集成电路制造技术原理与工艺[王蔚][习题答案

集成电路制造技术原理与工艺[王蔚][习题答案
集成电路制造技术原理与工艺[王蔚][习题答案

第一单元 习题

1. 以直拉法拉制掺硼硅锭,切割后获硅片,在晶锭顶端切下的硅片,硼浓度为

3×1015atoms/cm 3。当熔料的90%已拉出,剩下10%开始生长时,所对应的晶锭上的该位置处切下的硅片,硼浓度是多少

已知:C 0B =3×1015atoms/cm 3;k B =;由l

s C C k =得: 硅熔料中硼的初始浓度为:

C 0

l = C 0

B / k B =3×1015

/≈×1015 atoms/cm 3;

由10)1(--=k s X kC C 得:

剩下10%熔料时,此处晶锭的硼浓度为:

C 90%

B = k B

C 0

l × kB-1= ××1015×0.10.35-1=×1016

2. 硅熔料含%原子百分比的磷,假定溶液总是均匀的,计算当晶体拉出10%,50%,90%时的掺杂浓度。

已知:硅晶体原子密度为:5×1022 atoms/cm 3, 含%原子百分比的磷, 熔料中磷浓度为:

C 0

p =5×1022 ×%=5×1019atoms/cm 3;k p =

由10)1(--=k s X kC C 计算得:

C 10%p = k P C 0p × kp-1=×5×1019× atoms/cm 3

C 50%

p =×5×1019× atoms/cm 3

C 90%

p =×5×1019× atoms/cm 3

3. 比较硅单晶锭CZ 、MCZ 和FZ 三种生长方法的优缺点

答:

CZ 法工艺成熟可拉制大直径硅锭,但受坩锅熔融带来的O 等杂质浓度高,存在一定杂质分布,因此,相对于MCZ 和FZ 法,生长的硅锭质量不高。当前仍是生产大直径硅锭的主要方法。

MCZ 法是在CZ 技术基础上发展起来的,生长的单晶硅质量更好,能得到均匀、低氧的大直径硅锭。但MCZ 设备较CZ 设备复杂得多,造价也高得多,强磁场的存在使得生产成本也大幅提高。MCZ 法在生产高品质大直径硅锭上已成为主要方法。

FZ 法与CZ 、MCZ 法相比,去掉了坩埚,因此没有坩埚带来的污染,能拉制出更高纯度、无氧的高阻硅,是制备高纯度,高品质硅锭,及硅锭提存的方法。但因存在熔融区因此拉制硅锭的直径受限。FZ 法硅锭的直径比CZ 、MCZ 法小得多。

4. 直拉硅单晶,晶锭生长过程中掺杂,需要考虑哪些因素会对硅锭杂质浓度及均匀性带来影响

答:

直拉法生长单晶时,通常采用液相掺杂方法,对硅锭杂质浓度及均匀性带来影响的因素主要有:杂质分凝效应,杂质蒸发现象,所拉制晶锭的直径,坩锅内的温度及其分布。

5. 磁控直拉设备本质上是模仿空间微重力环境来制备单晶硅。为什么在空间微重力实验室能生长出优质单晶。

答:

直拉生长单晶硅时,坩埚内熔体温度呈一定分布。熔体表面中心处温度最低,坩埚壁面

和底部温度最高。熔体的温度梯度带来密度梯度,坩埚壁面和底部熔体密度最低,表面中心处熔体密度最高。地球重力场的存在使得坩埚上部密度高的熔体向下,而底部、壁面密度低的熔体向上流动,形成自然对流。坩埚也就越来越大,熔体对流更加严重,进而形成强对流。熔体的流动将坩埚表面融入熔体的氧不断带离坩埚表面,进入熔体内;而且熔体强对流也使得单晶生长环境的稳定性变差,引起硅锭表面出现条纹,这有损晶体均匀性。如果在单晶炉上附加一强磁场,高温下具有高电导特性的熔体硅的流动因载流子切割磁力线而产生洛仑兹力,洛伦兹力与熔体运动方向及磁场方向相互垂直,磁力的存在相当于增强了熔体的粘性,从而熔体的自然对流受阻。

在空间微重力实验室,地球重力场可以忽略,在坩锅内的熔体就不会因密度梯度形成自然对流,因此能生长出优质单晶。

6. 硅气相外延工艺采用的衬底不是准确的晶向,通常偏离(100)或(111)等晶向一个

小角度,为什么

答:

从硅气相外延工艺原理可知,硅外延生长的表面外延过程是外延剂在衬底表面被吸附后分解出Si 原子,他迁移到达结点位置停留,之后被后续的Si 原子覆盖,该Si 原子成为外延层中原子。因此衬底表面“结点位置”的存在是外延过程顺利进行的关键,如果外延衬底不是准确的(100)或(111)晶面,而是偏离一个小角度,这在其表面就会有大量结点位置,所以,硅气相外延工艺采用的衬底通常偏离准确的晶向一个小角度。

7. 外延层杂质的分布主要受哪几种因素影响

外延温度,衬底杂质及其浓度,外延方法,外延设备等因素影响。

8. 异质外延对衬底和外延层有什么要求

对于B/A 型的异质外延,在衬底A 上能否外延生长B ,外延层B 晶格能否完好,受衬底A 与外延层B 的兼容性影响。衬底与外延层的兼容性主要表现在三个方面:

其一,衬底A 与外延层B 两种材料在外延温度不发生化学反应,不发生大剂量的互溶现象。即A 和B 的化学特性兼容;

其二,衬底A 与外延层B 的热力学参数相匹配,这是指两种材料的热膨胀系数接近,以避免生长的外延层由生长温度冷却至室温时,因热膨胀产生残余应力,在B/A 界面出现大量位错。当A 、B 两种材料的热力学参数不匹配时,甚至会发生外延层龟裂现象。

其三,衬底与外延层的晶格参数相匹配,这是指两种材料的晶体结构,晶格常数接近,以避免晶格结构及参数的不匹配引起B/A 界面附近晶格缺陷多和应力大的现象。 9. 电阻率为2-3Ωcm 的n-Si ,杂质为磷时,5千克硅,需掺入多少磷杂质

已知:ρp =2-3Ωcm,σp = g/cm 3

由图1-13的ρ~n 曲线可得:n p ≈1×1016 atoms/cm 3,

掺入磷的原子数为:1916310146.233

.2101105?=???=Si p

Si n W ρ atoms 磷原子量为;原子量单位为×10-27kg ,掺杂磷的质量应为:

需掺入磷:×10-21×××1019≈

10. 比较分子束外延(MBE)生长硅与气相外延(VPE )生长硅的优缺点。

答:

MBE 与VPE 相比生长硅,MBE 可精确控制外延层厚度,能生长极薄的硅外延层;且外延温度低,无杂质再分布现象,且工艺环境清洁,因此硅外延层杂质分布精确可控,能形成复杂杂质结构的硅外延层。但MBE 工艺设备复杂、工艺成本高、效率低。

