初一数学人教版《一元一次方程》全章复习与巩固(基础)知识讲解
《一元一次方程》全章复习与巩固(提高)知识讲解

乐博思
《一元一次方程》全章复习与巩固(提高)知识讲解
责编:张强
【学习目标】
1.经历建立方程模型、解方程和运用方程解决实际问题的过程,体会模型思想;
2.了解一元一次方程、方程的解等基本概念,会解数字系数的一元一次方程,感受转化思想;
3.能运用一元一次方程解决实际问题,能根据实际意义检验方程的解的合理性.
【知识网络】
【要点梳理】
要点一、一元一次方程的概念
1.方程:含有未知数的等式叫做方程.
2.一元一次方程:只含有一个未知数(元),未知数的次数都是1,这样的方程叫做一元一次方程.
要点诠释:
(1)一元一次方程变形后总可以化为ax+b=0(a≠0)的形式,它是一元一次方程的标准形式.
(2)判断是否为一元一次方程,应看是否满足:①只含有一个未知数,未知数的次数为1;
②未知数所在的式子是整式,即分母中不含未知数.
3.方程的解:使方程的左、右两边相等的未知数的值叫做这个方程的解.
4.解方程:求方程的解的过程叫做解方程.。
人教版七年级数学上册第三章《一元一次方程的解法(一)——合并同类项和移项》复习讲义

一元一次方程的解法(一)----合并同类项与移项知识导图基础知识点1方程:含有未知数的等式.一元一次方程:只含有一个未知数(元),未知数的次数都是1,等号两边都是整式.1.下列各式中是一元一次方程的是().A.231x y-=B.27x-C.25x x+=-D.324x-=2解方程就是求出使方程中等号左右两边相等的未知数的值,这个值就是方程的解.2.3x=是为下列方程的解的是().A.36x=B.()()320x x--=C.()24x x-=D.30x+=3等式的性质1:等式两边加(或减)同一个数(或式子),结果仍相等.如果a=b,那么a±c=b±c.等式的性质2:等式两边乘同一个数,或除以同一个不为0的数,结果仍相等.如果a=b,那么ac=bc;如果a=b(c≠0),那么cbca=.3.下列运用等式性质进行的变形,正确的是().A.如果a b=,那么a c b c+=-B.如果a b=,那么a bc c=C.如果a bc c=,那么a b=D.如果24a a=,那么4a=4解以x为未知数的方程,就是把方程逐步转化为x=a(常数)的形式,等式的性质是转化的重要依据.重点题型1【一元一次方程的概念】4.(1)若(m -2)x =6是关于x 的一元一次方程,则m 的取值为( ). A .不等于2的数B .任何数C .2D .1或2(2)已知等式2530m x ++=是关于x 的一元一次方程,求m 的值.5.若()2326m m x --=是一元一次方程,求x 的值.6.已知2(1)(1)8m x m x ---=是关于x 的一元一次方程,求m 的值.重点题型2【合并同类项与移项】7.当215a -=,则a = .8.解方程:(1)1253x +=; (2)426x x =+.9.解方程:(1)12145x -+=;(2)2353x x -=+.10.关于x 的方程350x +=与331x k +=的解相同,则k 的值为多少?【一题多解】解法1:解法2:11.关于x 的方程2x -m =4的解比方程x +3m =10的解小1.求m 的值.两步一回头12.在方程①69x y -=;②2560x x -+=;③32x x-=;④0x =;⑤0.31y =; ⑥21136x x +=中,是一元一次方程的有 . 13.下列说法中,正确的是( ).A .方程都是等式B .等式都是方程C .x +y 是方程D .a ≠2是等式14.下列变形正确的是( ).A .若22x y =,则x y =B .若x ya a=,则x y = C .若(2)5(2)x x x -=-,则5x =- D .若(m +n )x =(m +n )y ,则x y =15.已知关于x 的方程()1253k k x k --+=是一元一次方程,则k =( ).A .2±B .2C .2-D .1±16.若规定23aa b b *=-,则当31x *=时,x 的值为__________.问题探究【一元一次方程的解的讨论】 17.阅读以下材料:(2)假设关于x 的方程()()0a x a b x b -++=有无穷多个解,则( ).A .a +b =0B .a -b =0C .ab =0D .ab=0 (3)解关于x 的方程:1ax x =+.18.已知关于x 的一次方程()3870a b x ++=无解,则ab 是( ).A .正数B .非正数C .负数D .非负数19.已知:()2320a b x ax b +++=是关于x 的一元一次方程,且x 有唯一解,求这个解.拓展延伸20.一箩筐内有橘子、梨、苹果共40个,它们的数量依次为1∶2∶5,则梨有( ).A .5个B .10个C .20个D .25个21.已知4y =是方程25233y m y ⎛⎫-=- ⎪⎝⎭的解,则()231m +的值为( ). A .163B .8C .289D .22522.已知4x =-是方程284x x a +=-的解,则21a a += .23.要使方程()11a x a --=的解为1x =,则a 应符合什么条件?24.现将自然数1至2004按图中的方式排成一个长方形,用一个正方形框出9个数.(1)图中的9个数的和是多少?(2)能否使一个长方形框出的9个数的和为2007?若不可能,请说明理由,若可能,求出9个数中最大的数.1 2 3 4 5 6 78 9 10 11 12 13 1415 16 17 18 19 20 2122 23 24 25 26 27 2829 30 31 32 33 34 3536 37 38 39 40 41 42这一讲我们主要学习了什么? 一、一元一次方程:只含有____个未知数(元),未知数的次数都是____,等号两边都是 ________的方程.二、若形如D Bx Ax C =+2的式子,是关于x 的一元一次方程,则有A _______,B _______,C _______. 三、等式的性质:性质1:__________________________________________________; 性质2:__________________________________________________.25.解关于x 的方程:1()()34m x n x m +=+.课堂加油站十二个乒乓球中有一个是坏的,不知是轻是重,在天平上称三次找出来.课堂小结课后练习26.已知下列方程:①22x x -=;②0.31x =;③512xx =-;④243x x -=; ⑤6x =; ⑥20x y +=,其中一元一次方程的个数是( ). A .2B .3C .4D .527.已知123y x =+,2152y x =-,如果122y y =,则x =________. 28.解方程:(1)7102522x x +=+;(2)32344x x +=-.课堂小测29.下列方程中,属于一元一次方程的是( ).A .31x y -=B .15x= C .143xx -=- D .24x =30.方程122x -=的解是( ).A .14x =-B .4x =C .14x = D .4x =-31.下列等式变形错误的是( ). A .由a =b ,得a -3=b -3B .由a =-b ,得-3a =3bC .由x +4=y +4,得x =yD .由-12x =-12y ,得x =﹣y32.方程423x x -=-解过程正确的顺序是( ).