,则AF ―→·BC ―→=⎝ ⎛⎭⎪⎫12AB ―→+34AC ―→ · (AC ―→-AB ―→)=12AB ―→·AC ―→-12AB ―→2+34AC ―→2-34AC ―→·AB ―→=34AC ―→2-12AB ―→2-14AC ―→·AB ―→=34|AC ―→|2-12|AB ―→|2-14×|AC ―→|×|AB ―→|×cos∠BAC . 又|AB ―→|=|AC ―→|=1,∠BAC =60°, 故AF ―→·BC ―→=34-12-14×1×1×12=18.故选B.2.(2017·长春质检)已知a ,b 是单位向量,且a·b =-12.若平面向量p 满足p·a =p ·b=12,则|p |=( ) A.12B .1 C. 2D .2解析:选B 由题意,不妨设a =(1,0),b =⎝ ⎛⎭⎪⎫-12,32,p =(x ,y ),∵p ·a =p ·b =12,∴⎩⎪⎨⎪⎧ x =12,-12x +32y =12,解得⎩⎪⎨⎪⎧x =12,y =32.∴|p |=x 2+y 2=1,故选B.3.(2017·浙江高考)如图,已知平面四边形ABCD ,AB ⊥BC ,AB =BC =AD =2,CD =3,AC 与BD 交于点O .记I 1=OA ―→·OB ―→,I 2=OB ―→·OC ―→,I 3=OC ―→·OD ―→,则( )A .I 1<I 2<I 3B .I 1<I 3<I 2C .I 3<I 1<I 2D .I 2<I 1<I 3解析:选C 如图所示,四边形ABCE 是正方形,F 为正方形的对角线的交点,易得AO <AF ,而∠AFB =90°,∴∠AOB 与∠COD 为钝角,∠AOD与∠BOC 为锐角.根据题意,I 1-I 2=OA ―→·OB ―→-OB ―→·OC ―→=OB ―→·(OA ―→-OC ―→)=OB ―→·CA ―→=|OB ―→|·|CA ―→|cos ∠AOB <0,∴I 1<I 2,同理得,I 2>I 3,作AG ⊥BD 于点G ,又AB =AD , ∴OB <BG =GD <OD ,而OA <AF =FC <OC , ∴|OA ―→|·|OB ―→|<|OC ―→|·|OD ―→|, 而cos ∠AOB =cos ∠COD <0, ∴OA ―→·OB ―→>OC ―→·OD ―→,即I 1>I 3, ∴I 3<I 1<I 2.4.(2018届高三·湖北八校联考)如图,O 为△ABC 的外心,AB =4,AC=2,∠BAC 为钝角,M 为BC 边的中点,则AM ―→·AO ―→的值为( )A .2 3B .12C .6D .5解析:选D 如图,分别取AB ,AC 的中点D ,E ,连接OD ,OE ,可知OD ⊥AB ,OE ⊥AC ,∵M 是BC 边的中点,∴AM ―→=12(AB ―→+AC ―→),∴AM ―→·AO ―→=12(AB ―→+AC ―→)·AO ―→=12AB ―→·AO ―→+12AC ―→·AO ―→=AD ―→·AO ―→+AE ―→·AO ―→.由数量积的定义可得AD ―→·AO ―→=|AD ―→||AO ―→|·cos〈AD ―→,AO ―→〉,而|AO ―→|cos 〈AD ―→,AO ―→〉=|AD ―→|,故AD ―→·AO ―→=|AD ―→|2=4,同理可得AE ―→·AO ―→=|AE ―→|2=1,故AD ―→·AO ―→+AE ―→·AO ―→=5,即AM ―→·AO ―→=5,故选D.5.在△ABC 中,点D 在线段BC 的延长线上,且BC ―→=3CD ―→,点O 在线段CD 上(与点C ,D 不重合),若AO ―→=x AB ―→+(1-x )AC ―→,则x 的取值范围是________.解析:依题意,设BO ―→=λBC ―→,其中1<λ<43,则有AO ―→=AB ―→+BO ―→=AB ―→+λBC ―→=AB ―→+λ(AC ―→-AB ―→)=(1-λ)AB ―→+λAC ―→.又AO ―→=x AB ―→+(1-x )AC ―→,且AB ―→,AC ―→不共线,于是有x =1-λ,由λ∈⎝⎛⎭⎪⎫1,43知,x ∈⎝⎛⎭⎪⎫-13,0,即x 的取值范围是⎝⎛⎭⎪⎫-13,0.答案:⎝ ⎛⎭⎪⎫-13,06.(2017·江苏高考)如图,在同一个平面内,向量OA ―→,OB ―→,OC ―→的模分别为1,1,2,OA ―→与OC ―→的夹角为α,且tan α=7,OB ―→与OC ―→的夹角为45°.若OC ―→=m OA ―→+n OB ―→(m ,n ∈R),则m +n =________.解析:法一:如图,以O 为坐标原点,OA 所在直线为x 轴建立平面直角坐标系,则A (1,0),由tan α=7,α∈⎝⎛⎭⎪⎫0,π2,得sin α=752,cos α=152,设C (x C ,y C ),B (x B ,y B ),则x C =|OC ―→|cos α=2×152=15,y C =|OC ―→|sin α=2×752=75,即C ⎝ ⎛⎭⎪⎫15,75.又cos(α+45°)=152×12-752×12=-35,sin(α+45°)=752×12+152×12=45,则x B =|OB ―→|cos(α+45°)=-35,y B =|OB ―→|sin(α+45°)=45,即B ⎝ ⎛⎭⎪⎫-35,45. 由OC ―→=m OA ―→+n OB ―→,可得⎩⎪⎨⎪⎧15=m -35n ,75=45n ,解得⎩⎪⎨⎪⎧m =54,n =74,所以m +n =54+74=3.法二:由tan α=7,α∈⎝⎛⎭⎪⎫0,π2,得sin α=752,cos α=152,则cos(α+45°)=152×12-752×12=-35,所以OB ―→·OC ―→=1×2×22=1,OA ―→·OC ―→=1×2×152=15,OA ―→·OB ―→=1×1×⎝ ⎛⎭⎪⎫-35=-35, 由OC ―→=m OA ―→+n OB ―→,得OC ―→·OA ―→=m OA ―→2+n OB ―→·OA ―→,即15=m -35n .①同理可得OC ―→·OB ―→=m OA ―→·OB ―→+n OB ―→2, 即1=-35m +n .②①+②得25m +25n =65,即m +n =3. 答案:3第二讲 小题考法——三角函数的图象与性质考点(一) 主要考查三角函数的图象变换或根据图象求解析式或参数三角函数的图象及应用[典例感悟][典例] (1)(2017·合肥质检)要想得到函数y =sin 2x +1的图象,只需将函数y =cos 2x 的图象( )A .向左平移π4个单位长度,再向上平移1个单位长度B .向右平移π4个单位长度,再向上平移1个单位长度C .向左平移π2个单位长度,再向下平移1个单位长度D .向右平移π2个单位长度,再向下平移1个单位长度(2)(2017·贵阳检测)函数f (x )=sin(ωx +φ)⎝ ⎛⎭⎪⎫ω>0,|φ|<π2的最小正周期为π,若其图象向左平移π3个单位长度后关于y 轴对称,则( )A .ω=2,φ=π3B .ω=2,φ=π6C .ω=4,φ=π6D .ω=2,φ=-π6(3)(2017·贵阳检测)已知函数f (x )=A sin(ωx +φ)(A >0,ω>0,0<φ<π),其导数f ′(x )的图象如图所示,则f ⎝ ⎛⎭⎪⎫π2的值为( )A .2 2B . 2C .-22D .-24[解析] (1)先将函数y =cos 2x 的图象向右平移π4个单位长度,得到y =sin 2x 的图象,再向上平移1个单位长度,即得y =sin 2x +1的图象,故选B.(2)依题意得,T =2πω=π,ω=2,则f (x )=sin(2x +φ),其图象向左平移π3个单位长度得到函数fx +π3=sin2x +2π3+φ的图象关于y 轴对称,于是有2π3+φ=k π+π2,k ∈Z ,即φ=k π-π6,k ∈Z.又|φ|<π2,因此φ=-π6,故选D.(3)依题意得f ′(x )=A ωcos(ωx +φ),结合函数y =f ′(x )的图象可知,T =2πω=4⎝ ⎛⎭⎪⎫3π8-π8=π,ω=2.又A ω=1,因此A =12,则f ′⎝⎛⎭⎪⎫3π8=cos ⎝ ⎛⎭⎪⎫3π4+φ=-1.因为0<φ<π,所以3π4<3π4+φ<7π4,所以3π4+φ=π,φ=π4,故f (x )=12sin ⎝⎛⎭⎪⎫2x +π4,则f ⎝ ⎛⎭⎪⎫π2=12sin ⎝ ⎛⎭⎪⎫π+π4=-12×22=-24,故选D. [答案] (1)B (2)D (3)D[方法技巧]1.函数表达式y =A sin(ωx +φ)+B 的确定方法2.三角函数图象平移问题处理的“三看”策略[演练冲关]1.(2017·全国卷Ⅰ)已知曲线C 1:y =cos x ,C 2:y =sin ⎝ ⎛⎭⎪⎫2x +2π3,则下面结论正确的是( ) A .把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C 2B .把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线C 2C .把C 1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C 2D .把C 1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线C 2解析:选D 易知C 1:y =cos x =sin ⎝⎛⎭⎪⎫x +π2,把曲线C 1上的各点的横坐标缩短到原来的12倍,纵坐标不变,得到函数y =sin ⎝ ⎛⎭⎪⎫2x +π2的图象,再把所得函数的图象向左平移π12个单位长度,可得函数y =sin ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫x +π12+π2=sin2x +2π3的图象,即曲线C 2.2.(2017·云南模拟)函数f (x )=sin ωx ()ω>0的图象向左平移π3个单位长度,所得图象经过点⎝⎛⎭⎪⎫2π3,0,则ω的最小值是( )A.32B .2C .1 D.12解析:选 C 依题意得,函数f ⎝ ⎛⎭⎪⎫x +π3=sin ωx +π3(ω>0)的图象过点⎝ ⎛⎭⎪⎫2π3,0,于是有f2π3+π3=sin ω2π3+ π3=sin ωπ=0(ω>0),则ωπ=k π,k ∈Z ,即ω=k ∈Z ,因此正数ω的最小值是1,故选C.3.(2017·陕西质检)已知函数f (x )=sin(ωx +φ)⎝ ⎛⎭⎪⎫ω>0,-π2≤φ≤π2的图象上的一个最高点和它相邻的一个最低点的距离为22,且过点⎝⎛⎭⎪⎫2,-12,则函数f (x )=________.解析:依题意得22+⎝ ⎛⎭⎪⎫πω2=22,则πω=2,即ω=π2,所以f (x )=sin ⎝ ⎛⎭⎪⎫π2x +φ,由于该函数图象过点2,-12,因此sin(π+φ)=-12,即sin φ=12,而-π2≤φ≤π2,故φ=π6,所以f (x )=sin ⎝⎛⎭⎪⎫π2x +π6. 答案:sin ⎝ ⎛⎭⎪⎫π2x +π64.(2017·兰州模拟)已知函数f (x )=A cos(ωx +φ)(A >0,ω>0,0<φ<π)为奇函数,该函数的部分图象如图所示,△EFG (点G 是图象的最高点)是边长为2的等边三角形,则f (1)=________.解析:由题意得,A =3,T =4=2πω,ω=π2.又∵f (x )=A cos(ωx +φ)为奇函数,∴φ=π2+k π,k ∈Z ,∵0<φ<π,则φ=π2,∴f (x )=3cos ⎝ ⎛⎭⎪⎫π2x +π2,∴f (1)=- 3.答案:- 3[典例感悟][典例] (1)(2017·沈阳质检)已知f (x )=2sin 2x +2sin x cos x ,则f (x )的最小正周期和一个单调递减区间分别为( )A .2π,⎣⎢⎡⎦⎥⎤3π8,7π8B .π,⎣⎢⎡⎦⎥⎤3π8,7π8C .2π,⎣⎢⎡⎦⎥⎤-π8,3π8D .π,⎣⎢⎡⎦⎥⎤-π8,3π8(2)(2017·全国卷Ⅲ)设函数f (x )=cos ⎝⎛⎭⎪⎫x +π3,则下列结论错误的是( )A .f (x )的一个周期为-2πB .y =f (x )的图象关于直线x =8π3对称C .f (x +π)的一个零点为x =π6D .f (x )在⎝ ⎛⎭⎪⎫π2,π单调递减 (3)(2016·全国卷Ⅰ)已知函数f (x )=sin(ωx +φ)⎝ ⎛⎭⎪⎫ω>0,|φ|≤π2,x =-π4为f (x )的零点,x =π4为y =f (x )图象的对称轴,且f (x )在⎝ ⎛⎭⎪⎫π18,5π36上单调,则ω的最大值为( )A .11B .9C .7D .5[解析] (1)f (x )=2sin 2x +2sin x cos x =1-cos 2x +sin 2x =2sin ⎝ ⎛⎭⎪⎫2x -π4+1,则T=2π2=π.由π2+2k π≤2x -π4≤3π2+2k π(k ∈Z),得3π8+k π≤x ≤7π8+k π(k ∈Z),令k =0得f (x )在⎣⎢⎡⎦⎥⎤3π8,7π8上单调递减,故选B.(2)根据函数解析式可知函数f (x )的最小正周期为2π,所以函数的一个周期为-2π,A 正确;当x =8π3时,x +π3=3π,所以cos x +π3=-1,所以B 正确;f (x +π)=cos ⎝ ⎛⎭⎪⎫x +π+π3=cos ⎝⎛⎭⎪⎫x +4π3,当x =π6时,x +4π3=3π2,所以f (x +π)=0,所以C 正确;函数f (x )=cos ⎝ ⎛⎭⎪⎫x +π3在⎝ ⎛⎭⎪⎫π2,2π3上单调递减,在⎝ ⎛⎭⎪⎫2π3,π上单调递增,故D 不正确.(3)由题意得⎩⎪⎨⎪⎧-π4ω+φ=k 1π,k 1∈Z ,π4ω+φ=k 2π+π2,k 2∈Z ,且|φ|≤π2,则ω=2k +1,k ∈Z ,φ=π4或φ=-π4.对比选项,将选项各值依次代入验证:若ω=11,则φ=-π4,此时f (x )=sin ⎝ ⎛⎭⎪⎫11x -π4,f (x )在区间⎝ ⎛⎭⎪⎫π18,3π44上单调递增,在区间⎝⎛⎭⎪⎫3π44,5π36上单调递减,不满足f (x )在区间⎝ ⎛⎭⎪⎫π18,5π36上单调;若ω=9,则φ=π4,此时f (x )=sin ⎝ ⎛⎭⎪⎫9x +π4,满足f (x )在区间⎝ ⎛⎭⎪⎫π18,5π36上单调递减,故选B.[答案] (1)B (2)D (3)B[方法技巧]1.求函数单调区间的方法(1)代换法:求形如y =A sin(ωx +φ)(或y =A cos(ωx +φ))(A ,ω,φ为常数,A ≠0,ω>0)的单调区间时,令ωx +φ=z ,得y =A sin z (或y =A cos z ),然后由复合函数的单调性求得.(2)图象法:画出三角函数的图象,结合图象求其单调区间. 