集成电路工艺原理

集成电路工艺原理
集成电路工艺原理

实验五图形化剥离工艺实验

樊敬尧1100012788 一、实验目的:

1、掌握图形化剥离工艺的基本原理

2、掌握图形化剥离工艺的工艺步骤

3、学习利用图形化剥离工艺制备实验样品

二、实验原理

剥离法是一种采用牺牲光刻胶的图形化工艺方法。它的优点是有效地避免了

干湿法刻蚀中衬底基片损伤和离子污染的问题,且工艺简单非常适合于金属图形

化。剥离工艺可以分为单层光刻胶剥离工艺和多层光刻胶剥离工艺,而多层光刻

胶剥离工艺必须采用多种光源的光刻胶,使用常规工艺和设备很难实现,因此,

通常减少使用。单层光刻胶剥离工艺是指在衬底基片表面涂上一层光刻胶,经过

涂胶、前烘、曝光、显影形成光刻掩模图形,要求在需要金属膜的区域没有光刻

胶,而在不需要金属膜的区域留有光刻胶,然后用镀膜的方法在其表面镀上一层

金属膜,这样金属膜只在需要的区域与衬底基片相接触。最后通过浸泡于制备的

剥离液中(要求剥离液不与金属层发生反应),随着光刻胶的溶解,其上的金属

也随之一起被剥落,从而留下我们所需要的金属图形。剥离工艺的简易示意图如

图所示。

剥离工艺技术的关键是使光刻胶与基底上的金属膜断开,从而易于剥离液渗

透进去溶解光刻胶,使光刻胶上面的金属薄膜浮起而被除去。如德国Allresist公

司生产的AR-U4030,通过软烘、掩膜曝光、反转烘烤、泛曝光等工艺过程可以

实现图形镜像反转,产生易于剥离的倒八字形侧壁。

为了获得良好的剥离效果,剥离掩膜层需要满足一下几点要求:

(1)首先要让好的金属层沉积在光刻胶掩膜空白区域内,而掩膜上金属

层与掩膜断开区域内金属层相互是分离的。这就需要掩膜层厚度一

定要比形成图形的金属层厚。

(2)剥离掩膜需要易形成光刻掩膜版上图形,且有高的分辨率,在烘烤、

蒸发金属等环境下,掩膜材料的膨胀率要小,掩膜图形热稳定性要

高,形变小。为了能有效地形成剥离图形,所用光刻胶也需要能很

容易被剥离掉。

(3)光刻掩膜层图形侧剖面呈倒“八”字形,这是剥离成功的关键因素。

(4)通常使用脆性金属材料(如Al)比延展性好的金属材料(如Au)更容易得到好的剥离金属图形。

(5)各道工序中不能损伤晶片材料或对基片表面金属微电极图形产生有害的影响。

三、工艺实验步骤:

1、准备样品:准备好已经溅射了金属薄膜的待剥离的样品;

2、准备试剂:准备好剥离使用的试剂丙酮、酒精、去离子水;

3、浸泡:把待剥离的样品放入丙酮中浸泡10分钟;

4、丙酮超声剥离:把待剥离的样品放入丙酮中超声剥离5分钟,观察样品变化;

5、酒精超声剥离:把待剥离的样品放入酒精中超声剥离5分钟,观察样品变化;

6、去离子水超声清洗:把待剥离的样品放入去离子水中超声清洗5分钟;

7、把清洗好的实验样品烘干;

8、显微观察:利用显微镜观察分析剥离好的实验样品。

四、思考题:

1、超声剥离之前进行浸泡的作用什么?

浸泡的作用是让丙酮和待剥离样品充分接触。

2、剥离工艺中丙酮的作用是什么?

丙酮作用是剥离金属。

3、获得良好的剥离效果还应注意哪些方面?

剥离时间的把控,时间过长和过短都对样品有影响。

集成电路制造技术-原理与工艺 课后习题答案

第一单元: 3.比较硅单晶锭CZ,MCZ和FZ三种生长方法的优缺点。 答:CZ直拉法工艺成熟,可拉出大直径硅棒,是目前采用最多的硅棒生产方法。但直拉法中会使用到坩埚,而坩埚的使用会带来污染。同时在坩埚中,会有自然对流存在,导致生长条纹和氧的引入。直拉法生长多是采用液相掺杂,受杂质分凝、杂质蒸发,以及坩埚污染影响大,因此,直拉法生长的单晶硅掺杂浓度的均匀性较差。 MCZ磁控直拉法,在CZ法单晶炉上加一强磁场,高传导熔体硅的流动因切割磁力线而产生洛仑兹力,这相当于增强了熔体的粘性,熔体对流受阻。能生长无氧、均匀好的大直径单晶硅棒。设备较直拉法设备复杂得多,造价也高得多,强磁场的存在使得生产成本也大幅提高。 FZ悬浮区熔法,多晶与单晶均由夹具夹着,由高频加热器产生一悬浮的溶区,多晶硅连续通过熔区熔融,在熔区与单晶接触的界面处生长单晶。与直拉法相比,去掉了坩埚,没有坩埚的污染,因此能生长出无氧的,纯度更高的单晶硅棒。 6.硅气相外延工艺采用的衬底不是准确的晶向,通常偏离[100]或[111]等晶向一个小角度,为什么? 答:在外延生长过程中,外延气体进入反应器,气体中的反应剂气相输运到衬底,在高温衬底上发生化学反应,生成的外延物质沿着衬底晶向规则地排列,生长出外延层。 气相外延是由外延气体的气相质量传递和表面外延两个过程完成的。表面外延过程实质上包含了吸附、分解、迁移、解吸这几个环节,表面过程表明外延生长是横向进行的,是在衬底台阶的结点位置发生的。因此,在将硅锭切片制备外延衬底时,一般硅片都应偏离主晶面一个小角度。目的是为了得到原子层台阶和结点位置,以利于表面外延生长。 7. 外延层杂质的分布主要受哪几种因素影响? 答:杂质掺杂效率不仅依赖于外延温度、生长速率、气流中掺杂剂的摩尔分数、反应室的几何形状等因素,还依赖于掺杂剂自身的特性。另外,影响掺杂效率的因素还有衬底的取向和外延层结晶质量。硅的气相外延工艺中,在外延过程中,衬底和外延层之间存在杂质交换现象,即会出现杂质的再分布现象,主要有自掺杂效应和互扩散效应两种现象引起。