①合并同类项,得55x =;②移项,得432x x +=+;③系数化为1,得1x =A .①②③B .③②①C .②①③D .③①② 33.已知()2316m m x--=是关于x 的一元一次方程,则( ). A .m =2B .m =3C .m =±3D .m =-334.如果式子89x -与式子62x -的值互为相反数,则x 的值为_________. 35.若x =2是方程4=ax 的解,则方程2354ax x a -=-的解为 .36.已知关于x 的方程3x +a =0的根比关于x 的方程5x -a =0的根大8,那么a 的值为 .37.小明在假期里参加了四天一期的夏令营,这四天各天的日期之和是86,则夏令营的开营日是( ).A .20日B .21日C .22日D .24日38.用40cm 长的铁丝围成一个长方形,它的长比宽多4cm ,则长和宽分别为( ).A .12cm ,8cmB .8cm ,12cmC .8cm ,14cmD .14cm ,6cm参考答案1.D 2.B 3.C 4.(1)A ; (2)因为m +2=1,所以m =-1. 5.解:因为m -2≠0,2m -3=±1,所以m =-1,解得6x =-. 6.解:因为|m |-1=0,所以m =±1,又m -1≠0,所以m ≠1,m =-1.7.52- 8.(1)73x =; (2)3x =. 9.(1) x =258; (2)x =-8.10.解法1:解350x +=得53x =-,代入331x k +=,得k =2;解法2:因为35x =-,313x k =-,所以513k -=-,解得k =2. 11.m =2 12.④⑤⑥ 13.A 14.B 15.C 16.0 17.(1)C ; (2)A ;(3)解:(a -1)x =1.当a -1=0,即a =1时,方程无解;当a -1≠0,即a ≠1时,方程的解为11x a =-. 18.B19.3220.B 21.D22.023.a ≠124.(1)153;(2)设中间数为x ,则这9个数的和为9x ,若9x =2007,则x =223符合题意,这时最大的数是223+8=231.25.原方程整理得(43)34m x m mn -=-.当430m -≠,即34m ≠时,3443m mn x m -=-; 当430m -=时,若340m mn -=,即34m =,34n =时,方程有无数解;当430m -=时,若340m mn -≠,即34m =,34n ≠时,方程无解.26.B 27.1228.(1)x =-1; (2)x =1.29.C 30.A 31.D 32.C 33.D34.12 35.x =-3 36.a =-15 37.A 38.A。
《一元一次不等式与不等式组》全章复习与巩固(知识讲解)七年级数学下册基础知识专项讲练(人教版)

专题9.9 《一元一次不等式与不等式组》全章复习与巩固(知识讲解)【学习目标】1.理解不等式的有关概念,掌握不等式的三条基本性质;2.理解不等式的解(解集)的意义,掌握在数轴上表示不等式的解集的方法;3.会利用不等式的三个基本性质,熟练解一元一次不等式或不等式组;4.会根据题中的不等关系建立不等式(组),解决实际应用问题;5.通过对比方程与不等式、等式性质与不等式性质等一系列教学活动,理解类比的方法是学习数学的一种重要途径.【知识网络】【要点梳理】要点一、不等式1.不等式:用符号“<”(或“≤”),“>”(或“≥”),≠连接的式子叫做不等式.要点诠释:(1)不等式的解:能使不等式成立的未知数的值叫做不等式的解.(2)不等式的解集:对于一个含有未知数的不等式,它的所有解组成这个不等式的解集.解集的表示方法一般有两种:一种是用最简的不等式表示,例如x a≤等;另一种是>,x a用数轴表示,如下图所示:(3)解不等式:求不等式的解集的过程叫做解不等式.2. 不等式的性质:不等式的基本性质1:不等式两边加(或减)同一个数(或式子),不等号的方向不变.用式子表示:如果a>b,那么a±c>b±c不等式的基本性质2:不等式两边都乘(或除以)同一个正数,不等号的方向不变.用式子表示:如果a>b,c>0,那么ac>bc(或a bc c >).不等式的基本性质3:不等式两边乘(或除以)同一个负数,不等号的方向改变.用式子表示:如果a>b,c<0,那么ac<bc(或a bc c <).要点二、一元一次不等式1.定义:不等式的左右两边都是整式,经过化简后只含有一个未知数,并且未知数的最高次数是1,这样的不等式叫做一元一次不等式,要点诠释:ax+b>0或ax+b<0(a≠0)叫做一元一次不等式的标准形式.2.解法:解一元一次不等式步骤:去分母、去括号、移项、合并同类项、系数化为1.要点诠释:不等式解集的表示:在数轴上表示不等式的解集,要注意的是“三定”:一是定边界点,二是定方向,三是定空实.3.应用:列不等式解应用题的基本步骤与列方程解应用题的步骤相类似,即:(1)审:认真审题,分清已知量、未知量;(2)设:设出适当的未知数;(3)找:找出题中的不等关系,要抓住题中的关键字,如“大于”“小于”“不大于”“至少”“不超过”“超过”等关键词的含义;(4)列:根据题中的不等关系,列出不等式;(5)解:解出所列的不等式的解集;(6)答:检验是否符合题意,写出答案.要点诠释:列一元一次不等式解应用题时,经常用到“合算”、“至少”、“不足”、“不超过”、“不大于”、“不小于”等表示不等关系的关键词语,弄清它们的含义是列不等式解决问题的关键.要点三、一元一次不等式组关于同一未知数的几个一元一次不等式合在一起,就组成一个一元一次不等式组.要点诠释:(1)不等式组的解集:不等式组中各个不等式的解集的公共部分叫做这个不等式组的解集. (2)解不等式组:求不等式组解集的过程,叫做解不等式组.(3)一元一次不等式组的解法:分别解出各不等式,把解集表示在数轴上,取所有解集的公共部分,利用数轴可以直观地表示不等式组的解集.(4)一元一次不等式组的应用: ①根据题意构建不等式组,解这个不等式组;②由不等式组的解集及实际意义确定问题的答案. 【典型例题】 类型一、不等式1.用不等式表示(1)a 的34与一1的差是非正数. (2)a 的平方减去b 的立方大于a 与b 的和. (3)a 的23减去4的差不小于-6. (4)x 的2倍与y 的34和不大于5. (5)长方形的长与宽分别为4、3a -,它的周长大于20. 【答案与解析】【分析】根据题意以及不等式的定义列不等式. 解:(1)()3104a --≤; (2)23ab a b ->+;(3)2463a -≥-; (4)3254x y +≤;(5)()24320a +->.【总结升华】正确运用不等符号翻译表述一些数学描述是学好不等式的关键,要关注一些常见的描述语言,如此处:不是、不少于、不大于…… 举一反三:【变式】用适当的符号语言表达下列关系:2.用不等式表示:(1)7x与1的差小于4;(2)x的一半比y的2倍大;(3)a的9倍与b的12的和是正数.【答案】(1)7x-1<4(2)12x>2y(3)9a+12b>0【分析】(1)7x与1的差是7x-1,小于4,再用小于号“<”与4连接即可;(2)x的一半记作12x,y的2倍记作2y,然后用大于号“>”连接即可;(3)a的9倍记作9a,b的12记作12b,和是正数即相加后大于0.解:由题意得(1)7x-1<4;(2)12x>2y;(3)9a+12b>0本题考查了列不等式表示数量关系,与列代数式问题相类似,首先要注意其中的运算及运算顺序,再就是要注意分清大于、小于、不大于、不小于的区别.【答案】(1)1302y-<;(2)1322x->;(3)192b c+≤。
