信号的采样与恢复
信号的采样与恢复

信号的采样与恢复实验一、任务与目的1. 熟悉信号的采样与恢复的过程。
2. 学习和掌握采样定理。
3. 了解采样频率对信号恢复的影响。
二、原理(条件)PC机一台,TD-SAS系列教学实验系统一套。
1. 采样定理采样定理论述了在一定条件下,一个连续时间信号完全可以用该信号在等时间间隔上的瞬时值表示。
这些值包含了该连续信号全部信息,利用这些值可以恢复原信号。
采样定理是连续时间信号与离散时间信号之间的桥梁。
采样定理:对于一个具有有限频谱,且最高频率为ωmax的连续信号进行采样,当采样频率ωs满足ωs>=ωmax时,采样信号能够无失真地恢复出原信号。
三角波信号的采样如图4-1-1所示。
图4-1-1信号的采样2. 采样信号的频谱连续周期信号经过周期矩形脉冲抽样后,抽样信号的频谱为它包含了原信号频谱以及重复周期为的原信号频谱的搬移,且幅度按规律变化。
所以抽样信号的频谱便是原信号频谱的周期性拓延。
某频带有限信号被采样前后频谱如图4-1-2。
图4-1-2 限带信号采样前后频谱从图中可以看出,当ωs ≥2Bf 时拓延的频谱不会与原信号的频谱发生重叠。
这样只需要利用截止频率适当的滤波器便可以恢复出原信号。
3. 采样信号的恢复将采样信号恢复成原信号,可以用低通滤波器。
低通滤波器的截止频率f c 应当满足f max ≤f c ≤f x -f max 。
实验中采用的低通滤波器原理图如图4-1-3所示,其截止频率固定为1802f Hz RCπ=≈图4-1-3 滤波器电路4. 单元构成本实验电路由脉冲采样电路和滤波器两个部分构成,滤波器部分不再赘述。
其中的采样保持部分电路由一片CD4052完成。
此电路由两个输入端,其中IN1端输入被采样信号,Pu 端输入采样脉冲,经过采样后的信号如图4-1-1所示。
三、内容与步骤本实验在脉冲采样与恢复单元完成。
1. 信号的采样(1)使信号发生器第一路输出幅值3V、频率10Hz的三角波信号;第二路输出幅值5V,频率100Hz、占空比50%的脉冲信号。
实验九信号的采样与恢复

第4页
实验九 信号的采样与恢复
一、实验目的
(1)掌握电信号的采样和恢复的实验电路。 (2)通过本实验,加深学生对采样定理的理解。 二、实验设备
序号
型号
备注
1 DJK01 电源控制屏
该控制屏包含”三相电源输
出”等几个模块
2 DJK15 控制理论实验挂箱 或 DJK16 控制理论实验挂箱
3 双踪慢扫描示波器
三、实验原理
(2)为使所选的f(t)信号经频率为fs的周期脉冲采样后,希望 通过滤波器后信号的失真小,则采样频率和低通滤波器的截止频 率应各取多少,试设计一满足上述要求的低通滤波器。
(3)将(2)计算求得的 f(t)和 s(t)送至采样器,观察采样 后的正弦波的波形。
(4)改变采样频率如fS=4B,和fS<2B,再用示波器观察恢复后的 信号,并比较失真度。 五、思考题
第2页
即使用图 9-3 所示的理想滤波器,也不能获得原有的f(t)信号。 图 9-4 为信号采样的实验电路图。
图 9-4
(2)信号的恢复 为了实验对被检对象的有效控制,必须把所得的离散信号恢 复为相应的连续信号。工程上常用的低通滤波器是零阶保持器, 它的传递函数为
G
h
(s)
=
1
− e −Ts S
或近似地表示为
这就是香农采样定理,它表示采样角频率ωs(或采样频率fs) 若能满足式(3),则采样后的离散信号fS(t)信号就会有连续信号 f(t)的全部信息,如把fs(t)信号送至具有图 9-3 所示特性的理想 滤波器输入端,则其输出就是原有的连续信号f(t)。
实验九信号的自然采样与恢复

