锐角三角函数(1)课件0-
合集下载
锐角三角函数(第一课)课件

锐角三角函数(第一课)
# 锐角三角函数(第一课) ## 一、引言 - 本课程将介绍锐角三角函数的概念和性质,帮助您更好地理解三角函数并为后续学习打下基础。 ## 二、三角函数的定义 - 正弦函数、余弦函数、正切函数、正割函数、余割函数以及它们的反函数。 ## 三、性质 - 了解三角函数的周期性、奇偶性、连续性、单调性、极值和最值。 ## 四、图像与应用 - 探索三角函数的图像以及它们在实际应用中的作用。 ## 五、总结 - 通过本课程,您将对锐角三角函数的概念和性质有全面的了解。
三角函数在其定义域内是连续的。
单调性
4
三角函数的单调性决定了其在不同区间
的递增或递减性。
5
极值和最值
三角函数的极值和最值对应着函数图像 的高点和低点。
图像与应用
正弦函数的图像
正弦函数呈现出美丽的波浪形图 像,广泛应用于物理学和工程学 中。
余弦函数的图像
正切函数的图像
余弦函数呈现出光滑的曲线图像, 常被用于振动和波动问题。
正切函数的图像具有特殊的涨落 特征,常用于解决角度和斜率相 关问题。
总结
课程概述
通过本课程,您了解了锐角三角函数的定义、 性质,以及它们在图像和应用中的作用。
基础打牢
掌握三角函数的图像和基本性质,对后续学习 将非常有帮助。
三角函数的定义
正弦函数
描述角的正弦值与其对边与斜边之比。
正切函数
描述角的正切值与其对边与邻边之比。
余弦函数
描述角的余弦值与其邻边与斜边之比。
正割函数
描述角的正割值与斜边与对边之比。
三角函数的性质
1
周期性
三角函数在一定范围内呈现周期性变化。
奇偶性
2
# 锐角三角函数(第一课) ## 一、引言 - 本课程将介绍锐角三角函数的概念和性质,帮助您更好地理解三角函数并为后续学习打下基础。 ## 二、三角函数的定义 - 正弦函数、余弦函数、正切函数、正割函数、余割函数以及它们的反函数。 ## 三、性质 - 了解三角函数的周期性、奇偶性、连续性、单调性、极值和最值。 ## 四、图像与应用 - 探索三角函数的图像以及它们在实际应用中的作用。 ## 五、总结 - 通过本课程,您将对锐角三角函数的概念和性质有全面的了解。
三角函数在其定义域内是连续的。
单调性
4
三角函数的单调性决定了其在不同区间
的递增或递减性。
5
极值和最值
三角函数的极值和最值对应着函数图像 的高点和低点。
图像与应用
正弦函数的图像
正弦函数呈现出美丽的波浪形图 像,广泛应用于物理学和工程学 中。
余弦函数的图像
正切函数的图像
余弦函数呈现出光滑的曲线图像, 常被用于振动和波动问题。
正切函数的图像具有特殊的涨落 特征,常用于解决角度和斜率相 关问题。
总结
课程概述
通过本课程,您了解了锐角三角函数的定义、 性质,以及它们在图像和应用中的作用。
基础打牢
掌握三角函数的图像和基本性质,对后续学习 将非常有帮助。
三角函数的定义
正弦函数
描述角的正弦值与其对边与斜边之比。
正切函数
描述角的正切值与其对边与邻边之比。
余弦函数
描述角的余弦值与其邻边与斜边之比。
正割函数
描述角的正割值与斜边与对边之比。
三角函数的性质
1
周期性
三角函数在一定范围内呈现周期性变化。
奇偶性
2
《锐角三角函数》PPT教学课件(第1课时)

BC AC
= 12 =
AC
34,所以AC=9.故填9.
随堂训练
AB 6.如图,在Rt△ABC中,∠C=90°,BC
17 15
,则tan
15 A=_8__.
由正切定义可知tan A=BACC , 因为 AB 17 , 可设BC=15a,AB=17a,从而可
BC 15
用勾股定理表示出第三边AC=8a,再用正切的定义求解得 tan A= BC 15 .
由勾股定理可得 AB= BC2 AC2 122 162 =20.
∴AB的长为20.