2.判断对称中心与对称轴的方法利用函数y =A sin(ωx +φ)的对称轴一定经过图象的最高点或最低点,对称中心一定是函数的零点这一性质,通过检验f (x 0)的值进行判断.3.求三角函数周期的常用结论(1)y =A sin(ωx +φ)和y =A cos(ωx +φ)的最小正周期为2π|ω|,y =tan ()ωx +φ的最小正周期为π|ω|.(2)正弦曲线、余弦曲线相邻两对称中心、相邻两对称轴之间的距离是12个周期,相邻的对称中心与对称轴之间的距离是14个周期;正切曲线相邻两对称中心之间的距离是12个周期.[演练冲关]1.(2017·洛阳模拟)下列函数中,是周期函数且最小正周期为π的是( ) A .y =sin x +cos xB .y =sin 2x -3cos 2xC .y =cos|x |D .y =3sin x 2cos x2解析:选B 对于A ,函数y =sin x +cos x =2sin x +π4的最小正周期是2π,不符合题意;对于B ,函数y =sin 2x -3cos 2x =121-cos 2x -32(1+cos 2x )=1-32-1+32cos 2x 的最小正周期是π,符合题意;对于C ,y =cos|x |=cos x 的最小正周期是2π,不符合题意;对于D ,函数y =3sin x 2cos x 2=32sin x 的最小正周期是2π,不符合题意.故选B.2.(2017·长春质检)关于函数y =2sin3x +π4+1,下列叙述有误的是( )A .其图象关于直线x =-π4对称B .其图象可由y =2sin ⎝ ⎛⎭⎪⎫x +π4+1图象上所有点的横坐标变为原来的13得到C .其图象关于点⎝⎛⎭⎪⎫11π12,0对称 D .其值域是[-1,3]解析:选C 由3x +π4=π2+k π(k ∈Z)解得x =π12+k π3,k ∈Z ,取k =-1,得函数y =2sin3x+π4+1的一个对称轴为x =-π4,故A 正确;由图象变换知识可得横坐标变为原来的13,就是把x 的系数扩大3倍,故B 正确;由3x +π4=k π(k ∈Z)解得x =-π12+k π3,k ∈Z ,取k =3,得x=11π12,此时y =1,所以函数y =2sin ⎝ ⎛⎭⎪⎫3x +π4+1的对称中心为⎝ ⎛⎭⎪⎫11π12,1,故C 错误;由于-1≤sin3x +π4≤1,所以函数y =2sin ⎝⎛⎭⎪⎫3x +π4+1的值域为[-1,3],故D 正确.3.(2018届高三·湘中名校联考)已知函数f (x )=sin ωx -π6+12,ω>0,x ∈R ,且f (α)=-12,f (β)=12.若|α-β|的最小值为3π4,则函数的单调递增区间为________.解析:由f (α)=-12,f (β)=12,|α-β|的最小值为3π4,知T 4=3π4,即T =3π=2πω,所以ω=23,所以f (x )=sin ⎝ ⎛⎭⎪⎫23x -π6+12.由-π2+2k π≤23x -π6≤π2+2k π(k ∈Z),得-π2+3k π≤x ≤π+3k π()k ∈Z ,即函数f (x )的单调递增区间为-π2+3k π,π+3k π,k ∈Z.答案:-π2+3k π,π+3k π,k ∈Z[典例感悟][典例] (1)(2016·全国卷Ⅱ)函数f (x )=cos 2x +6cos π2-x 的最大值为( )A .4B .5C .6D .7(2)函数f (x )=sin ⎝ ⎛⎭⎪⎫2x +π3在⎣⎢⎡⎦⎥⎤0,π2上的值域为________. [解析] (1)∵f (x )=cos 2x +6cos π2-x =cos 2x +6sin x =1-2sin 2x +6sin x =-2⎝⎛⎭⎪⎫sin x -322+112,又sin x ∈[-1,1],∴当sin x =1时,f (x )取得最大值5. (2)∵x ∈⎣⎢⎡⎦⎥⎤0,π2,∴2x +π3∈⎣⎢⎡⎦⎥⎤π3,4π3,∴当2x +π3=π2,即x =π12时,f (x )max =1.当2x +π3=4π3,即x =π2时,f (x )min =-32,∴f (x )∈⎣⎢⎡⎦⎥⎤-32,1. [答案] (1)B (2)⎣⎢⎡⎦⎥⎤-32,1 [方法技巧]求三角函数的值域(最值)的常见类型及方法[演练冲关]1.当x ∈⎣⎢⎡⎦⎥⎤π6,7π6时,函数y =3-sin x -2cos 2x 的最小值是________,最大值是________.解析:y =3-sin x -2cos 2x =3-sin x -2(1-sin 2x )=2⎝⎛⎭⎪⎫sin x -142+78.∵x ∈⎣⎢⎡⎦⎥⎤π6,7π6,∴sin x ∈⎣⎢⎡⎦⎥⎤-12,1.∴当sin x =14时,y min =78,当sin x =-12或sin x =1时,y max =2.答案:7822.设x ∈⎝⎛⎭⎪⎫0,π2,则函数y =sin 2x 2sin 2x +1的最大值为________. 解析:因为x ∈⎝ ⎛⎭⎪⎫0,π2,所以tan x >0,所以函数y =sin 2x 2sin 2x +1=2sin x cos x 3sin 2x +cos 2x =2tan x 3tan 2x +1=23tan x +1tan x ≤223=33,当且仅当3tan x =1tan x 时等号成立,故函数的最大值为33. 答案:33 3.(2017·南宁模拟)已知函数f (x )=cos3x +π3,其中x ∈⎣⎢⎡⎦⎥⎤ π6,m ⎝ ⎛⎭⎪⎫m ∈R 且m >π6,若f (x )的值域是⎣⎢⎡⎦⎥⎤-1,-32,则m 的取值范围是________. 解析:由x ∈⎣⎢⎡⎦⎥⎤π6,m ,可知5π6≤3x +π3≤3m +π3,∵f ⎝ ⎛⎭⎪⎫π6=cos 5π6=-32,且f ⎝ ⎛⎭⎪⎫2π9=cos π=-1,∴要使f (x )的值域是⎣⎢⎡⎦⎥⎤-1,-32,需要π≤3m +π3≤7π6,即2π9≤m ≤5π18. 答案:⎣⎢⎡⎦⎥⎤2π9,5π18[必备知能·自主补缺] (一) 主干知识要记牢 1.三角函数的图象及常用性质2.三角函数的两种常见的图象变换 (1)y =sin x ――――――→向左φ或向右φ平移|φ|个单位y =sin(x +φ)――――――――――――→横坐标变为原来的1ω纵坐标不变y =sin(ωx +φ) ――→纵坐标变为原来的A 倍横坐标不变y =A sin(ωx +φ)(A >0,ω>0).(2)y =sin x 错误!y =sin ωx ――→向左φ或向右φ 平移⎪⎪⎪⎪⎪⎪φω个单位y =sin(ωx +φ)――――――→纵坐标变为原来的A 倍横坐标不变y =A sin(ωx +φ)(A >0,ω>0). (二) 二级结论要用好1.sin α-cos α>0⇔α的终边在直线y =x 上方(特殊地,当α在第二象限时有 sin α-cos α>1).2.sin α+cos α>0⇔α的终边在直线y =-x 上方(特殊地,当α在第一象限时有sin α+cos α>1).(三) 易错易混要明了求y =A sin(ωx +φ)的单调区间时,要注意ω,A 的符号.ω<0时,应先利用诱导公式将x 的系数转化为正数后再求解;在书写单调区间时,弧度和角度不能混用,需加2k π时,不要忘掉k ∈Z ,所求区间一般为闭区间.如求函数f (x )=2sin ⎝ ⎛⎭⎪⎫π3-x 的单调减区间,应将函数化为f (x )=-2sin ⎝⎛⎭⎪⎫x -π3,转化为求函数y =sin x -π3的单调增区间.[课时跟踪检测]A 组——12+4提速练一、选择题1.(2017·宝鸡质检)函数f (x )=tan ⎝ ⎛⎭⎪⎫2x -π3的单调递增区间是( ) A.⎣⎢⎡⎦⎥⎤k π2-π12,k π2+5π12(k ∈Z)B.⎝⎛⎭⎪⎫k π2-π12,k π2+5π12(k ∈Z) C.⎝⎛⎭⎪⎫k π+π6,k π+2π3(k ∈Z)D.⎣⎢⎡⎦⎥⎤k π-π12,k π+5π12(k ∈Z) 解析:选B 由k π-π2<2x -π3<k π+π2(k ∈Z)得,k π2-π12<x <k π2+5π12(k ∈Z),所以函数f (x )=tan2x -π3的单调递增区间为k π2-π12,k π2+5π12(k ∈Z),故选B.2.函数f (x )=sin(ωx +φ)x ∈R ,ω>0,|φ|<π2的部分图象如图所示,则函数f (x )的解析式为( )A .f (x )=sin ⎝ ⎛⎭⎪⎫2x +π4B .f (x )=sin ⎝ ⎛⎭⎪⎫2x -π4C .f (x )=sin ⎝⎛⎭⎪⎫4x +π4 D .f (x )=sin ⎝⎛⎭⎪⎫4x -π4 解析:选A 由题图可知, 函数f (x )的最小正周期为T =2πω=⎝ ⎛⎭⎪⎫3π8-π8×4=π,所以ω=2,即f (x )=sin(2x +φ).又函数f (x )的图象经过点⎝ ⎛⎭⎪⎫π8,1,所以sin π4+φ=1,则π4+φ=2k π+π2(k ∈Z),解得φ=2k π+π4(k ∈Z),又|φ|<π2,所以φ=π4,即函数f (x )=sin2x+π4,故选A. 3.(2017·天津高考)设函数f (x )=2sin(ωx +φ),x ∈R ,其中ω>0,|φ|<π.若f ⎝⎛⎭⎪⎫5π8=2,f ⎝⎛⎭⎪⎫11π8=0,且f (x )的最小正周期大于2π,则( )A .ω=23,φ=π12B .ω=23,φ=-11π12C .ω=13,φ=-11π24D .ω=13,φ=7π24解析:选A 法一:由f ⎝ ⎛⎭⎪⎫5π8=2,得5π8ω+φ=π2+2k π(k ∈Z),①由f ⎝⎛⎭⎪⎫11π8=0,得11π8ω+φ=k ′π(k ′∈Z),②由①②得ω=-23+43(k ′-2k ).又最小正周期T =2πω>2π,所以0<ω<1,ω=23.又|φ|<π,将ω=23代入①得φ=π12.选项A 符合.法二:∵f ⎝⎛⎭⎪⎫5π8=2,f ⎝ ⎛⎭⎪⎫11π8=0,且f (x )的最小正周期大于2π, ∴f (x )的最小正周期为4⎝⎛⎭⎪⎫11π8-5π8=3π,∴ω=2π3π=23,∴f (x )=2sin ⎝ ⎛⎭⎪⎫23x +φ.由2sin ⎝ ⎛⎭⎪⎫23×5π8+φ=2,得φ=2k π+π12,k ∈Z.又|φ|<π,∴取k =0,得φ=π12.故选A.4.(2017·湖北荆州质检)函数f (x )=2x -tan x 在⎝ ⎛⎭⎪⎫-π2,π2上的图象大致为( )解析:选C 因为函数f (x )=2x -tan x 为奇函数,所以函数图象关于原点对称,排除选项A ,B ,又当x →π2时,y <0,排除选项D ,故选C.5.(2017·安徽芜湖模拟)若将函数y =sin 2⎝⎛⎭⎪⎫x +π6的图象向右平移m (m >0)个单位长度后所得的图象关于直线x =π4对称,则m 的最小值为( )A.π12B.π6C.π4D.π3解析:选B 平移后所得的函数图象对应的解析式是y =sin 2⎝ ⎛⎭⎪⎫x -m +π6,因为该函数的图象关于直线x =π4对称,所以2⎝ ⎛⎭⎪⎫π4-m +π6=k π+π2(k ∈Z),所以m =π6-k π2(k ∈Z),又m >0,故当k =0时,m 最小,此时m =π6.6.(2017·云南检测)函数f (x )=sin(ωx +φ)ω>0,|φ|<π2的部分图象如图所示,则f (x )的单调递增区间为( )A .(-1+4k π,1+4k π),k ∈ZB .(-3+8k π,1+8k π),k ∈ZC .(-1+4k,1+4k ),k ∈ZD .(-3+8k,1+8k ),k ∈Z解析:选D 由题图,知函数f (x )的最小正周期为T =4×(3-1)=8,所以ω=2πT =π4,所以f (x )=sin π4x +φ.把(1,1)代入,得sin π4+φ=1,即π4+φ=π2+2k π(k ∈Z),又|φ|<π2,所以φ=π4,所以f (x )=sin π4x +π4.由2k π-π2≤π4x +π4≤2k π+π2(k ∈Z),得8k -3≤x ≤8k+1(k ∈Z),所以函数f (x )的单调递增区间为(8k -3,8k +1)(k ∈Z),故选D.7.(2017·全国卷Ⅲ)函数f (x )=15sin ⎝ ⎛⎭⎪⎫x +π3+cos ⎝ ⎛⎭⎪⎫x -π6的最大值为( )A.65 B .1 C.35D.15解析:选A 因为cos ⎝ ⎛⎭⎪⎫x -π6=cos ⎣⎢⎡⎦⎥⎤⎝⎛⎭⎪⎫x +π3-π2=sin ⎝ ⎛⎭⎪⎫x +π3,所以f (x )=65sin ⎝ ⎛⎭⎪⎫x +π3,于是f (x )的最大值为65.8.(2017·武昌调研)若f (x )=cos 2x +a cos π2+x 在区间⎝ ⎛⎭⎪⎫π6,π2上是增函数,则实数a 的取值范围为( )A .[-2,+∞)B .(-2,+∞)C .(-∞,-4)D .(-∞,-4]解析:选D f (x )=1-2sin 2x -a sin x ,令sin x =t ,t ∈⎝ ⎛⎭⎪⎫12,1,则g (t )=-2t 2-at +1,t ∈⎝ ⎛⎭⎪⎫12,1,因为f (x )在⎝ ⎛⎭⎪⎫π6,π2上单调递增,所以-a 4≥1,即a ≤-4,故选D.9.已知函数f (x )=sin(2x +φ)(0<φ<π),若将函数f (x )的图象向左平移π6个单位长度后所得图象对应的函数为偶函数,则φ=( )A.5π6B.2π3C.π3 D.π6解析:选 D 函数f (x )的图象向左平移π6个单位长度后所得图象对应的函数解析式为y =sin2x +π6+φ=sin ⎝ ⎛⎭⎪⎫2x +π3+φ,由于该函数是偶函数,∴π3+φ=π2+k π(k ∈Z),即φ=π6+k π(k ∈Z),又0<φ<π,∴φ=π6,故选D.10.若函数f (x )=sin ωx +3cos ωx (ω>0)满足f (α)=-2,f (β)=0,且|α-β|的最小值为π2,则函数f (x )的解析式为( )A .f (x )=2sin ⎝ ⎛⎭⎪⎫x +π3B .f (x )=2sin ⎝ ⎛⎭⎪⎫x -π3C .f (x )=2sin ⎝ ⎛⎭⎪⎫x +π6D .f (x )=2sin ⎝⎛⎭⎪⎫x -π6 解析:选A f (x )=sin ωx +3cos ωx =2sin ωx +π3.因为f (α)=-2,f (β)=0,且|α-β|min =π2,所以T 4=π2,得T =2π(T 为函数f (x )的最小正周期),故ω=2πT=1,所以f (x )=2sin ⎝⎛⎭⎪⎫x +π3,故选A.11.(2018届高三·广西三市联考)已知x =π12是函数f (x )=3sin(2x +φ)+cos(2x +φ)(0<φ<π)图象的一条对称轴,将函数f (x )的图象向右平移3π4个单位长度后得到函数g (x )的图象,则函数g (x )在-π4,π6上的最小值为( )A .-2B .-1C .- 2D .- 3解析:选 B f (x )=3sin(2x +φ)+cos(2x +φ)=2sin ⎝ ⎛⎭⎪⎫2x +π6+φ.∵x =π12是f (x )=2sin ⎝⎛⎭⎪⎫2x +π6+φ图象的一条对称轴,∴2×π12+π6+φ=k π+π2(k ∈Z),即φ=π6+k π(k ∈Z),∵0<φ<π,∴φ=π6,则f (x )=2sin2x +π3,∴g (x )=2sin ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫x -3π4+π3=-2sin2x -π6,则g (x )在⎣⎢⎡⎦⎥⎤-π4,π6上的最小值为g ⎝ ⎛⎭⎪⎫π6=-1,故选B.12.(2017·广州模拟)已知函数f (x )=sin(ωx +φ)+cos(ωx +φ)(ω>0,0<φ<π)是奇函数,直线y =2与函数f (x )的图象的两个相邻交点的横坐标之差的绝对值为π2,则( )A .f (x )在⎝ ⎛⎭⎪⎫0,π4上单调递减B .f (x )在⎝ ⎛⎭⎪⎫π8,3π8上单调递减C .f (x )在⎝ ⎛⎭⎪⎫0,π4上单调递增D .f (x )在⎝ ⎛⎭⎪⎫π8,3π8上单调递增 解析:选D f (x )=sin(ωx +φ)+cos(ωx +φ)=2sin ωx +φ+π4,因为0<φ<π且f (x )为奇函数,所以φ=3π4,即f (x )=-2sin ωx ,又直线y =2与函数f (x )的图象的两个相邻交点的横坐标之差的绝对值为π2,所以函数f (x )的最小正周期为π2,由2πω=π2,可得ω=4,故f (x )=-2sin 4x ,由2k π+π2≤4x ≤2k π+3π2,k ∈Z ,得k π2+π8≤x ≤k π2+3π8,k ∈Z ,令k =0,得π8≤x ≤3π8,此时f (x )在⎝ ⎛⎭⎪⎫π8,3π8上单调递增,故选D.。