一元一次方程基础知识详解

一元一次方程目录一、方程的意义二、一元一次方程的解法三、实际问题与一元一次方程(一)四、实际问题与一元一次方程(二)五、《一元一次方程》全章复习与巩固一、方程的意义基础知识讲解【学习目标】1.正确理解方程的概念,并掌握方程、等式及算式的区别与联系;2.正确理解一元一次方程的概念,并会判断方程是否是一元一次方程及一个数是否是方程的解;3.理解并掌握等式的两个基本性质.【要点梳理】要点一、方程的有关概念1.定义:含有未知数的等式叫做方程.要点诠释:判断一个式子是不是方程,只需看两点:一.是等式;二.是含有未知数.2.方程的解:使方程左右两边的值相等的未知数的值,叫做方程的解.要点诠释:判断一个数(或一组数)是否是某方程的解,只需看两点:①.它(或它们)是方程中未知数的值;②将它(或它们)分别代入方程的左边和右边,若左边等于右边,则它们是方程的解,否则不是.3.解方程:求方程的解的过程叫做解方程.4.方程的两个特征:(1).方程是等式;(2).方程中必须含有字母(或未知数).要点二、一元一次方程的有关概念定义:只含有一个未知数(元),并且未知数的次数都是1,这样的方程叫做一元一次方程.要点诠释:“元”是指未知数,“次”是指未知数的次数,一元一次方程满足条件:①首先是一个方程;②其次是必须只含有一个未知数;③未知数的指数是1;④分母中不含有未知数.要点三、等式的性质1.等式的概念:用符号“=”来表示相等关系的式子叫做等式.2.等式的性质:等式的性质1:等式两边加(或减)同一个数(或式子),结果仍相等.即:如果,那么(c为一个数或一个式子).等式的性质2:等式两边乘同一个数,或除以同一个不为0的数,结果仍相等.即:如果,那么;如果,那么.要点诠释:(1)根据等式的两条性质,对等式进行变形,等式两边必须同时进行完全相同的变形;(2)等式性质1中,强调的是整式,如果在等式两边同加的不是整式,那么变形后的等式不一定成立,如x=0中,两边加上得x+,这个等式不成立;(3)等式的性质2中等式两边都除以同一个数时,这个除数不能为零.《初中数学典型题思路分析》价格及说明1.全套资料共7册14本(七上—九下+综合共7册);每册分解析版和原题版两本;有和教材同步的多个版本可选。
一元一次方程基础知识详解

一元一次方程目录一、方程的意义二、一元一次方程的解法三、实际问题与一元一次方程(一)四、实际问题与一元一次方程(二)五、《一元一次方程》全章复习与巩固一、方程的意义基础知识讲解【学习目标】1.正确理解方程的概念,并掌握方程、等式及算式的区别与联系;2.正确理解一元一次方程的概念,并会判断方程是否是一元一次方程及一个数是否是方程的解;3.理解并掌握等式的两个基本性质.【要点梳理】要点一、方程的有关概念1.定义:含有未知数的等式叫做方程.要点诠释:判断一个式子是不是方程,只需看两点:一.是等式;二.是含有未知数.2.方程的解:使方程左右两边的值相等的未知数的值,叫做方程的解.要点诠释:判断一个数(或一组数)是否是某方程的解,只需看两点:①.它(或它们)是方程中未知数的值;②将它(或它们)分别代入方程的左边和右边,若左边等于右边,则它们是方程的解,否则不是.3.解方程:求方程的解的过程叫做解方程.4.方程的两个特征:(1).方程是等式;(2).方程中必须含有字母(或未知数).要点二、一元一次方程的有关概念定义:只含有一个未知数(元),并且未知数的次数都是1,这样的方程叫做一元一次方程.要点诠释:“元”是指未知数,“次”是指未知数的次数,一元一次方程满足条件:①首先是一个方程;②其次是必须只含有一个未知数;③未知数的指数是1;④分母中不含有未知数.要点三、等式的性质1.等式的概念:用符号“=”来表示相等关系的式子叫做等式.2.等式的性质:等式的性质1:等式两边加(或减)同一个数(或式子),结果仍相等.即:如果,那么(c为一个数或一个式子).等式的性质2:等式两边乘同一个数,或除以同一个不为0的数,结果仍相等.即:如果,那么;如果,那么.要点诠释:(1)根据等式的两条性质,对等式进行变形,等式两边必须同时进行完全相同的变形;(2)等式性质1中,强调的是整式,如果在等式两边同加的不是整式,那么变形后的等式不一定成立,如x=0中,两边加上得x+,这个等式不成立;(3)等式的性质2中等式两边都除以同一个数时,这个除数不能为零.二、一元一次方程的解法基础知识讲解【要点梳理】要点一、解一元一次方程的一般步骤变形名称具体做法注意事项去分母在方程两边都乘以各分母的最小公倍数(1)不要漏乘不含分母的项(2)分子是一个整体的,去分母后应加上括号去括号先去小括号,再去中括号,最后去大括号(1)不要漏乘括号里的项(2)不要弄错符号移项把含有未知数的项都移到方程的一边,其他项都移到方程的另一边(记住移项(1)移项要变号(2)不要丢项要变号)合并同类项把方程化成ax=b(a≠0)的形式字母及其指数不变系数化成1在方程两边都除以未知数的系数a,得到方程的解b x a=.不要把分子、分母写颠倒要点诠释:(1)解方程时,表中有些变形步骤可能用不到,而且也不一定要按照自上而下的顺序,有些步骤可以合并简化.(2)去括号一般按由内向外的顺序进行,也可以根据方程的特点按由外向内的顺序进行.(3)当方程中含有小数或分数形式的分母时,一般先利用分数的性质将分母变为整数后再去分母,注意去分母的依据是等式的性质,而分母化整的依据是分数的性质,两者不要混淆.要点二、解特殊的一元一次方程1.含绝对值的一元一次方程解此类方程关键要把绝对值化去,使之成为一般的一元一次方程,化去绝对值的依据是绝对值的意义.要点诠释:此类问题一般先把方程化为ax b c +=的形式,再分类讨论:(1)当0c <时,无解;(2)当0c =时,原方程化为:0ax b +=;(3)当0c >时,原方程可化为:ax b c +=或ax b c +=-.2.含字母的一元一次方程此类方程一般先化为最简形式ax=b,再分三种情况分类讨论:(1)当a≠0时,b x a=;(2)当a=0,b=0时,x 为任意有理数;(3)当a=0,b≠0时,方程无解.三、实际问题与一元一次方程(一)基础知识讲解【要点梳理】知识点一、用一元一次方程解决实际问题的一般步骤列方程解应用题的基本思路为:问题−−−→分析抽象方程−−−→求解检验解答.由此可得解决此类题的一般步骤为:审、设、列、解、检验、答.要点诠释:(1)“审”是指读懂题目,弄清题意,明确哪些是已知量,哪些是未知量,以及它们之间的关系,寻找等量关系;(2)“设”就是设未知数,一般求什么就设什么为x ,但有时也可以间接设未知数;(3)“列”就是列方程,即列代数式表示相等关系中的各个量,列出方程,同时注意方程两边是同一类量,单位要统一;(4)“解”就是解方程,求出未知数的值;(5)“检验”就是指检验方程的解是否符合实际意义,当有不符合的解时,及时指出,舍去即可;(6)“答”就是写出答案,注意单位要写清楚.知识点二、常见列方程解应用题的几种类型1.和、差、倍、分问题(1)基本量及关系:增长量=原有量×增长率,现有量=原有量+增长量,现有量=原有量-降低量.(2)寻找相等关系:抓住关键词列方程,常见的关键词有:多、少、和、差、不足、剩余以及倍,增长率等.2.行程问题(1)三个基本量间的关系:路程=速度×时间(2)基本类型有:①相遇问题(或相向问题):Ⅰ.基本量及关系:相遇路程=速度和×相遇时间Ⅱ.寻找相等关系:甲走的路程+乙走的路程=两地距离.②追及问题:Ⅰ.基本量及关系:追及路程=速度差×追及时间Ⅱ.