课堂小结
1.正切的定义: 如图,在Rt△ABC中,如果锐角A确定,那么∠A的对边与邻
边的比便随之确定,这个比叫做 ∠A的正切,记作tan A, 即tan A= A的对边
A的邻边
2.tanA的值越大,梯子(坡)越陡
图①
图②
新课导入
问题引入
如图所示,轮船在A处时,灯塔B位于它 的北偏东35°的方向上.轮船向东航行5 km 到达C处时,轮船位于灯塔的正南方,此时轮 船距灯塔多少千米?(结果保留两位小数)
该实际问题中的已知和所求为图中的哪些角和线段?
(事实上,求轮船距灯塔的距离,就是在Rt△ABC中,已知 ∠C=90°,∠BAC=55°,AC=5 km,求BC长度的问题)
C,C'.
BC AC
与BACC
具有怎样的关系?
在两个直角三角形中,当一对锐角相等
时,这两个直角三角形相似,从而两条对应直
角边的比相等,即当∠A(小于90°)确定时,以 ∠A为锐角的Rt△ABC的两条直角边的比 BC
AC
是确定的.
知识讲解
1.正切的定义
如图所示,在Rt△ABC中,∠C=90°,我们把∠A的对边与邻边的比叫
1锐角三角函数课件

A 1 B2
源于生活的数学
从梯子的倾斜程度谈起
梯子是我们日常生活中常 见的物体 你能比较两个梯子哪个更 陡吗?你有哪些办法?
驶向胜 利的彼
岸
生活问题数学化
驶向胜 利的彼
岸
梯子AB和EF哪个 更陡?你是怎样
判断的?
小明的问题,如图:
A
E
5m
5m
B2.5m C F 2m D
有比较才有鉴别
驶向胜 利的彼
6.如图, ∠C=90°CD⊥AB.
tan
B
( (
))
( (
))((
)).
A
驶向胜 利的彼
岸
C
┌ DB
7.在上图中,若BD=6,CD=12.求tanA的值.
老师提示: 模型“双垂直三角形”的有关性质你可曾记得
八仙过海,尽显才能
驶向胜 利的彼
岸
8.如图,分别根据图 (1)和图(2)求tanA的值.
A
你能根据图中所给数据求出tanC吗?
B
驶向胜 利的彼
岸
1.5
┌
A
D
C
2.如图,某人从山脚下的点A走了200m后到达
山顶的点B.已知山顶B到山脚下的垂直距离是
B
55m,求山坡的坡度(结果精确到0.001m).
┌
A
C
八仙过海,尽显才能
3.鉴宝专家--是真是假:
(1).如图 (1)tan A BC (假)
岸
梯子AB和EF哪 个更陡?你是怎
样判断的?
小颖的问题,如图:
A
E
?
4m
3.5
m
B 1.5m C F 1.3m D
永恒的真理 变
源于生活的数学
从梯子的倾斜程度谈起
梯子是我们日常生活中常 见的物体 你能比较两个梯子哪个更 陡吗?你有哪些办法?
驶向胜 利的彼
岸
生活问题数学化
驶向胜 利的彼
岸
梯子AB和EF哪个 更陡?你是怎样
判断的?
小明的问题,如图:
A
E
5m
5m
B2.5m C F 2m D
有比较才有鉴别
驶向胜 利的彼
6.如图, ∠C=90°CD⊥AB.
tan
B
( (
))
( (
))((
)).
A
驶向胜 利的彼
岸
C
┌ DB
7.在上图中,若BD=6,CD=12.求tanA的值.
老师提示: 模型“双垂直三角形”的有关性质你可曾记得
八仙过海,尽显才能
驶向胜 利的彼
岸
8.如图,分别根据图 (1)和图(2)求tanA的值.
A
你能根据图中所给数据求出tanC吗?
B
驶向胜 利的彼
岸
1.5
┌
A
D
C
2.如图,某人从山脚下的点A走了200m后到达
山顶的点B.已知山顶B到山脚下的垂直距离是
B
55m,求山坡的坡度(结果精确到0.001m).
┌
A
C
八仙过海,尽显才能
3.鉴宝专家--是真是假:
(1).如图 (1)tan A BC (假)
岸
梯子AB和EF哪 个更陡?你是怎
样判断的?
小颖的问题,如图:
A
E
?
