几何学的发展简史 (2)
数学史上的著名猜想之(一)

数学史上的著名猜想之(一)—―被否定的数学猜想过伯祥数学史上,长时期未能解决的数学猜想特别多!并且很多都是世界级的难题,其中数论方面的问题又占多数.它们表面上是那么的浅显,好像不难解决似的,其实,若无深厚的数学功底,即使想接近它也十分困难。
本章特作较多的介绍,使数学爱好者有一个初步了解.如果你有志要攻克这些猜想,就必须作好长期艰苦跋涉的思想准备.1.被否定的数学猜想(1)试证第五公设的漫长历程几何是从制造器皿、测量容器、丈量土地等实际问题中产生和发展起来的.几何学的发展历程中,有两个重大的历史性转折.其一是,大约从公元前7世纪到公元前3世纪,希腊数学从素材到框架,已经为几何学的理论大厦的建造准备了足够的条件.欧几里得在前人毕达哥拉斯、希波克拉底和欧多克斯等人的工作基础上,一举完成了统治几何学近2000年的极其伟大的经典著作《几何原本》.它使几何学发展成为一门独立的理论学科,是几何学史上的一个里程碑.其二,也正是由于《几何原本》的问世,才带来了一个使无数人困惑和兴奋的著名问题--欧几里得第五公设问题.在《几何原本》的第一卷中,规定了五条公设和五条公理.著名的欧几里得第五公设:“若两条直线被第三条直线所截,如有两个同侧内角之和小于两直角,则将这两直线向该侧适当延长后必定相交.”就是这五条公设中的最后一条.由于它在《几何原本》中引用得很少(直到证明关键性的第29个定理时才用到它);而且,它的辞句冗长,远不如前四条公设那样简单明了.于是给后人的印象是:似乎欧几里得本人也想尽量避免应用第五公设.于是,一代又一代的数学家猜测:大概不用花费很多力气就能证明欧几里得第五公设.就这样,数学家们开始了试证第五公设的历程.这是个始料未及的漫长历程!真正是前赴后继,几乎每个时代的大数学家都做过这一件工作.然而,满以为非常简单,只不过是举手之劳的一件事,谁料历时两千年仍未解决.第五公设问题几乎成了“几何原理中的家丑”(达朗贝尔).直至19世纪,人们才逐渐意识到“欧氏第五公设可以证明”是一个错误的猜想,但它却引导数学家们得到了有意义的结果.所以说:错误的猜想有时也是极有意义的!“在我们试图证明某个猜想的时候,如果使尽各种招数仍无进展,就应去查一查这个猜想本身有没有毛病.”(2)引出一个大胆猜想第五公设的一个又一个试证,总是发生“偷用”某个与第五公设等价的“假设”去代替的毛病,这逐渐地使几位思想较开阔而又有远见的数学家高斯、亚诺什•鲍耶、罗巴契夫斯基意识到:“欧几里得第五公设是不能从《几何原本》的其余公设、公理中导出.”也即与其它公设公理不相依赖,并且提出了一个新的大胆猜想:“欧几里得几何不是惟一的几何;任何一组假设如果彼此之间不导致矛盾的话,一定提供一种可能的几何.”罗巴契夫斯基、鲍耶正是在此想法的基础上开展了一系列工作,才发现了非欧几何的.虽然,他们的工作约有30年之久被人们所忽视;非欧几何的相容性问题在其后的40年中仍然悬而未决,然而,从某数学家的头脑中首先形成这大胆的猜想——与第五公设相矛盾的公理,也许仍可建立逻辑上相容的新几何——的那一刻起,就注定了即将发生几何学发展的又一次历史性的大转折:将迎来的是,几何学思想的大解放,几何学大发展的新时代.可以说,在19世纪所有复杂的技术创造中间,最深刻的一个——非欧几何的创造,就是起源于两千年试证第五公设的失败而日渐形成的大胆的猜想,非欧几何是在欧几里得几何领域中,一系列的长期努力所达到的一个新顶点。
中国数学发展简史

中国数学发展简史(一)中国古代数学的萌芽原始公社末期,私有制和货物交换产生以后,数与形的概念有了进一步的发展,考古发现,仰韶文化时期出土的陶器,上面就已刻有表示数字的符号。
到原始公社末期,就已开始用文字符号取代结绳记事了。
(二)春秋战国之际,筹算得到普遍的应用筹算记数法已使用十进位值制,这种记数法对世界数学的发展是有划时代意义的。
战国时期的百家争鸣也促进了数学的发展,一些学派还总结和概括出与数学有关的许多抽象概念。