集成电路制造技术原理与技术试题库样本

填空题( 30分=1分*30) (只是答案)半导体级硅、 GSG 、电子级硅。CZ法、区熔法、硅锭、wafer 、硅、锗、单晶生长、整型、切片、磨片倒角、刻蚀、 ( 抛光) 、清洗、检查和包装。 100 、110 和111 。融化了的半导体级硅液体、有正确晶向的、被掺杂成p型或n型、实现均匀掺杂的同时而且复制仔晶的结构, 得到合适的硅锭直径而且限制杂质引入到硅中、拉伸速率、晶体旋转速率。去掉两端、径向研磨、硅片定位边和定位槽。制备工业硅、生长硅单晶、提纯) 。卧式炉、立式炉、快速热处理炉。干氧氧化、湿氧氧化、水汽氧化。工艺腔、硅片传输系统、气体分配系统、尾气系统、温控系统。局部氧化LOCOS、浅槽隔离STI。掺杂阻挡、表面钝化、场氧化层和金属层间介质。热生长、淀积、薄膜。石英工艺腔、加热器、石英舟。APCVD常压化学气相淀积、 LPCVD低压化学气相淀积、 PECVD等离子体增强化学气相淀积。晶核形成、聚焦成束、汇聚成膜。同质外延、异质外延。膜应力、电短路、诱生电荷。导电率、高黏附性、淀积、平坦化、可靠性、抗腐蚀性、应力等。CMP设备、电机电流终点检测、光学终点检测。平滑、部分平坦化、局部平坦化、全局平坦化。磨料、压力。使硅片表面和石英掩膜版对准并聚焦, 包括图形) ; ( 经过对光刻胶曝光, 把高分辨率的投影掩膜版上图形复制到硅片上) ; ( 在单位时间内 生产出足够多的符合产品质量规格的 硅片) 。化学作用、物理作用、化 学作用与物理作用混合。介质、金 属。在涂胶的硅片上正确地复制掩膜 图形。被刻蚀图形的侧壁形状、各 向同性、各向异性。气相、液相、固 相扩散。间隙式扩散机制、替代式扩 散机制、激活杂质后。一种物质在另 一种物质中的运动、一种材料的浓度 必须高于另一种材料的浓度) 和 ( 系统内必须有足够的能量使高浓 度的材料进入或经过另一种材料。热 扩散、离子注入。预淀积、推进、 激活。时间、温度。扩散区、光刻 区、刻蚀区、注入区、薄膜区、抛 光区。硅片制造备 ) 、 ( 硅片制 造 ) 、硅片测试和拣选、 ( 装配 和封装、终测。微芯片。第一层 层间介质氧化物淀积、氧化物磨抛、 第十层掩模、第一层层间介质刻蚀。 钛淀积阻挡层、氮化钛淀积、钨淀 积、磨抛钨。 1.常见的半导体材料为何选择硅? ( 6分) ( 1) 硅的丰裕度。硅是地球上第二丰 富的元素, 占地壳成分的25%; 经合 理加工, 硅能够提纯到半导体制造所 需的足够高的纯度而消耗更低的成 本; ( 2) 更高的熔化温度允许更宽的工 艺容限。硅1412℃>锗937℃ ( 3) 更宽的工作温度。用硅制造的半 导体件能够用于比锗更宽的温度范围, 增加了半导体的应用范围和可靠性; ( 4) 氧化硅的自然生成。氧化硅是一 种高质量、稳定的电绝缘材料, 而且 能充当优质的化学阻挡层以保护硅不 受外部沾污; 氧化硅具有与硅类似的 机械特性, 允许高温工艺而不会产生 过度的硅片翘曲; 2.晶圆的英文是什么? 简述晶圆 制备的九个工艺步骤。( 6分) Wafer。 (1)单晶硅生长: 晶体生长是把半导 体级硅的多晶硅块转换成一块大的单 晶硅。生长后的单晶硅被称为硅锭。 可用CZ法或区熔法。 (2)整型。去掉两端, 径向研磨, 硅 片定位边或定位槽。 (3)切片。对200mm及以上硅片而言, 一般使用内圆切割机; 对300mm硅片 来讲都使用线锯。 (4)磨片和倒角。切片完成后, 传统 上要进行双面的机械磨片以去除切片 时留下的损伤, 达到硅片两面高度的 平行及平坦。硅片边缘抛光修整, 又 叫倒角, 可使硅片边缘获得平滑的半 径周线。 (5)刻蚀。在刻蚀工艺中, 一般要腐 蚀掉硅片表面约20微米的硅以保证 所有的损伤都被去掉。 (6)抛光。也叫化学机械平坦化 ( CMP) , 它的目标是高平整度的光滑 表面。抛光分为单面抛光和双面抛光。 (7)清洗。半导体硅片必须被清洗使 得在发给芯片制造厂之前达到超净的 洁净状态。 (8)硅片评估。 (9)包装。

集成电路制造技术-原理与工艺 课后习题答案

第一单元: 3.比较硅单晶锭CZ,MCZ和FZ三种生长方法的优缺点。 答:CZ直拉法工艺成熟,可拉出大直径硅棒,是目前采用最多的硅棒生产方法。但直拉法中会使用到坩埚,而坩埚的使用会带来污染。同时在坩埚中,会有自然对流存在,导致生长条纹和氧的引入。直拉法生长多是采用液相掺杂,受杂质分凝、杂质蒸发,以及坩埚污染影响大,因此,直拉法生长的单晶硅掺杂浓度的均匀性较差。 MCZ磁控直拉法,在CZ法单晶炉上加一强磁场,高传导熔体硅的流动因切割磁力线而产生洛仑兹力,这相当于增强了熔体的粘性,熔体对流受阻。能生长无氧、均匀好的大直径单晶硅棒。设备较直拉法设备复杂得多,造价也高得多,强磁场的存在使得生产成本也大幅提高。 FZ悬浮区熔法,多晶与单晶均由夹具夹着,由高频加热器产生一悬浮的溶区,多晶硅连续通过熔区熔融,在熔区与单晶接触的界面处生长单晶。与直拉法相比,去掉了坩埚,没有坩埚的污染,因此能生长出无氧的,纯度更高的单晶硅棒。 6.硅气相外延工艺采用的衬底不是准确的晶向,通常偏离[100]或[111]等晶向一个小角度,为什么? 答:在外延生长过程中,外延气体进入反应器,气体中的反应剂气相输运到衬底,在高温衬底上发生化学反应,生成的外延物质沿着衬底晶向规则地排列,生长出外延层。 气相外延是由外延气体的气相质量传递和表面外延两个过程完成的。表面外延过程实质上包含了吸附、分解、迁移、解吸这几个环节,表面过程表明外延生长是横向进行的,是在衬底台阶的结点位置发生的。因此,在将硅锭切片制备外延衬底时,一般硅片都应偏离主晶面一个小角度。目的是为了得到原子层台阶和结点位置,以利于表面外延生长。 7. 外延层杂质的分布主要受哪几种因素影响? 答:杂质掺杂效率不仅依赖于外延温度、生长速率、气流中掺杂剂的摩尔分数、反应室的几何形状等因素,还依赖于掺杂剂自身的特性。另外,影响掺杂效率的因素还有衬底的取向和外延层结晶质量。硅的气相外延工艺中,在外延过程中,衬底和外延层之间存在杂质交换现象,即会出现杂质的再分布现象,主要有自掺杂效应和互扩散效应两种现象引起。