4m
3.5
m
B 1.5m C F 1.3m D
永恒的真理 变
锐角三角函数(第一课时)课件ppt

对边与斜边的比 BC ,你能得出什
么结论?
AB
C
B
在Rt△ABC中,∠C=90°,由于∠A=45°,所以Rt△ABC是
等腰直角三角形,由勾股定理得
AB2 AC2 BC2 2BC2
AB 2BC
因此 BC BC 1 2
AB 2BC 2 2
即在直角三角形中,当一个锐角等于45°时,不管这 个直角三角形的大小如何,这个角的对边与斜边的比都 等于 2
(2)直角三角形中一个锐角的度数越大,它的 对边与斜边的比值越大
结论
如图,Rt△ABC中,直角边AC、BC小于斜边AB,
B
sin A BC AB
<1
sin B AC <1 AB
A
C
所以0<sinA <1, 0<sinB <1,
如果∠A < ∠B,则BC<AC ,
那么0< sinA <sinB <1
C
AB
在Rt△BCD中, sin B CD BC
A
D
B
因为∠B=∠ACD,所以
sin B sin ACD AD AC
请分别计算60度的锐角对边与斜边的比值 你能发现什么规律吗?
sin 45 2 2
sin 45 2 2
sin30 1
2
(1)直角三角形中,锐角大小确定后,这个角的 对边与斜边的比值随之确定;
意大利的伟大科学家C 伽俐 .略,曾在斜塔的顶
层做过自由落体运动的实 验.
B
“斜而未倒” AB=54.5m BC=5.2m
α
A
情
问题 为了绿化荒山,某地打算从位于山脚下的机井 房沿着山坡铺设水管,在山坡上修建一座扬水站,
锐角三角函数(1)ppt

AC
注意: 注意:
BC tanα 即tanα= AC
1、在三角函数的表示中,用希腊字母或单独一个大写 在三角函数的表示中, 英文字母表示的角前面的“ 一般省略不写. 英文字母表示的角前面的“∠”一般省略不写. sinα cosα tanα是一个完整的符号, 2、sinα、 cosα、 tanα是一个完整的符号,单 独的“sin”没有意义 没有意义. 独的“sin 没有意义.
H
D
动手实验
已知一个50 ∠MAN,在边AM上任意取一点 在边AM 取一点B 已知一个50 的∠MAN,在边AM上任意取一点B,作 BC⊥AN于点C.用刻度尺先量出BC,AB的长度(精确到1 BC⊥AN于点C.用刻度尺先量出BC,AB的长度(精确到1毫 C.用刻度尺先量出BC 的长度 的值(结果保留2个有效数字), ),并将所得 米),再计算 BC 的值(结果保留2个有效数字),并将所得 ),再计算 的结果与你同伴所得的结果作比较.你发现了什么? 的结果与你同伴所得的结果作比较.你发现了什么? M
三角函数的由来
“三角学”一词,是由希腊文三角形与测量二字构成的, 三角学”一词,是由希腊文三角形 测量二字构成的 三角形与 二字构成的, 三角学 原意是三角形的测量 也就是解三角形. 三角形的测量, 原意是三角形的测量,也就是解三角形.后来范围逐渐 扩大,成为研究三角函数及其应用的一个数学分支. 扩大,成为研究三角函数及其应用的一个数学分支. 三角测量在我国出现的很早.据记载, 三角测量在我国出现的很早.据记载,早在公元前两 千年,大禹就利用三角形的边角关系, 千年,大禹就利用三角形的边角关系,来进行对山川地 α 势的测量. 势的测量. A C
1 2 sinA=______
.
练一练
注意: 注意:
BC tanα 即tanα= AC
1、在三角函数的表示中,用希腊字母或单独一个大写 在三角函数的表示中, 英文字母表示的角前面的“ 一般省略不写. 英文字母表示的角前面的“∠”一般省略不写. sinα cosα tanα是一个完整的符号, 2、sinα、 cosα、 tanα是一个完整的符号,单 独的“sin”没有意义 没有意义. 独的“sin 没有意义.