《庄子》记载了惠施等人的名家学说和桓团、公孙龙等辩者提出的论题,强调抽象的数学思想,例如“至大无外谓之大一,至小无内谓之小一”、“一尺之棰,日取其半,万世不竭”(是我国古书中最早体现微积分思想的一段)等。
这些许多几何概念的定义、极限思想和其它数学命题是相当可贵的数学思想,但这种重视抽象性和逻辑严密性的新思想未能得到很好的继承和发展。
秦汉是封建社会的上升时期,经济和文化均得到迅速发展。
中国古代数学体系正是形成于这个时期,它的主要标志是算术成为一个专门的学科以及《九章算术》为代表的数学著作的出现。
《九章算术》是战国、秦、汉封建社会创立并巩固时期数学发展的总结,就其数学成就来说,堪称是世界数学名著。
例如分数四则运算,今有术(西方称三率法),开平方与开立方(包括二次方程数值解法),盈不足术(西方称双设法),各种面积和体积公式,线性方程组解法,正负数运算的加减法则,勾股形解法(特别是勾股定理和求勾股数的方法)等,水平都是很高的,其中方程组解法和正负数加减法则在世界数学发展上是遥遥领先的。
就其特点来说,它形成了一个以筹算为中心、与古希腊数学完全不同的独立体系。
(三)中国古代数学体系的发展魏、晋时期出现的玄学有利于数学从理论上加以提高。
吴国赵爽注《周髀算经》,汉末魏初徐岳撰《九章算术》注2卷(已失传),魏末晋初刘徽撰《九章算术》注10卷(263)、《九章重差图》1卷(已失传)都是出现在这个时期,赵爽与刘徽的工作为中国古代数学体系奠定了理论基础。
光学发展简史总结报告范文(3篇)

第1篇一、引言光学作为物理学的一个重要分支,历史悠久且充满活力。
从人类社会的诞生到现代科技的飞速发展,光学始终伴随着人类文明的进步。
本文将对光学发展简史进行总结,以展现光学在各个时期的重要贡献。
二、光学发展简史1. 萌芽时期光学起源于人类对自然界的观察和思考。
早在古代,人们就已经发现并利用了光的现象,如墨子的小孔成像实验。
这一时期,光学主要关注光的直线传播和反射、折射等现象。
2. 几何光学时期17世纪,牛顿、笛卡儿、斯涅耳等科学家开始对光学进行深入研究。
牛顿提出了光的微粒说,解释了光的反射、折射等现象;笛卡儿提出了光的波动说,为后来的波动光学奠定了基础。
这一时期,光学逐渐形成了几何光学体系,包括光的反射定律、折射定律等。
3. 波动光学时期19世纪,托马斯·杨、菲涅耳等科学家对光的波动性进行了深入研究,提出了光的干涉、衍射等现象。
这一时期,光学进入了波动光学时期,光的本性逐渐由微粒说转向波动说。
4. 量子光学时期20世纪初,爱因斯坦、波尔等科学家提出了光的量子理论,解释了光的量子特性。
这一时期,光学进入了量子光学时期,光与物质的相互作用成为研究重点。
5. 现代光学时期20世纪中叶以来,光学技术飞速发展,激光、光纤、光学成像等领域取得了重大突破。
现代光学已成为一门综合性学科,与物理学、化学、生物学等领域密切相关。
三、光学的重要贡献1. 揭示了光的本性光学的发展使人类逐渐认识到光的本性,从微粒说、波动说到量子理论,光学为人类认识自然界提供了重要线索。
2. 推动了科技进步光学的发展为许多科技领域提供了理论基础和实验手段,如光纤通信、光学成像、激光技术等,极大地推动了科技进步。
3. 丰富了人类生活光学在医疗、教育、娱乐等领域发挥着重要作用,如光学显微镜、光学眼镜、光学投影等,丰富了人类的生活。
四、总结光学作为一门古老的学科,在各个时期都取得了辉煌的成就。
光学的发展不仅揭示了光的本性,还推动了科技进步和人类生活水平的提高。
几何学:第五公设——公理化方法

公理:1.等于同量(thing)的量彼此相等。 2.等量加等量,其和相等。 3.等量减等量,其差相等。 4.彼此能重合的物体(thing)是全等的。 5.整体大于部分。
公设:1.由任意一点到任意一点可作直线。 2.一条有限直线可以继续延长。 3.以任意点为心任意距离可以画圆。 4.凡直角都相等。 5.平面内一条直线与另外两条直线相交,若在某侧的