寻找相等关系:第一,同地不同时出发:前者走的路程=追者走的路程;第二,第二,同时不同地出发:前者走的路程+两者相距距离=追者走的路程.③航行问题:Ⅰ.基本量及关系:顺流速度=静水速度+水流速度,逆流速度=静水速度-水流速度,顺水速度-逆水速度=2×水速;Ⅱ.寻找相等关系:抓住两地之间距离不变、水流速度不变、船在静水中的速度不变来考虑.(3)解此类题的关键是抓住甲、乙两物体的时间关系或所走的路程关系,并且还常常借助画草图来分析.3.工程问题如果题目没有明确指明总工作量,一般把总工作量设为1.基本关系式:(1)总工作量=工作效率×工作时间;(2)总工作量=各单位工作量之和.4.调配问题寻找相等关系的方法:抓住调配后甲处的数量与乙处的数量间的关系去考虑.要点三、常见列方程解应用题的几种类型5.利润问题(1)=100% 利润利润率进价(2)标价=成本(或进价)×(1+利润率)(3)实际售价=标价×打折率(4)利润=售价-成本(或进价)=成本×利润率注意:“商品利润=售价-成本”中的右边为正时,是盈利;当右边为负时,就是亏损.打几折就是按标价的十分之几或百分之几十销售.6.存贷款问题(1)利息=本金×利率×期数(2)本息和(本利和)=本金+利息=本金+本金×利率×期数=本金×(1+利率×期数)(3)实得利息=利息-利息税(4)利息税=利息×利息税率(5)年利率=月利率×12(6)月利率=年利率×1217.数字问题已知各数位上的数字,写出两位数,三位数等这类问题一般设间接未知数,例如:若一个两位数的个位数字为a ,十位数字为b,则这个两位数可以表示为10b+a .8.方案问题选择设计方案的一般步骤:(1)运用一元一次方程解应用题的方法求解两种方案值相等的情况.(2)用特殊值试探法选择方案,取小于(或大于)一元一次方程解的值,比较两种方案的优劣性后下结论.《初中数学典型题思路分析》价格及说明四、实际问题与一元一次方程(二)基础知识讲解【要点梳理】要点一、用一元一次方程解决实际问题的一般步骤列方程解应用题的基本思路为:问题−−−→分析抽象方程−−−→求解检验解答.由此可得解决此类问题的一般步骤为:审、设、列、解、检验、答.要点诠释:(1)“审”是指读懂题目,弄清题意,明确哪些是已知量,哪些是未知量,以及它们之间的关系,寻找等量关系.(2)“设”就是设未知数,一般求什么就设什么为x ,但有时也可以间接设未知数.(3)“列”就是列方程,即列代数式表示相等关系中的各个量,列出方程,同时注意方程两边是同一类量,单位要统一.(4)“解”就是解方程,求出未知数的值.(5)“检验”就是指检验方程的解是否符合实际意义,当有不符合的解时,及时指出,舍去即可.(6)“答”就是写出答案,注意单位要写清楚.要点三、常见列方程解应用题的几种类型1.利润问题(1)=100% 利润利润率进价(2)标价=成本(或进价)×(1+利润率)(3)实际售价=标价×打折率(4)利润=售价-成本(或进价)=成本×利润率注意:“商品利润=售价-成本”中的右边为正时,是盈利;当右边为负时,就是亏损.打几折就是按标价的十分之几或百分之几十销售.2.存贷款问题(1)利息=本金×利率×期数(2)本息和(本利和)=本金+利息=本金+本金×利率×期数=本金×(1+利率×期数)(3)实得利息=利息-利息税(4)利息税=利息×利息税率(5)年利率=月利率×12(6)月利率=年利率×1213.数字问题已知各数位上的数字,写出两位数,三位数等这类问题一般设间接未知数,例如:若一个两位数的个位数字为a ,十位数字为b,则这个两位数可以表示为10b+a .4.方案问题选择设计方案的一般步骤:(1)运用一元一次方程解应用题的方法求解两种方案值相等的情况.(2)用特殊值试探法选择方案,取小于(或大于)一元一次方程解的值,比较两种方案的优劣性后下结论.五、《一元一次方程》全章复习与巩固【学习目标】1.理解方程,等式及一元一次方程的概念,并掌握它们的区别和联系;2.会解一元一次方程,并理解每步变形的依据;3.会根据实际问题列方程解应用题.【知识网络】【要点梳理】知识点一、一元一次方程的概念1.方程:含有未知数的等式叫做方程.2.一元一次方程:只含有一个未知数(元),未知数的次数都是1,这样的方程叫做一元一次方程.要点诠释:判断是否为一元一次方程,应看是否满足:①只含有一个未知数,未知数的次数为1;②未知数所在的式子是整式,即分母中不含未知数.3.方程的解:使方程的左、右两边相等的未知数的值叫做这个方程的解.4.解方程:求方程的解的过程叫做解方程.知识点二、等式的性质与去括号法则1.等式的性质:等式的性质1:等式两边加(或减)同一个数(或式子),结果仍相等.等式的性质2:等式两边乘同一个数,或除以同一个不为0的数,结果仍相等.2.合并法则:合并时,把系数相加(减)作为结果的系数,字母和字母的指数保持不变.3.去括号法则:(1)括号外的因数是正数,去括号后各项的符号与原括号内相应各项的符号相同.(2)括号外的因数是负数,去括号后各项的符号与原括号内相应各项的符号相反.知识点三、一元一次方程的解法解一元一次方程的一般步骤:(1)去分母:在方程两边同乘以各分母的最小公倍数.(2)去括号:依据乘法分配律和去括号法则,先去小括号,再去中括号,最后去大括号.(3)移项:把含有未知数的项移到方程一边,常数项移到方程另一边.(4)合并:逆用乘法分配律,分别合并含有未知数的项及常数项,把方程化为ax=b(a≠0)的形式.(5)系数化为1:方程两边同除以未知数的系数得到方程的解bx a=(a≠0).(6)检验:把方程的解代入原方程,若方程左右两边的值相等,则是方程的解;若方程左右两边的值不相等,则不是方程的解.知识点四、用一元一次方程解决实际问题的常见类型1.行程问题:路程=速度×时间2.和差倍分问题:增长量=原有量×增长率3.利润问题:商品利润=商品售价-商品进价4.工程问题:工作量=工作效率×工作时间,各部分劳动量之和=总量5.银行存贷款问题:本息和=本金+利息,利息=本金×利率×期数6.数字问题:多位数的表示方法:例如:32101010abcd a b c d =⨯+⨯+⨯+.。
人教版七年级上册数学《一元一次方程》一元一次方程研讨复习说课教学课件

思考:(1)边长为的正方形的面积怎么表示?
a a 记作 a 2
a
读作: 的平方( 的二次方)
a
(2)棱长为的正方体的体积怎么表示?
aaa
记作
a3
读作: 的立方( 的三次方)
猜想:
a
a
4个相乘呢? 个相乘呢?
a
一般地,n个相同的因数a相乘,记作an,读作
“a的n次方(或a的n次幂)”,即
70(z-1)=60z
问题1 每个方程中,各含有几个未知数?
1个
问题2 说一说每个方程中未知数的次数。
1次
问题3 等号两边的式子有什么共同点?
都是整式
知识要点
一元一次方程
(一元)
(一次)
只含有一个未知数, 未知数的次数都是1,
等号两边都是整式,这样的方程叫做一元一次方程。
练一练
下列哪些是一元一次方程?
右边=80,左边=右边,所以x=2000是此方程的解。
方法归纳
判断一个数值是不是方程的解的步骤:
1. 将数值代入方程左边进行计算;
2. 将数值代入方程右边进行计算;
3. 若左边=右边,则是方程的解,反之,则不是。
练一练
检验 x = 3是不是方程 2x-3 = 5x-15的解。
解:把 x =3分别代入方程的左边和右边,得
左边=2×3-3=3,
右边=5×3-15=0。
∵左边≠右边,
∴ x =3不是方程的解。
当x = 4,5,6时呢?
课堂练习
1. x =1是下列哪个方程的解 ( B )
A. 1 x 2
C.