高考数学二轮复习 第2部分 八大难点突破 难点1 与三角变换、平面向量综合的三角形问题学案

难点一 与三角变换、平面向量综合的三角形问题(对应学生用书第62页)高考数学命题注重知识的整体性和综合性,重视在知识的交汇处考察,对三角形问题的考察重点在于三角变换、向量综合,它们之间互相联系、互相交叉,不仅考察三角变换,同时深化了向量的运算,体现了向量的工具作用,试题综合性较高,所以要求学生有综合处理问题的能力,纵观最近几年高考,试题难度不大,但是如果某一知识点掌握不到位,必会影响到整个解题过程 ,本文从以下几个方面阐述解题思路,以达到抛砖引玉的目的. 1.向量运算与三角形问题的综合运用解答这类题,首先向量的基本概念和运算必须熟练,要很好的掌握正弦定理、余弦定理的应用条件,其次要注意把题目中的向量用三角中边和角表示,体现向量的工具作用.【例1】 (镇江市2017届高三上学期期末)已知向量m =(cos α,-1),n =(2,sin α),其中α∈⎝⎛⎭⎪⎫0,π2,且m ⊥n .(1)求cos 2α的值; (2)若sin(α-β)=1010,且β∈⎝⎛⎭⎪⎫0,π2,求角β的值.[解] 法一(1)由m ⊥n 得,2cos α-sin α=0,sin α=2cos α, 代入cos 2α+sin 2α=1,得5cos 2α=1,且α∈⎝⎛⎭⎪⎫0,π2,则cos α=55,sin α=255, 则cos 2α=2cos 2α-1=2×⎝⎛⎭⎪⎫552-1=-35. (2)由α∈⎝ ⎛⎭⎪⎫0,π2,β∈⎝ ⎛⎭⎪⎫0,π2得,α-β∈⎝ ⎛⎭⎪⎫-π2,π2.因sin(α-β)=1010,则cos(α-β)=31010. 则sin β=sin[α-(α-β)]=sin αcos(α-β)-cos αsin(α-β) =255×31010-55×1010=22,因β∈⎝⎛⎭⎪⎫0,π2,则β=π4.法二(1)由m ⊥n 得,2cos α-sin α=0,tan α=2,故cos 2α=cos 2α-sin 2α=cos 2α-sin 2αcos 2α+sin 2α=1-tan 2α1+tan 2α=1-41+4=-35. (2)由(1)知,2cos α-sin α=0,且cos 2α+sin 2α=1,α∈⎝ ⎛⎭⎪⎫0,π2,β∈⎝⎛⎭⎪⎫0,π2,则sin α=255,cos α=55,由α∈⎝ ⎛⎭⎪⎫0,π2,β∈⎝ ⎛⎭⎪⎫0,π2得,α-β∈⎝ ⎛⎭⎪⎫-π2,π2. 因sin(α-β)=1010,则cos(α-β)=31010. 则sin β=sin[α-(α-β)]=sin αcos(α-β)-cos αsin(α-β) =255×31010-55×1010=22, 因β∈⎝ ⎛⎭⎪⎫0,π2,则β=π4.2.三角函数与三角形问题的结合三角函数的起源是三角形,所以经常会联系到三角形,这类型题是在三角形这个载体上的三角变换,第一:既然是三角形问题,就会用到三角形内角和定理和正、余弦定理以及相关三角形理论,及时边角转换,可以帮助发现问题解决思路;第二:它也是一种三角变换,只不过角的范围缩小了,因此常见的三角变换方法和原则都是适用的. 【例2】 (2017·江苏省无锡市高考数学一模)在△ABC 中,a ,b ,c 分别为角A ,B ,C 的对边.若a cos B =3,b cos A =1,且A -B =π6.(1)求边c 的长; (2)求角B 的大小.【导学号:56394089】[解] (1)∵a cos B =3,b cos A =1,∴a ×a 2+c 2-b 22ac =3,b ×b 2+c 2-a 22bc=1,化为:a 2+c 2-b 2=6c ,b 2+c 2-a 2=2c . 相加可得:2c 2=8c ,解得c =4. (2)由(1)可得:a 2-b 2=8.由正弦定理可得:a sin A =b sin B =4sin C,又A -B =π6,∴A =B +π6,C =π-(A +B )=π-⎝ ⎛⎭⎪⎫2B +π6,可得sin C =sin ⎝⎛⎭⎪⎫2B +π6. ∴a =4sin ⎝⎛⎭⎪⎫B +π6sin ⎝ ⎛⎭⎪⎫2B +π6,b =4sin B sin ⎝⎛⎭⎪⎫2B +π6.∴16sin 2⎝ ⎛⎭⎪⎫B +π6-16sin 2B =8sin 2⎝⎛⎭⎪⎫2B +π6, ∴1-cos ⎝ ⎛⎭⎪⎫2B +π3-(1-cos 2B )=sin 2⎝ ⎛⎭⎪⎫2B +π6,即cos 2B -cos ⎝ ⎛⎭⎪⎫2B +π3=sin 2⎝⎛⎭⎪⎫2B +π6, ∴-2sin ⎝ ⎛⎭⎪⎫2B +π6sin ⎝ ⎛⎭⎪⎫-π6=sin 2⎝ ⎛⎭⎪⎫2B +π6,∴sin ⎝ ⎛⎭⎪⎫2B +π6=0或sin ⎝ ⎛⎭⎪⎫2B +π6=1,B ∈⎝ ⎛⎭⎪⎫0,5π12. 解得:B =π6.3.三角变换、向量、三角形问题的综合高考会将几方面结合起来命题,三角函数主要考察它的图象、常见性质;三角形主要考察正弦定理、余弦定理以及有关的三角形性质;向量主要考察向量的运算、向量的模、向量的夹角、向量的垂直以及向量的共线,体现向量的工具作用,三角变换主要考察求值、化简、变形.【例3】 (扬州市2017届高三上学期期中)在△ABC 中,AB =6,AC =32,AB →·AC →=-18.(1)求BC 的长; (2)求tan 2B 的值.[解] (1)因为AB →·AC →=AB ×AC ×cos A =-18,且AB =6,AC =32,BC =AB 2+AC 2-2AB ×AC ×cos A=62+22--=310.(2)法一:在△ABC 中,AB =6,AC =32,BC =310,cos B =BA 2+BC 2-AC 22BA ×BC=62+102-222×6×310=31010,又B ∈(0,π),所以sin B =1-cos 2B =1010, 所以tan B =sin B cos B =13,所以tan 2B =2tan B1-tan 2B=231-⎝ ⎛⎭⎪⎫132=34. 法二:由AB =6,AC =32,AB →·AC →=AB ×AC ×cos A =-18可得cos A =-22,又A ∈(0,π),所以A =3π4.在△ABC 中,BC sin A =ACsin B,所以sin B =AC ×sin A BC =32×22310=1010, 又B ∈⎝⎛⎭⎪⎫0,π4,所以cos B =1-sin 2B =31010,所以tan B =sin B cos B =13,所以tan 2B =2tan B1-tan 2B=231-⎝ ⎛⎭⎪⎫132=34. 4.实际应用中的三角形问题在实际生活中往往会遇到关于距离、角度、高度的测量问题,可以借助平面图形,将上述量放在一个三角形中,借助解三角形知识达到解决问题的目的.【例4】 (2017·江苏省淮安市高考数学二模)一缉私艇巡航至距领海边界线l (一条南北方向的直线)3.8海里的A 处,发现在其北偏东30°方向相距4海里的B 处有一走私船正欲逃跑,缉私艇立即追击,已知缉私艇的最大航速是走私船最大航速的3倍,假设缉私艇和走私船均按直线方向以最大航速航行.图1(1)若走私船沿正东方向逃离,试确定缉私艇的追击方向,使得用最短时间在领海内拦截成功;(参考数据:sin 17°≈36,33≈5.744 6) (2)问:无论走私船沿何方向逃跑,缉私艇是否总能在领海内成功拦截?并说明理由. [解] (1)设缉私艇在C 处与走私船相遇(如图),则AC =3BC .△ABC 中,由正弦定理可得sin ∠BAC =sin 120°3=36,∴∠BAC =17°,∴缉私艇应向北偏东47°方向追击,△ABC 中,由余弦定理可得cos 120°=16+BC 2-AC28BC,∴BC ≈1.686 15.B 到边界线l 的距离为3.8-4sin 30°=1.8,∵1.686 15<1.8,∴能用最短时间在领海内拦截成功.(2)以A 为原点,建立如图所示的坐标系,则B (2,23),设缉私艇在P (x ,y )处与走私船相遇,则PA =3PB ,即x 2+y 2=9[(x -2)2+(y -23)2],即⎝ ⎛⎭⎪⎫x -942+⎝ ⎛⎭⎪⎫y -9432=94,∴P 的轨迹是以⎝ ⎛⎭⎪⎫94,943为圆心,32为半径的圆, ∵圆心到边界线l :x =3.8的距离为1.55,大于圆的半径, ∴无论走私船沿何方向逃跑,缉私艇总能在领海内成功拦截.5.综合上述几个方面的阐述,解三角形问题不是孤立的,而是跟其他相关知识紧密联系在一起,通过向量的工具作用,将条件集中到三角形中,然后利用三角恒等变换、正弦定理和余弦定理及其相关知识解题,是常见的解题思路,为此,熟练掌握向量的基本概念和向量的运算,熟练进行三角变换和熟练运用正弦定理以及余弦定理是解题的关键. 6.向量与三角形问题的结合向量具有“双重身份”,既可以像数一样满足“运算性质”进行代数形式的运算,又可以利用它的几何意义进行几何形式的变换,同时向量加、减法的几何运算遵循三角形法则和平行四边形法则,这为向量和三角形问题的结合,提供了很好的几何背景.6.1 向量与三角形谈“心”内心(三角形内切圆圆心 ):三角形三条内角平分线的交点; 外心(三角形外接圆的圆心):三角形各边中垂线的交点; 垂心:三角形各边上高的交点; 重心:三角形各边中线的交点, 用向量形式可表示为如下形式:若P 是△ABC 内的一点,⎩⎪⎨⎪⎧AP →=λ⎝ ⎛⎭⎪⎫AB →|AB →|+AC →|AC →|,λ>0BP →=t ⎝ ⎛⎭⎪⎫BA →|BA →|+BC →|BC →|,t >0⇒P 是△ABC 的内心;若D 、E 两点分别是△ABC 的边BC 、CA 上的中点,且 ⎩⎨⎧DP →·PB →=DP →·PC →EP →·PC →=EP →·PA→⇒P 是△ABC 的外心;若GA →+GB →+GC →=0,则G 是△ABC 的重心;若P 是△ABC 所在平面内的一点,且PA →·PB →=PA →·PC →=PC →·PB →,则P 是△ABC 的垂心. 【例5】 (2017·江苏省泰州市高考数学一模)在△ABC 中,若BC →·BA →+2AC →·AB →=CA →·CB →,则sin A sin C的值为________. 【导学号:56394090】[解析] 在△ABC 中,设三条边分别为a 、b 、c ,三角分别为A 、B 、C , 由BC →·BA →+2AC →·AB →=CA →·CB →,得ac ·cos B +2bc ·cos A =ba ·cos C ,由余弦定理得:12(a 2+c 2-b 2)+(b 2+c 2-a 2)=12(b 2+a 2-c 2),化简得a 2c 2=2,∴a c =2,由正弦定理得sin A sin C =ac= 2.故答案为: 2.[答案] 26.2 判断三角形形状三角形的边可以看做向量的模长,三角形的内角可以看做向量的夹角,所以可利用向量的数量积和夹角公式或者其他线性运算,结合平面几何知识来判断三角形的形状 【例6】 △ABC 的三个内角A 、B 、C 成等差数列,(BA →+BC →)·AC →=0,则△ABC 一定是________三角形.[解析] △ABC 的三个内角A 、B 、C 成等差数列,则有2B =A +C ,所以B =π3,设D是AC 边的中点,则BA →+BC →=2BD →,所以2BD →·AC →=0,BD →⊥AC →,所以△ABC 一定是等边三角形. [答案] 等边。
2019-2020年高考数学二轮复习专题1.3三角函数与平面向量教学案(I)

C2
【答案】 D
2 .【 xx 课标 3,理 6】设函数 f ( x)= cos( x+) ,则下列结论错误的是
A. f ( x) 的一个周期为 - 2π
B. y=f ( x) 的图像关于直线 x=对称
C. f ( x+π) 的一个零点为 x=
D. f ( x) 在(, π) 单调递减
【答案】 D
【解析】函数的最小正周期为 ,则函数的周期为 ,取 ,可得函数 的一个周期为 ,选项 A 正确;函数的
平面向量:
掌握向量的加法和减法,掌握实数与向量的积,解两个向量共线的充要条件,解平面向量基本定,解平面
向量的坐标概念,掌握平面向量的坐标运算,掌握平面向量的数量积及其几何意义,了解用平面向量的数
量积可以处有关长度、角度和垂直问题,掌握向量垂直的条件
.
【命题规律】
(1) 高考对三角函数图象的考查主要包括三个方面:一是用五点法作图,二是图象变换,三是已知图象求解
2
17
2
a c 2ac 1 cosB , 所以
b=2.
9.【 xx 课标 3,理 17】△ ABC的内角 A, B, C的对边分别为 a, b, c. 已知 , a=2, b=2.
( 1)求 c;
( 2)设 D为 BC边上一点,且 ADAC求, △ ABD的面积 .