染整工艺原理下册(有色部分)主要知识点

染整工艺复习题 1染色概念染色牢度上染百分率平衡上染百分率半染时间泳移轧余率 答:染色:就是用染料按一定的方法将纤维纺织物染上颜色的加工过程。 染色牢度:染色物在染色后的使用或加工过程中,在外界条件的影响下,能够保持原来色泽的能力。 上染百分率=(上染到纤维上的染料量/投入到染浴中的染料总量)×100% 平衡上染百分率:染色达到平衡时的上染百分率。 半染时间: 达到平衡上染百分率一半所用的时间(t1/2)。 泳移:织物在浸轧染液后焙烘过程中,染料随水份的移动而移动的现象 轧余率(轧液率、带液率):(浸轧后织物重-干布重)/干布重×100% 2染色方法及特点 答:染色方法有浸染和轧染。 浸染特点:适用于不能经受张力或压轧的染色物(散纤维、纱线、真丝织物等)的染色,浸染一般是间歇式生产,生产效率较低。设备简单,操作也比较容易。 轧染特点:轧染一般是连续式染色加工,生产效率高,适合大批量织物的染色,但被染物所受张力较大,通常用于机织物的染色,丝束和纱线有时也用轧染染色。 3直接性:染料对纤维上染的能力,用上染百分率来表示。 4吸附等温线定义:恒定染色温度下,将染色达到平衡时,纤维上的染料浓度对染液中染料浓度作图。表示染料在纤维与染浴中浓度的关系。(纤维上的染料浓度和染液中的染料浓度的关系线。) 5常见吸附等温线的类型及意义 答:能斯特分配型(Nersnt):纤维上染料浓度与溶液中染料浓度正比关系,随着染液浓度的增高而增高,直到饱和为止。[D]f/ [D]s =K,非离子型染料以范德华力、氢键等被纤维固着时,基本符合这类吸附等温线。(如分散染料上染纤维) 朗格谬尔型B(Langmuir):定位吸附有染座,有明确的饱和值。即染座占满了,吸附不再随浓度增加。[D]f=K[D]S[S]f /(1+K[D]S),离子型染料主要以静电引力上染纤维,以离子键在纤维中固着时,符合这类吸附等温线。(强酸性浴酸性染料染羊毛,阳离子染料染腈纶)弗莱因德利胥型C(Freundlich):多分子层吸附,纤维上染料浓度随染液中染料浓度的增加不断增加。[D]f=K[D] s n(0﹤n﹤1),离子型染料以范德华力和氢键吸附固着纤维,且染液中有其他电解质存在时,符合这类吸附等温线。(直接染料或还原染料隐色体上染纤维素纤维,活性染料上染纤维素纤维在未发生共价结合时) 6.Zeta电位(动电层电位): 答:吸附层与扩散层之间形成的双电层—动电层;吸附层与扩散层相对运动的现象为界面动电现象;ξ电位是紧密吸附层与扩散层相对运动产生的电位差。并非表面的真正电位,而是表示离开实际表面某一距离的电位。它是紧密吸附层与溶液本体的电位差。 7染料与纤维之间的作用力 (1)库伦力(2)范德华引力:偶极力、偶极—诱导偶极力、色散力 (3)氢键(4)共价键(5)配位键(6)电荷转移分子间引力 8以阳离子染料为例说明染料的溶液性质及影响染料聚集的因素 答:阳离子染料加入水中后,由于水分子为极性分子,染料的亲水部分能够与水分子形成氢键结合,并根据其亲水性的强弱,与水形成水合分子而溶解,形成染料的水溶液。染料溶于水,是由于受到水分子的作用,而使染料分子之间的作用力减弱或拆散。 影响染料聚集的因素: 1.内部因素影响

集成电路制造工艺流程之详细解答

集成电路制造工艺流程之详细解答 1.晶圆制造( 晶体生长-切片-边缘研磨-抛光-包裹-运输 ) 晶体生长(Crystal Growth) 晶体生长需要高精度的自动化拉晶系统。 将石英矿石经由电弧炉提炼,盐酸氯化,并经蒸馏后,制成了高纯度的多晶硅,其纯度高达0.99999999999。 采用精炼石英矿而获得的多晶硅,加入少量的电活性“掺杂剂”,如砷、硼、磷或锑,一同放入位于高温炉中融解。 多晶硅块及掺杂剂融化以后,用一根长晶线缆作为籽晶,插入到融化的多晶硅中直至底部。然后,旋转线缆并慢慢拉出,最后,再将其冷却结晶,就形成圆柱状的单晶硅晶棒,即硅棒。 此过程称为“长晶”。 硅棒一般长3英尺,直径有6英寸、8英寸、12英寸等不同尺寸。 硅晶棒再经过研磨、抛光和切片后,即成为制造集成电路的基本原料——晶圆。 切片(Slicing) /边缘研磨(Edge Grinding)/抛光(Surface Polishing) 切片是利用特殊的内圆刀片,将硅棒切成具有精确几何尺寸的薄晶圆。 然后,对晶圆表面和边缘进行抛光、研磨并清洗,将刚切割的晶圆的锐利边缘整成圆弧形,去除粗糙的划痕和杂质,就获得近乎完美的硅晶圆。 包裹(Wrapping)/运输(Shipping) 晶圆制造完成以后,还需要专业的设备对这些近乎完美的硅晶圆进行包裹和运输。 晶圆输送载体可为半导体制造商提供快速一致和可靠的晶圆取放,并提高生产力。 2.沉积 外延沉积 Epitaxial Deposition 在晶圆使用过程中,外延层是在半导体晶圆上沉积的第一层。 现代大多数外延生长沉积是在硅底层上利用低压化学气相沉积(LPCVD)方法生长硅薄膜。外延层由超纯硅形成,是作为缓冲层阻止有害杂质进入硅衬底的。 过去一般是双极工艺需要使用外延层,CMOS技术不使用。 由于外延层可能会使有少量缺陷的晶圆能够被使用,所以今后可能会在300mm晶圆上更多

(完整版)集成电路工艺原理期末试题

电子科技大学成都学院二零一零至二零一一学年第二学期 集成电路工艺原理课程考试题A卷(120分钟)一张A4纸开卷教师:邓小川 一二三四五六七八九十总分评卷教师 1、名词解释:(7分) 答:Moore law:芯片上所集成的晶体管的数目,每隔18个月翻一番。 特征尺寸:集成电路中半导体器件能够加工的最小尺寸。 Fabless:IC 设计公司,只设计不生产。 SOI:绝缘体上硅。 RTA:快速热退火。 微电子:微型电子电路。 IDM:集成器件制造商。 Chipless:既不生产也不设计芯片,设计IP内核,授权给半导体公司使用。 LOCOS:局部氧化工艺。 STI:浅槽隔离工艺。 2、现在国际上批量生产IC所用的最小线宽大致是多少,是何家企业生产?请 举出三个以上在这种工艺中所采用的新技术(与亚微米工艺相比)?(7分) 答:国际上批量生产IC所用的最小线宽是Intel公司的32nm。 在这种工艺中所采用的新技术有:铜互联;Low-K材料;金属栅;High-K材料;应变硅技术。 3、集成电路制造工艺中,主要有哪两种隔离工艺?目前的主流深亚微米隔离工 艺是哪种器件隔离工艺,为什么?(7分) 答:集成电路制造工艺中,主要有局部氧化工艺-LOCOS;浅槽隔离技术-STI两种隔离工艺。 主流深亚微米隔离工艺是:STI。STI与LOCOS工艺相比,具有以下优点:更有效的器件隔离;显著减小器件表面积;超强的闩锁保护能力;对沟道无 侵蚀;与CMP兼容。 4、在集成电路制造工艺中,轻掺杂漏(LDD)注入工艺是如何减少结和沟道区间的电场,从而防止热载流子的产生?(7分) 答:如果没有LDD形成,在晶体管正常工作时会在结和沟道区之间形成高