2x 1 4 3x
D. x 4 5x 2
16《一元一次方程》全章复习与巩固(原卷版)-2021-2022学年七年级数学上册课堂讲义(人教版)
学科教师辅导教案《一元一次方程》全章复习与巩固【知识网络】【要点梳理】知识点一、一元一次方程的概念1.方程:含有未知数的等式叫做方程.2.一元一次方程:只含有一个未知数(元),未知数的次数都是1,这样的方程叫做一元一次方程.要点诠释:判断是否为一元一次方程,应看是否满足:①只含有一个未知数,未知数的次数为1;②未知数所在的式子是整式,即分母中不含未知数.3.方程的解:使方程的左、右两边相等的未知数的值叫做这个方程的解.4.解方程:求方程的解的过程叫做解方程.知识点二、等式的性质与去括号法则1.等式的性质:等式的性质1:等式两边加(或减)同一个数(或式子),结果仍相等.等式的性质2:等式两边乘同一个数,或除以同一个不为0的数,结果仍相等.2.合并法则:合并时,把系数相加(减)作为结果的系数,字母和字母的指数保持不变.3.去括号法则:(1)括号外的因数是正数,去括号后各项的符号与原括号内相应各项的符号相同.(2)括号外的因数是负数,去括号后各项的符号与原括号内相应各项的符号相反.知识点三、一元一次方程的解法解一元一次方程的一般步骤:(1)去分母:在方程两边同乘以各分母的最小公倍数.(2)去括号:依据乘法分配律和去括号法则,先去小括号,再去中括号,最后去大括号.(3)移项:把含有未知数的项移到方程一边,常数项移到方程另一边.(4)合并:逆用乘法分配律,分别合并含有未知数的项及常数项,把方程化为ax =b (a ≠0)的形式.(5)系数化为1:方程两边同除以未知数的系数得到方程的解b x a=(a ≠0). (6)检验:把方程的解代入原方程,若方程左右两边的值相等,则是方程的解;若方程左右两边的值不相等,则不是方程的解.知识点四、用一元一次方程解决实际问题的常见类型1.行程问题:路程=速度×时间2.和差倍分问题:增长量=原有量×增长率3.利润问题:商品利润=商品售价-商品进价4.工程问题:工作量=工作效率×工作时间,各部分劳动量之和=总量5.银行存贷款问题:本息和=本金+利息,利息=本金×利率×期数6.数字问题:多位数的表示方法:例如:32101010abcd a b c d =⨯+⨯+⨯+.【典型例题】类型一、一元一次方程的概念1.下列方程中,哪些是一元一次方程? 哪些不是?(1)2x+y =5; (2)x 2-5x+6=0; (3)23x x -=; (4)1123y y -+=.举一反三:【变式】下列说法中正确的是( ).A .2a-a=a 不是等式B .x 2-2x-3是方程C .方程是等式D .等式是方程2. 若方程3(x-1)+8=2x+3与方程253x k x+-=的解相同,求k的值.举一反三:【变式】当x=时,代数式2x+1与5x﹣8的值相等.1.已知方程(3m-4)x2-(5-3m)x-4m=-2m是关于x的一元一次方程,求m和x的值.举一反三:【变式】下面方程变形中,错在哪里:(1)方程2x=2y两边都减去x+y,得2x-(x+y)=2y-(x+y), 即x-y=-(x-y).方程 x-y=-(x-y)两边都除以x-y, 得1=-1.(2)3721223x xx-+=+,去分母,得3(3-7x)=2(2x+1)+2x,去括号得:9-21x=4x+2+2x.2.如果5(x+2)=2a+3与(31)(53)35a x a x+-=的解相同,那么a的值是________.举一反三:【变式】已知3x=4y,则=.类型二、一元一次方程的解法3.解方程2351 46y y+--=4.解方程:113(1)(1)2(1)(1)22x x x x+--=--+举一反三:【变式】解方程:278(x-4)-463(8-2x)-888(7x-28)=03.解方程:4621132x x-+-=.举一反三:【变式1】解方程26752254436z z z zz+---++=-【变式2】解方程:0.10.050.20.0550.20.54x x+--+=.4.解方程3{2x-1-[3(2x-1)+3]}=5.类型三、特殊的一元一次方程的解法 1.解含字母系数的方程5.解关于x 的方程:11()(2)34m x n x m -=+2.解含绝对值的方程6. 解方程|x -2|=3.举一反三:【变式1】若关于x 的方程230x m -+=无解,340x n -+=只有一个解,450x k -+=有两个解, 则,,m n k 的大小关系为: ( )A . m n k >> B.n k m >> C.k m n >> D.m k n >>【变式2】若9x =是方程123x m -=的解,则__m =;又若当1n =时,则方程123x n -=的解是 . 类型四、一元一次方程的应用5. 甲车从A 地出发以60 km /h 的速度沿公路匀速行驶,0.5 h 后,乙车也从A 地出发,以80 km /h 的速度沿该公路与甲车同向匀速行驶,求乙车出发后几小时追上甲车.、6. 列方程或方程组解应用题:2015年“植树节”前夕,某小区为绿化环境,购进200棵柏树苗和120棵枣树苗,且两种树苗所需费用相同.每棵枣树苗的进价比每棵柏树苗的进价的2倍少5元,每棵柏树苗的进价是多少元?举一反三: 【变式】某文具店为促销X 型计算器,优惠条件是一次购买不超过10个,每个38元,超过10个,超过部分每个让利2元(即每个36元),问李老师用812元共买了多少个?7.李伟从家里骑摩托车到火车站,如果每小时行30千米,那么比火车开车时间早到15分钟;若每小时行18千米,则比火车开车时间迟到15分钟,现在李伟打算在火车开车前10分钟到达火车站,求李伟此时骑摩托车的速度应是多少?8. 一项工程,甲单独做要10天完成,乙单独做要15天完成,两人合做4天后,剩下的部分由乙单独做,还需要几天完成?举一反三:【变式】某商品进价2000元,标价4000元,商店要求以利润率不低于20%的售价打折出售,售货员最低可以打几折出售此商品?【巩固练习一】一、选择题1.下列方程中,是一元一次方程的是( ).A .250x +=B .42x y +=-C .162x = D .x =0 2. 下列变形错误的是( )A.由x + 7= 5得x+7-7 = 5-7 ;B.由3x -2 =2x + 1得x= 3C.由4-3x = 4x -3得4+3 = 4x+3xD.由-2x= 3得x= -32x ++318.已知代数式11213y y ---+的值为0,求代数式312143y y ---的值.19. 某校七年级社会实践小组去商场调查商品销售情况,了解到该商场以每件80元的价格购进了某品牌衬衫500件,并以每件120元的价格销售了400件,商场准备采取促销措施,将剩下的衬衫降价销售.请你帮商场计算一下,每件衬衫降价多少元时,销售完这批衬衫正好达到盈利45%的预期目标?20.学校校办工厂需制作一块广告牌,请来师徒二人,已知师傅单独完成需4天,徒弟单独完成需6天,现由徒弟先做一天,再两人合作,完成后共得到报酬450元,如果按各人完成的工作量计算报酬,那么该如何分配?【巩固练习二】一、选择题1.已知方程||(1)34m m x +-=是关于x 的一元一次方程,则m 的值是( ).A .±1B .1C .-1D .0或12.已知1x =是方程122()3x x a -=-的解,那么关于y 的方程(4)24a y ay a +=+的解是( ). A .y =1 B .y =-1 C .y =0 D .方程无解3.已知2(1)3(1)4(1)x y x y y x y x ++--+=---+-,则x y +等于( ).A .65-B .65C .56- D .56 4. 甲数是2013,甲数是乙数的还多1.设乙数为x ,则可列方程为( )A .4(x ﹣1)=2013B .4x ﹣1=2013C . x+1=2013D .(x+1)=20135.