集成电路制造工艺流程之详细解答

集成电路制造工艺流程之详细解答 1.晶圆制造( 晶体生长-切片-边缘研磨-抛光-包裹-运输 ) 晶体生长(Crystal Growth) 晶体生长需要高精度的自动化拉晶系统。 将石英矿石经由电弧炉提炼,盐酸氯化,并经蒸馏后,制成了高纯度的多晶硅,其纯度高达0.99999999999。 采用精炼石英矿而获得的多晶硅,加入少量的电活性“掺杂剂”,如砷、硼、磷或锑,一同放入位于高温炉中融解。 多晶硅块及掺杂剂融化以后,用一根长晶线缆作为籽晶,插入到融化的多晶硅中直至底部。然后,旋转线缆并慢慢拉出,最后,再将其冷却结晶,就形成圆柱状的单晶硅晶棒,即硅棒。 此过程称为“长晶”。 硅棒一般长3英尺,直径有6英寸、8英寸、12英寸等不同尺寸。 硅晶棒再经过研磨、抛光和切片后,即成为制造集成电路的基本原料——晶圆。 切片(Slicing) /边缘研磨(Edge Grinding)/抛光(Surface Polishing) 切片是利用特殊的内圆刀片,将硅棒切成具有精确几何尺寸的薄晶圆。 然后,对晶圆表面和边缘进行抛光、研磨并清洗,将刚切割的晶圆的锐利边缘整成圆弧形,去除粗糙的划痕和杂质,就获得近乎完美的硅晶圆。 包裹(Wrapping)/运输(Shipping) 晶圆制造完成以后,还需要专业的设备对这些近乎完美的硅晶圆进行包裹和运输。 晶圆输送载体可为半导体制造商提供快速一致和可靠的晶圆取放,并提高生产力。 2.沉积 外延沉积 Epitaxial Deposition 在晶圆使用过程中,外延层是在半导体晶圆上沉积的第一层。 现代大多数外延生长沉积是在硅底层上利用低压化学气相沉积(LPCVD)方法生长硅薄膜。外延层由超纯硅形成,是作为缓冲层阻止有害杂质进入硅衬底的。 过去一般是双极工艺需要使用外延层,CMOS技术不使用。 由于外延层可能会使有少量缺陷的晶圆能够被使用,所以今后可能会在300mm晶圆上更多

(完整版)集成电路工艺原理期末试题

电子科技大学成都学院二零一零至二零一一学年第二学期 集成电路工艺原理课程考试题A卷(120分钟)一张A4纸开卷教师:邓小川 一二三四五六七八九十总分评卷教师 1、名词解释:(7分) 答:Moore law:芯片上所集成的晶体管的数目,每隔18个月翻一番。 特征尺寸:集成电路中半导体器件能够加工的最小尺寸。 Fabless:IC 设计公司,只设计不生产。 SOI:绝缘体上硅。 RTA:快速热退火。 微电子:微型电子电路。 IDM:集成器件制造商。 Chipless:既不生产也不设计芯片,设计IP内核,授权给半导体公司使用。 LOCOS:局部氧化工艺。 STI:浅槽隔离工艺。 2、现在国际上批量生产IC所用的最小线宽大致是多少,是何家企业生产?请 举出三个以上在这种工艺中所采用的新技术(与亚微米工艺相比)?(7分) 答:国际上批量生产IC所用的最小线宽是Intel公司的32nm。 在这种工艺中所采用的新技术有:铜互联;Low-K材料;金属栅;High-K材料;应变硅技术。 3、集成电路制造工艺中,主要有哪两种隔离工艺?目前的主流深亚微米隔离工 艺是哪种器件隔离工艺,为什么?(7分) 答:集成电路制造工艺中,主要有局部氧化工艺-LOCOS;浅槽隔离技术-STI两种隔离工艺。 主流深亚微米隔离工艺是:STI。STI与LOCOS工艺相比,具有以下优点:更有效的器件隔离;显著减小器件表面积;超强的闩锁保护能力;对沟道无 侵蚀;与CMP兼容。 4、在集成电路制造工艺中,轻掺杂漏(LDD)注入工艺是如何减少结和沟道区间的电场,从而防止热载流子的产生?(7分) 答:如果没有LDD形成,在晶体管正常工作时会在结和沟道区之间形成高

集成电路制造工艺流程

集成电路制造工艺流程 1.晶圆制造( 晶体生长-切片-边缘研磨-抛光-包裹-运输 ) 晶体生长(Crystal Growth) 晶体生长需要高精度的自动化拉晶系统。 将石英矿石经由电弧炉提炼,盐酸氯化,并经蒸馏后,制成了高纯度的多晶硅,其纯度高达0.。 采用精炼石英矿而获得的多晶硅,加入少量的电活性“掺杂剂”,如砷、硼、磷或锑,一同放入位于高温炉中融解。 多晶硅块及掺杂剂融化以后,用一根长晶线缆作为籽晶,插入到融化的多晶硅中直至底部。然后,旋转线缆并慢慢拉出,最后,再将其冷却结晶,就形成圆柱状的单晶硅晶棒,即硅棒。 此过程称为“长晶”。 硅棒一般长3英尺,直径有6英寸、8英寸、12英寸等不同尺寸。 硅晶棒再经过研磨、抛光和切片后,即成为制造集成电路的基本原料——晶圆。 切片(Slicing) /边缘研磨(Edge Grinding)/抛光(Surface Polishing) 切片是利用特殊的内圆刀片,将硅棒切成具有精确几何尺寸的薄晶圆。 然后,对晶圆表面和边缘进行抛光、研磨并清洗,将刚切割的晶圆的锐利边缘整成圆弧形,去除粗糙的划痕和杂质,就获得近乎完美的硅晶圆。 包裹(Wrapping)/运输(Shipping) 晶圆制造完成以后,还需要专业的设备对这些近乎完美的硅晶圆进行包裹和运输。 晶圆输送载体可为半导体制造商提供快速一致和可靠的晶圆取放,并提高生产力。 2.沉积 外延沉积 Epitaxial Deposition 在晶圆使用过程中,外延层是在半导体晶圆上沉积的第一层。 现代大多数外延生长沉积是在硅底层上利用低压化学气相沉积(LPCVD)方法生长硅薄膜。外延层由超纯硅形成,是作为缓冲层阻止有害杂质进入硅衬底的。 过去一般是双极工艺需要使用外延层,CMOS技术不使用。 由于外延层可能会使有少量缺陷的晶圆能够被使用,所以今后可能会在300mm晶圆上更多

