人教版初一数学上册第四章测验题
人教版七年级上册数学第四章测试题

A B C D人教版七年级数学测试卷(考试题)第四章几何知识初步测试题选择题:(30分)1.把弯曲的河道改直,能够缩短船舶航行的路程,这样做的道理是()A.垂线段最短 B.两点确定一条直线C.两点之间,直线最短 D.两点之间,线段最短2.点C在线段AB上,下列条件中不能确定....点C是线段AB中点的是A、 AC =BCB、 AC +BC= ABC、 AB =2ACD、 BC =AB3.下列图形中,是棱锥展开图的是4.如果一个角的补角是120°,那么这个角的余角是()(A)30°(B)40°(C)50°(D)60°5、下列四个角最有可能与70°角互补的是()6圆柱是由长方形绕着它的一边所在直线旋转一周所得到的,那么下列左图是以下四个图中的哪一个绕着直线211 24AA·····BCD EBACDO1237、将一个正方体的表面沿某些棱剪开,展成一个平面图形,至少要剪开()条棱。
A. 3;B. 5;C. 7;D. 9;8、已知点C是直线AB上一点,AB=6cm,BC=2cm,那么AC的长是()A. 2cm;B. 4cm;C. 8cm;D. 4cm或 8cm;9、如图,点C为线段AB上一点, AC︰CB=3︰2,D、E两点分别为AC、AB的中点,若线段DE=2cm,则AB 的长为()A.8 cmB.12 cmC.14 cmD. 10 cm10、如图,将一副三角尺按不同位置摆放,摆放方式中∠与∠互余的是()填空题:(24分)11、若一个多边形内角和等于12600,则该多边形边数是。
12、如图是正方体的展开图,则原正方体相对两个面上的数字之和得最小值的是。
13、如图,点C是∠AOB的边OA上一点,D、E是OB上两点,则图中共有条线段,条射线。
14、如图,点C是线段AB上一点,D、E分别是线段AC,BC的中点,若AB=10cm,AD=2cm,则CE= .15、一个锐角是38°,则它的余角是。
人教七年级数学上册试卷第四章测试卷

第四章测试卷时间:90分钟满分:100分一、选择题(每小题3分,共36分)1.下列几何体中,从正面看和上面看都为矩形的是( B )2.经过刨平的木板上的两个点,能弹出一条笔直的墨线,而且只能弹出一条墨线,能解释这一实际应用的数学知识是( A )A.两点确定一条直线B.两点之间线段最短C.两点之间直线最短D.两点确定一条射线3.下面的等式成立的是( C )A.26°12'42″=26.124 2°B.26°50'=26.5°C.78°30'÷4=19°37'30″D.15°14'38″×4.5=67.5°5'51″4.如图是由相同小正方体组成的立体图形,它的左视图为( A )5.如图,将甲、乙、丙、丁四个小正方形中的一个剪掉,使余下的部分不能围成一个正方体,剪掉的这个小正方形是( D )6.在直线l 上顺次取A ,B,C 三点,使得AB=5 cm,BC=3 cm,如果O 是线段AC 的中点,那么线段OB 的长度是( B )A.0.5 cmB.1 cmC.1.5 cmD.2 cm7.如果点C 在线段AB 上,那么下列各表达式中:①AC =BC;②AC =AB;③AC+BC =AB;④AB =2AC,能表示点C 是线段AB 的中点的有( B )A.1个B.2个C.3个D.4个8.如果一个角的补角是140°,那么这个角的度数是( B )A.20°B.40°C.70°D.130°9.如图,一副三角板(直角顶点重合)摆放在桌面上,若∠AOD =150°,则∠BOC 等于( A )10.如图,OC 是∠AOB 的平分线,OD 是∠BOC 的平分线,那么下列各式中正确的是( D )11.如图所示,B,C 是线段AD 上任意两点,M 是AB 的中点,N 是CD 中点,若MN =a,BC=b,则线段AD的长是( B )A.2(a-b)B.2a-bC.a+bD.a-b12.钟表在8:25时,时针与分针的夹角度数是( B )A.101.5B.102.5C.120D.125二、填空题(每小题3分,共18分)13.如图所示的图形剪去一个小正方形,使余下的部分恰好能折成一个正方体,应剪去 1 或2 或6 (填序号).14.如图,点A ,B,C 在直线l 上,则图中共有 3 条线段,有 6 条射线.15.如图,B 处在 A 处的南偏西40°方向,C 处在A 处的南偏东12°方向,C 处在B 处得北偏东80°方向,则∠ACB 的度数为 88° .16.如图,直线AB 与CD 相交于点O,∠AOD =50°,则∠BOC= 50° .17.往返于A ,B 两地的客车,中途停靠四个站,共有 15 种不同的票价,要准备 30 种车票.18.钟表上11时40分钟时,时针与分针的夹角为 110 度.三、解答题(共46分)19.(7分)下面的几何体是用 7 个大小相同的小正方体搭成的,请你在右边的方格中画出该几何体的三种视图.20.(7分)已知,B,C 两点把线段AD 分成2∶5∶3三部分,M 为AD 的中点,BM =6 cm,求CM 和AD的长.AD =5 =AM -AB =5 =6 cm,所以解:设AB=2,CD =3 =MD =123x=6,解得D -CD =5x-3x=2),AD =10).21.(8分)计算:(1)90°-78°19'40″; (2)34°25'20″×3+35°42';解:(1)90°-78°19'40″=89°59'60″-78°19'40″=11°40'20″; (2)34°25'20″×3+35°42'=102°75'60″+35°42'=103°16'+35°42'=138°58';(3)132°26'42″-41.325°×3; (4)95°37'21″-60°52'40″.解:(3)132°26'42″-41.325°×3=132°26'42″-123.975°=132°26'42″-123°58'30″=8°28'12″;(4)95°37'21″-60°52'40″=95°36'81″-60°52'40″=94°96'81″-60°52'40″=34°44'41″.22.(8分)如图,∠AOC 与∠BOC 互余,OD 平分∠BOC,∠EOC=2∠AOE.(1)若∠AOD =75°,求∠AOE 的度数;(2)若∠DOE=54°,求∠EOC 的度数.解:设∠AOE =x,∵∠EOC =2∠AOE,∴∠EOC =2x,∴∠AOC = ∠AOE +∠COE =3x,∵∠AOC与∠BOC互余,∴∠BOC =90°-3x,∵OD平分∠BOC,∴∠COD=12∠BOC=45°-32x.(1)若∠AOD =75°,则∠AOD =∠AOC+∠COD =75°,即3x+45°-32x=75°,解得x=20°,即∠AOE 的度数为20°;(2)若∠DOE=54°,则∠DOE=∠EOC+∠COD =54°,即2x+45°-32x=54°,解得x=18°,2x=36°,即∠EOC 的度数是36°.23.(8分)射线OA 表示的方向是北偏东15°,射线OB 表示的方向是北偏西40°.(1)若∠AOC=∠AOB,则射线OC 表示的方向是北偏东70° ;(2)若射线OD 是射线OB 的反向延长线,则射线OD 表示的方向是南偏东40° ;(3)∠BOD 可以看作是由OB 绕点O 逆时针方向旋转至OD 形成的角,作∠BOD 的平分线OE;(4)在(1),(2),(3)的条件下,求∠COE 的度数.解:(3)如图所示,OE 为∠BOD 的平分线;(4)∵∠AOB=55°,∠AOC=∠AOB,∴∠BOC=110°.∴∠COD =180°-110°=70°.又∵射线OD 是OB 的反向延长线,∴∠BOD =180°,∵射线OE 平分∠BOD ,∴∠DOE=90°,∴∠COE=∠DOE+∠COD =90°+70°=160°.24.(8分)如图,B 是线段AD 上一动点,沿A →D →A 的路线以2 cm/s 的速度往返运动1次,C 是线段BD 的中点,AD =10 cm,设点B 的运动时间为t s(0≤t ≤10).(1)当t=2时,求线段AB 和线段CD 的长度; (2)用含t 的代数式表示运动过程中AB 的长;(3)在运动过程中,若AB 的中点为E,则EC 的长是否变化? 若不变,求出EC 的长;若发生变化,请说明理由.解:(1)∵B 是线段AD 上一动点,沿A →D →A 以2 cm/s 的速度往返运动,∴ 当t=2时,AB =2×2=4(cm);∵AD =10cm,AB=4cm,∴BD=10-4=6(cm),∵C 是线段BD 的中点,∴CD=12BD =12×6=3 (cm);(2)∵B 是线段AD 上一动点,沿A →D →A 以 2 cm/s 的速度往返运动,∴当0≤t ≤5时,AB =2t;当5<t ≤10时,AB=10-(2t-10)=20-2t;(3)不变.∵AB 中点为E,C 是线段BD 的中点,∴EC=12(AB+BD)= 12AD =12×10=5 (cm).。
人教版七年级数学上册《第四章整式的加减》单元测试卷及答案

人教版七年级数学上册《第四章整式的加减》单元测试卷及答案一、整体代入法求值整体代入法求值,就是将一个复杂的表达式或方程看作一个整体,然后将其代入到另一个表达式或方程中进行求解的方法。
通过“比较各项系数”“拼拆各项构造整体”“比较各项系数”“拼拆各项构造整体”等方法“化繁为简”,将复杂的问题分解成若干个简单的问题,再逐一解决,最终汇聚成整体的答案。