H
D
动手实验
已知一个50 ∠MAN,在边AM上任意取一点 在边AM 取一点B 已知一个50 的∠MAN,在边AM上任意取一点B,作 BC⊥AN于点C.用刻度尺先量出BC,AB的长度(精确到1 BC⊥AN于点C.用刻度尺先量出BC,AB的长度(精确到1毫 C.用刻度尺先量出BC 的长度 的值(结果保留2个有效数字), ),并将所得 米),再计算 BC 的值(结果保留2个有效数字),并将所得 ),再计算 的结果与你同伴所得的结果作比较.你发现了什么? 的结果与你同伴所得的结果作比较.你发现了什么? M
三角函数的由来
“三角学”一词,是由希腊文三角形与测量二字构成的, 三角学”一词,是由希腊文三角形 测量二字构成的 三角形与 二字构成的, 三角学 原意是三角形的测量 也就是解三角形. 三角形的测量, 原意是三角形的测量,也就是解三角形.后来范围逐渐 扩大,成为研究三角函数及其应用的一个数学分支. 扩大,成为研究三角函数及其应用的一个数学分支. 三角测量在我国出现的很早.据记载, 三角测量在我国出现的很早.据记载,早在公元前两 千年,大禹就利用三角形的边角关系, 千年,大禹就利用三角形的边角关系,来进行对山川地 α 势的测量. 势的测量. A C
1 2 sinA=______
.
练一练
锐角三角函数课件(1)

2
3 0
tan B 3 0,2sin A 3 0
即tan B 3,sin A 3 2
A 600 , B 600
巩固练习
1.已知 α,β 都是锐角,如果 sinα=cosβ,那么 α 和 β 之间满足的关
系是( B )
A.α=β
B.α+β=90°
C.α-β=90°
D.β-α=90°
b
c
CaB
在直角三角形中,若一个锐角确定,那么这个角的对边,邻边和
斜边之间的比值也随之确定.
sin A a , c
cos A b , c
B
sin B b , cosB a ,
c
c
∴sinA=cosB,cosA=sinB.
∵∠A+∠B=90°,
c
a
┌
A
b
C
∴∠B=90°-∠A,
即sinA=cosB=cos(90°-∠A),
60°
30°
45°
45°
设30°所对的直角边长为a,那么斜边长为2a
另一条直角边长= 2a2 a2 3a
sin 30 a 1
2a 2
30°
cos 30 3a 3 2a 2
tan 30 a 3 3a 3
sin 60 3a 3 2a 2
cos 60 a 1 2a 2
tan 60 3a 3
cosA=sinB= sin(90°-∠A).
sinA和cosB有什么关系? sinA=cosB
结论: 任意一个锐角的正(余)弦值,等于它的余角的
余(正)弦值.
典例精析
例1: 计算:
(1)sin300+cos450; (2) sin2600+cos2600-tan450.
《锐角三角函数》ppt1
B
A
C
《 锐 角 三 角 函数》 ppt1( PPT优秀 课件)
《 锐 角 三 角 函数》 ppt1( PPT优秀 课件)
拓展
如图,在Rt△ABC中,∠C=90°,∠A,∠BB
,∠C的对边分别是a,b,c.
c
求证:sin2A+cos2A=1.
a
证明: s in A = a , c o s A = b ,
tanA= A A的 的对 邻边 边=ab
结论
斜边 c
B ∠A的对边 a
A ∠A的邻边 b C
在Rt△ABC中,∠C=90°, 我们把锐角A的对边与邻边的比叫做锐角∠A的余切, 记作cotA,即
cotA= A A的 的邻 对边 边=ab
《 锐 角 三 角 函数》 ppt1( PPT优秀 课件)
归纳
(第 1 题)
小明在打网球时,击出一个直线球恰好
擦若网小而明过第,二且刚次好击落的在直底线线球上仍,已擦知网网而球过场且 的 ) 球刚3米底 是 飞好线 行1这米落到 的时,在网 距球击底的离球飞距吗线高行离?上度的(,(距OAB击)D离)球是是是高1多22度米米少, ,(米网 你B?1高 能D( 求1 )出AC是
《 锐 角 三 角 函数》 ppt1( PPT优秀 课件)
注意
1.sinA、cosA、tanA 、 cotA是在直角三角形中定义 的,∠A是锐角(注意数形结合,构造直角三角形).