染整工艺与原理(下)考试资料赵涛主编

1.染色牢度:染色产品在使用或以后的加工处理过程中能保持原来色泽的能力。 2.浸染:将纺织品浸渍在染液中,经一定时间使染料上染并固着在纤维上的染色方法。 3.轧染:织物在染液中经过短暂的浸渍后,随即用轧辊轧压,将染液挤入纺织品组织空隙并去除多余染液,使染料均匀分布在织物上。染料的固着是在以后的气蒸等过程中完成的。 4.浴比:染液体积与被染物质量之比。 5.轧液率:织物上带的染液质量占干布质量的百分率。 6.泳移:织物在浸轧染液以后的烘干过程中,染料沿着水分蒸发方向移动的现象,引起阴阳面等色差。 7.扩散边界层:动力边界层内靠近纤维表面的染液几乎是静止的,此时,然也主要靠自身的扩散靠近纤维表面,该也曾成为扩散边界层。 8.动电层电位:吸附层与扩散层发生相对运动而产生的电位差。 9.动力边界层:一般把染液从染液本体到纤维表面流速降低的区域成为动力边界层。 10.双电层电位:在水溶液中,纤维表面带负电荷与其带相反电荷的正离子由于热运动距离纤维表面远近一定的浓度分布。因此产生一个吸附层和一个扩散层即所谓的双电层。 11.直接性:染料离开染液上染纤维的性能,一般可用染色平衡时染料的上染百分率来表示。 12.平衡上染百分率:在一定条件下染色达到平衡时,纤维上吸附的染料量占投入染料总量的百分比。上染百分率:吸附在纤维上的染料量占投入总量的百分率。 13.平衡吸附量:染色平衡时纤维上的染料浓度成为平衡吸附量。 14.染色饱和值:纤维在一定的染色温度下,所能上染的最大染料量。 15.半染时间:达到平衡吸附量一半所需要的时间,用t1/2表示,表示染色达到平衡的快慢。 16.匀染:染料在织物表面以及纤维内部分布的均匀程度。 17.移染:使上染较多部位的染料通过解吸转移到上染较少的部位,提高匀染效果。 18.亲和力:纤维上染料标准化学位和染液中染料标准化学位差值的负值。 19.染色热:无限小量染料从含有染料呈标准状态的染液中转移到染有染料呈标准状态的纤维上,每摩尔染料转移所吸收的热量。 20.染色熵:无限小量的染料从标准状态的染液中转移到标准状态的纤维上,每摩尔染料转移所引起的物系熵变,单位kJ/(℃·mol)。 21.染色活化能:染料分子要靠近纤维表面,必须具有一定的能量,克服由于静电斥力而产生的能阻,该能量称为染色活化能。 22.还原染料:不溶于水,必须在碱性溶液中被强还原剂还原成可溶于水,且对纤维有亲和力的隐色体钠盐而上染纤维,染色红再经氧化,恢复为原来不溶性的染料色淀固着在纤维上。 23.隐色体浸染:指把染料预先还原为隐色体,在染液中被纤维吸附,然后在进行氧化,皂煮。 24.悬浮体轧染:将织物直接浸轧还原染料配成的悬浮体溶液,再浸轧还原液,在气蒸等条件下使染料还原成隐色体,被纤维吸附、上染的方法。 25.干缸还原:染料和助剂不直接加入染槽,而是先在另一较小容器中用较浓的碱性还原液还原,然后再将隐色体钠盐的溶液加入染浴中。 26.全浴还原:染料直接在染浴中还原的方法。 27.隐色体电位:还原染料隐色体开始被氧化析出沉淀的电位,成为隐色体电位。 28.半还原时间;是还原达到平衡浓度一半所需的时间。 29.内聚能:1mol物质气化升华所吸收的热量。内聚能密度,单位摩尔体积的内聚能。 30.阳离子染料的配伍指数K:反映染料亲和力大小和扩散速率高低的综合指标。划分为5

集成电路制造工艺流程

集成电路制造工艺流程 1.晶圆制造( 晶体生长-切片-边缘研磨-抛光-包裹-运输 ) 晶体生长(Crystal Growth) 晶体生长需要高精度的自动化拉晶系统。 将石英矿石经由电弧炉提炼,盐酸氯化,并经蒸馏后,制成了高纯度的多晶硅,其纯度高达0.。 采用精炼石英矿而获得的多晶硅,加入少量的电活性“掺杂剂”,如砷、硼、磷或锑,一同放入位于高温炉中融解。 多晶硅块及掺杂剂融化以后,用一根长晶线缆作为籽晶,插入到融化的多晶硅中直至底部。然后,旋转线缆并慢慢拉出,最后,再将其冷却结晶,就形成圆柱状的单晶硅晶棒,即硅棒。 此过程称为“长晶”。 硅棒一般长3英尺,直径有6英寸、8英寸、12英寸等不同尺寸。 硅晶棒再经过研磨、抛光和切片后,即成为制造集成电路的基本原料——晶圆。 切片(Slicing) /边缘研磨(Edge Grinding)/抛光(Surface Polishing) 切片是利用特殊的内圆刀片,将硅棒切成具有精确几何尺寸的薄晶圆。 然后,对晶圆表面和边缘进行抛光、研磨并清洗,将刚切割的晶圆的锐利边缘整成圆弧形,去除粗糙的划痕和杂质,就获得近乎完美的硅晶圆。 包裹(Wrapping)/运输(Shipping) 晶圆制造完成以后,还需要专业的设备对这些近乎完美的硅晶圆进行包裹和运输。 晶圆输送载体可为半导体制造商提供快速一致和可靠的晶圆取放,并提高生产力。 2.沉积 外延沉积 Epitaxial Deposition 在晶圆使用过程中,外延层是在半导体晶圆上沉积的第一层。 现代大多数外延生长沉积是在硅底层上利用低压化学气相沉积(LPCVD)方法生长硅薄膜。外延层由超纯硅形成,是作为缓冲层阻止有害杂质进入硅衬底的。 过去一般是双极工艺需要使用外延层,CMOS技术不使用。 由于外延层可能会使有少量缺陷的晶圆能够被使用,所以今后可能会在300mm晶圆上更多