一、 整体代入——比较各项系数1. 若代数式b a -2的值为1 ,则代数式b a 247-+ 的值为( ) .A. 7B. 8C. 9D. 102. 若a 、b 互为相反数,c 、d 互为倒数,则()=-+cd b a 3 .3. 已知代数式y x 2+的值是3 ,则代数式142-+y x 的值是 .4. 若6=+b a ,则=--b a 2218 ( ) .A. 6B. 6-C. 24-D. 125. 已知,0122=++a a 求3422-+a a 的值 . 6. 若72=-b a ,则b a 426+- 的值为 .7. 如果代数式b a -的值为4 ,那么代数式522--b a 的值为 . 8. 已知代数式y x -2的值是2- ,则代数式y x +-21 的值是 .二、 整体代入——拼拆各项构造整体1. 请回答下列各题:( 1 )化简:()().363252222y x xy xy y x --+ ( 2 )化简求值:已知,2,9==+ab b a 求()()⎪⎭⎫ ⎝⎛+--++-b ab a ab ab ab 2141025131532的值.2. 已知,12,5=-=+c b b a 则c b a -+2 的值为( ) . A. 17B. 7C. 17-D.7-3. 已知5=-b a ,2=+d c 则()()d a c b --+的值是( ) .A.3-B. 3C.7-D. 74. 已知3=-b a ,2=+dc 则()()d a c b --+ 的值为 .5. 已知,6,1422-=-=+bc b bc a 则22b a+ 的值是 ,bc b a 3222+-的值是6. 已知,5,14=-=+ab b a 求()()[]a b ab a b ab 65876+--++ 的值 .三、 整体代入——比较各项系数1. 代数式22++x x 的值为0 ,则代数式3222-+x x 的值为( ) . A. 6 B. 7 C. 6- D. 7-2. 解答下列问题:( 1 )若代数式7322++x x 的值为 8 ,那么代数式2025962++x x 的值为( 2 )若5,7==+xy y x .则代数式xy y x +--228的值为 ( 3 )若,5,162244=-=+xy y x y x 则()()()422244253y xy xy y x y x----- 的值是多 少?3. 若代数式y x 32-的值是1 ,那么代数式846+-x y 的值是 .4. 已知a ,b 互为相反数, c ,d 互为倒数, x 的绝对值为2 .求()()20252cd x cd b a x -+++-的值 .5. 已知a 与b 互为相反数,c 与d 互为倒数, m 的值为6-,求m cd mba +-+的值 . 6. 若代数式5322++x x 的值是 8 ,则代数式7642-+x x 的值是( ) . A. 1- B. 1 C. 9- D. 9 7. 若1-=-n m ,则()n m n m 222+-- 的值是 .四、 整体代入——拼拆各项构造整体1. 若32-=+mn m,1832=-mn n 则224n mn m -+ 的值为 .2. 已知2,522-==+ab b a ,求代数式()()222222353242b b ab ab ab a ++---+的值.3. 已知:1,4-==-mn n m .求:()()()mn n m m n mn n m mn ++--+-++-4223322的值 . 4. 已知(),07535172=-++-+y x y x 求=+y x 32 .5. 已知,62,1422-=-=+bc b bc a 则=-+bc b a 54322 ( ) .A. 18B. 18-C. 20D. 86. 已知2-=-+a c b ,则()()=-++⎪⎭⎫ ⎝⎛+-+--a c b c b a c b c b a a 2223132323232 参考答案一、 整体代入——比较各项系数【解答】()b a b a -+=-+227247把12=-b a 代入上式得:927=+=∴原式. 答案:C【解答】b a 、 互为相反数,d c 、互为倒数.,1,0==+∴cd b a(),3303-=-=-+∴cd b a 答案:3-【知识点】倒数的定义1. 【解答】由题意可知:,32=+y x 原式().516122=-=-+=y x【解答】,6=+b a(),612182182218=-=+-=--∴b a b a 答案:A 2. 【解答】,0122=++a a ()550512234222=-=-++=-+∴a a a a3. 【解答】()b a b a 226426--=+-,其中,72=-b a 所以原式8726-=⨯-=4. 【解答】,4=-b a ()35425252=-⨯=--=--b a b a5. 【解答】22-=-y x()()3212121=--=--=+-∴y x y x二、 整体代入——拼拆各项构造整体1.【解答】(1)原式222222913361510xy y x y x xy xy y x +=+-+=(2)原式b ab a ab ab ab 24252210---++-=(),255822524210b a ab ba ab +--=--⎪⎭⎫ ⎝⎛+-+-=其中.2,9==+ab b a.5206511618922558-=--=⨯-⨯-=∴原式 2.【解答】12,5=-=+c b b a()()171252=+=-++=-+∴c b b a c b a .答案:A3.【解答】2,5=+=-d c b a()()325-=+-=++-=+-+=∴d c b a d a c b 原式.答案:A4.【解答】,d a c b +-+=原式()()132-=-=--+=+-+=b a d c ba d c5.【解答】()();86142222=-+=-++=+bc b bc a b a()()();346282322222=--=--+=+-bc bbc abc b a答案:8;346.【解答】()34228=++=++=ab b a a b ab 原式三、整体代入——比较各项系数1. 【解答】2,0222-=+=++x x x x 即()734322-=--=-+=x x 原式.答案:D2. 【解答】(1)87322=++x x,1322=+∴x x则原式(),20282025320253232=+=++=x x(2),5,7==+xy y x()xy y x ++-=∴28原式151485728-=+-=+⨯-=(3)()()()422244253y xy xy y xyx -----()()115165,16,3225322442244422244=-=∴=-=+∴--+=+-+--=原式xy y x y x xy y x y x y xy xy y x y x3. 【解答】,132=-y x()6828322=+-=+--=∴y x 原式【解答】b a , 互为相反数,d c ,互为倒数,x 的绝对值为2,2,1,0±===+∴x cd b a当2=x 时,原式()();11241210220252=--=-+⨯+-=当2-=x 时,原式()()()();51241210220252=-+=-+-⨯+--= 所以()()20252cd x cd b a x -+++-的值为1或5.【解答】b a , 互为相反数0=+∴b ad c , 互为倒数1=∴cd.5610610=+-=-+-=+-+m cd mba 4. 【解答】由题意可知:85322=++x x,3322=+∴x x().1732276422-=-+=-+∴x x x x 答案:A5. 【解答】1-=-n m()()()()()3121222222=-⨯--=---=+-=n m n m nm n m四、整体代入——拼拆各项构造整体1. 【解答】方法一:,183,322=--=+mn n mn m∴将这两个等式的两边相减得:(),183322--=--+mn n mn m,21322-=+-+∴mn n mn m ,21422-=-+∴n mn m方法二:原式(),332222mn n mn m n mn mn m --+=-++= 将183,322=--=+mn n mn m 代入 得原式21183-=--=2.【解答】原式,691524822222b b ab a b ab a +-+--+=(),137,71372222ab b a b ab a ++-=-+-=当2,522-==+ab b a 时 原式612635-=--=.3. 【解答】原式,4223322mn n m m n mn n m mn ---+--++-=(),36336n m mn nm mn -+-=-+-=把1,4-==-mn n m 代入得:原式18126=+=.4. 【解答】 已知条件17-+y x 和()27535-+y x 都是非负数,且(),07535172=-++-+y x y x .3932,5127535170753517=+∴⎩⎨⎧==∴⎩⎨⎧=+=+∴=-+=-+∴y x y x y x y x y x y x5. 【解答】bc b a 54322-+()()182414324322=-⨯=-++=bc b bc a6. 【解答】原式().382323222=⨯=--=c b a。
(word完整版)七年级数学上册_第四章测试卷_新人教版

用心爱心专心图2D CO BAA七年级数学第四章测试卷姓名一、选择(每题3分,共24分)1、如图1所示,由A到B有①②③三条路线,A、因为它直B、两点确定一条直线C、两点间距离定义D、在连接两点线中,线段最短。
2、下列几何语言描述正确的是()A、直线mn与直线ab相交于点DB、点A在直线M上C、点A在直线AB上D、延长直线AB3、如图2所示,已知∠AOB=150°,∠AOC=∠BOD=90°,则∠COD的度数是()A、30°B、80°C、60°D、45°4、用一副三角板不能画角的度数是()A、30°B、75°C、100°D、135°5、一个角和它的补角度数比为4:5,则这个角的余角度数为()A、40°B、50°C、10°D、80°6、若点A、B、C在同一条直线上,线AB=6cm,AC=3cm,则线段BC的长为()A、3cmB、9cmC、3cm或9cmD、不能确定7、如果一个角为30°,用10倍的放大镜观察,这个角应是()A、30°B、300°C、60°D、不能确定8、7点整,时针与分针的夹角为()A、120°B、100°C、150°D、130°二、填空(每题3分,共24分)1、木匠师傅利用墨斗弹线的道理是2、计算①123°29′29〞+69°46′53〞=____________。
②41°16′37〞×5=________________。
3、如图3所示,将平面图形折成一个正方体,字______所在面与“秀”字面相对。
4、如图4所示,D、E分别是AB、BC的中点,其中AD=2,BC=6,则DE=_______。
ED CBA图4用心 爱心 专心 D CEBO A 图6西北O A 30 A B C D O E 5、如图5所示,射线OA 表示_____方向,射线OB 表示__ _方向。
最新人教版七年级数学上册第四章测试题及答案

人教版七年级数学上册第四章测试题及答案第4章《图形认识初步》班级___________ 姓名___________ 成绩_______一、选择题(每小题3分,共30分) 1.下列空间图形中是圆柱的为( )2.桌上放着一个茶壶,4个同学从各自的方向观察,请指出下图右边的四幅图,从左至右分别是由哪个同学看到的( )A .①②③④B .①③②④C .②④①③D .④③①②3.将如图2所示的直角三角形ABC 绕直角边AC 旋转一周,所得的几何体从正面看是图3中( )4.小丽制作了一个如下左图所示的正方体礼品盒,其对面图案都相同,那么这个正方体的平面展开图可能是( )B AC D 第2题图A.B.C.D.BAC 图2 ABCD图 35.下列四个生活、生产现象:①用两个钉子就可以把木条固定在墙上;②植树时,只要定出两棵树的位置,就能确定同一行树所在的直线;③从A 地到B 地架设电线,总是尽可能沿着线段AB 架设;④把弯曲的公路改直,就能缩短路程,其中可用事实 “两点之间,线段最短”来解释的现象有( ) A.①② B.①③ C.②④ D.③④ 6.已知∠α=35°19′,则∠α的余角等于( )A .144°41′B .144°81′C . 54°41′D . 54°81′7.线段12AB cm =,点C 在AB 上,且13AC BC =,M 为BC 的中点,则AM 的长为( )A.4.5cmB. 6.5cmC. 7.5cmD. 8cm8.如图,下列说法中错误的是( )A.OA 方向是北偏东30º B.OB 方向是北偏西15º C.OC 方向是南偏西25º D.OD 方向是东南方向二、填空题(每小题2分,共20分)1.长方体由 个面, 条棱, 个顶点.2.下列图形是一些立体图形的平面展开图,请将这些立体图形的名称填在对应的横线上.3.如图,在射线CD 上取三点D 、E 、F ,则图中共有射线_________条。