十部著作:《原本》,《数据》,《二次曲线》, 《辩伪术》,《论剖分》,《衍论》,《曲面轨迹》, 《光学》,《镜面反射》,《现象》。
二.《原本》:(Elements )
版本:888年希腊文抄本, 1294年拉丁文手抄本, 1350年阿拉伯文手抄本, 1480年最早拉丁文印刷本, 1570年英译本, 1607年、1857年、1990年中译本, 1655年Barrow拉丁文译本, 1925年T.LHeath英译本。
两个内角和小于二直角,则这二直线延长后在该侧相交。
• 第五公设——从欧几里得到兰伯特 用现代数学公理化方法的标准来衡量,《原本》的公理
体系存在严重缺陷。例如: 《原本》第1卷 命题16:在任意三角形中,若延长一边,
则外角大于任何一个内对角。
鉴于此,有人把第 5 公设也作为一个缺陷,试图用其他 公理,公设或定理证明它,以至将它取消。
设直线 a 不通过不在一条直线上的三点A,B,C ,当 a 与
AB 相交时;a 与 AC 或 BC 相交,二者必居其一。 引理:
1°任意 ABC的两个内角和小于 . 2°对于 ABC的B,DBC,能使(ABC )= (DBC), 且存在一个内角 (1/2)B.
西方数学发展史

西方数学发展史以下是各个时期的简要概述:1.古希腊数学(公元前600年-公元500年):o古典希腊时期是西方数学的黄金时代,伊奥尼亚学派的泰勒斯、毕达哥拉斯学派对数论和几何有重大贡献,比如毕达哥拉斯定理。
o欧几里得编写了《几何原本》,奠定了欧氏几何的基础,包括公理化方法。
o阿基米德在静力学与浮力原理、圆周率的计算等方面做出了杰出成就。
o阿波罗尼奥斯对圆锥曲线的研究也对后世产生了深远影响。
2.中世纪数学(公元500年-1500年):o在中世纪早期,欧洲数学的发展相对缓慢,但阿拉伯世界翻译并注解了大量的希腊数学著作,使得数学知识得以传承。
o中世纪晚期,欧洲开始出现复兴迹象,斐波那契的著作《算盘书》对商业计算和数学教育有着重要推动作用,他著名的“斐波那契数列”成为数论研究的一个经典课题。
3.文艺复兴与近代数学(1500年-1700年):o文艺复兴时期,科学和艺术的繁荣带动了数学的发展。
笛卡尔发明了解析几何,将代数方法应用于几何问题,开辟了新的数学领域。
o帕斯卡和费马分别在概率论和数论方面做出了开创性的工作,如帕斯卡定律和费马大定理。
o牛顿和莱布尼茨独立发明了微积分,这是数学史上的一个里程碑事件,为后续物理学和其他学科提供了强大的工具。
4.18世纪到现代数学(1700年至今):o18世纪启蒙时代的数学家如欧拉、拉格朗日和高斯等人在分析学、数论、代数学等领域取得了众多突破。
o19世纪初,随着非欧几何的发现(如黎曼几何),数学逐渐脱离了纯粹直观和经验的束缚,更加抽象和严谨。
o近代数学分支繁多,群论、拓扑学、集合论、逻辑学等新兴领域纷纷崛起,计算机科学的发展也促进了离散数学和计算数学的繁荣。
5.19世纪:o伽罗华提出了群论,为代数学开辟了新的研究方向,解决了根式解代数方程的可能性问题。
o库默尔在数论中引入理想数概念,发展了解析数论的雏形。
o戴德金和康托尔分别在实数理论与集合论方面取得了革命性进展,其中康托尔创立了现代无限集合论,并提出了著名的连续统假设。
数学史的大事件 勾股定理的发展简史

数学史的大事件勾股定理的发展简史在数学史上,勾股定理是一个重要的里程碑,它被誉为数学发展的大事件之一。
本文将简要介绍勾股定理的发展历程,展示其在数学中的重要性和影响。
1. 古代文明中的勾股定理勾股定理的最早记载可以追溯到古代文明中的一些数学文献。
例如在古代埃及、巴比伦和印度的数学文献中都包含了关于三角形性质的描述,其中有一些与勾股定理类似的关系。
然而,这些文献并没有给出勾股定理的具体表述和证明,更多是运用于实际测量和建筑方面。
2. 勾股定理的中国发现在中国,勾股定理最早的记载可以追溯到《周髀算经》中。