二.高考研究 【考纲解读】 1. 考纲要求 考纲要求: 三角函数:
对称轴为 ,即: ,取 可得 y=f ( x) 的图像关于直线 x=对称,选项 B 正确;
fx
cos x
3
cos x
,函数的零点满足 ,即 ,取 可得 f ( x+π) 的一个零点为
3
x=,选项 C正确;当 时, ,函数在该区间内不单调,选项 D错误;故选 D. 3.【 xx 课标 3,理 12】在矩形 ABCD中, AB=1,AD=2,动点 P 在以点 C为圆心且与 BD相切的圆上 . 若 = + ,
优品课件之高考数学三角函数、三角变换、解三角形、平面向量备考复习教案

高考数学三角函数、三角变换、解三角形、平面向量备考复习教案专题二:三角函数、三角变换、解三角形、平面向量【备考策略】根据近几年高考命题特点和规律,复习本专题时要注意以下几方面: 1.掌握三角函数的概念、图象与性质;熟练掌握同角公式、诱导公式、和角与差角、二倍角公式,且会推导掌握它们之间的内在联系。
掌握正弦、余弦定理,平面向量及有关的概念,向量的数量积以及坐标形式的运算。
2.熟练掌握解决以下问题的思想方法本专题试题以选择题、填空题、解答题的形式出现,因此复习中要重视选择、填空题的一些特殊方法,如数形结合法、函数法、代入检验法、特殊值法、待定系数法、排除法等。
另外对有些具体问题还要掌握和运用一些基本结论(如对正弦、余弦函数的图象的对称轴经过最高点或最低点,对称中心为三角函数值为零的点,应熟练的写出对称轴的方程及对称中心的坐标;应用三角函数线解三角方程、比较三角函数值的大小;对三角函数的角的限制及讨论;常数1的代换等)。
3.特别关注(1)与三角函数的图象与性质有关的选择、填空题;(2)向量、解三角形以及三角函数的图象与性质等知识交汇点命题;(3)与测量、距离、角度有关的解三角形问题。
第一讲三角函数的图象与性质【最新考纲透析】 1.了解任意角、弧度制的概念,能进行弧度与角度的互化。
2.理解任意角三角函数(正弦、余弦、正切)的定义。
3.能利用单位圆中的三角函数线推导出的正弦、余弦、正切的诱导公式,能画出y=sinx,y=cosx,y=tanx的图象,了解三角函数的周期性。
4.理解正弦函数、余弦函数在区间[0, ]的性质(如单调性、最大值和最小值以及图象与x轴的交点等),理解正切函数在区间的单调性。
5.理解同角三角函数的基本关系式:sin2x+cos2x=1,sinx/cosx=tanx. 6.了解函数y=Asin(ωx+φ)的图象,了解参数A,ω,φ对函数图象变化的影响。
7.了解三角函数是描述周期变化现象的重要函数模型,会用三角函数解决一些简单实际问题。
2021-2022年高考数学二轮复习专题1.3三角函数与平面向量教学案

2021年高考数学二轮复习专题1.3三角函数与平面向量教学案xx浙江文16;理16; xx 浙江14. 7.平面向量的实际背景及基本概念理解平面向量及几何意义,理解零向量、向量的模、单位向量、向量相等、平行向量、向量夹角的概念。
xx·浙江理7;xx •浙江文22; xx •浙江理15; xx •浙江文理15; 8. 向量的线性运算掌握向量加法、减法、数乘的概念,并理解其几何意义。
xx·浙江7;xx •浙江文13, 理.15; xx •浙江文理15;9.平面向量的基本定理及坐标表示1.理解平面向量的基本定理及其意义,会用平面向量基本定理解决简单问题。
2.掌握平面向量的正交分解及其坐标表示。
3.掌握平面向量的加法、减法与数乘的坐标运算。
xx •浙江文22; 10.平面向量的数量积 ①理解平面向量数量积的概念及其意义,了解平面向量的数量积与向量投影的关系。
②掌握平面向量数量积的坐标运算,掌握数量积与两个向量的夹角之间的关系。
③会用坐标表示平面向量的平行与垂直。
xx •浙江文17;理7,17; xx •浙江文9;理8; xx •浙江文13;理15; xx·浙江文理15; xx •浙江10,15. 11.向量的应用会用向量方法解决某些简单的平面几何问题.xx •浙江文17;理7;xx •浙江文22; xx •浙江10.【答案】又 ,则2212{ 25sin cos 1sin cos αααα=+= ,且,可得.【对点训练】【xx 届江西省六校第五次联考】已知, ,则__________. 【答案】【解析】∵,∴cosα<0.∵7sin2α=2cosα,即14sinαcosα=2cosα,∴, 则21143127sin cos sin πααα⎛⎫-==--=- ⎪⎝⎭. 【典例2】【xx 江西省赣州厚德外国语学校上学期第一次测试】的值是( ) A. B. C. D. 【答案】D【对点训练】【xx 河南省名校联盟第一次段考】已知圆:,点,,记射线与轴正半轴所夹的锐角为,将点绕圆心逆时针旋转角度得到点,则点的坐标为__________. 【答案】【解析】设射线OB 与轴正半轴的夹角为,有已知有,所以,且,C 点坐标为 .【考向预测】对于三角恒等变换,高考命题主要以公式的基本运用、计算为主,其中多以与角的范围、三角函数的性质、三角形等知识结合考查,在三角恒等变换过程中,准确记忆公式、适当变换式子、有效选取公式是解决问题的关键.热点二 三角函数的图象和性质【典例3】【xx 课标3,理6】设函数f (x )=cos (x +),则下列结论错误的是 A .f(x)的一个周期为−2πB .y=f(x)的图像关于直线x=对称C .f(x+π)的一个零点为x=D .f(x)在(,π)单调递减【答案】D 【解析】【对点训练】【xx天津,文理】设函数,,其中,.若,,且的最小正周期大于,则(A),(B),(C),(D),【答案】【例4】【xx浙江,18】已知函数f(x)=sin2x–cos2x– sin x cos x(x R).(Ⅰ)求的值.(Ⅱ)求的最小正周期及单调递增区间.【答案】(Ⅰ)2;(Ⅱ)最小正周期为,单调递增区间为.【解析】(Ⅱ)由与得)62sin(22sin 32cos )(π+-=--=x x x x f所以的最小正周期是 由正弦函数的性质得Z k k x k ∈+≤+≤+,2236222πππππ解得Z k k x k ∈+≤≤+,326ππππ所以的单调递增区间是.【对点训练】【xx 山东,理16】设函数()sin()sin()62f x x x ππωω=-+-,其中.已知.(Ⅰ)求;(Ⅱ)将函数的图象上各点的横坐标伸长为原来的2倍(纵坐标不变),再将得到的图象向左平移个单位,得到函数的图象,求在上的最小值. 【答案】(Ⅰ).(Ⅱ)得最小值.试题解析:(Ⅰ)因为()sin()sin()62f x x x ππωω=-+-,所以31()sin cos cos 2f x x x x ωωω=--133(sin cos )22x x ωω=-由题设知, 所以,. 故,,又, 所以.【典例5】【xx 新课标2】函数()的最大值是__________. 【答案】1【解析】化简三角函数的解析式,则 ,由可得,当时,函数取得最大值1.【对点训练】【xx 湖北省部分重点中学起点】设函数,其中θ∈,则导数f ′(1)的取值范围是________. 【答案】[,2]【解析】由题【例6】【xx课标1,理9】已知曲线C1:y=cos x,C2:y=sin (2x+),则下面结论正确的是()A.把C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线C2 B.把C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线C2 C.把C1上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线C2 D.把C1上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线C2 【答案】D【解析】【对点训练】已知函数的部分图象如图所示,下面结论正确的个数是( )①函数的最小正周期是;②函数在区间上是增函数;③函数的图象关于直线对称;④函数的图象可由函数的图象向左平移个单位长度得到A. 3B. 2C. 1D. 0【答案】C【解析】根据函数f(x)=sin(ωx+φ)(ω>0)的部分图象知,=−(−)=,∴T==π,ω=2;【考向预测】几年高考在对三角恒等变换考查的同时,对三角函数(特别是)图象与性质的考查力度有所加强,往往将恒等变换与图象和性质结合考查.其中三角函数的定义域值域、单调性、奇偶性、周期性、对称性以及图象变换是主要考查对象,难度仍然以中低档为主,重在对基础知识的考查,淡化特殊技巧,强调通解通法. 特别注意:(1)解答三角函数图像变换问题的关键是抓住“只能对函数关系式中的变换”的原则.(2)对于三角函数图像平移变换问题,其移变换规则是“左加右减”,并且在变换过程中只变换其中的自变量,如果的系数不是1,就要把这个系数提取后再确定变换的单位长度和方向,另外,当两个函数的名称不同时,首先要将函数名称统一,其次要把变换成,最后确定平移的单位,并根据的符号确定平移的方向.热点三解三角形【典例7】【xx浙江,14】已知△ABC,AB=AC=4,BC=2.点D为AB延长线上一点,BD=2,连结CD,则△BDC 的面积是______,cos∠BDC=_______.【答案】【解析】取BC中点E,DC中点F,由题意:,△ABE 中,,1115cos ,sin 14164DBC DBC ∴∠=-∠=-=, BC 115sin 22D S BD BC DBC ∴=⨯⨯⨯∠=△. 又2110cos 12sin ,sin 44DBC DBF DBF ∴∠=-∠=-∴∠=, 10cos sin BDC DBF ∴∠=∠=, 综上可得,△BCD 面积为,.【对点训练】【xx 届浙江省部分市学校(新昌中学、台州中学等)高三上9+1联考】设函数()22sin 2sin cos 6f x x x x π⎛⎫=++- ⎪⎝⎭.(1)求的单调递增区间;(2)若角满足, , 的面积为,求的值. 【答案】(1) , ;(2) .【典例8】【xx课标II,理17】的内角所对的边分别为,已知,(1)求;(2)若,的面积为,求.【答案】(1);(2).【解析】试题分析:利用三角形内角和定理可知,再利用诱导公式化简,利用降幂公式化简,结合求出;利用(1)中结论,利用勾股定理和面积公式求出,从而求出.【名师点睛】解三角形问题是高考高频考点,命题大多放在解答题的第一题,主要利用三角形的内角和定理,正、余弦定理、三角形面积公式等知识解题,解题时要灵活利用三角形的边角关系进行“边转角”“角转边”,另外要注意三者的关系,这样的题目小而活,备受老师和学生的欢迎。
数学二轮复习教案: 第一部分 专题二 三角函数、平面 向量 第二讲 三角恒等变换与解三角形
第二讲三角恒等变换与解三角形[考情分析]三角变换及解三角形是高考考查的热点,然而单独考查三角变换的题目较少,题目往往以解三角形为背景,在应用正弦定理、余弦定理的同时,经常应用三角变换进行化简,综合性比较强,但难度不大.年份卷别考查角度及命题位置201 7Ⅰ卷三角变换求值·T15正弦定理解三角形·T11Ⅲ卷三角函数求值·T4正弦定理解三角形·T15201 6Ⅰ卷利用余弦定理解三角形·T4Ⅱ利用正弦定理解[真题自检]1.(2017·高考全国卷Ⅰ)△ABC的内角A,B,C的对边分别为a,b,c。
已知sin B+sin A(sin C-cos C)=0,a=2,c=错误!,则C=( ) A.错误! B.错误!C。
错误!D。
错误!解析:因为sin B+sin A(sin C-cos C)=0,所以sin(A+C)+sin A·sin C-sin A·cos C=0,所以sin A cos C+cos A sin C+sin A sin C-sin A cos C=0,整理得sin C(sin A+cos A)=0,因为sin C≠0,所以sin A+cos A=0,所以tan A =-1,因为A∈(0,π),所以A=错误!,由正弦定理得sin C=错误!=错误!=错误!,又0<C〈错误!,所以C=错误!。
故选B。
答案:B2.(2016·高考全国卷Ⅲ)若tan θ=-错误!,则cos 2θ=()A.-错误!B.-错误!C。
错误! D.错误!解析:先利用二倍角公式展开,再进行“1"的代换,转化为关于tan θ的关系式进行求解.∵cos 2θ=错误!=错误!,又∵tan θ=-错误!,∴cos 2θ=错误!=错误!.答案:D3.(2017·高考全国卷Ⅰ)已知α∈(0,错误!),tan α=2,则cos错误!=________.解析:∵α∈(0,π2),tan α=2,∴sin α=错误!,cos α=错误!,∴cos(α-错误!)=cos αcos 错误!+sin αsin 错误!=错误!×(错误!+错误!)=错误!.答案:错误!三角恒等变换[方法结论]三角函数恒等变换“四大策略”(1)常值代换:特别是“1"的代换,1=sin2θ+cos2θ=tan 45° 等;(2)项的分拆与角的配凑:如sin2α+2cos2α=(sin2α+cos2α)+cos2α,α=(α-β)+β等;(3)降次与升次:正用二倍角公式升次,逆用二倍角公式降次;(4)弦、切互化:一般是切化弦.[题组突破]1.若tan α=-错误!,且α是第四象限角,则cos2(α-错误!)+sin(3π-α)cos(2π+α)+错误!cos2(α+π)=()A.-错误! B.错误!C.-13D。
江苏省高考数学二轮复习专题一三角函数与平面向量第2讲三角恒等变换与解三角形学案
第2讲 三角恒等变换与解三角形[考情考向分析] 正弦定理、余弦定理以及解三角形问题是高考的必考内容,主要考查:1.边和角的计算.2.三角形形状的判断.3.面积的计算.4.有关参数的范围问题.由于此内容应用性较强,与实际问题结合起来进行命题将是今后高考的一个关注点,不可轻视.热点一 三角恒等变换例1 (1)若cos ⎝ ⎛⎭⎪⎫α+π3=45,则cos ⎝ ⎛⎭⎪⎫π3-2α=________.答案 -725解析 ∵cos ⎝⎛⎭⎪⎫α+π3=45, ∴cos ⎝ ⎛⎭⎪⎫α+π3=sin ⎣⎢⎡⎦⎥⎤π2-⎝⎛⎭⎪⎫α+π3=sin ⎝ ⎛⎭⎪⎫π6-α=45,∴cos ⎝ ⎛⎭⎪⎫π3-2α=1-2sin 2⎝ ⎛⎭⎪⎫π6-α=-725.(2)在平面直角坐标系xOy 中,以Ox 轴为始边作角α,角α+π4的终边经过点P (-2,1).①求cos α的值; ②求cos ⎝⎛⎭⎪⎫5π6-2α的值.解 ①由于角α+π4的终边经过点P (-2,1),故cos ⎝ ⎛⎭⎪⎫α+π4=-255,sin ⎝ ⎛⎭⎪⎫α+π4=55, ∴cos α=cos ⎝⎛⎭⎪⎫α+π4-π4=cos ⎝ ⎛⎭⎪⎫α+π4cos π4+sin ⎝ ⎛⎭⎪⎫α+π4sin π4=-1010.②sin α=sin ⎝⎛⎭⎪⎫α+π4-π4=sin ⎝ ⎛⎭⎪⎫α+π4cos π4-cos ⎝⎛⎭⎪⎫α+π4sin π4=31010,则sin 2α=2sin αcos α=-35,cos 2α=cos 2α-sin 2α=-45,cos ⎝⎛⎭⎪⎫5π6-2α=cos 5π6cos 2α+sin 5π6sin 2α=43-310.思维升华 (1)三角变换的关键在于对两角和与差的正弦、余弦、正切公式,二倍角公式,三角恒等变换公式的熟记和灵活应用,要善于观察各个角之间的联系,发现题目所给条件与恒等变换公式的联系,公式的使用过程要注意正确性,要特别注意公式中的符号和函数名的变换,防止出现“张冠李戴”的情况.(2)求角问题要注意角的范围,要根据已知条件将所求角的范围尽量缩小,避免产生增解. 跟踪演练1 (1)已知cos ⎝ ⎛⎭⎪⎫π2+α=3sin ⎝ ⎛⎭⎪⎫α+7π6,则tan ⎝ ⎛⎭⎪⎫π12+α=________.答案 23-4解析 ∵cos ⎝ ⎛⎭⎪⎫π2+α=3sin ⎝ ⎛⎭⎪⎫α+7π6,∴-sin α=-3sin ⎝⎛⎭⎪⎫α+π6,∴sin α=3sin ⎝ ⎛⎭⎪⎫α+π6=3sin αcos π6+3cos αsin π6 =332sin α+32cos α, ∴tan α=32-33,又tan π12=tan ⎝ ⎛⎭⎪⎫π3-π4=tanπ3-tan π41+tan π3tanπ4=3-11+3=2-3, ∴tan ⎝ ⎛⎭⎪⎫π12+α=tanπ12+tan α1-tan π12tan α=()2-3+32-331-()2-3×32-33=23-4.(2)(2018·江苏如东中学等五校联考)已知α∈⎝ ⎛⎭⎪⎫π3,5π6,且cos ⎝⎛⎭⎪⎫α-π3=35,则sin α的值是________. 答案4+3310解析 ∵α∈⎝ ⎛⎭⎪⎫π3,5π6,∴α-π3∈⎝ ⎛⎭⎪⎫0,π2,给合同角三角函数基本关系式有: sin ⎝⎛⎭⎪⎫α-π3=1-cos 2⎝⎛⎭⎪⎫α-π3=45,则sin α=sin ⎝⎛⎭⎪⎫α-π3+π3=sin ⎝ ⎛⎭⎪⎫α-π3cos π3+cos ⎝ ⎛⎭⎪⎫α-π3sin π3=45×12+35×32=4+3310. 热点二 正弦定理、余弦定理例2 (2018·江苏泰州中学调研)如图,在圆内接△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,满足a cos C +c cos A =2b cos B .(1)求B 的大小;(2)若点D 是劣弧AC 上一点,AB =3,BC =2,AD =1,求四边形ABCD 的面积. 解 (1)方法一 设外接圆的半径为R ,则a =2R sin A ,b =2R sin B ,c =2R sin C , 代入得2R sin A cos C +2R sin C cos A =2×2R sin B cos B , 即sin A cos C +sin C cos A =2sin B cos B , 所以sin B =2sin B cos B . 所以sin B ≠0,所以cos B =12.又B 是三角形的内角, 所以B =π3.方法二 根据余弦定理,得a ·a 2+b 2-c 22ab +c ·b 2+c 2-a 22bc=2b ·cos B ,化简得cos B =12.因为0<B <π,所以B =π3.(2)在△ABC 中,AC 2=AB 2+BC 2-2AB ·BC cos∠ABC =9+4-2×3×2×12=7,所以AC =7.因为A ,B ,C ,D 四点共圆,所以∠ADC =2π3.在△ACD 中,AC 2=AD 2+CD 2-2AD ·CD cos∠ADC ,代入得7=1+CD 2-2·CD ·⎝ ⎛⎭⎪⎫-12,所以CD 2+CD -6=0,解得CD =2或CD =-3(舍). 