人教版七年级上(初一上)册数学单元测试卷:第4章单元测试(共四套)

A 2A3A 4O(5)A A 1B 第4章 单元测试题(时间100分钟 满分100分)一、选择题:(每小题3分,共30分) 1.如图1所示的棱柱有( )A.4个面B.6个面C.12条棱D.15条棱2.如图2,从正面看可看到△的是( )3.如图3,图中有( )A.3条直线B.3条射线C.3条线段D.以上都不对 4.下列语句正确的是( )A.如果PA=PB,那么P 是线段AB 的中点;B.作∠AOB 的平分线CDC.连接A 、B 两点得直线AB;D.反向延长射线OP(O 为端点) 5.如图4,比较∠α、∠β、∠γ 的大小得( )A. ∠γ>∠β>∠α;B. ∠α=∠β;C. ∠γ>∠α>∠β;D. ∠β>∠α>∠γ. 6.5点整时,时钟上时针与分钟之间的夹角是( ) A.210° B.30° C.150° D.60° 7.两个角,它们的比是6:4,其差为36°,则这两个角的关系是( ) A.互余 B.互补 C.既不互余也不互补 D.不确定8.∠α=40.4°,∠β=40°4′,则∠α与∠β的关系是( ) A. ∠α=∠β;B. ∠α>∠β;C. ∠α<∠β;D. 以上都不对 9.如果∠α=3∠β, ∠α=2∠θ,则必有( ) A. ∠β=∠θ;B.∠β=∠θ;C.∠β=∠θ;D.∠β=∠θ;10.如图5所示,已知∠AOB=64°,OA 1平分∠AOB,OA 2平分∠AOA 1,OA 3 平分∠AOA 2,OA 4平分∠AOA 3,则∠AOA 4的大小为( )A.8°B.4°C.2°D.1° 二、填空题:(每小题3分,共30分)11.已知线段AB=8cm,延长AB 至C,使AC=2AB,D 是AB 中点,则线段CD=______.12.如图,从城市A 到城市B 有三种不同的交通工作:汽车、火车、飞机,除去速度因素,坐飞机的时间最短是因为___________.13.57.32°=_______°_______′_______″;27°14′24″=_____°. 14.已知∠a=36°42′15″,那么∠a 的余角等于________. 15.∠1+∠2=180°,∠2+∠3=180°,根据________,得∠1=∠3.16.表示O 点南偏东15°方向和北偏东25°方向的两条射线组成的角等于____ 17.如图,∠AOC=90°,∠AOB=∠COD,则∠BOD=______°.(1)C(2)ADBC(3)AB γβ(4)α1213233418.102°43′32″+77°16′28″=________;98°12′25″÷5=_____.19.已知线段AB=acm,点A 1平分AB,A 2平分AA 1,A 3平分AA 2,……, 平分, 则=_______________cm.20.在平面上有任意四点,过其中任意两点画直线,能画_______条直线. 三、解答题:(21、24、25、26每题6分,22、23题每题8分) 21.根据下列语句画图:(1)画∠AOB=120°;(2)画∠AOB 的角平分线OC; (3)反向延长OC 得射线OD;(4)分别在射线OA 、OB 、OD 上画线段OE=OF=OG=2cm; (5)连接EF 、EG 、FG;(6)你能发现EF 、EG 、FG 有什么关系?∠EFG 、∠EGF 、∠GEF 有什么关系?22.已知线段AB=10cm,直线AB 上有一点C ,且BC=4cm,M 是线段AC 的中点,求AM 的长. 23.如图,直线AB 、CD 交于O 点,且∠BOC=80°,OE 平分∠BOC,OF 为OE 的反向延长线. (1)求∠2和∠3的度数.(2)OF 平分∠AOD 吗?为什么?24.一个角的补角与它的余角的度数之比是3:1,求这个角的度数.航线铁路公路(6)ABODC(7)AB n A 1n AA n AA 321OFCA DEB25.测量员沿着一块地的周围测绘.从A 向东走600米到B,再从B 向东南(∠ABC= 135°)走500米到C,再从C 向西南(∠BCD=90°)走800米到D.用1厘米代表100米画图, 求DA 的长(精确到10米)和DA 的方向(精确到1°).26.利用线段、角、三角形、圆等图形为你的学校设计一个校标,并简述你的设计思路.北DCA B答案:一、选择题1.D2.C3.C4.D5.C6.C7.B8.B9.C 10.B 二、填空题11.12cm 12.两点之间,线段最短 13.57、19、12;27.24 14. 53°17′45″ 15.同角的补角相等16.140° 17.90 18.180°;19°38′29″. 19. a 20.1或4或6三、解答题21.(6)EF=EG=FG,∠EFG=∠EGF=∠FEG=60° 22.AM=7cm 或3cm23.(1)∠2=100°,∠3=40°;(2)∠AOF=40°,OF 平分∠AOD24.设这个角为x 0,( 180-x):(90-x)=3:1,x=45.第4章 单元测试题2检测时间:45分钟,满分:100分班级 学号 姓名 得分一、填空题:(每空2分,共46分)1.正方体有______条棱,_____个顶点, 个面.2.圆柱的侧面展开图是一个 ,圆锥的侧面展开图是一个 ,棱柱的侧面展开图是一个 。
七年级上册数学人教版第四章试卷(3篇)
第1篇一、选择题(每题3分,共30分)1. 下列数中,绝对值最小的是()。
A. -3B. -2C. 0D. 12. 如果 |a| = 5,那么 a 的值可以是()。
A. 5B. -5C. 5 或 -5D. 03. 下列各数中,正数有()。
A. 2,-3,-4B. -2,-3,-4C. 2,-3,-4,0D. 2,-3,-4,54. 在数轴上,表示 -2 的点应该在()。
A. 原点的左边B. 原点的右边C. 原点上D. 无法确定5. 下列各组数中,互为相反数的是()。
A. 3 和 5B. -3 和 5C. 3 和 -5D. 0 和 56. 如果 |a| = 3,那么 a^2 的值是()。
A. 3B. 6C. 9D. 127. 在数轴上,点 A 表示 -4,点 B 表示 2,那么点 A 和点 B 之间的距离是()。
A. 6B. 8C. 10D. 128. 如果 |a| = |b|,那么 a 和 b 的关系是()。
A. a = bB. a = -bC. a 和 b 不确定D. a 和 b 相等或互为相反数9. 下列各数中,正有理数有()。
A. 1/2,-1/3,-2/5B. 1/2,1/3,-2/5C. 1/2,-1/3,2/5D. 1/2,1/3,2/5,-1/510. 在数轴上,表示 -1 的点应该在()。
A. 原点的左边B. 原点的右边C. 原点上D. 无法确定二、填空题(每题3分,共30分)1. 绝对值符号 | | 里的数叫做______。
2. 一个正数的绝对值是它本身,一个负数的绝对值是它的______。
3. 0 的绝对值是______。
4. 如果 |a| = 5,那么 a 的值可以是______。
5. 在数轴上,表示 3 的点应该在______。
6. 互为相反数的两个数的和是______。
7. 在数轴上,点 A 表示 -2,点 B 表示 5,那么点 A 和点 B 之间的距离是______。
人教版七年级数学上册第四章测试题含答案
人教版数学七年级上册 第四章测试卷一、选择题(每小题3分,共30分)1.生活中的实物可以抽象出各种各样的几何图形,如图所示蛋糕的形状类似于( )A.圆柱B.球C.圆D.圆锥第1题图2.下列说法正确的是( )A.两点确定一条直线B.两条射线组成的图形叫作角C.两点之间直线最短D.若AB =BC ,则点B 为AC 的中点3.若∠1=40.4°,∠2=40°4′,则∠1与∠2的关系是( )A.∠1=∠2B.∠1>∠2C.∠1<∠2D.以上都不对4.如图,长度为18cm 的线段AB 的中点为M ,点C 是线段MB 的一个三等分点,则线段AC 的长为( )A.3cmB.6cmC.9cmD.12cm第4题图 第5题图5.如图,∠AOB 为平角,且∠AOC =27∠BOC ,则∠BOC 的度数是( ) A.140° B.135° C.120° D.40°6.如图,有一个正方体纸巾盒,它的平面展开图是( )7.若一个角的补角的余角是28°,则这个角的度数为()A.62°B.72°C.118°D.128°8.把一副三角尺ABC与BDE按如图所示那样拼在一起,其中A,D,B三点在同一直线上,BM为∠ABC的平分线,BN为∠CBE的平分线,则∠MBN的度数是()A.30°B.45°C.55°D.60°9.两根木条,一根长20cm,一根长24cm,将它们一端重合且放在同一条直线上,此时两根木条的中点之间的距离为()A.2cmB.4cmC.2cm或22cmD.4cm或44cm10.如图,C、D在线段BE上,下列说法:①直线CD上以B、C、D、E为端点的线段共有6条;②图中有2对互补的角;③若∠BAE=100°,∠DAC=40°,则以A为顶点的所有小于平角的角的度数和为360°;④若BC=2,CD=DE=3,点F是线段BE上任意一点,则点F到点B,C,D,E的距离之和的最大值为15,最小值为11.其中说法正确的个数有()A.1个B.2个C.3个D.4个二、填空题(每小题3分,共24分)11.如图,为抄近路践踏草坪是一种不文明的现象,请你用数学知识解释出现这一现象的原因.第11题图第12题图12.如图所示的图形中,柱体为(请填写你认为正确物体的序号).13.如图,直线AB,CD交于点O,我们知道∠1=∠2,那么其理由是.第13题图14.已知BD=4,延长BD到A,使BA=6,点C是线段AB的中点,则CD =.15.往返于甲、乙两地的客车,中途停靠3个车站(来回票价一样),且任意两站间的票价都不同,共有种不同的票价,需准备种车票.16.如图①所示的∠AOB纸片,OC平分∠AOB,如图②,把∠AOB沿OC对折成∠COB(OA与OB重合),从O点引一条射线OE,使∠BOE=12∠EOC,再沿OE把角剪开,若剪开后得到的3个角中最大的一个角为80°,则∠AOB =°.第16题图第18题图17.