一架飞机在两城间飞行,顺风要5.5小时,逆风要6小时,风速为24千米/时,求两城距离x 的方程是( )A .24245.56x x -=+ B .24245.56x x -+= C . 2245.56 5.5x x =-+ D .245.56x x -= 6.某商场的老板销售一种商品,他要以不低于进价20%价格才能出售,但为了获得更多利润,他以高出进价80%的价格标价.若你想买下标价为360元的这种商品,最多降价多少时商店老板才能出售( )A .80元B .100元C .120元D .160元7.某书中一道方程题:213x x ++=,□处在印刷时被墨盖住了,查书后面的答案,得知这个方程的解是x =﹣2.5,那么□处应该是数字( ).A .-2.5B .2.5C .5D .78. 已知:2222233+=⨯,2333388+=⨯,244441515+=⨯,255552424+=⨯,…, 若21010b b a a+=⨯符合前面式子的规律,则a +b 的值为( ). A . 179 B . 140 C . 109 D . 210二、填空题9.已知方程2235522ax x x x a ++=-+是关于x 的一元一次方程,则这个方程的解为________.10.已知|4|m n -+和2(3)n -互为相反数,则22m n -=________.11.当x =________时,代数式453x -的值为-1. 12.一商店把某商品按标价的九折出售仍可获得20%的利润率,若该商品的进价是每件30元,则标价是每件 元.13. 20××年3月份有5个星期六,它们的日期之和是80,若当月第三个星期六的日期为x ,那么x= .14.有一列数,按一定的规律排列:―1,2,―4,8,―16,32,―64,128,…,其中某三个相邻数之和为384,这三个数分别是 .15.已知关于x 的方程3242a x x x ⎡⎤⎛⎫--= ⎪⎢⎥⎝⎭⎣⎦和方程3151128x a x +--=有相同的解,则出该方程的解为 .16. x 表示一个两位数, y 表示一个三位数, 若把x 放在y 的左边组成一个五位数记作M 1, 把y 放在x 的左边组成一个五位数记作M 2, 则 M 1 - M 2 是 的倍数.三、解答题17.解方程:。
人教版初一数学上册一元一次方程的解法(基础)知识讲解
一元一次方程的解法(基础)知识讲解【学习目标】1. 熟悉解一元一次方程的一般步骤,理解每步变形的依据;2. 掌握一元一次方程的解法,体会解法中蕴涵的化归思想;3. 进一步熟练掌握在列方程时确定等量关系的方法. 【要点梳理】要点诠释:(1)解方程时,表中有些变形步骤可能用不到,而且也不一定要按照自上而下的顺序,有些步骤可以合并简化.(2) 去括号一般按由内向外的顺序进行,也可以根据方程的特点按由外向内的顺序进行. (3)当方程中含有小数或分数形式的分母时,一般先利用分数的性质将分母变为整数后再去分母,注意去分母的依据是等式的性质,而分母化整的依据是分数的性质,两者不要混淆.要点二、解特殊的一元一次方程1.含绝对值的一元一次方程解此类方程关键要把绝对值化去,使之成为一般的一元一次方程,化去绝对值的依据是绝对值的意义.要点诠释:此类问题一般先把方程化为ax b c +=的形式,再分类讨论:(1)当0c <时,无解;(2)当0c =时,原方程化为:0ax b +=;(3)当0c >时,原方程可化为:ax b c +=或ax b c +=-. 2.含字母的一元一次方程此类方程一般先化为最简形式ax =b ,再分三种情况分类讨论: (1)当a ≠0时,b x a=;(2)当a =0,b =0时,x 为任意有理数;(3)当a =0,b ≠0时,方程无解. 【典型例题】类型一、解较简单的一元一次方程1.(2015•广州)解方程:5x=3(x ﹣4) 【答案与解析】解:方程去括号得:5x=3x ﹣12, 移项合并得:2x=﹣12, 解得:x=﹣6.【总结升华】方法规律:解较简单的一元一次方程的一般步骤:(1)移项:即通过移项把含有未知数的项放在等式的左边,把不含未知数的项(常数项)放在等式的右边.(2)合并:即通过合并将方程化为ax =b(a ≠0)的形式.(3)系数化为1:即根据等式性质2:方程两边都除以未知数系数a ,即得方程的解b x a=. 举一反三:【变式】下列方程变形正确的是( ). A .由2x-3=-x-4,得2x+x =-4-3 B .由x+3=2-4x ,得5x =5 C .由2332x -=,得x =-1 D .由3=x-2,得-x =-2-3【答案】D类型二、去括号解一元一次方程【高清课堂:一元一次方程的解法388407去括号解一元一次方程】2.解方程:【思路点拨】方程中含有括号,应先去括号再移项、合并、系数化为1,从而解出方程. 【答案与解析】(1)去括号得:42107x x +=+ 移项合并得:65x -= 解得:56x =-(2)去括号得:32226x x --=- 移项合并得:47x -=-解得:74x =【总结升华】去括号时,要注意括号前面的符号,括号前面是“+”号,不变号;括号前面是“-”,各项均变号. 举一反三:【变式】解方程: 5(x-5)+2x =-4. 【答案】解: 去括号得:5x-25+2x =-4. 移项合并得: 7x =21.解得: x =3. 类型三、解含分母的一元一次方程()()1221107x x +=+()()()232123x x -+=-3.(2016春•新乡期末)解方程﹣2=.【思路点拨】方程按照去分母,去括号,移项合并同类项,把x系数化为1的步骤,即可求出解.【答案与解析】解:去分母得:2(2x﹣1)﹣12=3(3x+2),去括号得:4x﹣2﹣12=9x+6,移项合并得:5x=﹣20,解得:x=﹣4.【总结升华】此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,将未知数系数化为1,求出解.举一反三:【变式】(2015•岳池县模拟)解方程:x+=﹣.【答案】解:去分母得:12x+30=24x﹣8﹣3x+24,移项合并得:﹣9x=﹣14,解得:x=.类型四、解较复杂的一元一次方程4.解方程:0.170.21 0.70.03x x--=【思路点拨】先将方程中的小数化成整数,再去分母,这样可避免小数运算带来的失误.【答案与解析】原方程可以化成:1017201 73x x--=.去分母,得:30x-7(17-20x)=21.去括号、移项、合并同类项,得:170x=140.系数化成1,得:1417x=.【总结升华】解此题的第一步是利用分数基本性质把分母、分子同时扩大相同的倍数,以使分母化整,与去分母方程两边都乘以分母的最小公倍数要区分开.5. 解方程:112 [(1)](1) 223x x x--=-【答案与解析】解法1:先去小括号得:11122()22233x x x-+=-再去中括号得:1112224433x x x-+=-移项,合并得:5111212x-=-系数化为1,得:115 x=解法2:两边均乘以2,去中括号得:14(1)(1)23x x x--=-去小括号,并移项合并得:51166x-=-,解得:115x=解法3:原方程可化为:112 [(1)1(1)](1) 223x x x-+--=-去中括号,得1112 (1)(1)(1) 2243x x x-+--=-移项、合并,得51(1)122x--=-解得115 x=【总结升华】解含有括号的一元一次方程时,一般方法是由里到外或由外到内逐层去括号,但有时根据方程的结构特点,灵活恰当地去括号,以使计算简便.例如本题的方法3:方程左、右两边都含(x-1),因此将方程左边括号内的一项x变为(x-1)后,把(x-1)视为一个整体运算.举一反三:【变式】32[(1)2]2 234xx---=【答案】解:去中括号得:3(1)22 42xx--⨯-=去小括号,移项合并得:364x-=,解得x=-8类型五、解含绝对值的方程6.