集成电路制造工艺原理

《集成电路制造工艺原理》 课程教学 教案 山东大学信息科学与工程学院 电子科学与技术教研室(微电) 张新

课程总体介绍: 1.课程性质及开课时间:本课程为电子科学与技术专业(微电子技术方向和光电子技术方向)的专业选修课。本课程是半导体集成电路、晶体管原理与设计和光集成电路等课程的前修课程。本课程开课时间暂定在第五学期。 2.参考教材:《半导体器件工艺原理》国防工业出版社 华中工学院、西北电讯工程学院合编 《半导体器件工艺原理》(上、下册) 国防工业出版社成都电讯工程学院编著 《半导体器件工艺原理》上海科技出版社 《半导体器件制造工艺》上海科技出版社 《集成电路制造技术-原理与实践》 电子工业出版社 《超大规模集成电路技术基础》电子工业出版社 《超大规模集成电路工艺原理-硅和砷化镓》 电子工业出版社3.目前实际教学学时数:课内课时54学时 4.教学内容简介:本课程主要介绍了以硅外延平面工艺为基础的,与微电子技术相关的器件(硅器件)、集成电路(硅集成电路)的制造工艺原理和技术;介绍了与光电子技术相关的器件(发光器件和激光器件)、集成电路(光集成电路)的制造工艺原理,主要介绍了最典型的化合物半导体砷化镓材料以及与光器件和光集成电路制造相关的工艺原理和技 术。 5.教学课时安排:(按54学时) 课程介绍及绪论 2学时 第一章衬底材料及衬底制备 6学时 第二章外延工艺 8学时 第三章氧化工艺 7学时 第四章掺杂工艺 12学时 第五章光刻工艺 3学时 第六章制版工艺 3学时 第七章隔离工艺 3学时 第八章表面钝化工艺 5学时 第九章表面内电极与互连 3学时 第十章器件组装 2学时

CMOS集成电路制造工艺流程

C M O S集成电路制造工艺 流程 Company number:【0089WT-8898YT-W8CCB-BUUT-202108】

陕西国防工业职业技术学院课程报告 课程微电子产品开发与应用 论文题目CMOS集成电路制造工艺流程 班级电子3141 姓名及学号王京(24#) 任课教师张喜凤 目录

CMOS集成电路制造工艺流程 摘要:本文介绍了CMOS集成电路的制造工艺流程,主要制造工艺及各工艺步骤中的核心要素,及CMOS器件的应用。 引言:集成电路的设计与测试是当代计算机技术研究的主要问题之一。硅双极工艺面世后约3年时间,于1962年又开发出硅平面MOS工艺技术,并制成了MOS集成电路。与双极集成电路相比,MOS集成电路的功耗低、结构简单、集成度和成品率高,但工作速度较慢。由于它们各具优劣势,且各自有适合的应用场合,双极集成工艺和MOS集成工艺便齐头平行发展。 关键词:工艺技术,CMOS制造工艺流程 1.CMOS器件 CMOS器件,是NMOS和PMOS晶体管形成的互补结构,电流小,功耗低,早期的CMOS电路速度较慢,后来不断得到改进,现已大大提高了速度。 分类 CMOS器件也有不同的结构,如铝栅和硅栅CMOS、以及p阱、n阱和双阱CMOS。铝栅CMOS和硅栅CMOS的主要差别,是器件的栅极结构所用材料的不同。P阱CMOS,则是在n型硅衬底上制造p沟管,在p阱中制造n沟管,其阱可采用外延法、扩散法或离子注入方法形成。该工艺应用得最早,也是应用得最广的工艺,适用于标准CMOS电路及CMOS与双极npn兼容的电路。N阱CMOS,是在p型硅衬底上制造n沟晶体管,在n阱中制造p沟晶体管,其阱一般采用离子注入方法形成。该工艺可使NMOS晶体管的性能最优化,适用于制造以NMOS为主的CMOS以及E/D-NMOS和p沟MOS兼容的CMOS电路。双阱CMOS,是在低阻n+衬底上再外延一层中高阻n――硅层,然后在外延层中制造n 阱和p阱,并分别在n、p阱中制造p沟和n沟晶体管,从而使PMOS和NMOS晶体管都在高阻、低浓度的阱中形成,有利于降低寄生电容,增加跨导,增强p沟和n沟晶体管的平衡性,适用于高性能电路的制造。

集成电路制造工艺原理

集成电路制造工艺原理 课程总体介绍: 1.课程性质及开课时间:本课程为电子科学与技术专业(微电子技术方向和光电子技术方向)的专业选修课。本课程是半导体集成电路、晶体管原理与设计和光集成电路等课程的前修课程。本课程开课时间暂定在第五学期。 2.参考教材:《半导体器件工艺原理》国防工业出版社 华中工学院、西北电讯工程学院合编《半导体器件工艺原理》(上、下册) 国防工业出版社成都电讯工程学院编著 《半导体器件工艺原理》上海科技出版社 《半导体器件制造工艺》上海科技出版社 《集成电路制造技术-原理与实践》 电子工业出版社 《超大规模集成电路技术基础》电子工业出版社 《超大规模集成电路工艺原理-硅和砷化镓》 电子工业出版社 3.目前实际教学学时数:课内课时54学时 4.教学内容简介:本课程主要介绍了以硅外延平面工艺为基础的,与微电子技术相关的器件(硅器件)、集成电路(硅集成电路)的制造工艺原理和技术;介绍了与光电子技术相关的器件(发光器件和激光器件)、集成电路(光集成电路)的制造工艺原理,主要介绍了最典型的化合物半导体砷化镓材料以及与光器件和光集成电路制造相关的工艺原理和技术。 5.教学课时安排:(按54学时) 课程介绍及绪论2学时第一章衬底材料及衬底制备6学时 第二章外延工艺8学时第三章氧化工艺7学时第四章掺杂工艺12学时第五章光刻工艺3学时第六章制版工艺3学时第七章隔离工艺3

学时 第八章表面钝化工艺5学时 第九章表面内电极与互连3学时 第十章器件组装2学时 课程教案: 课程介绍及序论 (2学时) 内容: 课程介绍: 1 教学内容 1.1与微电子技术相关的器件、集成电路的制造工艺原理 1.2 与光电子技术相关的器件、集成电路的制造 1.3 参考教材 2教学课时安排 3学习要求 序论: 课程内容: 1半导体技术概况 1.1 半导体器件制造技术 1.1.1 半导体器件制造的工艺设计 1.1.2 工艺制造 1.1.3 工艺分析 1.1.4 质量控制 1.2 半导体器件制造的关键问题 1.2.1 工艺改革和新工艺的应用 1.2.2 环境条件改革和工艺条件优化 1.2.3 注重情报和产品结构的及时调整 1.2.4 工业化生产 2典型硅外延平面器件管芯制造工艺流程及讨论 2.1 常规npn外延平面管管芯制造工艺流程 2.2 典型pn隔离集成电路管芯制造工艺流程 2.3 两工艺流程的讨论 2.3.1 有关说明 2.3.2 两工艺流程的区别及原因 课程重点:介绍了与电子科学与技术中的两个专业方向(微电子技术方向和光电子技术方向)相关的制造业,指明该制造业是社会的基础工业、是现代化的基础工业,是国家远景规划中置于首位发展的工业。介绍了与微电子技术方向相关的分离器件(硅器件)、集成电路(硅集成电路)的制造工艺原理的内容,指明微电子技术从某种意义上是指大规模集成电路和超大规模集成电路的制造技术。由于集成电路的制造技术是由分离器件的制造技术发展起来的,则从制造工艺上看,两种工艺流程中绝大多数制造工艺是相通