所以S ABCD =S △ABC +S △ACD=12AB ·BC sin∠ABC +12AD ·CD sin∠ADC =12×3×2×32+12×1×2×32=2 3. 思维升华 关于解三角形问题,一般要用到三角形的内角和定理,正弦、余弦定理及有关三角形的性质,常见的三角变换方法和原则都适用,同时要注意“三统一”,即“统一角、统一函数、统一结构”,这是使问题获得解决的突破口.跟踪演练2 在锐角△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且cos A a +cos B b =23sin C 3a .(1)求角B 的大小; (2)已知a sin Csin A=4,△ABC 的面积为63,求边长b 的值. 解 (1)由已知得b cos A +a cos B =233b sin C ,由正弦定理得sin B cos A +cos B sin A =233sin B sin C ,∴sin(A +B )=233sin B sin C ,又在△ABC 中,sin(A +B )=sin C ≠0, ∴sin B =32,∵0<B <π2,∴B =π3. (2)由已知及正弦定理得c =4,又 S △ABC =63,B =π3,∴12ac sin B =63,得a =6,由余弦定理b 2=a 2+c 2-2ac cos B , 得 b =27.热点三 解三角形与三角函数的综合问题例3 (2018·江苏三校联考)在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,已知a 2-c 2=2b ,且sin A cos C =3cos A sin C . (1)求b 的值;(2)若B =π4,S 为△ABC 的面积,求S +82cos A cos C 的取值范围.解 (1)由正弦定理、余弦定理知sin A cos C =3cos A sin C 可等价变形为a ·a 2+b 2-c 22ab =3c ·b 2+c 2-a 22bc,化简得a 2-c 2=b 22.因为a 2-c 2=2b ,所以b =4或b =0(舍去).(2)由正弦定理b sin B =c sin C 得S =12bc sin A =12×4×4sinπ4sin A sin C =82sin A sin C ,所以S +82cos A cos C =82cos(A -C ) =82cos ⎝ ⎛⎭⎪⎫2A -3π4. 在△ABC 中,由⎩⎪⎨⎪⎧0<A <3π4,A >3π4-A ,得A ∈⎝⎛⎭⎪⎫3π8,3π4.所以2A -3π4∈⎝ ⎛⎭⎪⎫0,3π4,所以cos ⎝ ⎛⎭⎪⎫2A -3π4∈⎝ ⎛⎭⎪⎫-22,1, 所以S +82cos A cos C ∈(-8,82).思维升华 解三角形与三角函数的综合题,要优先考虑角的范围和角之间的关系;对最值或范围问题,可以转化为三角函数的值域来求解. 跟踪演练3 已知函数f (x )=2cos 2x +sin ⎝⎛⎭⎪⎫7π6-2x -1(x ∈R ). (1)求函数f (x )的最小正周期及单调递增区间;(2)在△ABC 中,三内角A ,B ,C 的对边分别为a ,b ,c ,已知f (A )=12,若b +c =2a ,且AB →·AC→=6,求a 的值. 解 (1)f (x )=sin ⎝⎛⎭⎪⎫7π6-2x +2cos 2x -1=-12cos 2x +32sin 2x +cos 2x=12cos 2x +32sin 2x =sin ⎝ ⎛⎭⎪⎫2x +π6.∴函数f (x )的最小正周期T =2π2=π.由2k π-π2≤2x +π6≤2k π+π2(k ∈Z ),可解得k π-π3≤x ≤k π+π6(k ∈Z ).∴f (x )的单调递增区间为⎣⎢⎡⎦⎥⎤k π-π3,k π+π6(k ∈Z ).(2)由f (A )=sin ⎝⎛⎭⎪⎫2A +π6=12,可得2A +π6=π6+2k π或2A +π6=5π6+2k π(k ∈Z ).∵A ∈(0,π),∴A =π3,∵AB →·AC →=bc cos A =12bc =6,∴bc =12, 又∵2a =b +c ,∴cos A =12=(b +c )2-a 22bc -1=4a 2-a 224-1=a28-1,∴a =2 3.1.若△ABC 的内角满足sin A +2sin B =2sin C ,则cos C 的最小值是________. 答案6-24解析 由sin A +2sin B =2sin C , 结合正弦定理得a +2b =2c .由余弦定理得cos C =a 2+b 2-c 22ab=a 2+b 2-(a +2b )242ab =34a 2+12b 2-2ab22ab≥2⎝ ⎛⎭⎪⎫34a 2⎝ ⎛⎭⎪⎫12b 2-2ab22ab=6-24, ⎝ ⎛⎭⎪⎫当且仅当b 2=32a 2时,等号成立 故6-24≤cos C <1, 故cos C 的最小值为6-24. 2.(2018·全国Ⅲ改编)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .若△ABC 的面积为a 2+b 2-c 24,则C =________. 答案π4解析 ∵S =12ab sin C =a 2+b 2-c 24=2ab cos C4=12ab cos C , ∴sin C =cos C ,即tan C =1. 又∵C ∈(0,π),∴C =π4.3.(2018·全国Ⅰ)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知b sin C +c sin B =4a sinB sinC ,b 2+c 2-a 2=8,则△ABC 的面积为________.答案233解析 ∵b sin C +c sin B =4a sin B sin C , ∴由正弦定理得sin B sin C +sin C sin B =4sin A sin B sin C . 又sin B sin C >0,∴sin A =12.由余弦定理得cos A =b 2+c 2-a 22bc =82bc =4bc>0,∴cos A =32,bc =4cos A =833, ∴S △ABC =12bc sin A =12×833×12=233.4.在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c .已知cos A =23,sin B =5cos C ,并且a =2,则△ABC 的面积为________. 答案52解析 因为0<A <π,cos A =23,所以sin A =1-cos 2A =53. 又由5cos C =sin B =sin(A +C ) =sin A cos C +cos A sin C =53cos C +23sin C 知,cos C >0, 并结合sin 2C +cos 2C =1,得sin C =56,cos C =16.于是sin B =5cos C =56.由a =2及正弦定理a sin A =csin C ,得c = 3.故△ABC 的面积S =12ac sin B =52.5.已知函数f (x )=3sin ωx ·cos ωx -cos 2ωx (ω>0)的最小正周期为2π3.(1)求ω的值;(2)在△ABC 中,sin B ,sin A ,sin C 成等比数列,求此时f (A )的值域. 解 (1)f (x )=32sin 2ωx -12(cos 2ωx +1) =sin ⎝⎛⎭⎪⎫2ωx -π6-12, 因为函数f (x )的最小正周期为T =2π2ω=2π3,所以ω=32.(2)由(1)知f (x )=sin ⎝ ⎛⎭⎪⎫3x -π6-12, 易得f (A )=sin ⎝⎛⎭⎪⎫3A -π6-12. 因为sin B ,sin A ,sin C 成等比数列,所以sin 2A =sin B sin C ,所以a 2=bc ,所以cos A =b 2+c 2-a 22bc =b 2+c 2-bc2bc≥2bc -bc 2bc =12(当且仅当b =c 时取等号). 因为0<A <π,所以0<A ≤π3,所以-π6<3A -π6≤5π6,所以-12<sin ⎝ ⎛⎭⎪⎫3A -π6≤1,所以-1<sin ⎝ ⎛⎭⎪⎫3A -π6-12≤12, 所以f (A )的值域为⎝⎛⎦⎥⎤-1,12.A 组 专题通关1.(2018·全国Ⅲ改编)若sin α=13,则cos 2α=________.答案 79解析 ∵sin α=13,∴cos 2α=1-2sin 2α=1-2×⎝ ⎛⎭⎪⎫132=79.2.tan 70°+tan 50°-3tan 70°tan 50°的值为________. 答案 - 3解析 因为tan 120°=tan 70°+tan 50°1-tan 70°tan 50°=-3,即tan 70°+tan 50°-3tan 70°tan 50°=- 3.3.(2018·江苏泰州中学调研)已知sin θ+2cos θ=0,则1+sin 2θcos 2θ=________. 答案 1解析 由题设可知sin θ=-2cos θ, 则原式=sin 2θ+cos 2θ+2sin θcos θcos 2θ =(4+1-4)cos 2θcos 2θ=1. 4.在△ABC 中,若原点到直线x sin A +y sin B +sin C =0的距离为1,则此三角形为________三角形.(填“直角”“锐角”“钝角”) 答案 直角 解析 由已知可得,|sin C |sin 2A +sin 2B=1,∴sin 2C =sin 2A +sin 2B ,∴c 2=a 2+b 2, 故△ABC 为直角三角形.5.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,a cos B +b cos A =2c cos C ,c =7,且△ABC 的面积为332,则△ABC 的周长为________.答案 5+7解析 在△ABC 中,a cos B +b cos A =2c cos C , 则sin A cos B +sin B cos A =2sin C cos C , 即sin(A +B )=2sin C cos C , ∵sin(A +B )=sin C ≠0, ∴cos C =12,∴C =π3,由余弦定理可得,a 2+b 2-c 2=ab , 即(a +b )2-3ab =c 2=7,又S =12ab sin C =34ab =332,∴ab =6,∴(a +b )2=7+3ab =25,a +b =5, ∴△ABC 的周长为a +b +c =5+7. 6.若sin 2α=55,sin(β-α)=1010,且α∈⎣⎢⎡⎦⎥⎤π4,π,β∈⎣⎢⎡⎦⎥⎤π,3π2,则α+β的值是________. 答案7π4解析 ∵sin 2α=55,α∈⎣⎢⎡⎦⎥⎤π4,π, ∴cos 2α=-255且α∈⎣⎢⎡⎦⎥⎤π4,π2,又∵sin(β-α)=1010,β∈⎣⎢⎡⎦⎥⎤π,3π2,∴cos(β-α)=-31010,∴sin(α+β)=sin[(β-α)+2α]=sin(β-α)cos 2α+cos(β-α)sin 2α =1010×⎝ ⎛⎭⎪⎫-255+⎝ ⎛⎭⎪⎫-31010×55=-22, cos(α+β)=cos[(β-α)+2α]=cos(β-α)cos 2α-sin(β-α)sin 2α=⎝ ⎛⎭⎪⎫-31010×⎝ ⎛⎭⎪⎫-255-1010×55=22, 又α+β∈⎣⎢⎡⎦⎥⎤5π4,2π,∴α+β=7π4. 7.设△ABC 内切圆与外接圆的半径分别为r 与R .且sin A ∶sin B ∶sin C =2∶3∶4,则cos C =________;当BC =1时,△ABC 的面积等于________.答案 -14 31516解析 ∵sin A ∶sin B ∶sin C =2∶3∶4,∴a ∶b ∶c =2∶3∶4.令a =2t ,b =3t ,c =4t (t >0),则cos C =4t 2+9t 2-16t 212t 2=-14, 又∵C ∈(0,π),∴sin C =154. 当BC =1时,AC =32, ∴S △ABC =12×1×32×154=31516. 8.如图,在△ABC 中,BC =2,∠ABC =π3,AC 的垂直平分线DE 与AB ,AC 分别交于D ,E 两点,且DE =62,则BE 2=________.答案 52+ 3 解析 如图,连结CD ,由题设,有∠BDC =2A ,所以CD sin π3=BC sin 2A =2sin 2A , 故CD =3sin 2A. 又DE =CD sin A =32cos A =62, 所以cos A =22,而A ∈(0,π),故A =π4, 因此△ADE 为等腰直角三角形,所以AE =DE =62. 在△ABC 中,∠ACB =5π12, 所以AB sin 5π12=2sin π4, 故AB =3+1,在△ABE 中,BE 2=(3+1)2+⎝ ⎛⎭⎪⎫622-2×(3+1)×62×22=52+ 3. 9.(2018·江苏)已知α,β为锐角,tan α=43,cos(α+β)=-55. (1)求cos 2α的值;(2)求tan(α-β)的值.解 (1)因为tan α=43,tan α=sin αcos α, 所以sin α=43cos α. 又因为sin 2α+cos 2α=1,所以cos 2α=925, 因此,cos 2α=2cos 2α-1=-725.(2)因为α,β为锐角,所以α+β∈(0,π).又因为cos(α+β)=-55,所以α+β∈⎝ ⎛⎭⎪⎫π2,π, 所以sin(α+β)=1-cos 2(α+β)=255, 因此tan(α+β)=-2. 因为tan α=43, 所以tan 2α=2tan α1-tan 2α=-247. 因此,tan(α-β)=tan[2α-(α+β)]=tan 2α-tan (α+β)1+tan 2αtan (α+β)=-211. 10.(2018·江苏扬州中学调研)已知△ABC 的三个内角A ,B ,C 所对的边分别为a ,b ,c ,向量m =(1,2),n =⎝⎛⎭⎪⎫cos 2A ,cos 2A 2,且m ·n =1. (1)求角A 的大小; (2)若b +c =2a =23,求sin ⎝⎛⎭⎪⎫B -π4的值. 解 (1)由题意得m ·n =cos 2A +2cos 2A 2=2cos 2A -1+cos A +1=2cos 2A +cos A , 又因为m ·n =1,所以2cos 2A +cos A =1, 解得cos A =12或cos A =-1, ∵0<A <π, ∴A =π3. (2)在△ABC 中,由余弦定理得(3)2=b 2+c 2-2bc ·12=b 2+c 2-bc ,① 又b +c =23,∴b =23-c , 代入①整理得c 2-23c +3=0,解得c =3,∴b =3,于是a =b =c =3,即△ABC 为等边三角形,∴B =π3, ∴sin ⎝ ⎛⎭⎪⎫B -π4=sin ⎝ ⎛⎭⎪⎫π3-π4=6-24. B 组 能力提高11.如图,在△ABC 中,D ,F 分别为BC ,AC 的中点,AD ⊥BF ,若sin 2C =716sin∠BAC ·sin∠ABC ,则cos C =________.答案 78解析 设BC =a ,AC =b ,AB =c ,由sin 2C =716sin∠BAC ·sin∠ABC 可得,c 2=716ab , 由AD ⊥BF 可得,AD →·BF →=AB →+AC →2·⎝ ⎛⎭⎪⎫12AC →-AB →=0, 整理可得,14AC →2-12AB →2-14AB →·AC →=0, 即14b 2-12c 2-14bc cos∠BAC =0, 即2b 2-4c 2-2bc cos∠BAC =0,2b 2-4c 2-(b 2+c 2-a 2)=0,即a 2+b 2-c 2=4c 2=74ab , 所以cos C =a 2+b 2-c 22ab =78. 12.(2018·北京)若△ABC 的面积为34(a 2+c 2-b 2),且C 为钝角,则B =________;c a的取值范围是________.答案 π3 (2,+∞) 解析 由余弦定理得cos B =a 2+c 2-b 22ac, ∴a 2+c 2-b 2=2ac cos B .又∵S =34(a 2+c 2-b 2), ∴12ac sin B =34×2ac cos B , ∴tan B =3,又B ∈(0,π),∴B =π3. 又∵C 为钝角,∴C =2π3-A >π2, ∴0<A <π6. 由正弦定理得c a =sin ⎝ ⎛⎭⎪⎫2π3-A sin A=32cos A +12sin A sin A =12+32·1tan A. ∵0<tan A <33,∴1tan A>3, ∴c a >12+32×3=2, 即c a >2. ∴c a 的取值范围是(2,+∞).13.在锐角△ABC 中,角A 所对的边为a ,△ABC 的面积S =a 24,给出以下结论: ①sin A =2sin B sin C ;②tan B +tan C =2tan B tan C ;③tan A +tan B +tan C =tan A tan B tan C ;④tan A tan B tan C 有最小值8.其中正确结论的个数为________.答案 4解析 由S =a 24=12ab sin C ,得a =2b sin C , 又a sin A =bsin B ,得sin A =2sin B sin C ,故①正确; 由sin A =2sin B sin C ,得sin(B +C )=sin B cos C +cos B sin C =2sin B sin C ,两边同时除以cos B cos C ,可得tan B +tan C =2tan B tan C ,故②正确;由tan(A +B )=tan A +tan B 1-tan A tan B,且tan(A +B )=tan(π-C )=-tan C ,所以tan A +tan B 1-tan A tan B=-tan C , 整理移项得tan A +tan B +tan C =tan A tan B tan C ,故③正确;由tan B +tan C =2tan B tan C ,tan A =-tan(B +C )=tan B +tan C tan B tan C -1, 且tan A ,tan B ,tan C 都是正数,得tan A tan B tan C =tan B +tan C tan B tan C -1·tan B tan C =2tan B tan C tan B tan C -1·tan B tan C =2(tan B tan C )2tan B tan C -1, 设m =tan B tan C -1,则m >0,tan A tan B tan C =2(m +1)2m=2⎝ ⎛⎭⎪⎫m +1m +4≥4+4m ·1m =8, 当且仅当m =tan B tan C -1=1,即tan B tan C =2时取“=”,此时tan B tan C =2,tan B +tan C =4,tan A =4,所以tan A tan B tan C 的最小值是8,故④正确.14.已知向量a =(2sin 2x ,2cos 2x ),b =(cos θ,sin θ)⎝⎛⎭⎪⎫|θ|<π2,若f (x )=a ·b ,且函数f (x )的图象关于直线x =π6对称. (1)求函数f (x )的解析式,并求f (x )的单调递减区间;(2)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若f (A )=2,且b =5,c =23,求△ABC 外接圆的面积.解 (1)f (x )=a ·b =2sin 2x cos θ+2cos 2x sin θ=2sin(2x +θ),∵函数f (x )的图象关于直线x =π6对称, ∴2×π6+θ=k π+π2,k ∈Z , ∴θ=k π+π6,k ∈Z , 又|θ|<π2,∴θ=π6.∴f (x )=2sin ⎝⎛⎭⎪⎫2x +π6. 由2k π+π2≤2x +π6≤2k π+3π2,k ∈Z , 得k π+π6≤x ≤k π+2π3,k ∈Z . ∴f (x )的单调递减区间为⎣⎢⎡⎦⎥⎤k π+π6,k π+2π3,k ∈Z . (2)∵f (A )=2sin ⎝⎛⎭⎪⎫2A +π6=2, ∴sin ⎝⎛⎭⎪⎫2A +π6=1. ∵A ∈(0,π),∴2A +π6∈⎝ ⎛⎭⎪⎫π6,13π6, ∴2A +π6=π2,∴A =π6. 在△ABC 中,由余弦定理得a 2=b 2+c 2-2bc cos A=25+12-2×5×23cos π6=7, ∴a =7.设△ABC 外接圆的半径为R , 由正弦定理得a sin A =2R =712=27, ∴R =7,∴△ABC 外接圆的面积S =πR 2=7π.。