已知A、B、C三点都在数轴上,点A在数轴上对应的数为2,且AB=5,BC=3,则点C在数轴上对应的数为.18.用棱长是1cm的小正方体组成如图所示的几何体,把这个几何体放在桌子上,并把暴露的面涂上颜色,那么涂颜色面的面积之和是cm2.三、解答题(共66分)19.(10分)观察下面由7个小正方体组成的图形,请你画出从正面、上面、左面看到的平面图形.20.(10分)如图,B是线段AD上一点,C是线段BD的中点.(1)若AD=8,BC=3.求线段CD,AB的长;(2)试说明:AD+AB=2AC.21.(10分)如图,将两块直角三角尺的顶点叠放在一起.(1)若∠DCE=35°,求∠ACB的度数;(2)若∠ACB=140°,求∠DCE的度数;(3)猜想∠ACB与∠DCE的关系,并说明理由.22.(12分)已知线段AB=20cm,M是线段AB的中点,C是线段AB延长线上的点,AC:BC=3:1,点D是线段BA延长线上的点,AD=AB.求:(1)线段BC的长;(2)线段DC的长;(3)线段MD的长.23.(12分)如图,甲、乙两船同时从小岛A出发,甲船沿北偏西20°的方向以40海里/时的速度航行;乙船沿南偏西80°的方向以30海里/时的速度航行.半小时后,两船分别到达B,C两处.(1)以1cm表示10海里,在图中画出B,C的位置;(2)求A处看B,C两处的张角∠BAC的度数;(3)测出B,C两处的图距,并换算成实际距离(精确到1海里).24.(12分)已知O是直线AB上的一点,∠COD是直角,OE平分∠BOC.(1)如图①,若∠AOC=30°,求∠DOE的度数;(2)在图①中,若∠AOC=a,直接写出∠DOE的度数(用含a的代数式表示);(3)将图①中的∠DOC绕顶点O顺时针旋转至图②的位置.①探究∠AOC和∠DOE的度数之间的关系,写出你的结论,并说明理由;②在∠AOC的内部有一条射线OF,且∠AOC-4∠AOF=2∠BOE+∠AOF,试确定∠AOF与∠DOE的度数之间的关系,说明理由.参考答案与解析1.A 2.A 3.B 4.D 5.A 6.B 7.C 8.B 9.C10.B 解析:以B,C,D,E为端点的线段有BC,BD,BE,CE,CD,ED共6条,故①正确;图中互补的角就是分别以C,D为顶点的两对角,即∠BCA和∠ACD互补,∠ADE和∠ADC互补,故②正确;由∠BAE=100°,∠CAD=40°,根据图形可以求出∠BAC+∠CAE+∠BAE+∠BAD+∠DAE+∠DAC=100°+100°+100°+40°=340°,故③错误;当F在线段CD上时最小,则点F到点B,C,D,E的距离之和为FB+FE+FD+FC=2+3+3+3=11,当F和E重合时最大,则点F到点B、C、D、E的距离之和为FB+FE+FD+FC=8+0+3+6=17,故④错误.故选B.11.两点之间,线段最短12.①②③⑥13.同角的补角相等14.1 15.10 20 16.12017.-6或0或4或10 18.3019.解:图略.(10分)20.解:(1)∵C是线段BD的中点,BC=3,∴CD=BC=3.又∵AB+BC+CD =AD,AD=8,∴AB=8-3-3=2.(5分)(2)∵AD+AB=AC+CD+AB,BC=CD,∴AD+AB=AC+BC+AB=AC+AC=2AC.(10分)21.解:(1)由题意知∠ACD=∠ECB=90°,∴∠ACB=∠ACD+∠DCB=∠ACD+∠ECB-∠ECD=90°+90°-35°=145°.(3分)(2)由(1)知∠ACB=180°-∠ECD,∴∠ECD=180°-∠ACB=40°.(6分)(3)∠ACB +∠DCE =180°.(7分)理由如下:∵∠ACB =∠ACD +∠DCB =90°+90°-∠DCE ,∴∠ACB +∠DCE =180°.(10分)22.解:(1)设BC =x cm ,则AC =3x cm.又∵AC =AB +BC =(20+x )cm ,∴20+x =3x ,解得x =10.即BC =10cm.(4分)(2)∵AD =AB =20cm ,∴DC =AD +AB +BC =20cm +20cm +10cm =50cm.(8分)(3)∵M 为AB 的中点,∴AM =12AB =10cm ,∴MD =AD +AM =20cm +10cm =30cm.(12分)23.解:(1)图略.(4分)(2)∠BAC =90°-80°+90°-20°=80°.(8分)(3)约2.3cm ,即实际距离约23海里.(12分)24.解:(1)由已知得∠BOC =180°-∠AOC =150°,又∠COD 是直角,OE 平分∠BOC ,∴∠DOE =∠COD -12 ∠BOC =90°-12×150°=15°.(3分)(2)∠DOE =12a .(6分) 解析:由(1)知∠DOE =∠COD -12∠BOC =90°,∴∠DOE =90°-12(180°-∠AOC )=12∠AOC =12α. (3)①∠AOC =2∠DOE .(7分)理由如下:∵∠COD 是直角,OE 平分∠BOC ,∴∠COE =∠BOE =90°-∠DOE ,∴∠AOC =180°-∠BOC =180°-2∠COE =180°-2(90°-∠DOE ),∴∠AOC =2∠DOE .(9分)②4∠DOE -5∠AOF =180°.(10分)理由如下:设∠DOE =x ,∠AOF =y ,∴∠AOC -4∠AOF =2∠DOE -4∠AOF =2x -4y ,2∠BOE +∠AOF =2(90°-x )+y =180°-2x +y ,∴2x -4y =180°-2x +y ,即4x -5y =180°,∴4∠DOE -5∠AOF =180°.(12分)人教版数学七年级上册 第四章测试卷一、选择题(每小题3分,共30分)1.生活中的实物可以抽象出各种各样的几何图形,如图所示蛋糕的形状类似于( )A.圆柱B.球C.圆D.圆锥第1题图2.下列说法正确的是( )A.两点确定一条直线B.两条射线组成的图形叫作角C.两点之间直线最短D.若AB =BC ,则点B 为AC 的中点3.若∠1=40.4°,∠2=40°4′,则∠1与∠2的关系是( )A.∠1=∠2B.∠1>∠2C.∠1<∠2D.以上都不对4.如图,长度为18cm 的线段AB 的中点为M ,点C 是线段MB 的一个三等分点,则线段AC 的长为( )A.3cmB.6cmC.9cmD.12cm第4题图 第5题图5.如图,∠AOB 为平角,且∠AOC =27∠BOC ,则∠BOC 的度数是( ) A.140° B.135° C.120° D.40°6.如图,有一个正方体纸巾盒,它的平面展开图是( )7.若一个角的补角的余角是28°,则这个角的度数为( )A.62°B.72°C.118°D.128°8.把一副三角尺ABC 与BDE 按如图所示那样拼在一起,其中A ,D ,B 三点在同一直线上,BM 为∠ABC 的平分线,BN 为∠CBE 的平分线,则∠MBN 的度数是( )A.30°B.45°C.55°D.60°9.两根木条,一根长20cm ,一根长24cm ,将它们一端重合且放在同一条直线上,此时两根木条的中点之间的距离为( )A.2cmB.4cmC.2cm或22cmD.4cm或44cm10.如图,C、D在线段BE上,下列说法:①直线CD上以B、C、D、E为端点的线段共有6条;②图中有2对互补的角;③若∠BAE=100°,∠DAC=40°,则以A为顶点的所有小于平角的角的度数和为360°;④若BC=2,CD=DE=3,点F是线段BE上任意一点,则点F到点B,C,D,E的距离之和的最大值为15,最小值为11.其中说法正确的个数有()A.1个B.2个C.3个D.4个二、填空题(每小题3分,共24分)11.如图,为抄近路践踏草坪是一种不文明的现象,请你用数学知识解释出现这一现象的原因.第11题图第12题图12.如图所示的图形中,柱体为(请填写你认为正确物体的序号).13.如图,直线AB,CD交于点O,我们知道∠1=∠2,那么其理由是.第13题图14.已知BD=4,延长BD到A,使BA=6,点C是线段AB的中点,则CD =.15.往返于甲、乙两地的客车,中途停靠3个车站(来回票价一样),且任意两站间的票价都不同,共有种不同的票价,需准备种车票.16.如图①所示的∠AOB纸片,OC平分∠AOB,如图②,把∠AOB沿OC对折成∠COB(OA与OB重合),从O点引一条射线OE,使∠BOE=12∠EOC,再沿OE把角剪开,若剪开后得到的3个角中最大的一个角为80°,则∠AOB =°.第16题图第18题图17.已知A、B、C三点都在数轴上,点A在数轴上对应的数为2,且AB=5,BC=3,则点C在数轴上对应的数为.18.用棱长是1cm的小正方体组成如图所示的几何体,把这个几何体放在桌子上,并把暴露的面涂上颜色,那么涂颜色面的面积之和是cm2.三、解答题(共66分)19.(10分)观察下面由7个小正方体组成的图形,请你画出从正面、上面、左面看到的平面图形.20.(10分)如图,B是线段AD上一点,C是线段BD的中点. (1)若AD=8,BC=3.求线段CD,AB的长;(2)试说明:AD+AB=2AC.21.(10分)如图,将两块直角三角尺的顶点叠放在一起. (1)若∠DCE=35°,求∠ACB的度数;(2)若∠ACB=140°,求∠DCE的度数;(3)猜想∠ACB与∠DCE的关系,并说明理由.22.(12分)已知线段AB=20cm,M是线段AB的中点,C是线段AB延长线上的点,AC:BC=3:1,点D是线段BA延长线上的点,AD=AB.求:(1)线段BC的长;(2)线段DC的长;(3)线段MD的长.23.(12分)如图,甲、乙两船同时从小岛A出发,甲船沿北偏西20°的方向以40海里/时的速度航行;乙船沿南偏西80°的方向以30海里/时的速度航行.半小时后,两船分别到达B,C两处.(1)以1cm表示10海里,在图中画出B,C的位置;(2)求A处看B,C两处的张角∠BAC的度数;(3)测出B,C两处的图距,并换算成实际距离(精确到1海里).24.(12分)已知O是直线AB上的一点,∠COD是直角,OE平分∠BOC.(1)如图①,若∠AOC=30°,求∠DOE的度数;(2)在图①中,若∠AOC=a,直接写出∠DOE的度数(用含a的代数式表示);(3)将图①中的∠DOC绕顶点O顺时针旋转至图②的位置.①探究∠AOC和∠DOE的度数之间的关系,写出你的结论,并说明理由;②在∠AOC的内部有一条射线OF,且∠AOC-4∠AOF=2∠BOE+∠AOF,试确定∠AOF与∠DOE的度数之间的关系,说明理由.成为学生喜欢的教师你可以问问身边的教师,他们上学的时候是否曾经受到过积极教师的影响,很可能所有人都有过这样的经历。
(人教版)初中数学七上 第四章综合测试01-答案
初中数学 七年级上册 1 / 2
第四章综合测试
答案解析
一、
1.【答案】D
2.【答案】B
3.【答案】A
4.【答案】D
【解析】展开图中3个有图案的面相邻,再结合3个图案的规律可知.