集成电路制造工艺原理

《集成电路制造工艺原理》 课程教学 教案 山东大学信息科学与工程学院 电子科学与技术教研室(微电) 张新

课程总体介绍: 1.课程性质及开课时间:本课程为电子科学与技术专业(微电子技术方向和光电子技术方向)的专业选修课。本课程是半导体集成电路、晶体管原理与设计和光集成电路等课程的前修课程。本课程开课时间暂定在第五学期。 2.参考教材:《半导体器件工艺原理》国防工业出版社 华中工学院、西北电讯工程学院合编 《半导体器件工艺原理》(上、下册) 国防工业出版社成都电讯工程学院编著 《半导体器件工艺原理》上海科技出版社 《半导体器件制造工艺》上海科技出版社 《集成电路制造技术-原理与实践》 电子工业出版社 《超大规模集成电路技术基础》电子工业出版社 《超大规模集成电路工艺原理-硅和砷化镓》 电子工业出版社3.目前实际教学学时数:课内课时54学时 4.教学内容简介:本课程主要介绍了以硅外延平面工艺为基础的,与微电子技术相关的器件(硅器件)、集成电路(硅集成电路)的制造工艺原理和技术;介绍了与光电子技术相关的器件(发光器件和激光器件)、集成电路(光集成电路)的制造工艺原理,主要介绍了最典型的化合物半导体砷化镓材料以及与光器件和光集成电路制造相关的工艺原理和技 术。 5.教学课时安排:(按54学时) 课程介绍及绪论 2学时 第一章衬底材料及衬底制备 6学时 第二章外延工艺 8学时 第三章氧化工艺 7学时 第四章掺杂工艺 12学时 第五章光刻工艺 3学时 第六章制版工艺 3学时 第七章隔离工艺 3学时 第八章表面钝化工艺 5学时 第九章表面内电极与互连 3学时 第十章器件组装 2学时

染整工艺原理(1)

染整工艺原理 染整工艺原理一---纺织基础知识 绪言 第一章染整用水及表面活性剂 第二章棉及棉型织物的退浆和精 第三章蚕丝和真丝绸的精练 第四章漂白(Bleaching) 第五章丝光 第六章热定形(Heat Setting) 第七章毛织物的湿整理 第八章一般整理(Finshing) 第九章防缩整理Finishing) 第十章防皱整理(Resin Finishing) 第十一章特种整理 过纺织加工以后的加工工艺。它是织物在一定的工艺条件下,通过染料、药剂和助剂在专用设备上进行的化学和物理加工过程。 1.特点 (1)属加工工业(在纺织工业中担任承上启下的重要角色); (2)一种化妆术; (3)综合的工艺技术,涉及面广; (4)能耗大(水、热、电),有污染(废水、气、渣)需重视节能和环保。2.目的

改善织物的服用性能(舒适、保暖、抗皱等),赋予功能性(防霉、防蛀、拒水、阻燃、抗菌等),提高身价。 (1)去除杂质; (2)提高白度; (3)染着颜色; (4)改善风格。 二、染整加工的主要内容 漂、染、印、整。 三、本课程的任务和要求 1.掌握纺织品的练漂、整理加工的基本原理和方法。 2.能根据纺织品的特性和练漂、整理加工要求,合理制订加工工艺过程及条件;初步具备解决练漂及整理工艺问题的能力。 3.了解练漂、整理加工的质量检验方法。 4.了解练漂及整理加工技术进展和发展前沿。 5.查阅染整专业的有关文献。 第一章染整用水及表面活性剂 §1染整用水及其处理 一、水和水质 1.自然界中的水源 地面水:流入江、河、湖泊中贮存的雨水,含较多可溶性有机物和少量无机物地下水:深地下水(深井水,不含有机物,有较多矿物质) 浅地下水(深度<15m的浅泉水、井水,有可溶性有机物和较多的二氧化碳)天然水

CMOS集成电路制造工艺流程

C M O S集成电路制造工艺 流程 Company number:【0089WT-8898YT-W8CCB-BUUT-202108】

陕西国防工业职业技术学院课程报告 课程微电子产品开发与应用 论文题目CMOS集成电路制造工艺流程 班级电子3141 姓名及学号王京(24#) 任课教师张喜凤 目录

CMOS集成电路制造工艺流程 摘要:本文介绍了CMOS集成电路的制造工艺流程,主要制造工艺及各工艺步骤中的核心要素,及CMOS器件的应用。 引言:集成电路的设计与测试是当代计算机技术研究的主要问题之一。硅双极工艺面世后约3年时间,于1962年又开发出硅平面MOS工艺技术,并制成了MOS集成电路。与双极集成电路相比,MOS集成电路的功耗低、结构简单、集成度和成品率高,但工作速度较慢。由于它们各具优劣势,且各自有适合的应用场合,双极集成工艺和MOS集成工艺便齐头平行发展。 关键词:工艺技术,CMOS制造工艺流程 1.CMOS器件 CMOS器件,是NMOS和PMOS晶体管形成的互补结构,电流小,功耗低,早期的CMOS电路速度较慢,后来不断得到改进,现已大大提高了速度。 分类 CMOS器件也有不同的结构,如铝栅和硅栅CMOS、以及p阱、n阱和双阱CMOS。铝栅CMOS和硅栅CMOS的主要差别,是器件的栅极结构所用材料的不同。P阱CMOS,则是在n型硅衬底上制造p沟管,在p阱中制造n沟管,其阱可采用外延法、扩散法或离子注入方法形成。该工艺应用得最早,也是应用得最广的工艺,适用于标准CMOS电路及CMOS与双极npn兼容的电路。N阱CMOS,是在p型硅衬底上制造n沟晶体管,在n阱中制造p沟晶体管,其阱一般采用离子注入方法形成。该工艺可使NMOS晶体管的性能最优化,适用于制造以NMOS为主的CMOS以及E/D-NMOS和p沟MOS兼容的CMOS电路。双阱CMOS,是在低阻n+衬底上再外延一层中高阻n――硅层,然后在外延层中制造n 阱和p阱,并分别在n、p阱中制造p沟和n沟晶体管,从而使PMOS和NMOS晶体管都在高阻、低浓度的阱中形成,有利于降低寄生电容,增加跨导,增强p沟和n沟晶体管的平衡性,适用于高性能电路的制造。

集成电路制造工艺原理

集成电路制造工艺原理 课程总体介绍: 1.课程性质及开课时间:本课程为电子科学与技术专业(微电子技术方向和光电子技术方向)的专业选修课。本课程是半导体集成电路、晶体管原理与设计和光集成电路等课程的前修课程。本课程开课时间暂定在第五学期。 2.参考教材:《半导体器件工艺原理》国防工业出版社 华中工学院、西北电讯工程学院合编《半导体器件工艺原理》(上、下册) 国防工业出版社成都电讯工程学院编著 《半导体器件工艺原理》上海科技出版社 《半导体器件制造工艺》上海科技出版社 《集成电路制造技术-原理与实践》 电子工业出版社 《超大规模集成电路技术基础》电子工业出版社 《超大规模集成电路工艺原理-硅和砷化镓》 电子工业出版社 3.目前实际教学学时数:课内课时54学时 4.教学内容简介:本课程主要介绍了以硅外延平面工艺为基础的,与微电子技术相关的器件(硅器件)、集成电路(硅集成电路)的制造工艺原理和技术;介绍了与光电子技术相关的器件(发光器件和激光器件)、集成电路(光集成电路)的制造工艺原理,主要介绍了最典型的化合物半导体砷化镓材料以及与光器件和光集成电路制造相关的工艺原理和技术。 5.教学课时安排:(按54学时) 课程介绍及绪论2学时第一章衬底材料及衬底制备6学时 第二章外延工艺8学时第三章氧化工艺7学时第四章掺杂工艺12学时第五章光刻工艺3学时第六章制版工艺3学时第七章隔离工艺3