实验九信号的自然采样与恢复一、实验目的:1、理解信号的采样及采样定理以及自然采样信号的频谱特征。
2、掌握和理解信号自然采样以及信号重建的原理,并能用MATLAB实现。
二、实验原理及方法:本实验主要涉及采样定理的相关内容以及低通滤波器恢复原连续信号的相关知识。
信号的抽样与恢复示意图如图7-1所示。
图7-1 信号的抽样与恢复示意图信号抽样与恢复的原理框图如图7-2所示。
图 7-2 信号抽样与恢复的原理框图由原理框图不难看出,A/D 转换环节实现抽样、量化、编码过程;数字信号处理环节对得到的数字信号进行必要的处理;D/A 转换环节实现数/模转换,得到连续时间信号;低通滤波器的作用是滤除截止频率以外的信号,恢复出与原信号相比无失真的信号。
原信号得以恢复的条件是B f s 2≥,其中s f 为采样频率,B 为原信号占有的频带宽度。
B f 2min =为最低采样频率,当B f s 2<时,采样信号的频率会发生混迭,所以无法用低通滤波器获得原信号频谱的全部内容。
三、实验内容及步骤:给定带限信号 f(t),其频谱为1、画出此信号的频谱图(ω的取值:-0.5π <ω <0.5π ,精度取0.01rad )。
答:画出f(t)的频谱图即F(W)的图像 程序代码如下: #include<stdio.h> #include<math.h> #define PI 3.14 double f(double w) {if (w>=-0.5*PI && w<=0.5*PI)return cos(w);else return 0;}main(){double w,F;FILE *fp;for (w=-0.5*PI;w<=0.5*PI;w+=0.01) {F=f(w);printf("w=%.2f, F(w)=%f\n",w,F);fp=fopen("d:\\2.txt","w");fprintf(fp,"%f\t",F);}system("pause");}③F(W)的图像2、对此频域信号进行傅里叶逆变换,得到相应的时域信号,画出此信号的时域波形f(t)(t的取值:-20s<t<20s;精度取0.1s)。
自动控制原理--信号的采样与复现

例1 设 e(t) 1(t) ,试求 e* (t) 的拉氏变换。
解:显然,对于给定的 e(t),其拉式变换
为 E(s) 1 ,根据式(8-6)定义,可得
s
E* (s) e(kT ) ekTs 1 eTs e2Ts k 0
这是一个无穷等比级数,公比为eTs,求
级数和可得闭合形式
E*(s)
例3 xt Asin 0t ,求x t 和 X s 。
解:由拉式变换的一般公式,可得
L[x(t)] xs A0
s 2 02
所以 ,x(s)有两个极点 。t 0时 ,xt 0 ,
由式(8-7)得
X s
A0 T
s
1
jks 2
02
A0 T
s2
1 02
s
1
js 2
02
s
1
js 2
jT
e2
sin T
T
sin(T
/
2)
e
jT
2
T 2 2
T / 2
• 零阶保持器的频率特性如图所示
Gh j
Gh j
T
0
s
2s
3s
2
Gh j
3
• 零阶除了允许主频谱分量通过之外,还 允许一部分附加高频分量通过。因此复 现出的信号与原信号是有差别的。
4、小结
• 采样控制系统的结构; • 计算机控制的采样系统的优点; • 采样过程和采样定理; • 零阶保持器的传函和特性。
(4)随机采样:采样是随机进行的,没有固定的规律
1、信号的采样过程
et
e* t
e* t
et T e*t
0
0
t
信号的采样与恢复实验注意事项

信号的采样与恢复实验注意事项
1. 实验前应确认所需的信号源和采样设备正常工作,以确保实验结果的准确性。
2. 在采样过程中要注意采样频率的选择,采样频率应满足奈奎斯特采样定理,即采样频率应大于信号的最高频率的两倍。
3. 在采样时,应记录下采样间隔和采样点数,以便后续的数据分析和信号恢复处理。
4. 为了保证采样的准确性,需要尽量避免信号与噪声的干扰。
可以采取一些减小噪声的措施,如使用滤波器对信号进行预处理。
5. 实验中可以尝试不同的采样频率和采样点数,观察采样结果的差异,并对比恢复后的信号与原始信号的差异。
6. 在恢复信号时,可以利用插值等方法对采样数据进行处理,以恢复原始信号。
7. 实验结束后,应及时保存实验数据和实验结果,以备后续分析和报告使用。
8. 在实验过程中,应注意安全和操作规范,避免在实验室中发生意外或损坏设备。
基础实验二 信号采样与恢复