2.sinA、 cosA、tanA 、 cotA是一个比值(数值), 没有单位. 3.sinA、 cosA、 tanA 、 cotA的大小只与
(4)tanB=0.8 (×)
2)如图,sinA= B C ( ×)
AB
《锐角三角函数》课件
锐角三角函数图像与性质
正弦函数图像及性质
周期性
振幅
相位
图像特点
正弦函数具有周期性,周期为2π。
正弦函数的相位表示函数在水平方向上的移动,通过调整相位可以得到不同位置的正弦波。
正弦函数的振幅为1,表示函数在垂直方向上的波动范围。
正弦函数的图像是一条连续的、平滑的曲线,呈现周期性的波动。
余弦函数图像及性质
202X
单击此处添加副标题内容
《锐角三角函数》ppt课件
汇报日期
汇报人姓名
目录
锐角三角函数基本概念
单击此处添加文本具体内容,简明扼要的阐述您的观点。
锐角三角函数图像与性质
单击此处添加文本具体内容,简明扼要的阐述您的观点。
锐角三角函数运算规则
单击此处添加文本具体内容,简明扼要的阐述您的观点。
锐角三角函数在实际问题中应用
乘法运算规则
两个锐角三角函数的除法运算,通常转化为同角三角函数的除法运算,再利用同角三角函数的基本关系式进行化简。
除法运算规则
按照先乘除后加减的运算顺序进行乘除混合运算,注意运算过程中的化简和约分。
乘除混合运算规则
复合运算规则
复合函数的定义域
复合函数的值域
复合函数的单调性
复合函数的周期性
01
02
03
钝角三角函数定义
探讨了钝角三角函数的性质,如取值范围、增减性等,以及与锐角三角函数的异同点。
钝角三角函数的性质
介绍了在直角情况下,一些特殊角的三角函数值,如0°、30°、45°、60°、90°等,以及如何利用这些特殊值进行计算和证明。
直角情况下的特殊值
感谢观看
THANKS
渐近线与间断点
02
正弦函数图像及性质
周期性
振幅
相位
图像特点
正弦函数具有周期性,周期为2π。
正弦函数的相位表示函数在水平方向上的移动,通过调整相位可以得到不同位置的正弦波。
正弦函数的振幅为1,表示函数在垂直方向上的波动范围。
正弦函数的图像是一条连续的、平滑的曲线,呈现周期性的波动。
余弦函数图像及性质
202X
单击此处添加副标题内容
《锐角三角函数》ppt课件
汇报日期
汇报人姓名
目录
锐角三角函数基本概念
单击此处添加文本具体内容,简明扼要的阐述您的观点。
锐角三角函数图像与性质
单击此处添加文本具体内容,简明扼要的阐述您的观点。
锐角三角函数运算规则
单击此处添加文本具体内容,简明扼要的阐述您的观点。
锐角三角函数在实际问题中应用
乘法运算规则
两个锐角三角函数的除法运算,通常转化为同角三角函数的除法运算,再利用同角三角函数的基本关系式进行化简。
除法运算规则
按照先乘除后加减的运算顺序进行乘除混合运算,注意运算过程中的化简和约分。
乘除混合运算规则
复合运算规则
复合函数的定义域
复合函数的值域
复合函数的单调性
复合函数的周期性
01
02
03
钝角三角函数定义
探讨了钝角三角函数的性质,如取值范围、增减性等,以及与锐角三角函数的异同点。
钝角三角函数的性质
介绍了在直角情况下,一些特殊角的三角函数值,如0°、30°、45°、60°、90°等,以及如何利用这些特殊值进行计算和证明。
直角情况下的特殊值
感谢观看
THANKS
渐近线与间断点
02
锐角三角函数(第一课时).1锐角三角函数(第一课时)公开课课件ppt
AC 4 sin B AB 5
3 A 4 C
(2)在Rt△ABC
中,
2
因此
2
BC 5 sin A AB 13
2 2
B
13 5 A
AC AB BC 13 5 12
AC 12 sin B AB 13
C
练一练
1.判断对错:
BC √ 1) 如图 (1) sinA= ( ) AB
)
1 B.缩小 100
C.不变 3如图
A 300 B 3 7
D.不能确定
则
1 sinA=______ 2
.
C
4、 在△ABC中,∠C=90°,BC=2,sinA=
AC的长是( B
A.13 B.3
)
4 C. 3
2 3
,则边
D. 5
5、如图,已知点P的坐标是(a,b),则sinα等于( D)
a A. b
在上面的问题中,如果使出水口的高度为50m,那么需要准备多长的 水管?