【精品】2019高考数学二轮复习专题一三角函数解三角形与平面向量第3讲平面向量学案
第3讲平面向量[考情考向分析]1.考查平面向量的基本定理及基本运算,多以熟知的平面图形为背景进行考查,多为选择题、填空题,且为基础题.2.考查平面向量数量积及模的最值问题,以选择题、填空题为主,难度为中高档,是高考考查的热点内容.3.向量作为工具,还常与解三角形、不等式、解析几何等结合,进行综合考查.热点一平面向量的线性运算1.在平面向量的化简或运算中,要根据平面向量基本定理选好基底,变形要有方向不能盲目转化.2.在用三角形加法法则时,要保证“首尾相接”,结果向量是第一个向量的起点指向最后一个向量的终点所得的向量;在用三角形减法法则时,要保证“同起点”,结果向量的方向是指向被减向量.例1 (1)如图,在△ABC 中,AB =3DB ,AE =2EC ,CD 与BE 交于点F .设AB →=a ,AC →=b ,AF →=xa +yb ,则(x ,y )为()A.25,25 B.14,13C.37,37 D.25,920答案 A解析由D ,F ,C 三点共线,可得存在实数λ,使得DF →=λDC →,即AF →-AD →=λ(AC →-AD →),则AF →=(1-λ)AD →+λAC →=23(1-λ)AB →+λAC→=23(1-λ)a +λb . 由E ,F ,B 三点共线,可得存在实数μ,使得EF →=μEB →,即AF →-AE →=μ(AB →-AE →),则AF →=μAB →+(1-μ)AE →=μAB →+23(1-μ)AC→=μa +23(1-μ)b .又a ,b 不共线,由平面向量基本定理可得231-λ=μ,λ=231-μ,解得λ=25,μ=25,所以AF →=25a +25b .所以x =25,y =25,即(x ,y )=25,25,故选 A.(2)已知A (-1,0),B (1,0),C (0,1),过点P (m,0)的直线分别与线段AC ,BC 交于点M ,N (点M ,N 不同于点A ,B ,C ),且OA →=xOM →+yON →(x ,y ∈R ),若2≤|m |≤3,则x +y 的取值范围是____________.答案-12,-13∪13,12解析设OP →=λOA →,则有|λ|=|OP →||OA →|=|m |.∵M ,N ,P 三点共线,且点O 不在直线MN上,∴OP →=nOM →+(1-n )ON →. 从而有nOM →+(1-n )ON →=λxOM →+λyON →,又OM →与ON →是不共线向量,∴λx =n ,λy =1-n ,得x +y =1λ.由2≤|λ|≤3,得x +y 的取值范围是-12,-13∪13,12. 思维升华(1)对于平面向量的线性运算,要先选择一组基底,同时注意平面向量基本定理的灵活运用.(2)运算过程中重视数形结合,结合图形分析向量间的关系.跟踪演练 1 (1)在△ABC 中,AN →=14NC →,P 是直线BN 上的一点,若AP →=mAB →+25AC →,则实数m的值为( )A .-4B .-1C .1D .4答案 B解析因为AP →=AB →+BP →=AB →+kBN→=AB →+k 15AC →-AB →=(1-k )AB →+k 5AC →,且AP →=mAB →+25AC →,又AB →,AC →不共线,所以1-k =m ,k5=25,解得k =2,m =-1,故选 B.(2)如图,矩形ABCD 中,AB =3,AD =4,M ,N 分别为线段BC ,CD 上的点,且满足1CM 2+1CN2=1,若AC →=xAM →+yAN →,则x +y 的最小值为________.答案54解析连接MN 交AC 于点G .由勾股定理知,MN 2=CM 2+CN 2,所以1=1CM 2+1CN 2=MN2CM 2·CN2,即MN =CM ·CN ,所以C 到直线MN 的距离为定值1,此时MN 是以C 为圆心,1为半径的圆的一条切线(如图所示).AC →=xAM →+yAN →=(x +y )·x x +y AM →+y x +yAN →. 由向量共线定理知,AC →=(x +y )AG →,所以x +y =|AC →||AG →|=5|AG →|,又因为|AG →|max =5-1=4,所以x +y 的最小值为54.热点二平面向量的数量积1.数量积的定义:a ·b =|a ||b |cos θ.2.三个结论(1)若a =(x ,y ),则|a |=a ·a =x 2+y 2.(2)若A (x 1,y 1),B (x 2,y 2),则|AB →|=x 2-x 12+y 2-y 12.(3)若非零向量a =(x 1,y 1),非零向量b =(x 2,y 2),θ为a 与b 的夹角,则cos θ=a ·b |a ||b |=x 1x 2+y 1y 2x 21+y21x 22+y22.例2 (1)已知在直角梯形ABCD 中,AB =AD =2CD =2,∠ADC =90°,若点M 在线段AC 上,则|MB →+MD →|的取值范围为________.答案255,22解析建立如图所示的平面直角坐标系,则A (0,0),B (2,0),C (1,2),D (0,2),设AM →=λAC →(0≤λ≤1),则M (λ,2λ),故MD →=(-λ,2-2λ),MB →=(2-λ,-2λ),则MB →+MD →=(2-2λ,2-4λ),∴|MB →+MD →|=2-2λ2+2-4λ2=20λ-352+45,当λ=0时,|MB →+MD →|取得最大值22,当λ=35时,|MB →+MD →|取得最小值255,∴|MB →+MD →|∈255,22.(2)已知AB →⊥AC →,|AB →|=1t ,|AC →|=t ,若点P 是△ABC 所在平面内的一点,且AP →=AB→|AB →|+4AC→|AC →|,则PB →·PC →的最大值为________.答案13解析建立如图所示的平面直角坐标系,则B 1t ,0,C (0,t ),AB →=1t,0,AC →=(0,t ),AP →=AB→|AB →|+4AC →|AC →|=t 1t ,0+4t(0,t )=(1,4),∴P (1,4),PB →·PC →=1t -1,-4·(-1,t -4)=17-1t+4t ≤17-21t·4t =13,当且仅当t =12时“=”成立.思维升华(1)数量积的计算通常有三种方法:数量积的定义,坐标运算,数量积的几何意义.(2)可以利用数量积求向量的模和夹角,向量要分解成题中模和夹角已知的向量进行计算.跟踪演练 2 (1)如图,在平面直角坐标系中,正方形OABC 的边长为1,E 为AB 的中点,若F为正方形内(含边界)任意一点,则OE →·OF →的最大值为________.答案32解析∵E 为AB 的中点,正方形OABC 的边长为1,∴E 1,12,得OE →=1,12,又F 为正方形内(含边界)任意一点,设F (x ,y ),∴OF →=(x ,y ),满足0≤x ≤1,0≤y ≤1,则OE →·OF →=x +12y ,结合线性规划知识可知,当F 点运动到点B (1,1)处时,OE →·OF →取得最大值32.(2)已知直角梯形ABCD 中,AD ∥BC ,∠BAD =90°,∠ADC =45°,AD =2,BC =1,P 是腰CD 上的动点,则||3PA →+BP →的最小值为__________.答案522解析以DA 为x 轴,D 为原点,过D 与DA 垂直的直线为y 轴,建立平面直角坐标系,如图所示.由AD ∥BC ,∠BAD =90°,∠ADC =45°,AD =2,BC =1,可得D (0,0),A (2,0),B (2,1),C (1,1),∵P 在CD 上,∴可设P (t ,t )(0≤t ≤1),则PA →=(2-t ,-t ),BP →=(t -2,t -1),3PA →+BP →=(4-2t ,-2t -1),∴||3PA →+BP →=4-2t 2+-2t -12=8t -342+252≥252=522(当且仅当t =34时取等号),即||3PA →+BP →的最小值为522.真题体验1.(2017·浙江)已知向量a ,b 满足|a |=1,|b |=2,则|a +b |+|a -b |的最小值是________,最大值是________.答案 4 2 5解析设a ,b 的夹角为θ,∵|a |=1,|b |=2,∴|a +b |+|a -b |=a +b 2+a -b2=5+4cos θ+5-4cos θ.令y =5+4cos θ+5-4cos θ.则y 2=10+225-16cos 2θ. ∵θ∈[0,π],∴cos 2θ∈[0,1],∴y 2∈[16,20],∴y ∈[4,25],即|a +b |+|a -b |∈[4,25].2.(2017·浙江改编)如图,已知平面四边形ABCD ,AB ⊥BC ,AB =BC =AD =2,CD =3,AC 与BD 交于点O ,记I 1=OA →·OB →,I 2=OB →·OC →,I 3=OC →·OD →,则I 1,I 2,I 3的大小关系是________________.答案I 3<I 1<I 2解析∵I 1-I 2=OA →·OB →-OB →·OC→=OB →·(OA →-OC →)=OB →·CA →,∵AB ⊥BC ,AB =BC =AD =2,CD =3,∴OB →与CA →所成的角为钝角,∴I 1-I 2<0,即I 1<I 2. ∵I 1-I 3=OA →·OB →-OC →·OD→=|OA →||OB →|cos ∠AOB -|OC →||OD →|cos ∠COD =cos ∠AOB (|OA →||OB →|-|OC →||OD →|),又∠AOB 为钝角,OA <OC ,OB <OD ,∴I 1-I 3>0,即I 1>I 3.∴I 3<I 1<I 2. 3.(2016·浙江)已知向量a ,b ,|a |=1,|b |=2.若对任意单位向量e ,均有|a ·e|+|b ·e|≤6,则a ·b的最大值是________.答案12解析由于e 是任意单位向量,可设e =a +b|a +b |,则|a ·e|+|b ·e|=a ·a +b |a +b |+b ·a +b|a +b |≥a ·a +b |a +b |+b ·a +b|a +b |=a +b ·a +b|a +b |=|a +b |.∵|a ·e|+|b ·e|≤6,∴|a +b |≤6,∴(a +b )2≤6,∴|a |2+|b |2+2a ·b≤6.∵|a |=1,|b |=2,∴1+4+2a ·b≤6,∴a ·b≤12,∴a ·b的最大值为12.4.(2017·北京)已知点P 在圆x 2+y 2=1上,点A 的坐标为(-2,0),O 为原点,则AO →·AP →的最大值为________.答案 6 解析方法一根据题意作出图象,如图所示,A (-2,0),P (x ,y ).由点P 向x 轴作垂线交x 轴于点Q ,则点Q 的坐标为(x,0).AO →·AP →=|AO →|·|AP →|cos θ,|AO →|=2,|AP →|=x +22+y 2,cos θ=AQ AP=x +2x +22+y2,所以AO →·AP →=2(x +2)=2x +4.点P 在圆x 2+y 2=1上,所以x ∈[-1,1].所以AO →·AP →的最大值为2+4=6. 方法二因为点P 在圆x 2+y 2=1上,所以可设P (cos α,sin α)(0≤α<2π),所以AO →=(2,0),AP →=(cos α+2,sin α),AO →·AP→=2cos α+4≤2+4=6,当且仅当cos α=1,即α=0,P (1,0)时“=”成立.押题预测1.已知向量a ,b 满足|a |=3,且向量b 在向量a 方向上的投影为2,则a ·(a -b )的值为()A .4B .3C .2D .1 押题依据向量的数量积是高考命题的热点,常常考查平面向量的运算、化简、证明及其几何意义和平面向量平行、垂直的充要条件及其应用等几个方面.答案 B解析由向量b 在向量a 方向上的投影为2,得a ·b|a |=2,即a ·b=6,则a ·(a -b )=a 2-a ·b=9-6=3.2.如图,在△ABC 中,AD →=13AB →,DE ∥BC 交AC 于点E ,BC 边上的中线AM 交DE 于点N ,设AB→=a ,AC →=b ,用a ,b 表示向量AN →,则AN →等于()A.12(a +b ) B.13(a +b ) C.16(a +b ) D.18(a +b ) 押题依据平面向量基本定理是向量表示的基本依据,而向量表示(用基底或坐标)是向量应用的基础.答案 C解析因为DE ∥BC ,所以DN ∥BM ,则△AND ∽△AMB ,所以AN AM =ADAB.因为AD →=13AB →,所以AN →=13AM →.因为M 为BC 的中点,。
【新】2019高考数学二轮复习专题一三角函数、解三角形与平面向量第2讲三角恒等变换与解三角形学案
第2讲 三角恒等变换与解三角形[考情考向分析] 正弦定理、余弦定理以及解三角形问题是高考的必考内容,主要考查:1.边和角的计算.2.三角形形状的判断.3.面积的计算.4.和三角函数的图象、性质有关的参数的范围问题.热点一 三角恒等变换 1.三角求值“三大类型”“给角求值”“给值求值”“给值求角”. 2.三角函数恒等变换“四大策略”(1)常值代换:特别是“1”的代换,1=sin 2θ+cos 2θ=tan 45°等.(2)项的拆分与角的配凑:如sin 2α+2cos 2α=(sin 2α+cos 2α)+cos 2α,α=(α-β)+β等.(3)降次与升次:正用二倍角公式升次,逆用二倍角公式降次. (4)弦、切互化:一般是切化弦.例1 (1)若cos ⎝ ⎛⎭⎪⎫α+π3=45,则cos ⎝ ⎛⎭⎪⎫π3-2α等于( )A.2325 B .-2325 C.725 D .-725 答案 D解析 ∵cos ⎝ ⎛⎭⎪⎫α+π3=45,∴cos ⎝ ⎛⎭⎪⎫α+π3=sin ⎣⎢⎡⎦⎥⎤π2-⎝⎛⎭⎪⎫α+π3=sin ⎝ ⎛⎭⎪⎫π6-α=45,∴cos ⎝ ⎛⎭⎪⎫π3-2α=1-2sin 2⎝⎛⎭⎪⎫π6-α=-725.(2)已知sin α=55,sin(α-β)=-1010,α,β均为锐角,则β等于( ) A.5π12 B.π3 C.π4 D.π6答案 C解析 因为α,β均为锐角,所以-π2<α-β<π2.又sin(α-β)=-1010,所以cos(α-β)=31010. 又sin α=55,所以cos α=255, 所以sin β=sin[α-(α-β)]=sin αcos(α-β)-cos αsin(α-β) =55×31010-255×⎝ ⎛⎭⎪⎫-1010=22. 所以β=π4.思维升华 (1)三角变换的关键在于对两角和与差的正弦、余弦、正切公式,二倍角公式,三角恒等变换公式的熟记和灵活应用,要善于观察各个角之间的联系,发现题目所给条件与恒等变换公式的联系,公式的使用过程要注意正确性,要特别注意公式中的符号和函数名的变换,防止出现“张冠李戴”的情况.(2)求角问题要注意角的范围,要根据已知条件将所求角的范围尽量缩小,避免产生增解. 跟踪演练1 (1)已知cos ⎝ ⎛⎭⎪⎫π2+α=3sin ⎝ ⎛⎭⎪⎫α+7π6,则tan ⎝ ⎛⎭⎪⎫π12+α=________.答案 23-4解析 ∵cos ⎝ ⎛⎭⎪⎫π2+α=3sin ⎝ ⎛⎭⎪⎫α+7π6, ∴-sin α=-3sin ⎝⎛⎭⎪⎫α+π6,∴sin α=3sin ⎝ ⎛⎭⎪⎫α+π6=3sin αcos π6+3cos αsin π6 =332sin α+32cos α, ∴tan α=32-33,又tan π12=tan ⎝ ⎛⎭⎪⎫π3-π4=tan π3-tanπ41+tan π3tanπ4=3-11+3=2-3,∴tan ⎝ ⎛⎭⎪⎫π12+α=tan π12+tan α1-tan π12tan α=()2-3+32-331-()2-3×32-33=23-4.(2)若2cos 2θcos ⎝ ⎛⎭⎪⎫π4+θ=3sin 2θ,则sin 2θ等于( )A.13 B .