集成电路工艺原理试题总体答案

目录 一、填空题(每空1分,共24分) (1) 二、判断题(每小题1.5分,共9分) (1) 三、简答题(每小题4分,共28分) (2) 四、计算题(每小题5分,共10分) (4) 五、综合题(共9分) (5) 一、填空题(每空1分,共24分) 1.制作电阻分压器共需要三次光刻,分别是电阻薄膜层光刻、高层绝缘层光刻和互连金属层光刻。 2.集成电路制作工艺大体上可以分成三类,包括图形转化技术、薄膜制备技术、掺杂技术。 3.晶体中的缺陷包括点缺陷、线缺陷、面缺陷、体缺陷等四种。 4.高纯硅制备过程为氧化硅→粗硅→ 低纯四氯化硅→ 高纯四氯化硅→ 高纯硅。 5.直拉法单晶生长过程包括下种、收颈、放肩、等径生长、收尾等步骤。 6.提拉出合格的单晶硅棒后,还要经过切片、研磨、抛光等工序过程方可制备出符合集成电路制造要求的硅衬底 片。 7.常规的硅材料抛光方式有:机械抛光,化学抛光,机械化学抛光等。 8.热氧化制备SiO2的方法可分为四种,包括干氧氧化、水蒸汽氧化、湿氧氧化、氢氧合成氧化。 9.硅平面工艺中高温氧化生成的非本征无定性二氧化硅对硼、磷、砷(As)、锑(Sb)等元素具有掩蔽作用。 10.在SiO2内和Si- SiO2界面存在有可动离子电荷、氧化层固定电荷、界面陷阱电荷、氧化层陷阱等电荷。 11.制备SiO2的方法有溅射法、真空蒸发法、阳极氧化法、热氧化法、热分解淀积法等。 12.常规平面工艺扩散工序中的恒定表面源扩散过程中,杂质在体内满足余误差函数分布。常规平面工艺扩散工序中的有限表 面源扩散过程中,杂质在体内满足高斯分布函数分布。 13.离子注入在衬底中产生的损伤主要有点缺陷、非晶区、非晶层等三种。 14.离子注入系统结构一般包括离子源、磁分析器、加速管、聚焦和扫描系统、靶室等部分。 15.真空蒸发的蒸发源有电阻加热源、电子束加热源、激光加热源、高频感应加热蒸发源等。 16.真空蒸发设备由三大部分组成,分别是真空系统、蒸发系统、基板及加热系统。 17.自持放电的形式有辉光放电、弧光放电、电晕放电、火花放电。 18.离子对物体表面轰击时可能发生的物理过程有反射、产生二次电子、溅射、注入。 19.溅射镀膜方法有直流溅射、射频溅射、偏压溅射、磁控溅射(反应溅射、离子束溅射)等。 20.常用的溅射镀膜气体是氩气(Ar),射频溅射镀膜的射频频率是13.56MHz。 21.CVD过程中化学反应所需的激活能来源有?热能、等离子体、光能等。 22.根据向衬底输送原子的方式可以把外延分为:气相外延、液相外延、固相外延。 23.硅气相外延的硅源有四氯化硅(SiCl4)、三氯硅烷(SiHCl3)、二氯硅烷(SiH2Cl2)、硅烷(SiH4)等。 24.特大规模集成电路(ULIC)对光刻的基本要求包括高分辨率、高灵敏度的光刻胶、低缺陷、精密的套刻对准、对大尺寸硅片 的加工等五个方面。 25.常规硅集成电路平面制造工艺中光刻工序包括的步骤有涂胶、前烘、曝光、显影、坚膜、腐蚀、 去胶等。 26.光刻中影响甩胶后光刻胶膜厚的因素有溶解度、温度、甩胶时间、转速。 27.控制湿法腐蚀的主要参数有腐蚀液浓度、腐蚀时间、腐蚀液温度、溶液的搅拌方式等。 28.湿法腐蚀Si所用溶液有硝酸-氢氟酸-醋酸(或水)混合液、KOH溶液等,腐蚀SiO2常用的腐蚀剂是HF溶液,腐蚀 Si3N4常用的腐蚀剂是磷酸。 29.湿法腐蚀的特点是选择比高、工艺简单、各向同性、线条宽度难以控制。 30.常规集成电路平面制造工艺主要由光刻、氧化、扩散、刻蚀、离子注入(外延、CVD、PVD)等工 艺手段组成。 31.设计与生产一种最简单的硅双极型PN结隔离结构的集成电路,需要埋层光刻、隔离光刻、基区光刻、发射区光刻、引线区 光刻、反刻铝电极等六次光刻。 32.集成电路中隔离技术有哪些类? 二、判断题(每小题1.5分,共9分) 1.连续固溶体可以是替位式固溶体,也可以是间隙式固溶体(×) 2.管芯在芯片表面上的位置安排应考虑材料的解理方向,而解理向的确定应根据定向切割硅锭时制作出的定位面为依据。(√) 3.当位错线与滑移矢量垂直时,这样的位错称为刃位错,如果位错线与滑移矢量平行,称为螺位错(√) 4.热氧化过程中是硅向二氧化硅外表面运动,在二氧化硅表面与氧化剂反应生成二氧化硅。(×) 5.热氧化生长的SiO2都是四面体结构,有桥键氧、非桥键氧,桥键氧越多结构越致密,SiO2中有离子键成份,氧空位表现为带正