5.【答案】C
6.【答案】C
7.【答案】A
【解析】909016515POQ MOP NOQ MON ∠=∠+∠-∠=︒+︒-︒=︒.
二、
8.【答案】14325'︒
9.【答案】40
10.【答案】30
11.【答案】75
12.【答案】16 073
三、
13.【答案】设这个角为x ︒,则这个角的余角为90x -︒(),补角为180x -︒().根据题意,得
1809080590x x -+-=-()()
. 解得65x =.
所以18065115-︒=︒.
答:这个角的补角为115︒.
14.【答案】因为E 是BC 的中点, 2 cm BE =,所以 4 cm BC =.
因为10 cm AC =.所以 6 cm AB =. 因为12
AD BD =,所以 4 cm BD =. 所以 6 cm DE DB BE =+=. 15.【答案】0751560BOC A B AOC ∠=∠-∠=︒-︒=︒,1
0302B D BOC ∠=∠=︒.
16.【答案】(1)从正面看和从左面看,可知有两层高.
(2)从正面看,从左面看结合从上面看,确定从上面看到的各个位置上积木的个数(如图),积木个数为++++=.
112217
初中数学七年级上册2/ 2。
人教版数学七年级上册第第四章 几何图形初步 基础检测题含答案
人教版数学七年级上册第第四章基础检测题含答案4.1几何图形一、选择题(每小题3分,共30分)1.如图所示,将平面图形绕轴旋转一周,得到的几何体是()A.B.C.D.2.如图所示的几何体从正面(箭头方向)看到的平面图形是()3.下列说法正确的是()①教科书是长方形;②教科书是长方体,也是棱柱;③教科书的表面是长方形.A.①②B.①③C.②③D.①②③4.如图是一个正方体纸盒侧面展开图,折成正方体后相对的面上的两个数互为相反数,则A、B、C表示的数为()A.0,﹣5,B.,0,﹣5C.,﹣5,0D.5,,05.如下图,下列图形全部属于柱体的是()6.骰子是一种特别的数字立方体(见右图),它符合规则:相对两面的点数之和总是7,下面四幅图中可以折成符合规则的骰子的是()A.B.C.D.7.如图所示的几何体,从上面看得到的平面图形是()8.下列图形中为三棱柱的表面展开图的是()A.B.C.D.9.图(1)是一个正方体的表面展开图,小正方体从图(2)所示的位置依次翻到第1格、第2格、第3格、第4格,这时小正方体朝上一面的字是( )A.家B.乡C.是D.伊4 的网格图剪去5个小正方形后,图中还剩下7个小正方形,为了使余10.如图,将3下的部分(小正方形之间至少要有一条边相连)恰好能...折成一个正方体,需要再剪去1个小正方形,则应剪去的小正方形的编号是()A.7B.6C.5D.4二、填空题(每小题3分,共30分)11.写出一个主视图、左视图、俯视图都相同的几何体:.12.一个矩形绕着它的一边旋转一周,所得到的立体图形是.13.一个棱锥的棱数是12,则这个棱锥的面数是.14.一个几何体的从三个方向看到的平面图形,如图所示,则这个几何体的名称是____________.第14题图第15题图第16题图15.如图,该平面展开图按虚线折叠成正方体后,相对面上两个数之和为8,则x+y =.16.立方体木块的六个面分别标有数字1、2、3、4、5、6,如图,是从不同方向观察这个立方体木块看到的数字情况,数字1和5对面的数字的和是.17.如图,一长方体木板上有两个洞,一个是正方形形状的,一个是圆形形状的,对于以下4种几何体,你觉得哪一种作为塞子既可以堵住圆形空洞又可以堵住方形空洞?(填序号).18.一个立体图形的三视图如图所示,请你根据图中给出的数据求出这个立体图形的表面积为.第18题图第19题图第20题图19.如图,从棱长为2的正方体毛坯的一角,挖去一个棱长为1的小正方体,得到一个如所示的零件,则这个零件的表面积为20.如图,用小木块搭一个几何体,它的从正面看和从上面看如图所示.问:最少需要__________个小正方体木块.三、解答题(共40分)21.(9分)如图所示由五个小立方体构成的立体图形,请你分别画出从它的正面、左面、上面三个方向看所得到的平面图形.从正面看从左面看从上面看22.(6分)下面是一个正方体纸盒的展开图,请把-10,7,10,-2,-7,2分别填入六个正方形,使得按虚线折成正方体后,相对面上的两数互为相反数.23.(12分)如图,一个多面体的展开图中,每个面内的大写字母表示该面,被剪开的棱边所注的小写字母可表示该棱.(1)说出这个多面体的名称 ;(2)写出所有相对的面 _ ;(3)若把这个展开图折叠起来成立体时,被剪开的棱b 与 重合,f 与 重合.24.(13分)将一个正方体表面全部涂上颜色把正方体的棱三等分,然后沿等分线把正方体切开,得到27个小正方体,我们把仅有i 个面涂色的小正方体的个数记为i x ,例如:通过观察我们可以发现仅有3个面涂色的小正方体个数83=x ,仅有2个面涂色的小正方体个数122=x ,仅有1个面涂色的小正方体个数61=x ,6个面均不涂色的小正方体个数10=x ;(1)如果把正方体的棱四等分,同样沿等分线把正方体切开,得到64个小正方体,那么=3x ________,=2x _______,=1x _______,=0x _________;(2)如果把正方体的棱n 等分(n 大于3),然后沿等分线把正方体切开,得到3n 个小正方体,且满足184232=-x x ,请求出n 的值.参考答案1.C2.B3.C∴不能说它是一个长方形,∵有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的多面体叫做棱柱∴它是棱柱.教科书的表面是一个长方形.故选C.4.A【解析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点求出A、B、C的值,然后代入进行计算即可求解.解:正方体的表面展开图,相对的面之间一定相隔一个正方形,∴A与0是相对面,B与5是相对面,C与﹣是相对面,∵折成正方体后相对的面上的两个数互为相反数,∴A=0,B=﹣5,C=.故选:A.5.C【解析】A选项中含有三棱锥,就是锥体;B选项中含有圆锥,就是锥体;D选项中含有圆台,就是台体.6.A【解析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点对各选项分析判断后利用排除法求解.解:根据正方体的表面展开图,相对的面之间一定相隔一个正方形,A.4点与3点是向对面,5点与2点是向对面,1点与6点是向对面,所以可以折成符合规则的骰子,故本选项正确;B.1点与3点是向对面,4点与6点是向对面,2点与5点是向对面,所以不可以折成符合规则的骰子,故本选项错误;C.3点与4点是向对面,1点与5点是向对面,2点与6点是向对面,所以不可以折成符合规则的骰子,故本选项错误;D.1点与5点是向对面,3点与4点是向对面,2点与6点是向对面,所以不可以折成符合规则的骰子,故本选项错误.故选A.7.B.【解析】根据所看位置,找出此几何体的三视图即可.解:从上面看得到的平面图形是两个同心圆,故选:B.8.B【解析】利用棱柱及其表面展开图的特点解题.解:A、C、D围成三棱柱时,两个三角形重合为同一底面,而另一底面没有.故不能围成三棱柱;B、中间三个长方形能围成三棱柱的侧面,左、右两个三角形围成三棱柱的上、下两底面,故能围成三棱柱,是三棱柱的表面展开图.故选B.9.C.【解析】由图1可得,“伊”和“乡”相对;“春”和“我”相对;“是”和“家”相对;由图2可得,小正方体从图2的位置依次翻到第4格时,“家”在下面,则这时小正方体朝上面的字是“是”.10.C.【解析】根据只要有“田”字格的展开图都不是正方体的表面展开图,应剪去的小正方形的编号是5.故选C.11.球或正方体.【解析】试题分析:主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.解:球的三视图都为圆;正方体的三视图为正方形;所以应填球或正方体.12.圆柱体【解析】本题是一个矩形绕着它的一边旋转一周,根据面动成体的原理即可解.解:以矩形的一边所在直线为旋转轴,形成的旋转体叫做圆柱体.故答案为圆柱体.13.7.【解析】因为一个棱锥的棱数是12,可得多面体为六棱锥,所以多面体的面数为714.三棱柱.【解析】根据图中三视图的形状,符合条件的只有三棱柱,因此这个几何体的名称是三棱柱.15.10.【解析】∵“4”与“y”是对面,“x”与“2”是对面,∴x=6,y=4.∴x+y=10.【解析】从3个图形看,和1相邻的有2,4,5,6,那么和1相对的就是3.则和2相邻的有1,3,4,5,那么和2相对的就是6.则和5相对的就是4.再将数字1和5对面的数字相加即可.解:根据三个图形的数字,可推断出来,1对面是3;2对面是6;5对面是4.∴3+4=7.则数字1和5对面的数字的和是7.故答案为:7.17.②.【解析】本题中圆柱的俯视图是圆,可以堵住圆形空洞,它的正视图和左视图是长方形,可以堵住方形空洞,据此选择即可.解:圆柱的俯视图是圆,可以堵住圆形空洞,它的正视图和左视图是长方形,可以堵住方形空洞,故圆柱是最佳选项,故答案为②.18.8π.【解析】从三视图可以看正视图以及俯视图为矩形,而左视图为圆形,可以得出该立体图形为圆柱,再由三视图可以圆柱的半径,长和高求出体积.解:∵正视图和俯视图是矩形,左视图为圆形,∴可得这个立体图形是圆柱,∴这个立体图形的侧面积是2π×3=6π,底面积是:21ππ⋅=,∴这个立体图形的表面积为6π+2π=8π;故答案为:8π.