《周髀算经》是中国战国时期出现的一本古代数学著作,其中详细描述了勾股定理的应用。
此外,在中国古代的其他数学文献中,也可以找到关于勾股定理的描述。
这些文献不仅展示了中国古代数学的发展水平,同时也证明了勾股定理在古代中国数学中的重要性。
3. 希腊数学家的贡献古希腊的数学家也为勾股定理的发展做出了重要贡献。
例如,在毕达哥拉斯学派的影响下,古希腊数学家毕达哥拉斯提出了勾股定理的一种特殊情况(a^2+b^2=c^2)的证明。
此证明基于三角形的几何关系,然而它并没有给出一般情况的证明方法。
4. 印度数学家的贡献在印度,勾股定理也得到了深入的研究和应用。
数学家布拉马古普塔在《布拉马吠陀》一书中提供了勾股定理的一般形式证明。
在他的著作中,布拉马古普塔通过解决多种三角形问题,确立了勾股定理的普遍性。
5. 欧洲文艺复兴时期的推广在欧洲的文艺复兴时期,勾股定理得到了重新发现和广泛推广。
欧洲数学家斯泰纳辛(Murat Te\u015fit)重新证明了勾股定理,并广泛应用于实际问题的解决方案中。
他的贡献使得勾股定理在欧洲获得了更广泛的认可,并被列入数学教育的基础知识之中。
6. 现代数学发展中的勾股定理在现代数学领域,勾股定理作为三角学的基石,被广泛应用于几何学、物理学等领域。
并且,勾股定理的证明也得到了不断的完善和推广。
数学家们通过引入切比雪夫不等式、向量等新的数学工具,为勾股定理提供了更多的证明方法和运用场景。
数学发展简史数学发展简史
数学发展简史数学发展简史一、数学起源1.希腊人发现了推理的作用古典时期(公元前600-前300年)的希腊人,认识到人类有智慧、有思维,能够发现真理。
2.最早提出自然界数学模式的是以毕达哥拉斯(Pythagoras)为领袖的座落于意大利南部的毕达哥拉斯学派。
3.继毕达哥拉斯学派之后,最有影响的是由柏拉图学派,他控制了公元前4世纪这一重要时期希腊人的思想,他是雅典柏拉图学院的创立者,存在了九百年之久。
4.亚里士多德是柏拉图的学生,他批评柏拉图的冥世思想以及把科学归结为数学的认识。
他是一个物理学家,他相信真正的知识是从感性的经验通过直观和抽象而获得。
他认为,基本概念应该是不可定义的,否则就没有起始点。
他又区分了公理和公设。
公理――对所有思想领域皆真。
公设――适用于专业学科,如几何学。
5.欧几里得(Euclid)、阿基米得(Archimedes)、丢番图等属于希腊文化的第二个重要时期,亚历山大里亚时期(公元前300年-公元600年)欧几里得(公元前约300年),他的代表作《几何原本》是一本集希腊数学大成的巨着,成为两千年来用公理法建立演绎的数学体系的典范。
二、数学的繁荣(文艺复兴(15世纪初到17世纪的200年)1.希腊人的宗旨――自然是依数学设计的,与文艺复兴时的信念――上帝是这个设计的作者,融汇在一起,统治了欧洲。
2.笛卡儿(Descartes,1596-1650)被誉为数学王冠上的明珠之一,但他首先是一个哲学家,其次是宇宙学家,第三是物理学家,第四是生物学家,第五才是数学家。
极其敏锐的直觉和对结果的演绎――这就是笛卡儿认识哲学的实质。
笛卡儿认为:思维只有两种方法,这就是:直觉和演绎。
笛卡儿对数学本并没有提出什么新定理,但他却提供了一种非常有效的研究方法,即《解释几何》。
在科学上,笛卡儿的贡献,虽然不如像哥白尼、开普勒以及牛顿那样辉煌灿烂,但也不容轻视。
3.帕斯卡(Pascal):是17世纪伟大的数学家之一。
(完整word版)欧几里得几何与非欧几何
欧几里得几何与非欧几何摘要:欧几里得的《几何原本》奠定了几何学发展的基础, 随着逻辑推理的理论发展, 非欧几何在艰难中产生发展起来;其中少不了欧几里得、罗巴切夫斯基与黎曼在几何学上的巨大贡献,且两者几何学之间存在着严密的辩证关系。
关键词:欧几里得几何、几何原本、非欧几何、辩证关系欧氏几何是人类创立的第一个完整的严密的(相对而言) 科学体系.它于公元前三世纪由古希腊数学家欧几里得完成,后来经历了两千多年的发展,对科学和哲学的影响是极其深远的。