超大规模集成电路及其生产工艺流程

超大规模集成电路及其生产工艺流程 现今世界上超大规模集成电路厂(Integrated Circuit, 简称IC,台湾称之为晶圆厂)主要集中分布于美国、日本、西欧、新加坡及台湾等少数发达国家和地区,其中台湾地区占有举足轻重的地位。但由于近年来台湾地区历经地震、金融危机、政府更迭等一系列事件影响,使得本来就存在资源匮乏、市场狭小、人心浮动的台湾岛更加动荡不安,于是就引发了一场晶圆厂外迁的风潮。而具有幅员辽阔、资源充足、巨大潜在市场、充沛的人力资源供给等方面优势的祖国大陆当然顺理成章地成为了其首选的迁往地。 晶圆厂所生产的产品实际上包括两大部分:晶圆切片(也简称为晶圆)和超大规模集成电路芯片(可简称为芯片)。前者只是一片像镜子一样的光滑圆形薄片,从严格的意义上来讲,并没有什么实际应用价值,只不过是供其后芯片生产工序深加工的原材料。而后者才是直接应用在应在计算机、电子、通讯等许多行业上的最终产品,它可以包括CPU、内存单元和其它各种专业应用芯片。 一、晶圆 所谓晶圆实际上就是我国以往习惯上所称的单晶硅,在六、七十年代我国就已研制出了单晶硅,并被列为当年的十天新闻之一。但由于其后续的集成电路制造工序繁多(从原料开始融炼到最终产品包装大约需400多道工序)、工艺复杂且技术难度非常高,以后多年我国一直末能完全掌握其一系列关键技术。所以至今仅能很小规模地生产其部分产品,不能形成规模经济生产,在质量和数量上与一些已形成完整晶圆制造业的发达国家和地区相比存在着巨大的差距。 二、晶圆的生产工艺流程: 从大的方面来讲,晶圆生产包括晶棒制造和晶片制造两面大步骤,它又可细分为以下几道主要工序(其中晶棒制造只包括下面的第一道工序,其余的全部属晶片制造,所以有时又统称它们为晶柱切片后处理工序): 多晶硅——单晶硅——晶棒成长——晶棒裁切与检测——外径研磨——切片——圆边——表层研磨——蚀刻——去疵——抛光—(外延——蚀刻——去疵)—清洗——检验——包装 1、晶棒成长工序:它又可细分为: 1)、融化(Melt Down):将块状的高纯度多晶硅置石英坩锅内,加热到其熔点1420℃以上,使其完全融化。2)、颈部成长(Neck Growth):待硅融浆的温度稳定之后,将,〈1.0.0〉方向的晶种慢慢插入其中,接着将晶种慢慢往上提升,使其直径缩小到一定尺寸(一般约6mm左右),维持此真径并拉长100---200mm,以消除晶种内的晶粒排列取向差异。 3)、晶冠成长(Crown Growth):颈部成长完成后,慢慢降低提升速度和温度,使颈直径逐渐加响应到所需尺寸(如5、6、8、12时等)。 4)、晶体成长(Body Growth):不断调整提升速度和融炼温度,维持固定的晶棒直径,只到晶棒长度达到预定值。 5、)尾部成长(Tail Growth):当晶棒长度达到预定值后再逐渐加快提升速度并提高融炼温度,使晶棒直径逐渐变小,以避免因热应力造成排差和滑移等现象产生,最终使晶棒与液面完全分离。到此即得到一根完整的晶棒。 2、晶棒裁切与检测(Cutting & Inspection):将长成的晶棒去掉直径偏小的头、尾部分,并对尺寸进行检测,以决定下步加工的工艺参数。 3、外径研磨(Surface Grinding & Shaping):由于在晶棒成长过程中,其外径尺寸和圆度均有一定偏差,其外园柱面也凹凸不平,所以必须对外径进行修整、研磨,使其尺寸、形状误差均小于允许偏差。 4、切片(Wire Saw Slicing):由于硅的硬度非常大,所以在本序里,采用环状、其内径边缘嵌有钻石颗粒的薄锯片将晶棒切割成一片片薄片。 5、圆边(Edge profiling):由于刚切下来的晶片外边缘很锋利,单晶硅又是脆性材料,为避免边角崩裂影响晶片强度、破坏晶片表面光洁和对后工序带来污染颗粒,必须用专用的电脑控制设备自动修整晶片边缘形状和外径尺寸。 6、研磨(Lapping):研磨的目的在于去掉切割时在晶片表面产生的锯痕和破损,使晶片表面达到所要求的光洁度。

集成电路工艺原理(期末复习资料)

第一章 1、何为集成电路:通过一系列特定的加工工艺,将晶体管、二极管等有源器件和电阻、 电容等无源器件,按照一定的电路互连,“集成”在一块半导体单晶片(如Si、GaAs)上,封装在一个内,执行特定电路或系统功能。 关键尺寸:集成电路中半导体器件能够加工的最小尺寸。 2、它是衡量集成电路设计和制造水平的重要尺度,越小,芯片的集成度越高,速度越 快,性能越好 3、摩尔定律:、芯片上所集成的晶体管的数目,每隔18个月就翻一番。 4、High-K材料:高介电常数,取代SiO2作栅介质,降低漏电。 Low-K 材料:低介电常数,减少铜互连导线间的电容,提高信号速度 5、功能多样化的“More Than Moore”指的是用各种方法给最终用户提供附加价值,不 一定要缩小特征尺寸,如从系统组件级向3D集成或精确的封装级(SiP)或芯片级(SoC)转移。 6、IC企业的分类:通用电路生产厂;集成器件制造;Foundry厂;Fabless:IC 设计公 司;Chipless;Fablite 第二章:硅和硅片的制备 7、单晶硅结构:晶胞重复的单晶结构能够制作工艺和器件特性所要求的电学和机械性 能 8、CZ法生长单晶硅把熔化的半导体级硅液体变成有正确晶向并且被掺杂成n或p型 的固体硅锭; 9、直拉法目的:实现均匀掺杂和复制籽晶结构,得到合适的硅锭直径,限制杂质引入; 关键参数:拉伸速率和晶体旋转速度 10、CMOS (100)电阻率:10~50Ω?cm BJT(111)原因是什么? 11、区熔法?纯度高,含氧低;晶圆直径小。 第三章集成电路制造工艺概况 12、亚微米CMOS IC 制造厂典型的硅片流程模型 第四章氧化;氧化物 12、热生长:在高温环境里,通过外部供给高纯氧气使之与硅衬底反应,得到一层热生长的SiO2 。 13、淀积:通过外部供给的氧气和硅源,使它们在腔体中方应,从而在硅片表面形成一层薄膜。 14、干氧:Si(固)+O2(气)-> SiO2(固):氧化速度慢,氧化层干燥、致密,均匀性、重复性好,与光刻胶的粘附性好. 水汽氧化:Si (固)+H2O (水汽)->SiO2(固)+ H2 (气):氧化速度快,氧化层疏松,均匀性差,与光刻胶的粘附性差。 湿氧:氧气携带水汽,故既有Si与氧气反应,又有与水汽反应。氧化速度氧化质量介于以上两种方法之间。

(工艺技术)集成电路的基本制造工艺

第1章 集成电路的基本制造工艺 1.6 一般TTL 集成电路与集成运算放大器电路在选择外延层电阻率上有何区别?为什么? 答:集成运算放大器电路的外延层电阻率比一般TTL 集成电路的外延层电阻率高。 第2章 集成电路中的晶体管及其寄生效应 复 习 思 考 题 2.2 利用截锥体电阻公式,计算TTL “与非”门输出管的CS r ,其图形如图题2.2 所示。 提示:先求截锥体的高度 up BL epi mc jc epi T x x T T -----= 然后利用公式: b a a b WL T r c -? = /ln 1ρ , 2 1 2?? =--BL C E BL S C W L R r b a a b WL T r c -? = /ln 3ρ 321C C C CS r r r r ++= 注意:在计算W 、L 时, 应考虑横向扩散。 2.3 伴随一个横向PNP 器件产生两个寄生的PNP 晶体管,试问当横向PNP 器件在4种可能的偏置情况下,哪一种偏置会使得寄生晶体管的影响最大? 答:当横向PNP 管处于饱和状态时,会使得寄生晶体管的影响最大。 2.8 试设计一个单基极、单发射极和单集电极的输出晶体管,要求其在20mA 的电流负载下 ,OL V ≤0.4V ,请在坐标纸上放大500倍画出其版图。给出设计条件如下: 答: 解题思路 ⑴由0I 、α求有效发射区周长Eeff L ; ⑵由设计条件画图 ①先画发射区引线孔; ②由孔四边各距A D 画出发射区扩散孔; ③由A D 先画出基区扩散孔的三边; ④由B E D -画出基区引线孔; ⑤由A D 画出基区扩散孔的另一边;