【解析】挖去一个棱长为1的小正方体,得到的图形与原图形表面积相等,则表面积是2×2×6=24.20.10【解析】根据俯视图可以判定就至少需要7个,再根据主视图上面还需要3个,则最少需要10个.21.见解析【解析】分别画出三视图即可解:如图:22.(1)正方体;(2)P与X,Q与Y,R与Z;(3)i;g【解析】根据正方体的展开图我们就可以得到答案,自己也可以动手叠一下试试看.解:(1)这个多面体是正方体.(2)相对的面有三对:P与X,Q与Y,R与Z.(3)将会重合的棱有b与i,f与g23.见解析【解析】如图,A-A’、B-B’、C-C’是相对面,填入互为相反数的两个数即可.解:如图所示:(答案不唯一,符合即可)4.2直线、射线、线段一.选择题1.下列说法正确的是()A.射线P A和射线AP是同一条射线B.射线OA的长度是3cmC.直线ab,cd相交于点PD.两点确定一条直线2.如图,C为AB的中点,D是BC的中点,则下列说法错误的是()A.CD=AC﹣BD B.CD=AB﹣BD C.CD=BC D.AD=BC+CD 3.平面上有A、B、C三点,经过任意两点画一条直线,可以画出直线的数量为()A.1条B.3条C.1条或3条D.无数条4.如图,线段CD在线段AB上,且CD=3,若线段AB的长度是一个正整数,则图中以A,B,C,D这四点中任意两点为端点的所有线段长度之和可能是()A.28B.29C.30D.315.已知点A、B、C、D在同一条直线上,线段AB=8,C是AB的中点,DB=1.5.则线段CD的长为()A.2.5B.3.5C.2.5或5.5D.3.5或5.56.点M在线段AB上,给出下列四个条件,其中不能判定点M是线段AB的中点的是()A.AM=BM B.AB=2AM C.AM+BM=AB D.BM=AB7.如图,线段AB=18cm,点M为线段AB的中点,点C将线段MB分成MC:CB=1:2,则线段AC的长度为()A.6cm B.12cm C.9cm D.15cm8.如图,已知线段AB=8,点C是线段AB是一动点,点D是线段AC的中点,点E是线段BD的中点,在点C从点A向点B运动的过程中,当点C刚好为线段DE的中点时,线段AC的长为()A.3.2B.4C.4.2D.9.如图,D、E顺次为线段AB上的两点,AB=19,BE﹣DE=7,C为AD的中点,则AE ﹣AC的值为()A.5B.6C.7D.810.如图,C,D,E是线段AB上的三个点,下面关于线段CE的表示:①CE=CD+DE;②CE=CB﹣EB;③CE=CD+DB﹣AC;④CE=AE+CB﹣AB.其中,正确的是()A.①②B.①②③C.①②④D.①②③④二.填空题11.数学来源于生活而又高于生活,比如当我们在植树的时候,要想整齐地栽一行树,只需要确定两端树坑的位置即可.用数学知识可以解释为.12.如图,已知C为线段AB的中点,D在线段CB上.若DA=6,DB=3,则CD=.13.如图,点C在线段AB上,且AC=AB,点D在线段BC上,AD=5,BD=3,则线段CD的长度为.14.如图,点C、D在线段AB上,AC=6cm,CD=4cm,AB=12cm,则图中所有线段的和是cm.15.如图,已知A、B是线段EF上两点,EA:AB:BF=1:2:3,M、N分别为EA、BF 的中点,且MN=8cm,则EF长为.三.解答题16.如图,已知点A、B、C.D,根据下列语句画图.(不写作图过程)作射线AB、直线AC,连接AD并延长线段AD.17.如图,A,B,C三棵树在同一直线上,若小明正好站在线段的AC中点Q处,BC=2BQ.(1)填空:AQ==AC,AQ﹣BC=.(2)若BQ=3米,求AC的长.18.如图,线段AB上顺次有三个点C,D,E,把线段AB分为了2:3:4:5四部分,且AB=28.(1)求线段AE的长;(2)若M,N分别是DE,EB的中点,求线段MN的长度.参考答案一.选择题1.解:A、射线P A和射线AP不是同一条射线,故本选项错误;B、射线是无限长的,故本选项错误;C、直线ab,cd,直线的写法不对,故本选项错误;D、两点确定一条直线是正确的.故选:D.2.解:∵C是AB的中点,D是BC的中点,∴AC=BC=AB,CD=BD=BC,∵CD=BC﹣BD∴CD=AC﹣BD,故A正确;∵CD=BC﹣DB,∴CD=AB﹣DB,故B正确;∴AD=AC+CD=BC+CD,故D正确;∵CD=BD=BC;故C错误;故选:C.3.解:①如果三点共线,过其中两点画直线,共可以画1条;②如果任意三点不共线,过其中两点画直线,共可以画3条.故选:C.4.解:所有线段之和=AC+AD+AB+CD+CB+BD,∵CD=3,∴所有线段之和=AC+AC+3+AC+3+BD+3+3+BD+BD=12+3(AC+BD)=12+3(AB﹣CD)=12+3(AB﹣3)=3AB+3=3(AB+1),∵AB是正整数,∴所有线段之和是3的倍数,故选:C.5.解:∵AB=8,C是AB的中点,∴AC=BC=4,∵DB=1.5.当点D在点B左侧时,CD=BC﹣BD=4﹣1.5=2.5,当点D在点B右侧时,CD=BC+BD=4+1.5=5.5,则线段CD的长为2.5或5.5.故选:C.6.解:A、由AM=BM可以判定点M是线段AB中点,所以此结论正确,故这个选项不符合题意;B、由AB=2AM可以判定点M是线段AB中点,所以此结论正确,故这个选项不符合题意;C、由AM+BM=AB不可以判定点M是线段AB中点,所以此结论不正确,故这个选项符合题意;D、由BM=AB可以判定点M是线段AB中点,所以此结论不正确,故这个选项不符合题意;故选:C.7.解:∵线段AB=18cm,点M为线段AB的中点,∴AM=BM=AB=9,∵点C将线段MB分成MC:CB=1:2,设MC=x,CB=2x,∴BM=MC+CB=3x,∴3x=9,解得x=3,∴AC=AM+MC=9+3=12.则线段AC的长度为12.故选:B.8.解:∵点D是线段AC的中点,∴AD=CD,∵点E是线段BD的中点,∴BE=DE,∵点C为线段DE的中点,∴CD=CE,∴AD=CD=CE,∵AB=AD+DC+CE+BE=3AD+BE=3AD+DE=3AD+2CD=5AD,∴AD=1.6,∴AC=2AD=3.2,故选:A.9.解:∵AB=19,设AE=m,∴BE=AB﹣AE=19﹣m,∵BE﹣DE=7,∴19﹣m﹣DE=7,∴DE=12﹣m,∴AD=AB﹣BE﹣DE=19﹣(19﹣m)﹣(12﹣m)=19﹣19+m﹣12+m=2m﹣12,∵C为AD中点,∴AC=AD=×(2m﹣12)=m﹣6.∴AE﹣AC=6,故选:B.10.解:由图可知:①CE=CD+DE,正确;②CE=CB﹣EB,正确;③CE=CD+DB﹣EB,错误;④CE=AE+CB﹣AB,正确;故选:C.二.填空题11.解:两端两个树坑的位置,可看做两个点,根据两点确定一条直线,即可确定一行树所在的位置.故答案为:两点确定一条直线.12.解:∵DA=6,DB=3,∴AB=DB+DA=3+6=9,∵C为线段AB的中点,∴BC=AB=×9=4.5,∴CD=BC﹣DB=4.5﹣3=1.5.故答案为:1.5.13.解:∵AD=5,BD=3,∴AB=AD+BD=8,∵AC=AB=,∴CD=AD﹣AC=5﹣=,故答案为:.14.解:由线段的和差,得AC+DB=AB﹣CD=12﹣4=8(cm).图中所有线段的和AC+AD+AB+CD+CB+DB=AC+(AC+CD)+AB+CD+(CD+DB)+DB =2(AC+DB)+3CD+AB=2×8+3×4+12=40(cm).答:图中所有线段的和是40cm,故答案为:40.15.解:∵EA:AB:BF=1:2:3,可以设EA=x,AB=2x,BF=3x,而M、N分别为EA、BF的中点,∴MA=EA,NB=BF,∴MN=MA+AB+BN=x+2x+x=4x∵MN=8cm,∴4x=8,∴x=2,∴EF=EA+AB+BF=6x=12,∴EF的长为12cm,故答案为:12cm.三.解答题16.解:作射线AB、直线AC,连接AD并延长线段AD,如图所示:17.解:(1)∵O是线段AC的中点,∴AQ=CQ=AC,AQ﹣BC=CQ﹣BC=QB,故答案为;(2)∵BQ=3米,BC=2BQ,∴BC=2BQ=6米,∴CQ=BC+BQ=6+3=9(米),∵Q是AC中点,∴AQ=QC=9(米),∴AC=AQ+QC=9+9=18(米),∴AC的长是18米.18.解:(1)设AC=2x,则CD、DE、EB分别为3x、4x、5x,由题意得,2x+3x+4x+5x=28,解得,x=2,则AC、CD、DE、EB分别为4、6、8、10,则AE=AC+CD+DE=4+6+8=18;(2)如图:∵M是DE的中点,∴ME=DE=4,∵N是EB的中点∴EN=EB=5,∴MN=ME+EN=4+5=9.4.3角一.选择题1.25°的补角是()A.155°B.145°C.55°D.65°2.已知∠A=30°45',∠B=30.45°,则∠A()∠B.A.两点之间直线最短B.一个有理数,不是正数就是负数C.平角是一条直线D.整数和分数统称为有理数4.下列语句中:正确的个数有()①画直线AB=3cm;②连接点A与点B的线段,叫做A、B两点之间的距离;③两条射线组成的图形叫角;④任何一个有理数都可以用数轴上的一个点来表示.A.0B.1C.2D.35.如图,∠AOC=90°,OC平分∠DOB,且∠DOC=22°36′,∠BOA度数是()A.67°64′B.57°64′C.67°24′D.68°24′6.如图,射线OA表示的方向是()A.北偏东65°B.北偏西35°C.南偏东65°D.南偏西35°7.已知∠1和∠2互为余角,且∠2与∠3互补,∠1=60°,则∠3为()A.120°B.60°C.30°D.150°8.