十九世纪二十年代,几何学发展史上出现了新的转折点,德国数学家高斯、匈牙利数学家亚·鲍耶和俄国数学家罗巴切夫斯基分别在1824年、1825年1826年各自独立地创立了非欧几何,其中以罗巴切夫斯基所发表的内容最完善,因此取名为罗氏几何学.1854年,德国数学家黎曼创立了黎曼几何.十九世纪末,德国数学家阂可夫斯基发展了黎曼几何,创立了四维空时几何学。
1915年,爱因斯坦利用非欧几何——四维空间几何学作为工具创立了广义相对论,不久广义相对论连同非欧几何为天文观察等科学实践所证实.从此,人们确认非欧几何是人类发现的伟大的自然科学真理。
一、欧几里得几何的发展(一)古希腊前期几何学的发展为欧几里得几何的产生奠定了基础在欧几里得时代以前,数学家与学者们就已经获得许多几何方面的成果,但大多数是零星的,有的对部分内容也作过一些整理加工,但不系统。
面对前人留下的材料以及一些证明方法,欧几里得认真进行了总结、提练、筛选,以及分析、综合、归纳、演绎,集前人工作之大成,系统整理加工成巨著《几何原本》,所以说古希腊前期的几何学的发展为欧几里得几何的产生奠定了基础。
最早研究几何的一批人是爱奥尼亚学派,它的创始人是泰勒斯,据传他曾用一根已知长度的杆子,通过同时测量竿影和金字塔影之长,求出了金字塔的高度。
人也把数学之成为抽象理论和有些定理演绎证明归功于他,如圆被直径二等分, 等腰三角形两底角相等,两直线相交对顶角相等,两角及夹边对应相等的两个三角形全等,内接于半圆的角是直角等的论证。
经典力学发展简史
经典力学发展简史引言概述:经典力学是物理学中最古老、最基础的一个分支,它研究物体在受力作用下的运动规律。
经典力学的发展历程可以追溯至古代希腊时期,经过数千年的发展,逐渐形成为了现代经典力学的基本理论。
本文将从古代希腊到近现代的发展历程,简要介绍经典力学的演变过程。
一、古代希腊时期1.1 牛顿第一定律的雏形在古代希腊时期,亚里士多德提出了自然界的四大元素理论,认为万物都是由土、水、火、气四种元素组成。
他还提出了物体在没有外力作用下会住手运动的观点,这可以看做是牛顿第一定律的雏形。
1.2 阿基米德力学阿基米德在古希腊时期提出了浮力原理,即物体浸没在液体中会受到向上的浮力,这对后来的力学研究有着深远的影响。
1.3 古希腊的几何学古希腊的几何学在力学研究中也起到了重要作用,比如欧几里德的《几何原本》对后来的数学物理学发展有着深远的影响。
二、文艺复兴时期2.1 加利略的运动学研究文艺复兴时期,加利略提出了运动学的基本原理,他认为自由落体的加速度是恒定的,并通过实验验证了这一观点,为后来牛顿力学的建立奠定了基础。
2.2 牛顿的三大定律牛顿在17世纪提出了三大定律,即惯性定律、动力定律和作用-反作用定律,这些定律成为了经典力学的基础,被广泛应用于物理学的各个领域。
2.3 牛顿的引力理论牛顿还提出了万有引力定律,解释了行星运动的规律,揭示了宇宙间的相互作用规律,为后来的天体力学和相对论物理学的发展奠定了基础。
三、近代物理学的发展3.1 拉格朗日力学拉格朗日在18世纪提出了广义坐标下的动力学表述,建立了拉格朗日力学,这一理论在处理复杂系统的动力学问题时具有独特的优势。
3.2 哈密顿力学哈密顿在19世纪提出了哈密顿力学,将动力学问题转化为在相空间中的几何问题,为后来的量子力学和统计力学提供了理论基础。
3.3 经典力学的应用经典力学在工程、天文学、生物学等领域都有着广泛的应用,例如在设计桥梁、卫星轨道计算、生物体运动等方面都离不开经典力学的基本原理。
数学发展简史
变量数学发展的第二个决定性步骤是牛顿和莱布 尼茨在17世纪后半叶建立了微积分.微积分的诞生具 有划时代的意义,是数学史上的分水岭和转折点,对 此恩格斯是这样评价的:“在一切理论成就中,未必 再有什么像17世纪下半叶微积分的发现那样被看作人 类精神的最高胜利了,如果在某个地方我们看到人类 精神的纯粹和唯一的功绩,那正是在这里.”