B' B 30m A C 50m C'
A的对边 B' C ' 1 , 斜边 AB' 2
AB'=2B ' C ' =2×50=100
结论:在一个直角三角形中,如果一个锐角等于30°,那么不管三角形 1 的大小如何,这个角的对边与斜边的比值都等于 2
A
如图,任意画一个Rt△ABC,使 ∠C=90°,∠A=45°,计算∠A的 对边与斜边的比 BC ,你能得出什 AB 么结论?
C
B
在Rt△ABC中,∠C=90°,由于∠A=45°, 所以Rt△ABC是等腰直角三角形,由勾股定理得 2 2 2 2 AB AC BC 2BC
3 A 4 C
(2)在Rt△ABC
中,
2
因此
2
BC 5 sin A AB 13
2 2
B
13 5 A
AC AB BC 13 5 12
AC 12 sin B AB 13
C
练一练
1.判断对错:
BC √ 1) 如图 (1) sinA= ( ) AB
)
1 B.缩小 100
C.不变 3如图
A 300 B 3 7
D.不能确定
则
1 sinA=______ 2
.
C
4、 在△ABC中,∠C=90°,BC=2,sinA=
AC的长是( B
A.13 B.3
)
4 C. 3
2 3
,则边
D. 5
5、如图,已知点P的坐标是(a,b),则sinα等于( D)
a A. b
在上面的问题中,如果使出水口的高度为50m,那么需要准备多长的 水管?
B' B 30m A C 50m C'
A的对边 B' C ' 1 , 斜边 AB' 2
AB'=2B ' C ' =2×50=100
结论:在一个直角三角形中,如果一个锐角等于30°,那么不管三角形 1 的大小如何,这个角的对边与斜边的比值都等于 2
A
如图,任意画一个Rt△ABC,使 ∠C=90°,∠A=45°,计算∠A的 对边与斜边的比 BC ,你能得出什 AB 么结论?
C
B
在Rt△ABC中,∠C=90°,由于∠A=45°, 所以Rt△ABC是等腰直角三角形,由勾股定理得 2 2 2 2 AB AC BC 2BC
《 锐角三角函数》 (第1课时)示范公开课教学PPT课件【北师大版九年级数学下册】
注意:坡度是坡角的正切.坡度越大,坡面越陡.
典例精析
《自动扶梯》
典例精析
例 下图表示甲、乙两个自动扶梯,哪一个自动扶梯比较陡?
4m α
8m (甲)
13 m 5m
β
(乙)
解:甲梯中,tanα= 4 1 . 82
乙梯中,tanβ= 5 5 .
132 52 12
因为tanα>tanβ,所以甲梯更陡.
议一议 在下图中,梯子的倾斜程度与tan A有关系吗?
答:tan A的值越大,梯子越陡.
探究新知
正切也经常用来描述山坡的坡度(坡面的铅直高度与 水平宽度的比称为坡度(或坡比)).
60 m
例如,有一山坡在水平方向上
每前进100 m就升高60 m
α
那么山坡的坡度就是tan α= 60 3
100 m
100 5
探究新知
如图,在Rt△ABC中,如果锐角A确定,那么∠A的 对边与邻边的比便随之确定,这个比叫做∠A的正切 (tangent),记作tan A,即tan A= ∠A的对边.
∠A的邻边
B
∠A的对边
A ∠A的邻边 C 说明:tanA是一个完整的符号,它表示∠A的正切, 记号里习惯省去角的符号“∠”.
探究新知
北师大版·统编教材九年级数学下册
第一章 直角三角形的边角关系
1.1 锐角三角函数 第 1 课时
学习目标
1.经历探索直角三角形中边角关系的过程. 2.理解锐角三角函数(正切)的意义,并能够举例说明. 3.能够运用tan A表示直角三角形中两边的比. 4.能够根据直角三角形中边角关系,进行简单的计算.
解:在Rt△ABC中, AC= AB2 BC2 2002 552 5 1479 (m). 所以tan A= BC 55 ≈0.286
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
正 弦意义
如图,在Rt△ABC中,∠C=90°,我们把 锐角A的对边与斜边的比叫做∠A的正弦 B (sine),记作:sinA 即 c a
sin A A 的对边 斜边斜边 Nhomakorabeaa
A b
对边 C
c
例如,当∠A=30°时,我们有
sin A sin 30
1 2
当∠A=45°时,我们有
sin A sin 45
A
C
附加题
1.在RT△ABC中,∠C=900,AD是BC边上 2 的中线,AC=2,BC=4,则sin∠DAC=_____.