解方程|x|-2=0【答案与解析】解:原方程可化为:2x=当x≥0时,得x=2,当x<0时,得-x=2,即,x=-2.所以原方程的解是x=2或x=-2.【总结升华】此类问题一般先把方程化为ax b=的形式,再根据ax的正负分类讨论,注意不要漏解.附录资料:方程的意义(基础)知识讲解【学习目标】1.正确理解方程的概念,并掌握方程、等式及算式的区别与联系;2. 正确理解一元一次方程的概念,并会判断方程是否是一元一次方程及一个数是否是方程的解;3. 理解并掌握等式的两个基本性质.【要点梳理】【高清课堂:从算式到方程一、方程的有关概念】要点一、方程的有关概念1.定义:含有未知数的等式叫做方程.要点诠释:判断一个式子是不是方程,只需看两点:一.是等式;二.是含有未知数.2.方程的解:使方程左右两边的值相等的未知数的值,叫做方程的解.要点诠释:判断一个数(或一组数)是否是某方程的解,只需看两点:①.它(或它们)是方程中未知数的值;②将它(或它们)分别代入方程的左边和右边,若左边等于右边,则它们是方程的解,否则不是.3.解方程:求方程的解的过程叫做解方程.4.方程的两个特征:(1).方程是等式;(2).方程中必须含有字母(或未知数).【高清课堂:从算式到方程二、一元一次方程的有关概念】要点二、一元一次方程的有关概念定义:只含有一个未知数(元),并且未知数的次数都是1,这样的方程叫做一元一次方程.要点诠释:“元”是指未知数,“次”是指未知数的次数,一元一次方程满足条件:①首先是一个方程;②其次是必须只含有一个未知数;③未知数的指数是1;④分母中不含有未知数.【高清课堂:从算式到方程三、解方程的依据——等式的性质】要点三、等式的性质1.等式的概念:用符号“=”来表示相等关系的式子叫做等式.2.等式的性质:等式的性质1:等式两边加(或减)同一个数(或式子),结果仍相等.即:如果,那么 (c为一个数或一个式子) .等式的性质2:等式两边乘同一个数,或除以同一个不为0的数,结果仍相等.即:如果,那么;如果,那么.要点诠释:(1)根据等式的两条性质,对等式进行变形,等式两边必须同时进行完全相同的变形;(2) 等式性质1中,强调的是整式,如果在等式两边同加的不是整式,那么变形后的等式不一定成立,如x=0中,两边加上得x+,这个等式不成立;(3) 等式的性质2中等式两边都除以同一个数时,这个除数不能为零.【典型例题】类型一、方程的概念1.下列各式哪些是方程?①3x-2=7;②4+8=12;③3x-6;④2m-3n=0;⑤3x2-2x-1=0;⑥x+2≠3;⑦251x=+;⑧28553x x-=.【答案与解析】解:②虽是等式,但不含未知数;③不是等式;⑥表示不等关系,故②、③、⑥均不符合方程的概念.①、④、⑤、⑦、⑧符合方程的定义,所以方程有:①、④、⑤、⑦、⑧.【总结升华】方程的判断必须看两点,一个是等式,二是含有未知数.当然未知数的个数可以是一个,也可以是多个.举一反三:【变式】下列四个式子中,是方程的是()A. 3+2=5B. x=1C. 2x﹣3<0D. a2+2ab+b2 【答案】B.2.(2015春•孟津县期中)下列方程中,以x=2为解的方程是()A. 4x﹣1=3x+2B. 4x+8=3(x+1)+1C. 5(x+1)=4(x+2)﹣1D. x+4=3(2x﹣1)【答案】C.【总结升华】检验一个数是不是方程的解,根据方程解的概念,只需将所给字母的值分别代入方程的左右两边,若两边的值相等,则这个数就是此方程的解,否则不是.举一反三:【变式】下列方程中,解是x=3的是( )A.x+1=4 B.2x+1=3 C.2x-1=2 D.217 3x+=类型二、一元一次方程的相关概念3.(2016春•南江县期末)在下列方程中①x2+2x=1,②﹣3x=9,③x=0,④3﹣=2,⑤=y+是一元一次方程的有()个.A.1 B.2 C.3 D.4【思路点拨】根据一元一次方程的定义:只含有一个未知数,并且未知数的最高次数是1次的整式方程,可以逐一判断.【答案】B.【解析】解:①x2+2x=1,是一元二次方程;②﹣3x=9,是分式方程;③x=0,是一元一次方程;④3﹣=2,是等式,不是方程;⑤=y+是一元一次方程;一元一次方程的有2个,故选:B.【总结升华】本题考查了一元一次方程的定义,解决本题的关键是熟记一元一次方程的定义.举一反三:【变式】下列方程中是一元一次方程的是__________(只填序号).①2x-1=4;②x =0;③ax =b ;④151x-=-. 【答案】①②.类型三、等式的性质4.用适当的数或整式填空,使所得的结果仍为等式,并说明根据等式的哪一条性质,以及怎样变形得到的. (1)如果41153x -=,那么453x =+________; (2)如果ax+by =-c ,那么ax =-c +________; (3)如果4334t -=,那么t =________. 【答案与解析】解: (1). 11;根据等式的性质1,等式两边都加上11; (2).(-by ); 根据等式的性质1,等式两边都加上-by ; (3).916-; 根据等式的性质2,等式两边都乘以34-. 【总结升华】先从不需填空的一边入手,比较这一边是怎样变形的,再根据等式的性质,对另一边也进行同样的变形.举一反三:【变式】下列说法正确的是( ).A .在等式ab =ac 两边都除以a ,可得b =c.B .在等式a =b 两边除以c 2+1,可得2211a bc c =++. C .在等式b ca a=两边都除以a ,可得b =c. D .在等式2x =2a-b 两边都除以2,可得x =a-b. 【答案】B.类型四、设未知数列方程5.根据问题设未知数并列出方程:一次考试共有25道选择题,做对一道得4分,做错或不做一道倒扣1分.若小明想考80分,他要做对多少道题? 【答案与解析】解:设小明要做对x 道题,则有(25-x)道做错或没做的题,依题意有:4x-(25-x)×1=80. 可以采用列表法探究其解显然,当x =21时,4x-(25-x)×1=80. 所以小明要做对21道题.【总结升华】根据题意设出合适的未知量,并根据等量关系列出含有未知量的等式. 举一反三:【变式】根据下列条件列出方程.(l)x的5倍比x的相反数大10;(2)某数的34比它的倒数小4;(3)甲、乙两人从学校到公园,走这段路甲用20分钟,乙用30分钟,如果乙比甲早5分钟出发,问甲用多少时间追上乙?【答案】(1)5x-(-x)=10;(2)设某数为x,则1344xx-=;(3)设甲用x分钟追上乙,由题意得11(5)3020x x+=.。
人教版初中七年级数学上册第三章__一元一次方程概念及解法(一)__复习课件PPT优秀课件
去括号,得 7-14x=9x+3-63 ;
移项,得 -14x-9x=3-63-7;
合并同类项,得 -23x=-67;
系数化为1,得
x 67 23
本节课我们复习了哪些知识?你有什 么收获?
1、复习了一元一次方程的有关概念。
2、复习了一元一次方程的基础知识。
3、复习了一元一次方程的解法。
你还有哪些困惑?
解: 去括号,得:
2 x 4 1x 2 3 9 0 9 x
移项,得:
2 x 1x 2 9 x 9 4 3 0
合并同类项,得:
x1 7
系数化为1,得:
x 17
三 解一元一次方程:
例1. 3.
12x53x
6
4
解、 去分母,得: 1 2 2 (2 x 5 ) 3 (3 x )
49 x= 98
系 数 化 为 1, 得
x= -2
1、复习课本第98——108页的课文内 容, 完成复习资料第108页 7、10、12题 ;
2、学习与拓展第80——81页解一元一次方程 10——22题;
3、课堂练习册第56——57页21——26题.
谢谢观看!
去括号,得 15x-30=12x-90;
移项,得 15x-12x=-90+30;
合并同类项,得 3x=-60;
系数化为1,得 x=-20.