如图所示的是正方形网格,则∠AOB___∠COD()A.>B.<C.=D.≥9.如图,OA是北偏东30°方向的一条射线,若射线OB与OA垂直,则射线OB表示的方向是()A.东偏北30°B.东偏北60°C.北偏西30°D.北偏西60°10.如图,甲、乙两人同时从A地出发,甲沿北偏东50°方向步行前进,乙沿图示方向步行前进.当甲到达B地,乙到达C地时,甲与乙前进方向的夹角∠BAC为100°,则此时乙位于A地的()A.南偏东30°B.南偏东50°C.北偏西30°D.北偏西50°二.填空题11.计算:18°13′×5=.12.若此时时钟表上的时间是8:20分,则时针与分针的夹角为度.13.若两个角互补,且度数之比为3:2,求较大角度数为.14.若∠AOB=45°,∠BOC=75°,OD平分∠AOB,OE平分∠BOC,则∠DOE的度数为.15.将一副三角板按如图方式摆放在一起,且∠1比∠2大20°,则∠1的度数等于.三.解答题16.已知:如图,∠AOB=30°,∠COB=20°,OC平分∠AOD,求∠BOD的度数.17.如图,已知∠MON=150°,∠AOB=90°,OC平分∠MOB,(1)若∠AOC=35°,则∠BOC=°,∠NOB=°;(2)若∠NOB=10°,则∠BOC=°,∠AOC=°;(3)若∠AOC=α,∠NOB=β,请直接写出α与β之间的数量关系.18.已知O为直线AB上一点,射线OD,OC,OE位于直线AB上方,OD在OE的左侧,∠AOC=120°,∠DOE=50°,设∠BOE=n.(1)若射线OE在∠BOC的内部(如图1),①若n=43°,求∠COD的度数;②当∠AOD=3∠COE时,求∠COD的度数.(2)若射线OE恰为图中某一个角(小于180°)的角平分线,试求n的值.19.如图,已知∠AOB内部有三条射线,OE平分∠AOD,OC平分∠BOD.(1)若∠AOB=90°,求∠EOC的度数;(2)若∠AOB=α,求∠EOC的度数;(3)如果将题中“平分”的条件改为∠EOA=∠AOD,∠DOC=∠DOB且∠DOE:∠DOC=4:3,∠AOB=90°,求∠EOC的度数.参考答案与试题解析一.选择题1.【解答】解:25°的补角是:180°﹣25°=155°.故选:A.2.【解答】解:30.45°=30°+0.45×60′=30°27′,∵30°45′>30°27′,∴30°45'>30.45°,∴∠A>∠B,故选:A.3.【解答】解:A、两点之间线段最短,原说法错误,故本选项不符合题意;B、一个有理数,不是正数就是负数或零,原说法错误,故本选项不符合题意;C、平角的两边在一条直线上,原说法错误,故本选项不符合题意;D、整数和分数统称为有理数,原说法正确,故本选项符合题意;故选:D.4.【解答】解:①因为直线不可以度量,所以画直线AB=3cm是错误的;②连接点A与点B的线段的长度,叫做A、B两点之间的距离,原说法错误;③有公共端点是两条射线组成的图形叫做角,原说法错误;④任何一个有理数都可以用数轴上的一个点来表示,原说法正确;正确的有1个,故选:B.5.【解答】解:∵OC平分∠DOB,∴∠DOC=∠BOC=22°36′.∵∠AOC=∠AOB+∠BOC=90°,∴∠AOB=∠AOC﹣∠BOC=90°﹣22°36′=67°24′.故选:C.6.【解答】解:射线OA表示的方向是南偏东65°,故选:C.7.【解答】解:∵∠1和∠2互为余角,∠1=60°,∴∠2=90°﹣∠1=90°﹣60°=30°,∵∠2与∠3互补,∴∠3=180°﹣∠2=180°﹣30°=150°.故选:D.8.【解答】解:∵∠AOC=∠BOD=90°,∴∠AOB+∠BOC=90°,∠COD+∠BOC=90°,∴∠AOB=∠COD.故选:C.9.【解答】解:由题意得,∠AOC=30°,∵射线OB与射线OA垂直,∴∠BOC=60°,∴OB的方向角是北偏西60°.故选:D.10.【解答】解:如图所示:由题意可得:∠1=50°,∠BAC=100°,则∠2=180°﹣100°﹣50°=30°,故乙位于A地的南偏东30°.故选:A.二.填空题(共5小题)11.【解答】解:原式=90°+65′=91°5′.故答案是:91°5′.12.【解答】解:∵时针在钟面上每分钟转0.5°,分针每分钟转6°,∴钟表上8点20分,时针与分针的夹角可以看成30°×4+0.5°×20=130°.故答案为:130.13.【解答】解:因为两个角的度数之比为3:2,所以设这两个角的度数分别为(3x)°和(2x)°.根据题意,列方程,得3x+2x=180,解这个方程,得x=36,所以3x=108.即较大角度数为108°.故答案为108°.14.【解答】解:如图1,∵∠AOB=45°,∴∠BOD=22.5°,∵∠BOC=75°,∴∠BOE=37.5°,∴∠DOE=22.5°+37.5°=60°;如图2,∵∠AOB=45°,∴∠BOD=22.5°,∵∠BOC=75°,∴∠BOE=37.5°,∴∠DOE=37.5°﹣22.5°=15°,故答案为:60°或15°.15.【解答】解:设∠2为x,则∠1=x+20°;根据题意得:x+x+20°=90°,解得:x=35°,则∠1=35°+20°=55°;故答案为:55°.三.解答题(共4小题)16.【解答】解:∵∠AOB=30°,∠COB=20°,∴∠AOC=∠AOB+∠BOC=30°+20°=50°,∵OC平分∠AOD,∴∠AOC=∠COD=50°,∴∠BOD=∠BOC+COD=20°+50°=70°.17.【解答】解:(1)∠BOC=∠AOB﹣∠AOC=90°﹣35°=55°;∵OC平分∠MOB,∴∠MOB=2∠BOC=110°,∴∠NOB=∠MON﹣∠MOB=150°﹣110°=40°.故答案为:55,40;(2)∠MOB=∠MON﹣∠NOB=150°﹣10°=140°,∵OC平分∠MOB,∴∠BOC=;∴∠AOC=90°﹣∠BOC=20°.故答案为70,20;(3)∵∠AOC=α,∠NOB=β,∴∠BOC=90°﹣α,∵OC平分∠MOB,∴∠MOB=2∠BOC=180°﹣2α,∵∠MOB+∠NOB=150°,∴180°﹣2α+β=150°,即β=2α﹣30°.18.【解答】解:(1)①∠BOC=180°﹣∠AOC=60°,由n=43°,可得∠COE=∠BOC﹣∠BOE=17°,∴∠COD=∠DOE﹣∠COE=50°﹣17°=33°;②∵∠AOD=3∠COE,∠AOD+∠COD=120°,∠DOE=50°,∴3∠COE+50°﹣∠COE=120°,解得∠COE=35°,∴∠COD=∠DOE﹣∠COE=50°﹣35°=15°;(2)当OE平分∠BOC时,如图所示:∵∠AOC=120°,∴∠BOC=180°﹣∠AOC=60°,∴∠BOE==30°.即n=30°;当OE平分∠AOC时,如图所示:∠BOE=2∠BOC=120°,即n=120°;当OE平分∠BOD时,如图所示:∠BOE=∠DOE=50°,即n=50°;当OE平分∠COD时,∠BOE=∠EOC+∠BOC=50°+60°=110°,即n=110°;OE平分∠AOD是不成立.所以n=30°、50°、110°或120°.19.【解答】解:(1)∵OE平分∠AOD,OC平分∠BOD,∴∠EOD=∠AOD,∠DOC=∠DOB,∴∠EOC=(∠AOD+∠DOB)=45°;(2)由(1)可知:∠EOC=(∠AOD+∠DOB)=α;(3)∵∠DOE:∠DOC=4:3,∴设∠DOE=4x,∠DOC=3x,∵∠EOA=∠AOD,∴∠DOE=∠AOD,∴∠AOD=5x,∵∠DOC=∠DOB,∴∠DOB=4x4.4课题学习制作长方形形状一.选择题1.给出一个正方形,请你动手画一画,将它剖分为n个小正方形.那么,通过实验与思考,你认为下列自然数n不可以取到的是()A.5B.6C.7D.82.有一块两条直角边长分别为3m和4m的直角三角形绿地,现在要扩充成等腰三角形,且扩充部分是直角边长为4m的直角三角形,则扩充后的等腰三角形绿地的周长不可能是()A.16m B.m C.(10+)m D.(10+)m 3.某地有三家工厂,分别位于矩形ABCD的顶点A、B及边CD的中点P处,已知AB=16km,BC=12km,为了处理三家工厂的污水,现要在矩形ABCD的区域上(含边界),且与A,B等距离的一点O处建造一个污水处理厂,并铺设排污管道AO,BO,OP.记管道总长为S km.下列说法正确的是()A.S的最小值是8B.S的最小值应该大于28C.S的最小值是26D.S的最小值应该小于264.某乡镇的4个村庄A、B、C、D恰好位于正方形的4个顶点上,为了解决农民出行难问题,镇政府决定修建连接各村庄的道路系统,使得每两个村庄都有直达的公路,设计人员给出了如下四个设计方案(实线表示连接的道路)在上述四个方案中最短的道路系统是方案()A.一B.二C.三D.四5.有甲、乙、丙三个村庄分别位于等边△ABC的顶点,在城中村改造时,为保护环境,改善居民的生活条件,政府决定铺设能够连结这三个村庄的天然气管道.设计人员给出了如图四个设计方案(点D为BC边的中点,点O为△ABC的中心,实线表示天然气管道),其中天然气管道总长最短的是()A.方案1B.方案2C.方案3D.方案46.如图,直线m表示一条河,点M、N表示两个村庄,计划在m上的某处修建一个水泵向两个村庄供水.在下面四种铺设管道的方案中,所需管道最短的方案是(图中实线表示铺设的管道)()A.B.C.D.7.将一块长为a米,宽为b米的矩形空地建成一个矩形花园,要求在花园中修两条入口宽均为x米的小道,其中一条小道两边分别经过矩形一组对角顶点,剩余的地方种植花草,现有从左至右三种设计方案如图所示,种植花草的面积分别为S1,S2和S3,则它们的大小关系为()A.S3<S1<S2B.S1<S2<S3C.S2<S1<S3D.S1=S2=S38.