阿基米德大约于公元前287年出生在西 西里岛的叙拉古,阿基米德的著作极为丰富, 是希腊数学的顶峰,他对数学做出的最引人 注目的贡献是,积分方法的早期发展.
公元前212年罗马人攻陷叙拉古时阿基米德被害.城被 攻破时,他正在潜心研究画在沙盘上的一个图形,一个刚攻 进城的罗马士兵向他跑来,身影落在沙盘里的图形上,他挥 手让士兵离开,以免弄乱了他的图形,结果那士兵就用长矛 把他刺死了.这位科学巨人阿基米德的死象征一个时代的结 束.
由于两千年来,人们坚信欧氏几何是唯一可靠的几何,其他任何与之 矛盾的几何是绝对不能接受的,受这种传统偏见的约束,要承认非欧几何 是需要一定的勇气的.
高斯是真正预见到非欧几何的第一人.不幸的是,毕其一生高斯没有 关于非欧几何发表什么意见.他的先进思想是他与好友的通信、对别人著 作的评论,以及他死后从稿纸中发现的几份札记.虽然他克制自己,没有 发表自己的发现,但是他鼓励别人坚持这方面的研究.
希腊人从埃及和巴比伦人那里学习了代数和几何的原理, 但是埃及和巴比伦人的数学基本上是经验的总结,是零散的, 希腊人将这些零散的知识组成一个有序的系统的整体.他们 努力使数学更加深刻、更加抽象、更加理性化.柏拉图说: “无论我们希腊人接受什么东西,我们都要将其改善,并使 之完美无缺.” 到公元前3世纪,在最伟大的古代几何学家欧几里得、 阿基米德、阿波罗尼奥斯的时代达到了顶峰,而终止于公元 6世纪.当时最光辉的著作是欧几里得的《几何原本》,尽 管这部书是两千多年以前写成的,但是它的一般内容和叙述 的特征,却与现在我们通用的几何教科书非常相近.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
几何学的发展简史 上海市第十中学 数学教研组 王沁 [课前设计] 中国古代是一个在世界上数学领先的国家,用近代数学科目来分类的话,可以看出:无论是算术、代数还是几何、三角,中国古代数学在各方面都十分发达。而且在数学理论与实际需要的联系中,创造出了与古希腊等欧洲国家风格迥异的实用数学。 可惜的是,现行的教材对中国古代数学家的成就介绍得很少。即使教材中有,但是也基本上出现在阅读材料中,几乎没有老师会去介绍,当然,学生也很少去看。 我本人接触这些数学历史知识也是拜赐学校提供的再学习机会。我校有一个由秦一岚校长总负责、全校老师共同参与的市级课题:史情教育与各学科校本课程的整合。如何在数学学科上整合史情教育,在数学课中充分挖掘数学学科的民族精神内涵,弘扬中华民族精神和上海城市精神,渗透德育教育,探索出一条符合学生特点的教学方法,通过师生互动,能提高学生团结协作精神,并提高学生的科学素养,是摆在我面前的一个重要课题。为此,我做了以下几方面的准备。 第一步,确定课题。高二正在上立体几何,于是确定上几何学(偏重立体几何)的发展简史。 第二步,收集资料。主要是阅读大量有关数学史的书籍。 第三步,理清脉络。把看到的大量信息进行梳理,按照时间顺序、内容与教材内容的相关程度、在几何史上地位的重要性等方面进行选取。 第四步,组织教案。确定前一部分讲几何学发展简史,后一部分让学生用学习过的几何知识(主要是立体几何)来解决一些实际问题。 数学应用能力是基础数学教育的重要组成部分,同时它也是学生比较薄弱的环节。中学里的数学内容多半是纯粹的数学基础知识,而现在国家提倡数学素质教育,那么提高数学应用能力是其中重要的一环。为了提高同学对立体几何的兴趣,提高学生应用立体几何知识解决实际问题的能力,我选择了四道应用性较强的例题:平改坡问题,遮阳篷的角度,飞机高度测量和蜂巢表面积最小问题。鉴于学生的实际数学水平与能力,我没有让学生从数学实际问题出发自行建立数学模型,而是在帮助他们建立了数学模型后,指导学生如何看懂模型,如何联系学习过的数学知识解决数学问题。 我希望通过我的课,能让更多的学生了解数学的历史,了解中国数学的历史,为我国古代数 学家的杰出贡献而自豪。同时让同学看到数学是多么有用的一门学科,多么有趣的一门学科,希望无论是数学成绩好还是数学成绩不理想的同学都能对数学永远保持一分兴趣。