2
2.如图在 RT△ABC中,
则sin∠A=___.
2 1
a b
3 3
B
a
A
b
C
B' B 30m A C 50m C'
结论:在一个直角三角形中,如果一个锐角等于 30°,那么不管三角形的大小如何,这个角的对 边与斜边的比值都等于
1 2
如图,任意画一个Rt△ABC, A 使∠C=90°,∠A=45°, 计算∠A的对边与斜边的 BC 比 ,你能得出什么结论?
AB
C
B
即在直角三角形中,当一个锐角等 于45°时,不管这个直角三角形的大 小如何,这个角的对边与斜边的比都 等于 2
尚志市苇河中学 苏营德
意大利的伟大科学家 C 伽俐 . 略,曾在斜塔的顶
层做过自由落体运动的实 验.
B
α
A
学习目标:
(1):理解直角三角形中,锐角的对边与斜 边的比是固定值。
(2):理解正弦的意义。能根据正弦概念正 确进行推理和计算。 (3)体会建模,数形结合,转化,特殊到 一 般的数学思想方法。
本节课你有什么收获呢?
1、你学会了哪些知识?
2、你掌握了哪些学习数学的方法 ?
3、你最大的体验是什么 ?
作业
1、必做题 在Rt△ABC中, ∠C=90° (1)AB=13,AC=12,求 sinA (2)BC=8,AC=15,求 sinAsinB (3)AB=10,BC=8,求 sinAsinB 2、选做题 E 已知在RT△ABC中,∠C=90 B D是BC中点,DE⊥AB,垂足为 D E,sin∠BDE= 4 AE=7,求DE 5 的长.
2 2
例题示范
例1 如图,在 Rt△ABC中,∠C=90°, 求sinA和sinB的值.
B B 13 5 C
(2)
3
A 4
(1)
C
A
巩固内化
1.判断对错: 1) 如图 (1) sinA=
(2)sinB=
BC AB
√ ( )
(×)
B 10m 6m C
BC AB
(3)sinA=0.6m (×)
sinA是一个比值,无单位;
拓展提高
如图, ∠C=90°CD⊥AB. 若AC=5,CD=3,求sinB的值. 解: ∵∠B=∠ACD ∴sinB=sin∠ACD 在Rt△ACD中,AD= sin ∠ACD= 4 ∴sinB= 5
AD AC =
AC - CD
2 2
C
A
┌ D
B
=
5 -3
2
2
4 5
=4
求一个角的正弦值,除了用定义直接求外, 还可以转化为求和它相等角的正弦值。
情
境
探 究
问题 为了绿化荒山,某地打算从位于山脚 下的机井房沿着山坡铺设水管,在山坡上 修建一座扬水站,对坡面的绿地进行喷 灌.现测得斜坡与水平面所成角的度数是 30°,为使出水口的高度为35m,那么需要 准备多长的水管?
B
A
C
在上面的问题中,如果使出水口的高 度为50m,那么需要准备多长的水管?
A
(4)SinB=0.8 2)如图,sinA=
BC AB
(√ )
( ×)
2.在Rt△ABC中,锐角A的对边和斜边同时扩大
100倍,sinA的值( C )
1
A.扩大100倍
B.缩小 1 0 0
C.不变
D.不能确定
思维延伸
如图
B
3
300 7 C
则 sinA=______ . 2
1
A
结论
当锐角的角度一定时,它的正弦值 不会因图形的改变而发生变化。
2
一般地,当∠A 取其他一定度数的 锐角时,它的对边与斜边的比是否也
是一个固定值?
探究
任意画 Rt△ABC和Rt△A‘B’C‘,使得∠C=∠C’ =90°,∠A=∠A‘=α,那么 么关系.你能解释一下吗?
B B'
BC AB
与
B 'C ' A' B '
有什
A
C
A'
C'
这就是说,在直角三角形中,当锐角A的度数 一定时,不管三角形的大小如何,∠A的对边与 斜边的比也是一个固定值.