四座城市A,B,C,D分别位于一个边长为100km的大正方形的四个顶点,由于各城市之间的商业往来日益频繁,于是政府决定修建公路网连接它们,根据实际,公路总长设计得越短越好,公开招标的信息发布后,一个又一个方案被提交上来,经过初审后,拟从下面四个方案中选定一个再进一步论证,其中符合要求的方案是()A.B.C.D.9.如图:有一块三角形状的土地平均分给四户人家,现有四种不同的分法,(如图中,D、E、F分别是BC、AC、AB的中点,G、H分别是BF、AF的中点),其中正确的分法有()A.1种B.2种C.3种D.4种10.王老师用28米长的木条给花圃做围栏,他想把花圃设计成以下四种造型,不能用28米的长木条围成的设计有()种.A.1B.2C.3D.4二.填空题11.如图,笔直的公路旁有A、B两车站,相距15km,C、D为同旁的两个村庄,DA⊥AB 于A,CB⊥AB于B,AD=10cm,CB=5cm,要在这段公路AB旁建一个公路管理站E,使C、D两村到公路管理站的距离相等,那么公路管理站E应建在距A站km处.12.面积为1个平方单位的正三角形,称为单位正三角形.下面图中的每一个小三角形都是单位正三角形,三角形的顶点称为格点.在图1,2,3中分别画出一个平行四边形、梯形和对边都不平行的凸四边形,要求这三个图形的顶点在格点、面积都为12个平方单位..13.如图,有两个正方形的花坛,准备把每个花坛都分成形状相同的四块,种不同的花草.下面左边的两个图案是设计示例,请你在右边的两个正方形中再设计两个不同的图案..14.有一块方角形钢板如图所示,请你用一条直线将其分为面积相等的两部分(不写作法,保留作图痕迹,在图中直接画出).15.如图,平原上有A、B、C、D四个村庄,为解决当地缺水问题,政府准备投资修建一个蓄水池,不考虑其他因素,请你画图确定蓄水池H点的位置,使它与四个村庄的距离之和最小.三.解答题16.如图为正方形网格,每个小正方形的边长均为1,各个小正方形的顶点叫做格点,请在下面的网格中按要求分别画图,使得每个图形的顶点均在格点上.(1)在图中画一个以AB为一边的菱形ABCD,且菱形ABCD的面积等于20.(2)在图中画一个以EF为对角线的正方形EGFH,并直接写出正方形EGFH的面积.17.通过文明城市的评选,人们增强了卫生意识,大街随地乱扔生活垃圾的人少了,人们自觉地将生活垃圾倒入垃圾桶中,如图所示,A,B,C为市内的三个住宅小区,环保公司要建一垃圾回收站,为方便起见,要使得回收站建在三个小区都相等的某处,请问如果你是工程师,你将如何选址.18.图①、图②、图③均是4×4的正方形网格,每个小正方形的顶点称为格点,线段AB 的端点均在格点上,在图②、图③中仿照图①,只用无刻度的直尺,各画出一条线段CD,将线段AB分为2:3两部分.要求:所画线段CD的位置不同,点C、D均在格点上19.小名准备制作一个封闭的正方体盒子,他先用5个大小一样的正方形制成如图所示的拼接图形(实线部分),经折叠后发现还少一个面,你能在图中的拼接图形上再接一个正方形画出阴影,使新拼接成的图形经过折叠后能成为一个封闭的正方体盒子吗?请在下面的图①和图②中画出两种不同的补充方法.参考答案与试题解析一.选择题1.【解答】解:对任一正方形,容易分为大于等于4的偶数个小正方形(大小不等),比如2N,(N≥2).具体分法为:设原正方形边长为1,按在水平和垂直方向划两条线,这可分出边长为和两个正方形及长宽分别为和的两个小长方形,而每个小长方形又可分为(N ﹣1)个边长为的小正方形,因此总的正方形数为2+2×(N﹣1)=2N.而对于奇数(N≥7),显然原正方形先可一分为四,而其中之一的小正方形又可分为大于等于4的偶数个小正方形(前一结论),计为2N,因此可分为3+2N=2(N+1)+1个奇数个小正方形,其中(N≥2),故N=4或N≥6的所有自然数.故选:A.2.【解答】解:如图所示:(1)图1:当BC=CD=3m时;由于AC⊥BD,则AB=AD=5m;此时等腰三角形绿地的周长=5+5+3+3=16(m);(2)图2:当AC=CD=4m时;∵AC⊥CB,∴AB=BD=5m,此时等腰三角形绿地的周长=5+5+4+4=18(m);。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A 2
A
3A 4O
(5)
A A 1
B 人教版初一数学上册第四章测验题
(时间100分钟 满分100分)
一、选择题:(每小题3分,共30分) 1.如图1所示的棱柱有( )
A.4个面
B.6个面
C.12条棱
D.15条棱
(1)
C
(2)
A
D
B
C
(3)
A
B γβ(4)
α
2.如图2,从正面看可看到△的是( )
3.如图3,图中有( )
A.3条直线
B.3条射线
C.3条线段
D.以上都不对 4.下列语句正确的是( )
A.如果PA=PB,那么P 是线段AB 的中点;
B.作∠AOB 的平分线CD
C.连接A 、B 两点得直线AB;
D.反向延长射线OP(O 为端点) 5.如图4,比较∠α、∠β、∠γ 的大小得( )
A. ∠γ>∠β>∠α;
B. ∠α=∠β;
C. ∠γ>∠α>∠β;
D. ∠β>∠α>∠γ. 6.5点整时,时钟上时针与分钟之间的夹角是( ) A.210° B.30° C.150° D.60° 7.两个角,它们的比是6:4,其差为36°,则这两个角的关系是( ) A.互余 B.互补 C.既不互余也不互补 D.不确定 8.∠α=40.4°,∠β=40°4′,则∠α与∠β的关系是( ) A. ∠α=∠β;B. ∠α>∠β;C. ∠α<∠β;D. 以上都不对 9.如果∠α=3∠β, ∠α=2∠θ,则必有( ) A. ∠β=12∠θ;B.∠β=1
3
∠θ;C.∠β=23∠θ;D.∠β=34∠θ;
10.如图5所示,已知∠AOB=64°,OA 1平分∠AOB,OA 2平分∠AOA 1,OA 3 平分∠AOA 2,OA 4平分∠AOA 3,
则∠AOA 4的大小为( )
A.8°
B.4°
C.2°
D.1° 二、填空题:(每小题3分,共30分)
11.已知线段AB=8cm,延长AB 至C,使AC=2AB,D 是AB 中点,则线段CD=______. 12.如图,从城市A 到城市B 有三种不同的交通工作:汽车、火车、飞机,除去速度因素,坐飞机的时间最短是因为___________.
13.57.32°=_______°_______′_______″;27°14′24″=_____°. 14.已知∠a=36°42′15″,那么∠a 的余角等于________. 15.∠1+∠2=180°,∠2+∠3=180°,根据________,得∠1=∠3.
16.表示O 点南偏东15°方向和北偏东25°方向的两条射线组成的角等于____ 17.如图,∠AOC=90°,∠AOB=∠COD,则∠BOD=______°.
航线铁路
公路(6)
A
B
O
D
C
(7)
A
B
18.102°43′32″+77°16′28″=________;98°12′25″÷5=_____.
19.已知线段AB=acm,点A 1平分AB,A 2平分AA 1,A 3平分AA 2,……, n A 平分1n AA , 则
n AA =_______________cm.
20.在平面上有任意四点,过其中任意两点画直线,能画_______条直线. 三、解答题:(21、24、25、26每题6分,22、23题每题8分) 21.根据下列语句画图:
(1)画∠AOB=120°;(2)画∠AOB 的角平分线OC; (3)反向延长OC 得射线OD;
(4)分别在射线OA 、OB 、OD 上画线段OE=OF=OG=2cm; (5)连接EF 、EG 、FG;
(6)你能发现EF 、EG 、FG 有什么关系?∠EFG 、∠EGF 、∠GEF 有什么关系?
22.已知线段AB=10cm,直线AB 上有一点C ,且BC=4cm,M 是线段AC 的中点,求AM 的长. 23.如图,直线AB 、CD 交于O 点,且∠BOC=80°,OE 平分∠BOC,OF 为OE 的反向延长线. (1)求∠2和∠3的度数. (2)OF 平分∠AOD 吗?为什么?
32
1
O
F
C
A D
E
B
24.一个角的补角与它的余角的度数之比是3:1,求这个角的度数.
25.测量员沿着一块地的周围测绘.从A 向东走600米到B,再从B 向东南(∠ABC= 135°)走500米到C,再从C 向西南(∠BCD=90°)走800米到D.用1厘米代表100米画图, 求DA 的长(精确到10米)和DA 的方向(精确到1°).
北D C
A B
26.利用线段、角、三角形、圆等图形为你的学校设计一个校标,并简述你的设计思路.
答案:
一、选择题
1.D
2.C
3.C
4.D
5.C
6.C
7.B
8.B
9.C 10.B
二、填空题
11.12cm 12.两点之间,线段最短 13.57、19、12;27.24
14. 53°17′45″ 15.同角的补角相等
16.140° 17.90 18.180°;19°38′29″. 19.
1
2
n
⎛⎫
⎪
⎝⎭
a 20.1或4或6
三、解答题
21.(6)EF=EG=FG,∠EFG=∠EGF=∠FEG=60°
22.AM=7cm或3cm
23.(1)∠2=100°,∠3=40°;(2)∠AOF=40°,OF平分∠AOD
24.设这个角为x0,( 180-x):(90-x)=3:1,x=45.。