学时 第八章表面钝化工艺5学时 第九章表面内电极与互连3学时 第十章器件组装2学时 课程教案: 课程介绍及序论 (2学时) 内容: 课程介绍: 1 教学内容 1.1与微电子技术相关的器件、集成电路的制造工艺原理 1.2 与光电子技术相关的器件、集成电路的制造 1.3 参考教材 2教学课时安排 3学习要求 序论: 课程内容: 1半导体技术概况 1.1 半导体器件制造技术 1.1.1 半导体器件制造的工艺设计 1.1.2 工艺制造 1.1.3 工艺分析 1.1.4 质量控制 1.2 半导体器件制造的关键问题 1.2.1 工艺改革和新工艺的应用 1.2.2 环境条件改革和工艺条件优化 1.2.3 注重情报和产品结构的及时调整 1.2.4 工业化生产 2典型硅外延平面器件管芯制造工艺流程及讨论 2.1 常规npn外延平面管管芯制造工艺流程 2.2 典型pn隔离集成电路管芯制造工艺流程 2.3 两工艺流程的讨论 2.3.1 有关说明 2.3.2 两工艺流程的区别及原因 课程重点:介绍了与电子科学与技术中的两个专业方向(微电子技术方向和光电子技术方向)相关的制造业,指明该制造业是社会的基础工业、是现代化的基础工业,是国家远景规划中置于首位发展的工业。介绍了与微电子技术方向相关的分离器件(硅器件)、集成电路(硅集成电路)的制造工艺原理的内容,指明微电子技术从某种意义上是指大规模集成电路和超大规模集成电路的制造技术。由于集成电路的制造技术是由分离器件的制造技术发展起来的,则从制造工艺上看,两种工艺流程中绝大多数制造工艺是相通

染整工艺与原理重点

烧毛工艺:烧毛车速:稀薄织物120-150m/min 厚密织物80-120m/min 织物品种:纯棉织物:透烧法 轻薄织物:切烧法 涤/棉织物:切烧法或对烧法 冷水辊:对冷水辊中通有的冷却水的温度必须进行适当控制,以便提高冷却效率,避免辊面上形成冷凝水滴。 烧毛质量评价 按照5级制标准进行评级,5级质量最好,一般要求4级以上 一般:门幅收缩应控制在2%以下 落布温度应控制在50℃以下 接触式烧毛机对于粗支厚密织物及低级棉织物的烧毛效果好,可以炭化和去除棉结(死棉),改善布面白芯。 Principle of alkali desizing(碱退浆) 1)在热碱液作用下浆料会发生溶胀,从凝胶状态变成溶胶状态而与纤维的粘着变松,容易洗落下来。 2)CMC、PA类的浆料在热碱液中的溶解性能较好,再经水洗可具有良好的退浆效率。特点:适用性强,可用于各种浆料的退浆;可使用丝光的废碱液,成本低;退浆率低,约50-70%;对大多数浆料没有化学降解作用 PV A上浆织物最好在烧毛和预定形前退浆。原因:PV A浆料水溶性很好,但经上浆烘燥成膜后,其水溶性大大下降。在高温作用下如果条件剧烈,可能会使PV A的羟基之间发生脱水反应,形成内醚;热处理也会使浆膜中高聚物有结晶化现象。这些都会造成PV A浆料浆膜的溶解度降低,而退浆前的烧毛或预定型都有可能使PV A发生脱水和结晶化,浆膜变硬而溶解度变差,造成退浆困难。 alkali desizing process(碱退浆工艺):轧碱→打卷堆置或汽蒸→水洗 平幅轧碱:轧碱(烧碱5~10g/L,温度70~80℃);打卷堆置(50~70℃,4~5h)或汽蒸(60min)水洗 Acid desizing(酸退浆) 优点:去除矿物盐,提高织物白度 缺点:退浆率不高;条件控制不当,易损伤纤维素纤维;对PV A和PA浆料无降解作用 工艺:碱(酶)退浆、湿进布浸轧稀硫酸溶液(硫酸浓度4~6g/L,温度40~50℃),再保温堆置45~60min(严格防止风干现象发生) Enzyme desizing(酶退浆) 淀粉酶的种类 α-淀粉酶(液化酶、糊精酶):切断淀粉大分子内部的α-1,4-甙键,形成糊精、麦芽糖、葡萄糖,具有很强的液化能力 β-淀粉酶(糖化酶):从淀粉大分子的非还原性末端顺次进行水解,形成麦芽糖;对支链淀粉中的α-1,6-甙键无水解作用 酶退浆工艺有轧堆法、浸渍法、轧蒸法和卷染(机)法。由四个加工步骤组成:预水洗、浸轧或浸渍酶退浆液、保温堆置和水洗后处理。 (1)预水洗(Prewashing):预水洗可加快浆膜的溶胀,使酶液较好地渗透到浆膜中去,同时可以洗除有害的防腐剂和酸性物质。因此α-淀粉酶退浆工艺是在烧毛后,可以先将原布在80~95℃进行水洗。为提高水洗的效果, 可在洗液中加入0.5g/L的非离子表面活性剂。

集成电路制造技术原理与工艺[王蔚][习题答案(第2单元)

第二单元习题解答 1.SiO 2膜网络结构特点是什么?氧和杂质在SiO 2 网络结构中的作用和用途是什 么?对SiO 2 膜性能有哪些影响? 二氧化硅的基本结构单元为Si-O四面体网络状结构,四面体中心为硅原子,四个顶角上为氧原子。对SiO2网络在结构上具备“长程无序、短程有序”的一类固态无定形体或玻璃体。半导体工艺中形成和利用的都是这种无定形的玻璃态SiO2。 氧在SiO2网络中起桥联氧原子或非桥联氧原子作用,桥联氧原子的数目越多,网络结合越紧密,反之则越疏松。在连接两个Si-O四面体之间的氧原子 掺入SiO2中的杂质,按它们在SiO2网络中所处的位置来说,基本上可以有两类:替代(位)式杂质或间隙式杂质。取代Si-O四面体中Si原子位置的杂质为替代(位)式杂质。这类杂质主要是ⅢA,ⅤA元素,如B、P等,这类杂质的特点是离子半径与Si原子的半径相接近或更小,在网络结构中能替代或占据Si原子位置,亦称为网络形成杂质。 由于它们的价电子数往往和硅不同,所以当其取代硅原子位置后,会使网络的结构和性质发生变化。如杂质磷进入二氧化硅构成的薄膜称为磷硅玻璃,记为PSG;杂质硼进入二氧化硅构成的薄膜称为硼硅玻璃,记为BSG。当它们替代硅原子的位置后,其配位数将发生改变。 具有较大离子半径的杂质进入SiO2网络只能占据网络中间隙孔(洞)位置,成为网络变形(改变)杂质,如Na、K、Ca、Ba、Pb等碱金属、碱土金属原子多是这类杂质。当网络改变杂质的氧化物进入SiO2后,将被电离并把氧离子交给网络,使网络产生更多的非桥联氧离子来代替原来的桥联氧离子,引起非桥联氧离子浓度增大而形成更多的孔洞,降低网络结构强度,降低熔点,以及引起其它性能变化。 2.在SiO 2 系统中存在哪几种电荷?他们对器件性能有些什么影响?工艺上如何降低他们的密度? 在二氧化硅层中存在着与制备工艺有关的正电荷。在SiO2内和SiO2-Si界面上有四种类型的电荷:可动离子电荷:Q m;氧化层固定电荷:Q f;界面陷阱电荷:Q it;氧化层陷阱电荷:Q Ot。这些正电荷将引起硅/二氧化硅界面p-硅的反型层,以及MOS器件阈值电压不稳定等现象,应尽量避免。 (1)可动离子电荷(Mobile ionic charge)Q m主要是Na+、K+、H+等荷正电的碱金属离子,这些离子在二氧化硅中都是网络修正杂质,为快扩散杂质,电荷密度在1010~1012/cm2。其中主要是Na+,因为在人体与环境中大量存在Na+,热氧化时容易发生Na+沾污。 Na+离子沾污往往是在SiO2层中造成正电荷的一个主要来源。这种正电荷将影响到SiO2层下的硅的表面势,从而,SiO2层中Na+的运动及其数量的变化都将影响到器件的性能。进入氧化层中的Na+数量依赖于氧化过程中的清洁度。现在工艺水平已经能较好地控制Na+的沾污,保障MOS晶体管阈值电压V T的稳定。 存在于SiO2中的Na+,即使在低于200℃的温度下在氧化层中也具有很高的扩散系数。