《集成电路工艺原理(芯片制造)》课程试题2016

一、填空题(30 分=1 分*30 )10 题/章 晶圆制备 1.用来做芯片的高纯硅被称为(半导体级硅),英文简称(GSG ),有时也被称为(电子级硅)。 2.单晶硅生长常用(CZ 法)和(区熔法)两种生长方式,生长后的单晶硅被称为(硅锭)。 3 .晶圆的英文是(wafer ),其常用的材料是(硅)和(锗)。 4.晶圆制备的九个工艺步骤分别是(单晶生长)、整型、(切片)、磨片倒角、刻蚀、(抛光)、清洗、检查和包装。 5.从半导体制造来讲,晶圆中用的最广的晶体平面的密勒符号是(100 )、(110 )和(111 )。 6.CZ 直拉法生长单晶硅是把(融化了的半导体级硅液体)变为(有正确晶向的)并且(被掺杂成p 型或n 型)的固体硅锭。 7.CZ 直拉法的目的是(实现均匀掺杂的同时并且复制仔晶的结构,得到合适的硅锭直径并且限制杂质引入到硅中)。影响CZ 直拉法的两个主要参数是(拉伸速率)和(晶体旋转速率)。 8.晶圆制备中的整型处理包括(去掉两端)、(径向研磨)和(硅片定位边和定位槽)。 9.制备半导体级硅的过程:1 (制备工业硅);2(生长硅单晶);3 (提纯)。 氧化 10 .二氧化硅按结构可分为()和()或()。 11 .热氧化工艺的基本设备有三种:(卧式炉)、(立式炉)和(快速热处理炉)。 12 .根据氧化剂的不同,热氧化可分为(干氧氧化)、(湿氧氧化)和(水汽氧化)。 13 .用于热工艺的立式炉的主要控制系统分为五部分:(工艺腔)、(硅片传输系统)、气体分配系统、尾气系统和(温控系统)。 14.选择性氧化常见的有(局部氧化)和(浅槽隔离),其英语缩略语分别为LOCOS 和(STI )。15.列出热氧化物在硅片制造的 4 种用途:(掺杂阻挡)、(表面钝化)、场氧化层和(金属层间介质)。16 .可在高温设备中进行的五种工艺分别是(氧化)、(扩散)、()、退火和合金。 17 .硅片上的氧化物主要通过(热生长)和(淀积)的方法产生,由于硅片表面非常平整,使得产生的氧化物主要为层状结构,所以又称为(薄膜)。 18 .热氧化的目标是按照()要求生长()、()的二氧化硅薄膜。 19 .立式炉的工艺腔或炉管是对硅片加热的场所,它由垂直的(石英工艺腔)、(加热器)和(石英舟)组成。淀积 20 .目前常用的CVD 系统有:(APCVD )、(LPCVD )和(PECVD )。 21 .淀积膜的过程有三个不同的阶段。第一步是(晶核形成),第二步是(聚焦成束),第三步是(汇聚成膜)。 22 . 缩略语PECVD、LPCVD、HDPCVD和APCVD的中文名称分别是(等离子体增强化学气相淀积)、(低压化学气相淀积)、高密度等离子体化学气相淀积、和(常压化学气相淀积)。

集成电路制造工艺

摘要 集成电路广泛应用于生活生产中,对其深入了解很有必要,在此完论文中整的阐述集成电路原理及其制造工艺本报告从集成电路的最初设计制造开始讲起全面讲述了集成电路的整个发展过程制造工艺以及集成电路未来的发展前途。集成电路广泛应用于生活的各个领域,特别是超大规模集成电路应用之后,使我们的生活方式有了翻天覆地的变化。各种电器小型化智能化给我们生活带来了各种方便。所以对于电子专业了解集成电路的是发展及其制造非常有必要的。关键词集成电路半导体晶体管激光蚀刻 集成电路的前世今生 说起集成电路就必须要提到它的组成最小单位晶体管。1947 年在美国的贝尔实验室威廉·邵克雷、约翰·巴顿和沃特·布拉顿成功地制造出第一个晶体管。晶体管的出现使电子元件由原来的电子管慢慢地向晶体管转变,是电器小型化低功耗化成为了可能。20 世纪最初的10 年,通信系统已开始应用半导体材料。开始出现了由半导体材料进行检波的矿石收音机。1945 年贝尔实验室布拉顿、巴丁等人组成的半导体研究小组经过一系列的实验和观察,逐步认识到半导体中电流放大效应产生的原因。布拉顿发现,在锗片的底面接上电极,在另一面插上细针并通上电流,然后让另一根细针尽量靠近它,并通上微弱的电流,这样就会使原来的电流产生很大的变化。微弱电流少量的变化,会对另外的电流产生很大的影响,这就是“放大”作用。第一次在实验室实际验证的半导体的电流放大作用。不久之后他们制造出了能把音频信号放大100 倍的晶体管。晶体管最终被用到了集成电路上面。晶体管相对于电子管着它本身固有的优点: 1.构件没有消耗:无论多么优良的电子管,都将因阴极原子的变化和慢性漏气而逐渐老化。由于技术上的原因,晶体管制作之初也存在同样的问题。随着材料制作上的进步以及多方面的改善,晶体管的寿命一般比电子管长100 到1000 倍。2.消耗电能极少:耗电量仅为电子管的几十分之一。它不像电子管那样需要加热灯丝以产生自由电子。一台晶体管的收音机只要几节干电池就可以半年。 3.不需预热:一开机就工作。用晶体管做的收音机一开就响,晶体管电视机一开就很快出现画面。电子管设备就做不到这一点。4.结实可靠:比电子管可靠100 倍,耐冲击、耐振动,这都是电子管所无法比拟的。晶体管的体积只有电子管的十分之一到百分之一,放热很少,可用于设计小型、复杂、可靠的电路。晶体管的制造工艺虽然精密,但工序简便,有利于提高元器件的安装密度。光有了晶体管还是不够,因为要把晶体管集成到一片半导体硅片上才能便于把电路集成把电子产品小型化。那怎么把晶体管集成呢,这便是后来出现的集成芯片。采用一定的工艺,把一个电路中所需的晶体管、二极管、电阻、电容和电感等元件及布线互连一起,制作在一小块或几小块半导体晶片或介质基片上,然后封装在一个管壳内,成为具有所需电路功能的微型结构;其中所有元件在结构上已组成一个整体,使电子元件向着微小型化、低功耗和高可靠性化。集成电路经过30 多年的发展由开始的小规模集成电路到到大规模集成电路再到现在的超大规模乃至巨大规模的集成电路,集成电路有了飞跃式的发展集成度也越来越高,从微米级别到现在的纳米级别。模拟集成电路主要是指由电容、电阻、晶体管等组成的模拟电路集成在一起用来处理模拟信号的集成电路。有许多的模拟集成电路,如运算放大器、模拟乘法器、锁相环、电源管理芯片等。模拟集成电路的主要构成电路有:放大器、滤波器、反馈 电路、基准源电路、开关电容电路等。数字集成电路是将元器件和连线集成于同一半导体芯片上而制成的数字逻辑电路或系统。用来产生、放大和处理各种数字信号(指在时间上和幅度上离散取值的信号)。而集成电路的普及离不开因特尔公司。1968 年:罗伯特·诺