[教案] 教学目标: (1)让学生大致了解几何学(主要是立体几何)学在中外的发展简史; (2)通过使用古代数学家的方法解决问题,让学生亲身体会中国古代科学家的成就; (3)通过中外数学家的成就比较中外古代研究数学的思想的不同; (4)通过学习过的立体几何知识来解决一些实际问题。 教学重点:割补法应用于解决实际问题。 教学难点:实际问题向数学模型的转化。 教学过程: 前 言 “《九章》所蕴含的思想影响,必将日益显著,在下一世纪中凌驾于《原本》思想体系之上,不仅不无可能,甚至说是殆成定局。” —吴文俊 《汇校九章算术序》 [引入]数学的历史就是“数”与“形”的发展史。我们的先民在从野蛮走向文明的漫长历程中,逐步认识了数与形的概念。“形”的意识也许跟人类历史一样古老。例如:在中国出土的新石器时代的陶器大多为圆形或其他规则形状,陶器上有各种几何图案,通常还有三个着地点,这些都是几何知识的萌芽。 古埃及在齐阿普斯王朝(公元前2900年左右)时代建造起来的金字塔,其塔基是一个“标准”的正方形,各边的误差不超过万分之六。 希腊人创造了他们自己的文明和文化,对现代西方文化的发展影响最大,对今日数学的奠基起了决定作用。 [新课讲授] 一﹑古希腊几何学 ⒈古典时期(公元前600年到公元前300年) (1)泰勒斯(约前640—前546年)将埃及的实用几何带入希腊,开始证明几何命题。 (2)毕达哥拉斯(约前585—前500年)学派对图形进行广泛的研究。开头研究的一类问题叫面积应用问题。 几何上有三个著名的作图问题:作一正方形使其与给定的圆面积相等;给定正方体一边,求作另一正方体之边,使后者体积两倍于前者体积;用尺规三等分任意角。有好些数学结果是为解决这三个问题而得出的副产品。 (3)希波克拉底(前5世纪下半叶)已研究画圆为方及立方倍积问题。据说最早把间接证明引用到数学里的是他。他所著的几何书叫《几何原本》,已经失传。 (4)德谟克利特(约前460—前370年)发现棱锥和圆锥的体积分别等于同底等高的棱柱和圆柱体积的三分之一(但是证明是由欧道克斯作出的)。他的几何著作很可能是欧几里德《几何原本》问世以前的重要著作。 (5)亚里士多德(约前384—前322年)创造了演绎逻辑,虽然他的哲学对数学的直接影响很少,但对古希腊的论证几何等数学的发展起到明显的促进作用。他给“定义”、“定理”、“公设”等以明确的解释。 (6)欧几里德(前300年左右生活在亚历山大城并在该处授徒)著《几何原本》,确立几何学的逻辑体系,成为世界上最早的公理化数学著作。《原本》共十三篇,第一篇到第四篇讲直边形和圆的基本性质;第五篇讲比例论;第六篇讲相似形;第七、八、九篇是数论;第十篇是不可公度量的分类;第十一、十二、十三篇是立体几何及穷竭法。 西方曾有两本影响最广的书,一本是《圣经》,另一本就是《几何原本》。《原本》是使用时间最长的数学教科书。《原本》实际上是古希腊古典时期一些个别发现的整理,是众多学者智慧的结晶,欧几里德对前人的成果加以整理、归纳、完善和发展,他依然是个大数学家。虽然它的内容存在缺陷,而且与现代教学趋势日益不相适应,但从历史的角度看,它确实是一部伟大的著作,无愧于“西方数学的代表作”的称号。 这个时期的数学仅仅是定性的。那个时期的知识分子只限于搞哲学和科学工作,不去搞商业和贸易;有教养的人不关心实际问题。他们就这样把数学思维和实际需要割裂开来,而且数学家也没有感到有去改进算术方法和代数方法的压力。