n
(t nT )
xs (t ) x(t )s(t )
S ( )
n
2 S ( ns ) ( ns )
1 S ( ns ) Ts
X s ( )
Ts 2 T s 2
s t e
jns t
ns dt = Sa ( ) Ts 2
f(t)为1V,500Hz的正弦波 s(t)为1V,单极性矩形脉冲
滤波器 fs Hz
频率 Hz 400 1000 2000 5000 占空比 0.5 0.5 0.5 0.5
f(t)为1V,500Hz的三角波 s(t)为1V,单极性矩形脉冲
滤波器 fs Hz
频率 Hz 400 1000 2000 5000 占空比 0.5 0.5 0.5 0.5
脉冲信号
采样信号的频谱是原信号频谱的周期延拓,同时 根据平移的频率幅度按照Sa(x)的规律衰减
• 对采样信号进行傅里叶分析: 1.采样信号的频率包括了原连续信号以及无 限个经过平移的原信号频率。平移的频率 等于采样频率fs及其谐波频率2fs、3fs……。 2.当采样信号是周期性窄脉冲时,平移后的 频率幅度按sinx/x规律衰减。 3.采样信号的频谱是原信号频谱周期的延拓, 它占有的频带要比原信号频谱宽得多。
信号的恢复
• 原信号得以恢复的条件: 1.原信号频带有限 2. f s 2 f m • 原信号恢复的方法: 设计合适的低通滤波器,滤除高频 fm 分量,低通滤波器输出可以得到恢复 后的原信号。
四.实验内容
1.设置并观察采样信号波形
• 打开软面板 SFP仪器套件,对其中 的ARB(任意波形发生器)进行设置。
• • • •
信号的采样与恢复

深圳大学实验报告课程名称:信号与系统实验项目名称:信号的采样与恢复学院:信息工程专业:电子信息指导教师:报告人:学号:班级:实验时间:实验报告提交时间:教务部制一、实验目的和要求1、了解信号的采样方法与过程以及信号恢复的方法。
2、验证采样定理。
二、实验内容和原理实验原理1、离散时间信号可以从离散信号源获得,也可以从连续时间信号采样而得。
采样信号x s (t )可以看成连续信号x (t )和一组开关函数s (t )的乘积。
s (t )是一组周期性窄脉冲,如图2-5-1,T s 称为采样周期,其倒数f s =1/T s 称采样频率。
图2-5-1 矩形采样信号对采样信号进行傅里叶分析可知,采样信号的频率包括了原连续信号以及无限个经过平移的原信号频率。
平移的频率等于采样频率f s 及其谐波频率2f s 、3f s ……。
当采样信号是周期性窄脉冲时,平移后的频率幅度按sinx/x 规律衰减。
采样信号的频谱是原信号频谱周期的延拓,它占有的频带要比原信号频谱宽得多。
2、采样信号在一定条件下可以恢复到原信号。
只要用一截止频率等于原信号频谱中最高频率f n 的低通滤波器,滤除高频分量,经滤波后得到的信号包含了原信号频谱的全部内容,故在低通滤波器输出端可以得到恢复后的原信号。
3、原信号得以恢复的条件是f s ≥2f max ,f s 为采样频率,f max 为原信号的最高频率。
当fs <2 f max 时,采样信号的频谱会发生混迭,从发生混迭后的频谱中无法用低通滤波器获得原信号频谱的全部内容。
在实际使用中,仅包含有限频率的信号是极少的,因此即使f s =2 f max ,恢复后的信号失真还是难免的。
实验中选用f s <2 f max 、f s =2 f max 、f s >2 f max 三种采样频率对连续信号进行采样,以验证采样定理:要使信号采样后能不失真地还原,采样频率f s 必须大于信号最高频率的两倍。
4、连续信号的采样和采样信号的复原原理框图如图2-5-2所示。
信号的抽样与恢复(抽样定理)