-23 C.23 D .-13 答案 B解析 由题意得2cos 2θcos ⎝ ⎛⎭⎪⎫π4+θ=2(cos 2θ-sin 2θ)22(cos θ-sin θ)=2(cos θ+sin θ)=3sin 2θ,将上式两边分别平方,得4+4sin 2θ=3sin 22θ, 即3sin 22θ-4sin 2θ-4=0,解得sin 2θ=-23或sin 2θ=2(舍去),所以sin 2θ=-23.热点二 正弦定理、余弦定理 1.正弦定理:在△ABC 中,a sin A =b sin B =csin C=2R (R 为△ABC 的外接圆半径).变形:a =2R sin A ,b =2R sin B ,c =2R sin C ,sin A =a 2R ,sin B =b 2R ,sin C =c2R,a ∶b ∶c =sin A ∶sinB ∶sinC 等.2.余弦定理:在△ABC 中,a 2=b 2+c 2-2bc cos A .变形:b 2+c 2-a 2=2bc cos A ,cos A =b 2+c 2-a 22bc.例2 (2017·全国Ⅲ)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知sin A +3cos A =0,a =27,b =2. (1)求c ;(2)设D 为BC 边上一点,且AD ⊥AC ,求△ABD 的面积.解 (1)由已知可得tan A =-3,所以A =2π3.在△ABC 中,由余弦定理,得a 2=b 2+c 2-2bc cos A , 即28=4+c 2-4c ·cos 2π3,即c 2+2c -24=0,解得c =-6(舍去)或c =4. 所以c =4.(2)由题设可得∠CAD =π2,所以∠BAD =∠BAC -∠CAD =π6. 故△ABD 的面积与△ACD 的面积的比值为 12AB ·AD ·sin π612AC ·AD =1.又△ABC 的面积为12×4×2sin∠BAC =23,所以△ABD 的面积为 3.思维升华 关于解三角形问题,一般要用到三角形的内角和定理,正弦、余弦定理及有关三角形的性质,常见的三角变换方法和原则都适用,同时要注意“三统一”,即“统一角、统一函数、统一结构”,这是使问题获得解决的突破口.跟踪演练2 在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,已知B =60°,c =8. (1)若点M ,N 是线段BC 的两个三等分点,BM =13BC ,ANBM =23,求AM 的值;(2)若b =12,求△ABC 的面积.解 (1)由题意得M ,N 是线段BC 的两个三等分点, 设BM =x ,则BN =2x ,AN =23x , 又B =60°,AB =8,在△ABN 中,由余弦定理得12x 2=64+4x 2-2×8×2x cos 60°, 解得x =2(负值舍去),则BM =2. 在△ABM 中,由余弦定理,得AB 2+BM 2-2AB ·BM ·cos B =AM 2,AM =82+22-2×8×2×12=52=213.(2)在△ABC 中,由正弦定理b sin B =csin C, 得sin C =c sin B b =8×3212=33.又b >c ,所以B >C ,则C 为锐角,所以cos C =63. 则sin A =sin(B +C )=sin B cos C +cos B sin C =32×63+12×33=32+36, 所以△ABC 的面积S =12bc sin A=48×32+36=242+8 3.热点三 解三角形与三角函数的综合问题解三角形与三角函数的综合是近几年高考的热点,主要考查三角形的基本量,三角形的面积或判断三角形的形状.例3 (2018·天津)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .已知b sin A =a cos ⎝⎛⎭⎪⎫B -π6.(1)求角B 的大小;(2)设a =2,c =3,求b 和sin(2A -B )的值. 解 (1)在△ABC 中,由正弦定理a sin A =bsin B,可得b sin A =a sin B .又由b sin A =a cos ⎝ ⎛⎭⎪⎫B -π6,得a sin B =a cos ⎝ ⎛⎭⎪⎫B -π6,即sin B =cos ⎝⎛⎭⎪⎫B -π6,所以tan B = 3. 又因为B ∈(0,π),所以B =π3.(2)在△ABC 中,由余弦定理及a =2,c =3,B =π3,得b 2=a 2+c 2-2ac cos B =7,故b =7. 由b sin A =a cos ⎝ ⎛⎭⎪⎫B -π6,可得sin A =217 .因为a <c ,所以cos A =277.因此sin 2A =2sin A cos A =437,cos 2A =2cos 2A -1=17.所以sin(2A -B )=sin 2A cos B -cos 2A sin B =437×12-17×32=3314. 思维升华 解三角形与三角函数的综合题,要优先考虑角的范围和角之间的关系;对最值或范围问题,可以转化为三角函数的值域来求解. 跟踪演练3 已知函数f (x )=2cos 2x +sin ⎝⎛⎭⎪⎫7π6-2x -1(x ∈R ).(1)求函数f (x )的最小正周期及单调递增区间;(2)在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,已知f (A )=12,若b +c =2a ,且AB →·AC→=6,求a 的值. 解 (1)f (x )=sin ⎝⎛⎭⎪⎫7π6-2x +2cos 2x -1=-12cos 2x +32sin 2x +cos 2x=12cos 2x +32sin 2x =sin ⎝ ⎛⎭⎪⎫2x +π6.∴函数f (x )的最小正周期T =2π2=π.由2k π-π2≤2x +π6≤2k π+π2(k ∈Z ),可解得k π-π3≤x ≤k π+π6(k ∈Z ).∴f (x )的单调递增区间为⎣⎢⎡⎦⎥⎤k π-π3,k π+π6(k ∈Z ).(2)由f (A )=sin ⎝⎛⎭⎪⎫2A +π6=12,可得2A +π6=π6+2k π或2A +π6=5π6+2k π(k ∈Z ).∵A ∈(0,π),∴A =π3,∵AB →·AC →=bc cos A =12bc =6,∴bc =12,又∵2a =b +c ,∴cos A =12=(b +c )2-a 22bc -1=4a 2-a 224-1=a28-1,∴a =2 3.真题体验1.(2017·山东改编)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c .若△ABC 为锐角三角形,且满足sin B (1+2cos C )=2sin A cos C +cos A sin C ,则下列等式成立的是______.(填序号)①a =2b; ②b =2a; ③A =2B; ④B =2A . 答案 ①解析 ∵等式右边=sin A cos C +(sin A cos C +cos A sin C )=sin A cos C +sin(A +C )=sinA cos C +sinB ,等式左边=sin B +2sin B cos C ,∴sin B +2sin B cos C =sin A cos C +sin B . 由cos C >0,得sin A =2sin B . 根据正弦定理,得a =2b .2.(2018·全国Ⅱ)已知sin α+cos β=1,cos α+sin β=0,则sin(α+β)=________. 答案 -12解析 ∵sin α+cos β=1,① cos α+sin β=0,②∴①2+②2得1+2(sin αcos β+cos αsin β)+1=1, ∴sin αcos β+cos αsin β=-12,∴sin(α+β)=-12.3.(2018·全国Ⅲ改编)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .若△ABC 的面积为a 2+b 2-c 24,则C =________. 答案π4解析 ∵S =12ab sin C =a 2+b 2-c 24=2ab cos C4=12ab cos C , ∴sin C =cos C ,即tan C =1. 又∵C ∈(0,π),∴C =π4.4.(2018·全国Ⅰ)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知b sin C +c sin B =4a sinB sinC ,b 2+c 2-a 2=8,则△ABC 的面积为________.答案233解析 ∵b sin C +c sin B =4a sin B sin C , ∴由正弦定理得sin B sin C +sin C sin B =4sin A sin B sin C . 又sin B sin C >0,∴sin A =12.由余弦定理得cos A =b 2+c 2-a 22bc =82bc =4bc>0,∴cos A =32,bc =4cos A =833, ∴S △ABC =12bc sin A =12×833×12=233.押题预测1.在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c .已知cos A =23,sin B =5cos C ,并且a =2,则△ABC 的面积为________.押题依据 三角形的面积求法较多,而在解三角形中主要利用正弦、余弦定理求解,此题很好地体现了综合性考查的目的,也是高考的重点. 答案52解析 因为0<A <π,cos A =23,所以sin A =1-cos 2A =53. 又由5cos C =sin B =sin(A +C ) =sin A cos C +cos A sin C =53cos C +23sin C 知,cos C >0, 并结合sin 2C +cos 2C =1,得sin C =56,cos C =16.于是sin B =5cos C =56.由a =2及正弦定理a sin A =csin C ,得c = 3.故△ABC 的面积S =12ac sin B =52.2.设函数f (x )=sin ⎝⎛⎭⎪⎫2x +π6-23sin x cos x (x ∈R ).(1)求函数f (x )的最小正周期及f ⎝ ⎛⎭⎪⎫π4的值;(2)将函数f (x )的图象向右平移π12个单位长度,得到函数g (x )的图象,试求g (x )在⎣⎢⎡⎦⎥⎤0,π2上的最小值.押题依据 三角函数是高考的热点问题,是解答题的重要考查题型.利用三角恒等变换将函数转化为“一角一函数”的形式是解决此类问题的关键,换元法与整体代换法是最基本的解决方法.考查重点是三角函数的图象与性质,有时会与解三角形问题进行综合考查. 解 (1)f (x )=sin ⎝ ⎛⎭⎪⎫2x +π6-23sin x cos x=32sin 2x +12cos 2x -3sin 2x =12cos 2x -32sin 2x =cos ⎝ ⎛⎭⎪⎫2x +π3.所以函数f (x )的最小正周期T =2π2=π,f ⎝ ⎛⎭⎪⎫π4=cos ⎝⎛⎭⎪⎫2×π4+π3=-32.(2)g (x )=f ⎝ ⎛⎭⎪⎫x -π12=cos ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫x -π12+π3= cos ⎝⎛⎭⎪⎫2x +π6. 因为x ∈⎣⎢⎡⎦⎥⎤0,π2,所以2x +π6∈⎣⎢⎡⎦⎥⎤π6,7π6.所以当2x +π6=π,即x =5π12时,g (x )取得最小值,此时g (x )min =-1.3.已知f (x )=sin(ωx +φ) ⎝ ⎛⎭⎪⎫ω>0,|φ|<π2满足f ⎝ ⎛⎭⎪⎫x +π2=-f (x ),若其图象向左平移π6个单位长度后得到的函数为奇函数.(1)求f (x )的解析式;(2)在锐角△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且满足(2c -a )cos B =b cos A ,求f (A )的取值范围.押题依据 三角函数是高考考查的重点,是解答题的常考题型,常与解三角形相结合,此题很好地体现了综合性,是高考中的热点.解 (1)∵f ⎝⎛⎭⎪⎫x +π2=-f (x ),∴f (x +π)=-f ⎝ ⎛⎭⎪⎫x +π2=f (x ),∴T =π,∴ω=2,则f (x )的图象向左平移π6个单位长度后得到的函数为g (x )=sin ⎝ ⎛⎭⎪⎫2x +π3+φ,而g (x )为奇函数,则有π3+φ=k π,k ∈Z ,而|φ|<π2,则有φ=-π3,从而f (x )=sin ⎝ ⎛⎭⎪⎫2x -π3.(2)∵(2c -a )cos B =b cos A ,由正弦定理得2sin C cos B =sin(A +B )=sin C ,又C ∈⎝⎛⎭⎪⎫0,π2,∴sin C ≠0,∴cos B =12,∴B =π3.∵△ABC 是锐角三角形,C =2π3-A <π2, ∴π6<A <π2,∴0<2A -π3<2π3, ∴sin ⎝ ⎛⎭⎪⎫2A -π3∈(0,1],∴f (A )=sin ⎝⎛⎭⎪⎫2A -π3∈(0,1].A 组 专题通关1.(2018·全国Ⅲ)若sin α=13,则cos 2α等于( )A.89B.79 C .-79 D .-89 答案 B解析 ∵sin α=13,∴cos 2α=1-2sin 2α=1-2×⎝ ⎛⎭⎪⎫132=79.2.tan 70°+tan 50°-3tan 70°tan 50°的值为( ) A. 3 B.33 C .-33D .- 3 答案 D解析 因为tan 120°=tan 70°+tan 50°1-tan 70°tan 50°=-3,即tan 70°+tan 50°-3tan 70°tan 50°=- 3.3.已知△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,且满足cos A =bc,则该三角形为( ) A .等腰三角形 B .等腰直角三角形 C .等边三角形 D .直角三角形答案 D解析 由cos A =b c ,即b 2+c 2-a 22bc =bc,化简得c 2=a 2+b 2, 所以△ABC 为直角三角形.4.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若a 2=b 2+c 2-3bc ,sin C =2cos B ,则( )A .A =π3B .B =π4 C .c =3b D .c =2a答案 D解析 在△ABC 中,由余弦定理得a 2=b 2+c 2-2bc cos A , 又a 2=b 2+c 2-3bc ,所以cos A =32, 又A ∈(0,π),所以A =π6,则sin C =2cos B =2cos ⎝⎛⎭⎪⎫5π6-C=2⎝ ⎛⎭⎪⎫cos 5π6cos C +sin 5π6sin C=-3cos C +sin C ,则cos C =0,又C ∈(0,π),所以C =π2,所以B =π3,在△ABC 中,由正弦定理得a sin π6=b sin π3=csinπ2, 化简得c =233b =2a .综上所述,选D.5.已知α为锐角,则2tan α+3tan 2α的最小值为( )A .1B .2 C. 2 D. 3 答案 D解析 方法一 由tan 2α有意义,α为锐角可得α≠45°, ∵α为锐角,∴tan α>0,∴2tan α+3tan 2α=2tan α+3(1-tan 2α)2tan α=12⎝ ⎛⎭⎪⎫tan α+3tan α≥12×2tan α·3tan α=3,当且仅当tan α=3tan α,即tan α=3,α=π3时等号成立.故选D.方法二 ∵α为锐角,∴sin α>0,cos α>0, ∴2tan α+3tan 2α=2sin αcos α+3cos 2αsin 2α=4sin 2α+3cos 2α2sin αcos α=sin 2α+3cos 2α2sin αcos α=12⎝ ⎛⎭⎪⎫sin αcos α+3cos αsin α≥12×2sin αcos α·3cos αsin α=3, 当且仅当sin αcos α=3cos αsin α,即α=π3时等号成立.故选D.6.(2018·浙江省台州中学统考)已知sin α=12+cos α且α∈⎝ ⎛⎭⎪⎫0,π2,则sin 2α=________,cos 2αsin ⎝ ⎛⎭⎪⎫α-π4的值为__________.答案 34 -142解析 由sin α=12+cos α,得sin α-cos α=12,①两边平方得(sin α-cos α)2=1-2sin αcos α=1-sin 2α=14,则sin 2α=34.因为α∈⎝⎛⎭⎪⎫0,π2,所以sin α>0,cos α>0,则sin α+cos α=(sin α+cos α)2=1+sin 2α=72,② 联立①②解得cos α=7-14, 则cos 2α=2cos 2α-1=-74, 又由sin α-cos α=12得,2sin ⎝ ⎛⎭⎪⎫α-π4=12, 则sin ⎝⎛⎭⎪⎫α-π4=24,所以cos 2αsin ⎝ ⎛⎭⎪⎫α-π4=-7424=-142.7.(2018·杭州模拟)设△ABC 内切圆与外接圆的半径分别为r 与R ,且sin A ∶sin B ∶sin C =2∶3∶4,则cos C =________;当BC =1时,△ABC 的面积为________. 答案 -14 31516解析 ∵sin A ∶sin B ∶sin C =2∶3∶4, ∴由正弦定理得a ∶b ∶c =2∶3∶4. 令a =2t ,b =3t ,c =4t , 则cos C =4t 2+9t 2-16t 212t 2=-14, ∴sin C =154. 当BC =1时,AC =32,∴S △ABC =12×1×32×154=31516.8.(2018·温州市适应性测试)在△ABC 中,AD 为边BC 上的中线,AB =1,AD =5,B =45°,则sin∠ADC =________,AC =________. 答案210113解析 在△ABD 中,由正弦定理得AB sin∠ADB =ADsin B,则sin∠ADB =AB sin B AD =1×225=210,则sin∠ADC =sin(π-∠ADB )=sin∠ADB =210. 