超大规模集成电路及其生产工艺流程

超大规模集成电路及其生产工艺流程 现今世界上超大规模集成电路厂(Integrated Circuit, 简称IC,台湾称之为晶圆厂)主要集中分布于美国、日本、西欧、新加坡及台湾等少数发达国家和地区,其中台湾地区占有举足轻重的地位。但由于近年来台湾地区历经地震、金融危机、政府更迭等一系列事件影响,使得本来就存在资源匮乏、市场狭小、人心浮动的台湾岛更加动荡不安,于是就引发了一场晶圆厂外迁的风潮。而具有幅员辽阔、资源充足、巨大潜在市场、充沛的人力资源供给等方面优势的祖国大陆当然顺理成章地成为了其首选的迁往地。 晶圆厂所生产的产品实际上包括两大部分:晶圆切片(也简称为晶圆)和超大规模集成电路芯片(可简称为芯片)。前者只是一片像镜子一样的光滑圆形薄片,从严格的意义上来讲,并没有什么实际应用价值,只不过是供其后芯片生产工序深加工的原材料。而后者才是直接应用在应在计算机、电子、通讯等许多行业上的最终产品,它可以包括CPU、内存单元和其它各种专业应用芯片。 一、晶圆 所谓晶圆实际上就是我国以往习惯上所称的单晶硅,在六、七十年代我国就已研制出了单晶硅,并被列为当年的十天新闻之一。但由于其后续的集成电路制造工序繁多(从原料开始融炼到最终产品包装大约需400多道工序)、工艺复杂且技术难度非常高,以后多年我国一直末能完全掌握其一系列关键技术。所以至今仅能很小规模地生产其部分产品,不能形成规模经济生产,在质量和数量上与一些已形成完整晶圆制造业的发达国家和地区相比存在着巨大的差距。 二、晶圆的生产工艺流程: 从大的方面来讲,晶圆生产包括晶棒制造和晶片制造两面大步骤,它又可细分为以下几道主要工序(其中晶棒制造只包括下面的第一道工序,其余的全部属晶片制造,所以有时又统称它们为晶柱切片后处理工序): 多晶硅——单晶硅——晶棒成长——晶棒裁切与检测——外径研磨——切片——圆边——表层研磨——蚀刻——去疵——抛光—(外延——蚀刻——去疵)—清洗——检验——包装 1、晶棒成长工序:它又可细分为: 1)、融化(Melt Down):将块状的高纯度多晶硅置石英坩锅内,加热到其熔点1420℃以上,使其完全融化。2)、颈部成长(Neck Growth):待硅融浆的温度稳定之后,将,〈1.0.0〉方向的晶种慢慢插入其中,接着将晶种慢慢往上提升,使其直径缩小到一定尺寸(一般约6mm左右),维持此真径并拉长100---200mm,以消除晶种内的晶粒排列取向差异。 3)、晶冠成长(Crown Growth):颈部成长完成后,慢慢降低提升速度和温度,使颈直径逐渐加响应到所需尺寸(如5、6、8、12时等)。 4)、晶体成长(Body Growth):不断调整提升速度和融炼温度,维持固定的晶棒直径,只到晶棒长度达到预定值。 5、)尾部成长(Tail Growth):当晶棒长度达到预定值后再逐渐加快提升速度并提高融炼温度,使晶棒直径逐渐变小,以避免因热应力造成排差和滑移等现象产生,最终使晶棒与液面完全分离。到此即得到一根完整的晶棒。 2、晶棒裁切与检测(Cutting & Inspection):将长成的晶棒去掉直径偏小的头、尾部分,并对尺寸进行检测,以决定下步加工的工艺参数。 3、外径研磨(Surface Grinding & Shaping):由于在晶棒成长过程中,其外径尺寸和圆度均有一定偏差,其外园柱面也凹凸不平,所以必须对外径进行修整、研磨,使其尺寸、形状误差均小于允许偏差。 4、切片(Wire Saw Slicing):由于硅的硬度非常大,所以在本序里,采用环状、其内径边缘嵌有钻石颗粒的薄锯片将晶棒切割成一片片薄片。 5、圆边(Edge profiling):由于刚切下来的晶片外边缘很锋利,单晶硅又是脆性材料,为避免边角崩裂影响晶片强度、破坏晶片表面光洁和对后工序带来污染颗粒,必须用专用的电脑控制设备自动修整晶片边缘形状和外径尺寸。 6、研磨(Lapping):研磨的目的在于去掉切割时在晶片表面产生的锯痕和破损,使晶片表面达到所要求的光洁度。