集成电路制造工艺概述

集成电路制造工艺概述

目录 集成电路制造工艺概述 (1) 一、集成电路制造工艺的概念 (1) 二、集成电路制造的发展历程 (1) 三、集成电路制造工艺的流程 (2) 1.晶圆制造 (2) 1.1晶体生长(Crystal Growth) (2) 1.2切片(Slicing) /边缘研磨(Edge Grinding)/抛光(Surface Polishing) (2) 1.3包裹(Wrapping)/运输(Shipping) (2) 2.沉积 (3) 2.1外延沉积 (Epitaxial Deposition) (3) 2、2化学气相沉积 (Chemical Vapor Deposition) (3) 2、3物理气相沉积 (Physical Vapor Deposition) (3) 3.光刻(Photolithography) (3) 4.刻蚀(Etching) (4) 5.离子注入 (Ion Implantation) (4) 6.热处理(Thermal Processing) (4) 7.化学机械研磨(CMP) (4) 8.晶圆检测(Wafer Metrology) (5) 9.晶圆检查Wafer Inspection (Particles) (5) 10.晶圆探针测试(Wafer Probe Test) (5) 11.封装(Assembly & Packaging) (6) 12.成品检测(Final Test) (6) 四、集成电路制造工艺的前景 (6) 五、小结 (6) 参考文献 (7)

集成电路制造工艺概述 电子信息学院电子3121班 摘要:集成电路对于我们工科学生来说并不陌生,我们与它打交道的机会数不胜数。计算机、电视机、手机、网站、取款机等等。集成电路在体积、重量、耗电、寿命、可靠性及电性能方面远远优于晶体管元件组成的电路,在当今这信息化的社会中集成电路已成为各行各业实现信息化、智能化的基础,目前为止已广泛应用于电子设备、仪器仪表及电视机、录像机等电子设备中。关键词:集成电路、制造工艺 一、集成电路制造工艺的概念 集成电路制造工艺是把电路所需要的晶体管、二极管、电阻器和电容器等元件用一定工艺方式制作在一小块硅片、玻璃或陶瓷衬底上,再用适当的工艺进行互连,然后封装在一个管壳内,使整个电路的体积大大缩小,引出线和焊接点的数目也大为减少。 二、集成电路制造的发展历程 早在1952年,英国的杜默(Geoffrey W. A. Dummer) 就提出集成电路的构想。1906年,第一个电子管诞生;1912年前后,电子管的制作日趋成熟引发了无线电技术的发展;1918年前后,逐步发现了半导体材料;1920年,发现半导体材料所具有的光敏特性;1932年前后,运用量子学说建立了能带理论研究半导体现象;1956年,硅台面晶体管问世;1960年12月,世界上第一块硅集成电路制造成功;1966年,美国贝尔实验室使用比较完善的硅外延平面工艺制造成第一块公认的大规模集成电路。1988年,16M DRAM问世,1平方厘米大小的硅片上集成有3500万个晶体管,标志着进入超大规模集成电路阶段的更高阶段。1997年,300MHz奔腾Ⅱ问世,采用0.25μm工艺,奔腾系列芯片的推出让计算机的发展如虎添翼,发展速度让人惊叹。2009年,intel酷睿i系列全新推出,创纪录采用了领先的32纳米工艺,并且下一代22纳米工艺正在研发。集成电路制作工艺的日益成熟和各集成电路厂商的不断竞争,使集成电路发挥了它更大的功能,更好的服务于社会。由此集成电路从产生到成熟大致经历了“电子管——晶

集成电路工艺原理(期末复习资料)

第一章概述 1、集成电路:通过一系列特定的加工工艺,将晶体管、二极管等有源器件和电 阻、电容等无源器件,按照一定的电路互连,“集成”在一块半导体单晶片(如Si、GaAs)上,封装在一个内,执行特定电路或系统功能。 2、特征尺寸:集成电路中半导体器件能够加工的最小尺寸。它是衡量集成电路 设计和制造水平的重要尺度,越小,芯片的集成度越高,速度越快,性能越好 3、摩尔定律:芯片上所集成的晶体管的数目,每隔18个月就翻一番。 4、High-K材料:高介电常数,取代SiO2作栅介质,降低漏电。 Low-K 材料:低介电常数,减少铜互连导线间的电容,提高信号速度 5、功能多样化的“More Than Moore”:指的是用各种方法给最终用户提供附 加价值,不一定要缩小特征尺寸,如从系统组件级向3D集成或精确的封装级(SiP)或芯片级(SoC)转移。 6、IC企业的分类:通用电路生产厂;集成器件制造;Foundry厂;Fabless:IC 设计公司; 第二章:硅和硅片的制备 7、单晶硅结构:晶胞重复的单晶结构能够制作工艺和器件特性所要求的电学和 机械性能 8、CZ法生长单晶硅:把熔化的半导体级硅液体变成有正确晶向,并且被掺杂 成n或p型的固体硅锭; 9、直拉法目的:实现均匀掺杂和复制籽晶结构,得到合适的硅锭直径,限制杂 质引入;其关键参数:拉伸速率和晶体旋转速度 10、区熔法特点:纯度高,含氧低;晶圆直径小。 第三章集成电路制造工艺概况 11、亚微米CMOS IC 制造厂典型的硅片流程模型 第四章氧化 12、热生长:在高温环境里,通过外部供给高纯氧气使之与硅衬底反应,得到 一层热生长的SiO2 。 13、淀积:通过外部供给的氧气和硅源,使它们在腔体中方应,从而在硅片表 面形成一层 薄膜。 14、干氧:Si(固)+O2(气)-> SiO2(固):氧化速度慢,氧化层干燥、致 密,均匀性、重复性好,与光刻胶的粘附性好. 水汽氧化:Si (固)+H2O (水汽)->SiO2(固)+ H2 (气):氧化速度快,氧化层疏松,均匀性差,与光刻胶的粘附性差。