在△ABD 中,由余弦定理得AD 2=AB 2+BD 2-2AB ·BD cos B ,即52=12+BD 2-2BD cos 45°,解得BD =42(舍负),则BC =2BD =82, 在△ABC 中,由余弦定理得AC 2=AB 2+BC 2-2AB ·BC cos B=12+(82)2-2×1×82cos 45°=113, 所以AC =113.9.(2018·浙江)已知角α的顶点与原点O 重合,始边与x 轴的非负半轴重合,它的终边过点P ⎝ ⎛⎭⎪⎫-35,-45.(1)求sin(α+π)的值;(2)若角β满足sin(α+β)=513,求cos β的值.解 (1)由角α的终边过点P ⎝ ⎛⎭⎪⎫-35,-45,得sin α=-45.所以sin(α+π)=-sin α=45.(2)由角α的终边过点P ⎝ ⎛⎭⎪⎫-35,-45,得cos α=-35.由sin(α+β)=513,得cos(α+β)=±1213.由β=(α+β)-α,得cos β=cos[(α+β)-α] =cos(α+β)cos α+sin(α+β)sin α,所以cos β=-5665或cos β=1665.10.(2018·浙江省重点中学联考)在△ABC 中,内角A ,B ,C 的对边分别是a ,b ,c ,已知2b cosC =2a -3c .(1)求B 的大小;(2)若CA →+CB →=2CM →,且|CM →|=1,求△ABC 面积的最大值. 解 (1)由2b cos C =2a -3c 及正弦定理, 得2sin B cos C =2sin A -3sin C , 即2sin B cos C =2sin(B +C )-3sin C , ∴2sin C cos B =3sin C ,∵C ∈(0,π),∴sin C ≠0,∴cos B =32, 又B ∈(0,π),∴B =π6.(2)由条件知,M 为AB 的中点, ∴在△BCM 中,由余弦定理可得cos B =BM 2+BC 2-12BM ·BC =32,∴BM 2+BC 2=1+3BM ·BC ≥2BM ·BC ,∴BM ·BC ≤2+3,当且仅当BM =BC 时等号成立. 又S △ABC =12BC ·BA sin π6=12BC ·BM ≤1+32,∴△ABC 面积的最大值是1+32. B 组 能力提高11.已知2sin θ=1-cos θ,则tan θ等于( ) A .-43或0B.43或0 C .-43D.43答案 A解析 因为2sin θ=1-cos θ,所以4sin θ2cos θ2=1-⎝ ⎛⎭⎪⎫1-2sin 2θ2=2sin 2θ2,解得sin θ2=0或2cos θ2=sin θ2,即tan θ2=0或2,又tan θ=2tanθ21-tan2θ2,当tan θ2=0时,tan θ=0;当tan θ2=2时,tan θ=-43.12.在锐角△ABC 中,角A 所对的边为a ,△ABC 的面积S =a 24,给出以下结论:①sin A =2sin B sin C ; ②tan B +tan C =2tan B tan C ;③tan A +tan B +tan C =tan A tan B tan C ; ④tan A tan B tan C 有最小值8. 其中正确结论的个数为( ) A .1 B .2 C .3 D .4 答案 D解析 由S =a 24=12ab sin C ,得a =2b sin C ,又a sin A =bsin B,得sin A =2sin B sin C ,故①正确; 由sin A =2sin B sin C ,得sin(B +C )=sin B cos C +cos B sin C =2sin B sin C , 两边同时除以cos B cos C ,可得tan B +tan C =2tan B tan C ,故②正确; 因为tan(A +B )=tan A +tan B1-tan A tan B ,且tan(A +B )=tan(π-C )=-tan C , 所以tan A +tan B 1-tan A tan B=-tan C ,整理移项得tan A +tan B +tan C =tan A tan B tan C , 故③正确;由tan B +tan C =2tan B tan C , tan A =-tan(B +C )=tan B +tan Ctan B tan C -1,且tan A ,tan B ,tan C 都是正数,得tan A tan B tan C =tan B +tan Ctan B tan C -1·tan B tan C=2tan B tan C tan B tan C -1·tan B tan C =2(tan B tan C )2tan B tan C -1, 设m =tan B tan C -1,则m >0, tan A tan B tan C =2(m +1)2m=2⎝⎛⎭⎪⎫m +1m +4≥4+4m ·1m=8,当且仅当m =tan B tan C -1=1, 即tan B tan C =2时取“=”,此时tan B tan C =2,tan B +tan C =4,tan A =4, 所以tan A tan B tan C 的最小值是8,故④正确,故选D. 13.(2018·北京)若△ABC 的面积为34(a 2+c 2-b 2),且∠C 为钝角,则∠B =________;c a的取值范围是________. 答案π3(2,+∞) 解析 由余弦定理得cos B =a 2+c 2-b 22ac,∴a 2+c 2-b 2=2ac cos B .又∵S =34(a 2+c 2-b 2), ∴12ac sin B =34×2ac cos B ,∴tan B =3, 又∠B ∈(0,π),∴∠B =π3.又∵∠C 为钝角,∴∠C =2π3-∠A >π2,∴0<∠A <π6.由正弦定理得c a =sin ⎝ ⎛⎭⎪⎫2π3-∠A sin A=32cos A +12sin A sin A =12+32·1tan A .∵0<tan A <33,∴1tan A>3, ∴c a >12+32×3=2,即ca>2.∴c a的取值范围是(2,+∞).14.如图,在△ABC 中,D 为边BC 上一点,AD =6,BD =3,DC =2.(1)如图1,若AD ⊥BC ,求∠BAC 的大小; (2)如图2,若∠ABC =π4,求△ADC 的面积.解 (1)设∠BAD =α,∠DAC =β. 因为AD ⊥BC ,AD =6,BD =3,DC =2, 所以tan α=12,tan β=13,所以tan∠BAC =tan(α+β) =tan α+tan β1-tan αtan β=12+131-12×13=1. 又∠BAC ∈(0,π),所以∠BAC =π4.(2)设∠BAD =α.在△ABD 中,∠ABC =π4,AD =6,BD =3.由正弦定理得AD sinπ4=BD sin α,解得sin α=24.因为AD >BD ,所以α为锐角,从而cos α=1-sin 2α=144. 因此sin∠ADC =sin ⎝ ⎛⎭⎪⎫α+π4=sin αcos π4+cos αsin π4 =22⎝ ⎛⎭⎪⎫24+144=1+74. 所以△ADC 的面积S =12×AD ×DC ·sin∠ADC=12×6×2×1+74=32(1+7).。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
难点一 与三角变换、平面向量综合的三角形问题(对应学生用书第62页)高考数学命题注重知识的整体性和综合性,重视在知识的交汇处考察,对三角形问题的考察重点在于三角变换、向量综合,它们之间互相联系、互相交叉,不仅考察三角变换,同时深化了向量的运算,体现了向量的工具作用,试题综合性较高,所以要求学生有综合处理问题的能力,纵观最近几年高考,试题难度不大,但是如果某一知识点掌握不到位,必会影响到整个解题过程 ,本文从以下几个方面阐述解题思路,以达到抛砖引玉的目的. 1.向量运算与三角形问题的综合运用解答这类题,首先向量的基本概念和运算必须熟练,要很好的掌握正弦定理、余弦定理的应用条件,其次要注意把题目中的向量用三角中边和角表示,体现向量的工具作用.【例1】 (镇江市2017届高三上学期期末)已知向量m =(cos α,-1),n =(2,sin α),其中α∈⎝⎛⎭⎪⎫0,π2,且m ⊥n .(1)求cos 2α的值; (2)若sin(α-β)=1010,且β∈⎝⎛⎭⎪⎫0,π2,求角β的值.[解] 法一(1)由m ⊥n 得,2cos α-sin α=0,sin α=2cos α, 代入cos 2α+sin 2α=1,得5cos 2α=1,且α∈⎝⎛⎭⎪⎫0,π2,则cos α=55,sin α=255, 则cos 2α=2cos 2α-1=2×⎝⎛⎭⎪⎫552-1=-35. (2)由α∈⎝ ⎛⎭⎪⎫0,π2,β∈⎝ ⎛⎭⎪⎫0,π2得,α-β∈⎝ ⎛⎭⎪⎫-π2,π2.因sin(α-β)=1010,则cos(α-β)=31010. 则sin β=sin[α-(α-β)]=sin αcos(α-β)-cos αsin(α-β) =255×31010-55×1010=22,因β∈⎝⎛⎭⎪⎫0,π2,则β=π4.法二(1)由m ⊥n 得,2cos α-sin α=0,tan α=2,故cos 2α=cos 2α-sin 2α=cos 2α-sin 2αcos 2α+sin 2α=1-tan 2α1+tan 2α=1-41+4=-35. (2)由(1)知,2cos α-sin α=0,且cos 2α+sin 2α=1,α∈⎝ ⎛⎭⎪⎫0,π2,β∈⎝⎛⎭⎪⎫0,π2,则sin α=255,cos α=55,由α∈⎝ ⎛⎭⎪⎫0,π2,β∈⎝ ⎛⎭⎪⎫0,π2得,α-β∈⎝ ⎛⎭⎪⎫-π2,π2. 因sin(α-β)=1010,则cos(α-β)=31010. 则sin β=sin[α-(α-β)]=sin αcos(α-β)-cos αsin(α-β) =255×31010-55×1010=22, 因β∈⎝ ⎛⎭⎪⎫0,π2,则β=π4.2.三角函数与三角形问题的结合三角函数的起源是三角形,所以经常会联系到三角形,这类型题是在三角形这个载体上的三角变换,第一:既然是三角形问题,就会用到三角形内角和定理和正、余弦定理以及相关三角形理论,及时边角转换,可以帮助发现问题解决思路;第二:它也是一种三角变换,只不过角的范围缩小了,因此常见的三角变换方法和原则都是适用的. 【例2】 (2017·江苏省无锡市高考数学一模)在△ABC 中,a ,b ,c 分别为角A ,B ,C 的对边.若a cos B =3,b cos A =1,且A -B =π6.(1)求边c 的长; (2)求角B 的大小.【导学号:56394089】[解] (1)∵a cos B =3,b cos A =1,∴a ×a 2+c 2-b 22ac =3,b ×b 2+c 2-a 22bc=1,化为:a 2+c 2-b 2=6c ,b 2+c 2-a 2=2c . 相加可得:2c 2=8c ,解得c =4. (2)由(1)可得:a 2-b 2=8.由正弦定理可得:a sin A =b sin B =4sin C,又A -B =π6,∴A =B +π6,C =π-(A +B )=π-⎝ ⎛⎭⎪⎫2B +π6,可得sin C =sin ⎝⎛⎭⎪⎫2B +π6. ∴a =4sin ⎝⎛⎭⎪⎫B +π6sin ⎝ ⎛⎭⎪⎫2B +π6,b =4sin B sin ⎝⎛⎭⎪⎫2B +π6.∴16sin 2⎝ ⎛⎭⎪⎫B +π6-16sin 2B =8sin 2⎝⎛⎭⎪⎫2B +π6, ∴1-cos ⎝ ⎛⎭⎪⎫2B +π3-(1-cos 2B )=sin 2⎝ ⎛⎭⎪⎫2B +π6,即cos 2B -cos ⎝ ⎛⎭⎪⎫2B +π3=sin 2⎝⎛⎭⎪⎫2B +π6, ∴-2sin ⎝ ⎛⎭⎪⎫2B +π6sin ⎝ ⎛⎭⎪⎫-π6=sin 2⎝ ⎛⎭⎪⎫2B +π6,∴sin ⎝ ⎛⎭⎪⎫2B +π6=0或sin ⎝ ⎛⎭⎪⎫2B +π6=1,B ∈⎝ ⎛⎭⎪⎫0,5π12. 解得:B =π6.3.三角变换、向量、三角形问题的综合高考会将几方面结合起来命题,三角函数主要考察它的图象、常见性质;三角形主要考察正弦定理、余弦定理以及有关的三角形性质;向量主要考察向量的运算、向量的模、向量的夹角、向量的垂直以及向量的共线,体现向量的工具作用,三角变换主要考察求值、化简、变形.【例3】 (扬州市2017届高三上学期期中)在△ABC 中,AB =6,AC =32,AB →·AC →=-18.(1)求BC 的长; (2)求tan 2B 的值.[解] (1)因为AB →·AC →=AB ×AC ×cos A =-18,且AB =6,AC =32,BC =AB 2+AC 2-2AB ×AC ×cos A=62+322-2×-18=310.(2)法一:在△ABC 中,AB =6,AC =32,BC =310,cos B =BA 2+BC 2-AC 22BA ×BC =62+3102-3222×6×310=31010,又B ∈(0,π),所以sin B =1-cos 2B =1010, 所以tan B =sin B cos B =13,所以tan 2B=2tan B1-tan2B=231-⎝⎛⎭⎪⎫132=34.法二:由AB=6,AC=32,AB→·AC→=AB×AC×c os A=-18可得cos A=-22,又A∈(0,π),所以A=3π4.在△ABC中,BCsin A=ACsin B,所以sin B=AC×sin ABC=32×22310=1010,又B∈⎝⎛⎭⎪⎫0,π4,所以cos B=1-sin2B=31010,所以tan B=sin Bcos B=13,所以tan 2B=2tan B1-tan2B=231-⎝⎛⎭⎪⎫132=34.4.实际应用中的三角形问题在实际生活中往往会遇到关于距离、角度、高度的测量问题,可以借助平面图形,将上述量放在一个三角形中,借助解三角形知识达到解决问题的目的.【例4】(2017·江苏省淮安市高考数学二模)一缉私艇巡航至距领海边界线l(一条南北方向的直线)3.8海里的A处,发现在其北偏东30°方向相距4海里的B处有一走私船正欲逃跑,缉私艇立即追击,已知缉私艇的最大航速是走私船最大航速的3倍,假设缉私艇和走私船均按直线方向以最大航速航行.图1(1)若走私船沿正东方向逃离,试确定缉私艇的追击方向,使得用最短时间在领海内拦截成功;(参考数据:sin 17°≈36,33≈5.744 6)(2)问:无论走私船沿何方向逃跑,缉私艇是否总能在领海内成功拦截?并说明理由.[解](1)设缉私艇在C处与走私船相遇(如图),则AC=3BC.△ABC 中,由正弦定理可得sin ∠BAC =sin 120°3=36,∴∠BAC =17°,∴缉私艇应向北偏东47°方向追击,△ABC 中,由余弦定理可得cos 120°=16+BC 2-AC28BC,∴BC ≈1.686 15.B 到边界线l 的距离为3.8-4sin 30°=1.8,∵1.686 15<1.8,∴能用最短时间在领海内拦截成功.(2)以A 为原点,建立如图所示的坐标系,则B (2,23),设缉私艇在P (x ,y )处与走私船相遇,则PA =3PB ,即x 2+y 2=9[(x -2)2+(y -23)2],即⎝ ⎛⎭⎪⎫x -942+⎝ ⎛⎭⎪⎫y -9432=94,∴P 的轨迹是以⎝ ⎛⎭⎪⎫94,943为圆心,32为半径的圆, ∵圆心到边界线l :x =3.8的距离为1.55,大于圆的半径, ∴无论走私船沿何方向逃跑,缉私艇总能在领海内成功拦截.5.综合上述几个方面的阐述,解三角形问题不是孤立的,而是跟其他相关知识紧密联系在一起,通过向量的工具作用,将条件集中到三角形中,然后利用三角恒等变换、正弦定理和余弦定理及其相关知识解题,是常见的解题思路,为此,熟练掌握向量的基本概念和向量的运算,熟练进行三角变换和熟练运用正弦定理以及余弦定理是解题的关键. 6.向量与三角形问题的结合向量具有“双重身份”,既可以像数一样满足“运算性质”进行代数形式的运算,又可以利用它的几何意义进行几何形式的变换,同时向量加、减法的几何运算遵循三角形法则和平行四边形法则,这为向量和三角形问题的结合,提供了很好的几何背景.6.1 向量与三角形谈“心”内心(三角形内切圆圆心 ):三角形三条内角平分线的交点; 外心(三角形外接圆的圆心):三角形各边中垂线的交点; 垂心:三角形各边上高的交点; 重心:三角形各边中线的交点, 用向量形式可表示为如下形式:若P 是△ABC 内的一点,⎩⎪⎨⎪⎧AP →=λ⎝ ⎛⎭⎪⎫AB →|AB →|+AC →|AC →|,λ>0BP →=t ⎝ ⎛⎭⎪⎫BA →|BA →|+BC →|BC →|,t >0⇒P 是△ABC 的内心;若D 、E 两点分别是△ABC 的边BC 、CA 上的中点,且 ⎩⎨⎧DP →·PB →=DP →·PC →EP →·PC →=EP →·PA→⇒P 是△ABC 的外心;若GA →+GB →+GC →=0,则G 是△ABC 的重心;若P 是△ABC 所在平面内的一点,且PA →·PB →=PA →·PC →=PC →·PB →,则P 是△ABC 的垂心. 【例5】 (2017·江苏省泰州市高考数学一模)在△ABC 中,若BC →·BA →+2AC →·AB →=CA →·CB →,则sin A sin C的值为________. 【导学号:56394090】[解析] 在△ABC 中,设三条边分别为a 、b 、c ,三角分别为A 、B 、C , 由BC →·BA →+2AC →·AB →=CA →·CB →,得ac ·cos B +2bc ·cos A =ba ·cos C ,由余弦定理得:12(a 2+c 2-b 2)+(b 2+c 2-a 2)=12(b 2+a 2-c 2),化简得a 2c 2=2,∴a c =2,由正弦定理得sin A sin C =ac= 2.故答案为: 2.[答案] 26.2 判断三角形形状三角形的边可以看做向量的模长,三角形的内角可以看做向量的夹角,所以可利用向量的数量积和夹角公式或者其他线性运算,结合平面几何知识来判断三角形的形状 【例6】 △ABC 的三个内角A 、B 、C 成等差数列,(BA →+BC →)·AC →=0,则△ABC 一定是________三角形.[解析] △ABC 的三个内角A 、B 、C 成等差数列,则有2B =A +C ,所以B =π3,设D是AC 边的中点,则BA →+BC →=2BD →,所以2BD →·AC →=0,BD →⊥AC →,所以△ABC 一定是等边三角形. [答案] 等边。