集成电路制造工艺

摘要 集成电路广泛应用于生活生产中,对其深入了解很有必要,在此完论文中整的阐述集成电路原理及其制造工艺本报告从集成电路的最初设计制造开始讲起全面讲述了集成电路的整个发展过程制造工艺以及集成电路未来的发展前途。集成电路广泛应用于生活的各个领域,特别是超大规模集成电路应用之后,使我们的生活方式有了翻天覆地的变化。各种电器小型化智能化给我们生活带来了各种方便。所以对于电子专业了解集成电路的是发展及其制造非常有必要的。关键词集成电路半导体晶体管激光蚀刻 集成电路的前世今生 说起集成电路就必须要提到它的组成最小单位晶体管。1947 年在美国的贝尔实验室威廉·邵克雷、约翰·巴顿和沃特·布拉顿成功地制造出第一个晶体管。晶体管的出现使电子元件由原来的电子管慢慢地向晶体管转变,是电器小型化低功耗化成为了可能。20 世纪最初的10 年,通信系统已开始应用半导体材料。开始出现了由半导体材料进行检波的矿石收音机。1945 年贝尔实验室布拉顿、巴丁等人组成的半导体研究小组经过一系列的实验和观察,逐步认识到半导体中电流放大效应产生的原因。布拉顿发现,在锗片的底面接上电极,在另一面插上细针并通上电流,然后让另一根细针尽量靠近它,并通上微弱的电流,这样就会使原来的电流产生很大的变化。微弱电流少量的变化,会对另外的电流产生很大的影响,这就是“放大”作用。第一次在实验室实际验证的半导体的电流放大作用。不久之后他们制造出了能把音频信号放大100 倍的晶体管。晶体管最终被用到了集成电路上面。晶体管相对于电子管着它本身固有的优点: 1.构件没有消耗:无论多么优良的电子管,都将因阴极原子的变化和慢性漏气而逐渐老化。由于技术上的原因,晶体管制作之初也存在同样的问题。随着材料制作上的进步以及多方面的改善,晶体管的寿命一般比电子管长100 到1000 倍。2.消耗电能极少:耗电量仅为电子管的几十分之一。它不像电子管那样需要加热灯丝以产生自由电子。一台晶体管的收音机只要几节干电池就可以半年。 3.不需预热:一开机就工作。用晶体管做的收音机一开就响,晶体管电视机一开就很快出现画面。电子管设备就做不到这一点。4.结实可靠:比电子管可靠100 倍,耐冲击、耐振动,这都是电子管所无法比拟的。晶体管的体积只有电子管的十分之一到百分之一,放热很少,可用于设计小型、复杂、可靠的电路。晶体管的制造工艺虽然精密,但工序简便,有利于提高元器件的安装密度。光有了晶体管还是不够,因为要把晶体管集成到一片半导体硅片上才能便于把电路集成把电子产品小型化。那怎么把晶体管集成呢,这便是后来出现的集成芯片。采用一定的工艺,把一个电路中所需的晶体管、二极管、电阻、电容和电感等元件及布线互连一起,制作在一小块或几小块半导体晶片或介质基片上,然后封装在一个管壳内,成为具有所需电路功能的微型结构;其中所有元件在结构上已组成一个整体,使电子元件向着微小型化、低功耗和高可靠性化。集成电路经过30 多年的发展由开始的小规模集成电路到到大规模集成电路再到现在的超大规模乃至巨大规模的集成电路,集成电路有了飞跃式的发展集成度也越来越高,从微米级别到现在的纳米级别。模拟集成电路主要是指由电容、电阻、晶体管等组成的模拟电路集成在一起用来处理模拟信号的集成电路。有许多的模拟集成电路,如运算放大器、模拟乘法器、锁相环、电源管理芯片等。模拟集成电路的主要构成电路有:放大器、滤波器、反馈 电路、基准源电路、开关电容电路等。数字集成电路是将元器件和连线集成于同一半导体芯片上而制成的数字逻辑电路或系统。用来产生、放大和处理各种数字信号(指在时间上和幅度上离散取值的信号)。而集成电路的普及离不开因特尔公司。1968 年:罗伯特·诺

染整工艺原理课后作业题答案

染整工艺原理课后作业 题答案 WTD standardization office【WTD 5AB- WTDK 08- WTD 2C】

课后习题: 1水处理主要方法: 石灰—纯碱法,离子交换法,软水剂添加法 2简述精炼液的组成及各部分的作用? (1)烧碱(NaoH)煮练剂使果胶中的酯键水机,部分含氮物质蛋白质分子中的酰胺键水解,还能使蜡状物质中的脂肪酸类物质发生皂化而溶解 (3)硅酸钠吸附煮练液中的铁质,防止织物上产生锈斑,吸附煮练液中已分解的杂质,防止再次产生锈斑 (4)亚硫酸氢钠:有利于棉籽壳的去除,木质素→木质素磺酸→木质素磺酸钠,还原剂防止棉织物在高温带碱的情况下被空气氧化而脆损 (5)磷酸三钠作为软水剂 3试设计一种纯棉织物连续平幅退浆,精炼工艺 4在精炼工艺中,主要加入哪些表面活性剂?试述它们的作用原理。 5作为良好的润湿剂,洗涤剂,乳化剂,应具有怎样的化学结构?为什么? 6试从润湿方程来说明精炼的原布为什么不能被水润湿? 7原布检验包含哪些内容? 原布检验→翻布→打印→缝头 (1)物理指标:幅宽,重量,纱支,密度,强力等(规格) (2)外观疵点:如缺经,断纬,跳纱,棉结等(品质) (3)普通棉织物:抽查10%左右; (4)毛织物:全部检验; 8简述棉织物碱退浆,酶退浆原理。加工工艺条件? 碱退浆的原理: 1)在热碱的作用下浆料会发生溶胀,从凝胶状态变成溶胶状态而与纤维的粘着变松,容易洗落下来。

酶退浆的原理: 酶是一类具有特殊催化能力的蛋白质,对某些物质的分解有特定的催化作用。淀粉酶 能催化淀粉大分子链发生水解而生成分子量较小、粘度较低、溶解度较高的一些低分 (1)漂白后的织物经1g/L烧碱溶液沸煮1小时后、织物强力大幅度下降的现象被称 为潜在损伤。 (2)原因:主要是由于葡萄糖的升环所致 (3)通过测定织物的煮练强力来快速测定潜在损伤 10简述精炼效果的评定方法? 毛效:煮练效果的评定一般用毛效指标来判定,即30分钟内水沿织物向上爬升的高度(CM)。棉机织物要求毛效在8CM以上;棉针织物要求毛效在12CM以上 11NaClO漂白为什么不在中性或酸性条件下漂白? ①酸性条件下,但Cl2逸出,污染环境 ②中性条件,fibre损伤最严重,此时氧化纤维素羧基多,对纤维的损伤程度较大。 所以选择pH9—10漂白,尽管漂白速度慢一些,但通过延长t可达到目的。 12简述NaClO漂白原理及其特点。并以连续轧漂为例,制定其具体的漂白工艺阐述其 工艺参数选择的条件。 Naclo漂白的特点是:1)价格较低,漂白工艺及设备也比较简单; 2)在漂白过程中因产生对人体有害的毒气,同时又存在环 境污染的问题,因此其应用受到了一定的限制; 3)主要用于棉织物漂白,尤其是低级棉的漂白,不能用于 蛋白质纤维的漂白。 漂白原理是:天然色素的结构特征:分子中含有较长的共轭双键。.Naclo具有较强的 氧化能力,为弱酸强碱盐,在水中能发生水解,溶液呈碱性:.Naclo+H 2 O→HOCl+NaOH, HOCl可按下式进一步电离:HOCl→OCl+ -H,HOCl漂白有效成分:OCl-,HOCl,Cl 2 在 漂白过程中会发生各种形式的分解,这些分解物能使色素中的部分双键饱和,从而达 到消色漂白的目的,同时也能使纤维素遭到氧化,而导致强力下降。 工艺流程:水洗→浸轧漂液→堆置→水洗→酸洗→堆置→水洗→脱氯→水洗。 漂白液的PH为:温度为20-35min,通常采用室温工艺 有效氯浓度:2-5g∕L, 时间30-60min。 13H 2O 2 漂白时为什么要加入稳定剂并阐述Na2CO3在漂白过程中的作用及原理? 加入原因:H2O2在漂白过程中除了对天然色素有破坏作用外,同时也会使纤维素纤维氧化而受损,因此在漂白过程中要有效的控制双氧水的分解速率,通常在漂液中要加入一定的稳定剂如硅酸钠等。硅酸钠的稳定原理:可能是由于漂液中的硅酸钠

相关文档
最新文档