信号的抽样与恢复(抽样定理)信号的抽样和恢复是数字信号处理中的基本操作。
它是将连续时间信号(模拟信号)转化为离散时间信号(数字信号)的过程,也是将数字信号转化为连续时间信号的过程。
抽样定理是信号的抽样和恢复中一个十分重要的定理,它的证明也是数字信号处理中的一个重要课题。
一、信号的抽样在信号处理中,可以通过对连续时间信号进行离散化处理,使其转化为离散时间信号,便于数字处理。
抽样是指在每隔一定的时间间隔内对连续时间信号进行采样,得到一系列离散的采样值。
抽样操作可以用如下公式进行表示:x(nT) = x(t)|t=nT其中,x(t)是原始连续时间信号,x(nT)是在时刻nT处采样得到的值,T为采样周期。
具体来说,采样过程可以通过模拟信号经过一个采样和保持电路,将连续时间信号转换为离散信号的形式。
这里的采样周期越小,采样得到的离散信号的数量就越多,离散信号在时间轴的表示就越密集。
抽样后得到的信号形式如下:二、抽样定理抽样定理又称为奈奎斯特定理,是数字信号处理中的基础理论之一。
它指出,如果连续时间信号x(t)的带宽为B,则在抽样周期为T时,可以恰好通过抽样重建出原始信号x(t),当且仅当:T ≤ 1/(2B)即抽样周期T应小于等于原始信号的最大频率的倒数的一半。
这个定理的物理意义是,需要对至少每个周期内的信号进行采样,才能够恢复出连续信号。
如果采样周期过大,将会丢失信号的高频成分,从而无法准确重建原始信号。
抽样定理说明了作为采样频率的一个下限值2B,因为将采样频率设置为低于此值会失去信号的唯一信息(高频成分)。
当采样频率等于2B时,可以从这些采样值恢复出信号的完整频率谱,即避免了信息损失。
三、信号的恢复当原始信号被采样后,需要对采样得到的离散信号进行恢复,以便生成一个趋近于原始信号的连续信号。
采样定理的证明告诉了我们如何确保在扫描连续信号的采样点时,可以正确地还原其原始形式。
例如,可以通过插值的方式将采样点之间的值计算出来,从而恢复出连续时间信号。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验五信号的采样与恢复
一、实验目的
1.了解电信号的采样方法与过程及信号的恢复。
2.验证采样定理。
二、实验设备
1.THBCC-1型信号与系统.控制理论及计算机控制技术实验平台
2.PC机(含THBCC-1软件)
三、实验内容
1 研究正弦信号和三角波信号被采样的过程以及采样后的离散化信号恢复为连续信号的波形。
2.用采样定理分析实验结果。
四、实验原理
1.离散时间信号可以从离散信号源获得,也可以从连续时间信号经采样而获得。
采样信号fs(t)可以看成连续信号f(t)和一组开关函数S(t)的乘积。
S(t)是一组周期性窄脉冲。
由对采样信号进行傅立叶级数分析可知,采样信号的频谱包括了原连续信号以及无限多个经过平移的原信号频谱。
平移的频率等于采样频率fs及其谐波频率2fs、3fs· · ·。
当采样后的信号是周期性窄脉冲时,平移后的信号频率的幅度按(sinx)/x规律衰减。
采样信号的频谱是原信号频谱的周期性延拓,它占有的频带要比原信号频
谱宽得多。
2.采样信号在一定条件下可以恢复原来的信号,只要用一截止频率等于原信号频谱中最高频率fn 的低通滤波器,滤去信号中所有的高频分量,就得到只包含原信号频谱的全部内容,即低通滤波器的输出为恢复后的原信号。
3.原信号得以恢复的条件是fs≥2B,其中fs 为采样频率,B 为原信号占有的频带宽度。
Fmin=2B 为最低采样频率。
当fs<2B 时,采样信号的频谱会发生混迭,所以无法用低通滤波器获得原信号频谱的全部内容。
在实际使用时,一般取fs=(5-10)B 倍。
实验中选用fs<2B、fs=2B、fs>2B 三种采样频率对连续信号进行采样,以验证采样定理⎯要是信号采样后能不失真的还原,采样频率fs 必须远大于信号频率中最高频率的两倍。
4.用下面的框图表示对连续信号的采样和对采样信号的恢复过程,实验时,除选用足够高的采样频率外,还常采用前置低通滤波器来防止信号频谱的过宽而造成采样后信号频谱的混迭。
图5-1 信号的采样与恢复原理框图
五、实验步骤
1.连接一采样信号(方波)发生器、采样器、低通滤波器组成的采样与恢复电路(可
参考本实验箱的“信号的采样与恢复”实验单元)。
2.在信号采样与恢复实验单元的输入端输入一频率为100Hz 左右的正弦信号,然后
调节方波发生器的输出频率在800Hz 左右,观察采样输出信号以及通过低通滤波器后的恢复信号。
3.改变输入信号的频率,再观察采样输出信号以及通过低通滤波器后的恢复信号。
1KHZ 采样输入信号与采样信号对比1KHZ 输入信号与输出恢复信号对比
2KHZ采样输入信号与采样信号对比2KHZ输入信号与输出恢复信号对比
六、实验小结
通过这个实验,我了解了电信号的采样方法与过程及信号的恢复,并验证了采样定理。
通过对输入信号与采样信号的对比,输入信号与输出恢复信号的对比,并结合课堂所学知识,加深了对采样的理解。