只有当有文化的阶级与奴隶阶级之间的壁垒在亚历山大时期被冲破而且有教养的人关心实际事务的时候,重点才转移到数量知识以及发展算术和代数方面。 ⒉亚历山大时期(前300年到公元600年) 阿基米德(前287—前212年)利用穷竭法求出球的表面积和体积公式,研究抛物弓形面积,给出π的范围,它的几何著作是希腊数学的顶峰。 大约从公元1世纪初起,亚历山大的数学工作特别是几何工作开始衰落.而此时在东方的中国数学正蓬勃发展。 二、中国古代几何学 中国的几何有悠久的历史,可靠的记录从公元前十五世纪谈起,甲骨文内已有“规”和“矩”两个字,规是用来画圆的,矩是用来画方的. 春秋时期,随着铁器的出现,生产力的提高,中国开始了由奴隶制向封建制的过渡,新的生产关系促进了科学技术的发展与进步。战国时期人们通过田地及国土面积的测量,城池的修建,水利工程的设计等生产生活实践,积累了大量的数学知识。 (1)但是秦朝的焚书坑儒给中国文化事业造成空前的浩劫,西汉作为数学新发展及先秦典籍的抢救工作的结晶,便是《九章算术》的成书。它对于中国和东方数学,大体相当于《几何原本》对于希腊和欧洲数学。中国古代的几何一般不讨论图形离开数量关系的性质,而要计算出长度、面积、体积。在《九章算术》的方田章中有各种多边形、圆、弓形等的面积公式;商功章讨论了各种立体的体积公式。 《九章算术》后,中国的数学著述基本采用两种方式:一是为《九章算术》做注;二是以《九章算术》为楷模编纂新的著作。经过两汉社会经济和科学技术的大发展,到魏晋时期,思想文化领域中儒家的统治地位被削弱,代之以谈三玄——《周易》、《老子》、《庄子》为主的辩难之风。与此相适应,数学家重视理论研究,力图把自先秦到两汉积累起来的数学知识建立在必然可靠的基础之上。 (2)刘徽和他的《九章算术注》便是魏晋时代造就的最伟大的数学家和最杰出的数学著作。 该书前九卷全面论证了《九章算术》的公式、解法,发展了出入相补原理、截面积原理、齐同原理和率的概念,在圆面积公式和锥体体积公式的证明中引入了无穷小分割和极限思想,首创了求圆周率的正确方法,指出并纠正了《九章》的某些不正确的或错误的公式,探索出解决球体积的正确途径。 以多面体体积的算法为例,在实际中使用了长方体的体积公式:V=abh。 堑堵是将长方体沿相对两棱剖开所得的几何体,其体积显然是V=abh/2;沿堑堵的一顶点与相对的棱剖开,一部分是四棱锥,称为阳马,其体积为V=abh/3,另一部分为四面都是直角三角形的三棱锥,叫鳖臑,其体积V=abh/6。刘徽用无穷小分割的方法证明了上述公式。 在平面几何中用直角三角形或正方形 在立体几何中用锥体和长方体进行移补,这构成了中国古代几何的特点. 刘徽未能解决球体积公式的证明,但他创造性地给出了他的“牟合方盖”,但是他未能证明,在书中他也坦诚直言,表示“以俟能言者”。200多年后出了一位“能言者”,那就是祖暅之。 (3)《缀术》包含了祖冲之(429—500年)和儿子祖暅之(一作祖暅,生平不详)的数学贡献。祖暅沿用刘徽的“牟合方盖”,证明了球体体积的计算问题,充分显示了中国古代数学家的聪明才智。由于该书内容深奥,隋唐算学馆的学官(相当于今天大学数学系的教授)读不懂,后失传。 刘徽和祖氏父子在极限思想的运用上远远超过了古希腊的同类思想,达到了文艺复兴前世界数学界的最高峰。 三、我们研究探索的问题 问题1为了改善住房条件,上海近些年大力推行“平改坡”工程。一个平顶建筑物屋顶是一个长为a米宽为b米的矩形,在其上增加一个如图所示的屋顶,屋脊PQ的长为m米,屋顶的高为h米,求增加的屋顶的体积。 [分析]将屋顶截成中间成三棱柱(堑堵),两边成四棱锥(阳马)。仅此,我们可以看出刘徽的这组模型在几何体计算中的作用。