集成电路工艺原理

淮海工学院课程名称:集成电路原理与设计 题目:集成电路设计报告 系(院):电子工程学院 学期:2016-2017-1 专业班级:通信132班 姓名:刘后来 学号:2013120815

集成电路版图设计报告 一.设计目的: 1.通过本次实验,熟悉L-edit软件的特点并掌握使用L-edit软件的流程和设计方法; 2.了解集成电路工艺的制作流程、简单集成器件的工艺步骤、集成器件区域的层次关系,与此同时进一步了解集成电路版图设计的λ准则以及各个图层的含义和设计规则; 3.掌握数字电路的基本单元CMOS的版图,并利用CMOS的版图设计简单的门电路,然后对其进行基本的DRC检查; 4.掌握F=A?(B+C)的掩模板设计与绘制。 二.设计原理: 1、版图设计的目标: 版图(layout)是集成电路从设计走向制造的桥梁,它包含了集成电路尺寸、各层拓扑定义等器件相关的物理信息数据。版图设计是创建工程制图(网表)的精确的物理描述过程,即定义各工艺层图形的形状、尺寸以及不同工艺层的相对位置的过程。其设计目标有以下三方面: ①满足电路功能、性能指标、质量要求; ②尽可能节省面积,以提高集成度,降低成本; ③尽可能缩短连线,以减少复杂度,缩短延时,改善可能性。 2、版图设计的内容: ①布局:安排各个晶体管、基本单元、复杂单元在芯片上的位置。 集成电路版图设计报告 ②布线:设计走线,实现管间、门间、单元间的互连。 ③尺寸确定:确定晶体管尺寸(W、L)、互连尺寸(连线宽度)以及晶体管与互连

之间的相对尺寸等。 ④版图编辑(Layout Editor):规定各个工艺层上图形的形状、尺寸和位置。 ⑤布局布线(Place and route):给出版图的整体规划和各图形间 的连接。 ⑥版图检查(Layout Check):设计规则检验(DRC,Design Rule Ch eck)、电气规则检查(ERC,Electrical Rule Check)、版图与电路 图一致性检验(LVS,Layout Versus Schematic)。 三.设计规则(Design Rule): 设计规则是设计人员与工艺人员之间的接口与“协议”,版图设计必须无条件的 服从的准则,可以极大地避免由于短路、断路造成的电路失效和容差 以及寄生效应引起的性能劣化。设计规则主要包括几何规则、电学规 则以及走线规则。其中几何设计规则通常有两类: ①微米准则:用微米表示版图规则中诸如最小特征尺寸和最小允许间隔的绝对尺寸。 ②λ准则:用单一参数λ表示版图规则,所有的几何尺寸都与λ成线性比例。 设计规则分类如下: 1.拓扑设计规则(绝对值):最小宽度、最小间距、最短露头、离周 边最短距离。 2.λ设计规则(相对值):最小宽度w=mλ、最小间距s=nλ、最短露头t=lλ、离周边最短距离d=hλ(λ由IC制造厂提供,与具体的工 艺类型有关,m、n、l、h为比例因子,与图形类形有关)。 ①宽度规则(width rule):宽度指封闭几何图形的内边之间的距离。 集成电路版图设计报告 ②间距规则(Separation rule):间距指各几何图形外边界之间的 距离。

集成电路工艺原理资料

第一章衬底材料 1、三种单晶制备方法的特点和用途比较 直拉法(引晶,缩颈,放肩,等径生长,收晶) 基本原理:将多晶硅在真空或惰性气体保护下加热,使多晶硅熔化,然后利用籽晶来拉制单 -固相界面附近存在温度梯度(dT/dz)。 区熔法(悬浮区熔法:多晶硅棒和籽晶粘在一起后竖直固定在区溶炉上、下轴之间; 水平区熔法:多晶硅棒和籽晶粘在一起后水平固定在区溶炉左、右轴之间) 基本原理:将籽晶与多晶硅棒紧粘在一起,利用分段熔融多晶棒,在溶区由籽晶移向多晶硅棒另一端的过程中,使多晶硅转变成单晶硅。 中子嬗变掺杂法:利用热中子(即低能中子)对高阻单晶进行辐照,从而使其电阻率发生改变的方法。主要用来对高阻区熔单晶电阻率的均匀性进行调整。 三种单晶制备方法的比较 方法C、O含量直径电阻率大小电阻率均匀性用途 直拉法较高大低径向、轴向均匀性很差制作VLSI 区熔法较低较小高径向、轴向均匀性较差制作PowerDevice 中子嬗变法不变不变可调较好调整电阻率 2、硅中有害杂质的分类、存在形式及其影响 非金属主要有C、O、H原子。 重金属主要有Au、Cu、Fe、Ni原子。 金属主要有Na 、K、Ca、Al、Li、Mg、Ba 原子等。 分类种类存在形式主要影响 影响器件的特性参数(UT,β,Usat,fT);影响硅单晶的力O 间隙位置学性质(降低其机械强度);有源区外的氧有利于吸收附非金属近的重金属杂质,增强硅器件抗α粒子辐射的能力。 C 替位位置影响硅器件的电学性质(IR↑,UB↓);会减小硅的晶 格常数,引起晶格畸变; 间隙90% 有多个能级和双重电活性(受主或施主)或复合重金属Au 替位10% 中心, 影响硅的电阻率(ρ)和寿命(τ); 有效的复合中心影响较严重,除影响τ, ρ外,易在缺陷处形成杂Cu Fe 深能级质线和沉积微粒,使器件产生等离子击穿、 PN结漏电“管道”等现象 金属Na,K 间隙位置参与导电、影响器件的电学特性; Al Al会对N型材料的掺杂起补偿作用,使ρ↑ 3、硅中杂质吸除技术的分类,四种非本征杂质吸除方法的原理。 物理吸除(本征吸除,非本征吸除),化学吸除 物理吸除: 在高温过程中,将晶体缺陷和杂质沉积团解体,并以原子态溶于晶体中,然后使它们运动至有源区外,或被俘获或被挥发。 本征吸除: 用多步热处理方法在硅片内引入一些缺陷,以此吸除在表面附近的杂质和缺陷, (无外来加工) 。 非本征吸除: 对硅片施以外来加工进行析出的方法。 ①背面损伤吸除: 通过(喷砂、离子注入、激光辐照等)在晶片背面引入损伤层,经过处 理,损伤层在背面诱生大量位错缺陷,从而将体内有害杂质或微缺陷吸引至背面。 ②应力吸除:在晶片背面沉积氮化硅、多晶硅薄膜等引入弹性应力,在高温下,应力场

相关文档
最新文档