解下列方程:
(25′×4=100′)
(1)4x-7=2x+1;
(2)1 x + 1 =3
(3) 16(3x-6)=52.x-3 ( 4) x1 194-x3 2 2= (x1)x2 2
x 67 13
解:(2)去分母,得 8-48x=18-33x;
《一元一次方程》全章复习与巩固(提高)知识讲解
《一元一次方程》全章复习与巩固(提高)知识讲解责编:康红梅【学习目标】1.理解方程,等式及一元一次方程的概念,并掌握它们的区别和联系;2.会解一元一次方程,并理解每步变形的依据;3.会根据实际问题列方程解应用题.【知识网络】【要点梳理】知识点一、一元一次方程的概念1.方程:含有未知数的等式叫做方程.2.一元一次方程:只含有一个未知数(元),未知数的次数都是1,这样的方程叫做一元一次方程.要点诠释:判断是否为一元一次方程,应看是否满足:①只含有一个未知数,未知数的次数为1;②未知数所在的式子是整式,即分母中不含未知数.3.方程的解:使方程的左、右两边相等的未知数的值叫做这个方程的解.4.解方程:求方程的解的过程叫做解方程.知识点二、等式的性质与去括号法则1.等式的性质:等式的性质1:等式两边加(或减)同一个数(或式子),结果仍相等.等式的性质2:等式两边乘同一个数,或除以同一个不为0的数,结果仍相等.2.合并法则:合并时,把系数相加(减)作为结果的系数,字母和字母的指数保持不变.3.去括号法则:(1)括号外的因数是正数,去括号后各项的符号与原括号内相应各项的符号相同.(2)括号外的因数是负数,去括号后各项的符号与原括号内相应各项的符号相反. 知识点三、一元一次方程的解法解一元一次方程的一般步骤:(1)去分母:在方程两边同乘以各分母的最小公倍数.(2)去括号:依据乘法分配律和去括号法则,先去小括号,再去中括号,最后去大括号.(3)移项:把含有未知数的项移到方程一边,常数项移到方程另一边.(4)合并:逆用乘法分配律,分别合并含有未知数的项及常数项,把方程化为ax =b (a ≠0)的形式.(5)系数化为1:方程两边同除以未知数的系数得到方程的解b x a=(a ≠0). (6)检验:把方程的解代入原方程,若方程左右两边的值相等,则是方程的解;若方程左右两边的值不相等,则不是方程的解.知识点四、用一元一次方程解决实际问题的常见类型1.行程问题:路程=速度×时间2.和差倍分问题:增长量=原有量×增长率3.利润问题:商品利润=商品售价-商品进价4.工程问题:工作量=工作效率×工作时间,各部分劳动量之和=总量5.银行存贷款问题:本息和=本金+利息,利息=本金×利率×期数6.数字问题:多位数的表示方法:例如:32101010abcd a b c d =⨯+⨯+⨯+.【典型例题】类型一、一元一次方程的相关概念1.已知方程(3m -4)x 2-(5-3m )x -4m =-2m 是关于x 的一元一次方程,求m 和x 的值.【思路点拨】若一个整式方程经过化简变形后,只含有一个未知数,并且未知数的次数都是1,系数不为0,则这个方程是一元一次方程.【答案与解析】解:因为方程(3m -4)x 2-(5-3m )x -4m =-2m 是关于x 的一元一次方程,所以3m -4=0且5-3m ≠0.由3m -4=0解得43m =,又43m =能使5-3m ≠0,所以m 的值是43. 将43m =代入原方程,则原方程变为485333x ⎛⎫--⨯= ⎪⎝⎭,解得83x =-. 所以43m =,83x =-. 【总结升华】解答这类问题,一定要严格按照一元一次方程的定义.方程(3m -4)x 2-(5-3m )x -4m =-2m 2是关于x 的一元一次方程,就是说x 的二次项系数3m -4=0,而x 的一次项系数5-3m ≠0,m 的值必须同时符合这两个条件.举一反三:【高清课堂:一元一次方程复习393349 等式和方程例3】【变式】下面方程变形中,错在哪里:(1)方程2x=2y两边都减去x+y,得2x-(x+y)=2y-(x+y), 即x-y=-(x-y).方程 x-y=-(x-y)两边都除以x-y, 得1=-1.(2)3721223x xx-+=+,去分母,得3(3-7x)=2(2x+1)+2x,去括号得:9-21x=4x+2+2x.【答案】(1)答:错在第二步,方程两边都除以x-y.(2)答:错在第一步,去分母时2x项没乘以公分母6.2.如果5(x+2)=2a+3与(31)(53)35a x a x+-=的解相同,那么a的值是________.【答案】7 11【解析】由5(x+2)=2a+3,解得275ax-=.由(31)(53)35a x a x+-=,解得95x a=-.所以27955aa-=-,解得711a=.【总结升华】因为两方程的解相同,可把a看做已知数,分别求出它们的解,令其相等,转化为求关于a的一元一次方程.举一反三:【变式】(2015•温州模拟)已知3x=4y,则=.【答案】.解:根据等式性质2,等式3x=4y两边同时除以3y,得:=.类型二、一元一次方程的解法3.解方程:4621132x x-+-=.【答案与解析】解:去分母,得:2(4-6x)-6=3(2x+1).去括号,得:8-12x-6=6x+3.移项,合并同类项,得:-18x=1.系数化为1,得:118x=-.【总结升华】转化思想是初中数学中一种常见的思想方法,它能将复杂的问题转化为简单的问题,将生疏的问题转化为熟悉的问题,将未知转化为已知.事实上解一元一次方程就是利用方程的同解原理,将复杂的方程转化为简单的方程直至求出它的解.举一反三:【变式1】解方程26752254436z z z z z +---++=- 【答案】解:把方程两边含有分母的项化整为零,得267522544443366z z z z z +++-=--+. 移项,合并同类项得:1122z =,系数化为1得:z =1. 【高清课堂:一元一次方程复习 393349 解方程例1(2)】 【变式2】解方程: 0.10.050.20.05500.20.54x x +--+=. 【答案】 解:把方程可化为:0.520.550254x x +--+=, 再去分母得:232x =-解得:16x =-4.解方程3{2x -1-[3(2x -1)+3]}=5.【答案与解析】解:把2x -1看做一个整体.去括号,得:3(2x -1)-9(2x -1)-9=5.合并同类项,得-6(2x -1)=14. 系数化为1得:7213x -=-,解得23x =-. 【总结升华】把题目中的2x -1看作一个整体,从而简化了计算过程.本题也可以考虑换元法:设2x -1=a ,则原方程化为3[a -(3a+3)]=5.类型三、特殊的一元一次方程的解法1.解含字母系数的方程5.解关于x 的方程:11()(2)34m x n x m -=+ 【思路点拨】这个方程化为标准形式后,未知数x 的系数和常数都是以字母形式出现的,所以方程的解的情况与x 的系数和常数的取值都有关系.【答案与解析】解:原方程可化为:(43)462(23)m x mn m m n -=+=+ 当34m ≠时,原方程有唯一解:4643mn m x m +=-; 当33,42m n ==-时,原方程无数个解; 当33,42m n =≠-时,原方程无解; 【总结升华】解含字母系数的方程时,一般化为最简形式ax b =,再分类讨论进行求解,注意最后的解不能合并,只能分情况说明.2.解含绝对值的方程6. 解方程|x -2|=3.【答案与解析】解:当x -2≥0时,原方程可化为x -2=3,得x =5.当x -2<0时,原方程可化为-(x -2)=3,得 x =-1.所以x =5和x =-1都是方程|x -2|=3的解.【总结升华】如图所示,可以看出点-1与5到点2的距离均为3,所以|x -2|=3的意义为在数轴上到点2的距离等于3的点对应的数,即方程|x -2|=3的解为x =-1和x =5.举一反三:【变式1】若关于x 的方程230x m -+=无解,340x n -+=只有一个解,450x k -+=有两个解,则,,m n k 的大小关系为: ( )A . m n k >> B.n k m >> C.k m n >> D.m k n >>【答案】A【变式2】若9x =是方程123x m -=的解,则__m =;又若当1n =时,则方程123x n -=的解是 .【答案】1; 9或3. 类型四、一元一次方程的应用7.李伟从家里骑摩托车到火车站,如果每小时行30千米,那么比火车开车时间早到15分钟;若每小时行18千米,则比火车开车时间迟到15分钟,现在李伟打算在火车开车前10分钟到达火车站,求李伟此时骑摩托车的速度应是多少?【思路点拨】本题中的两个不变量为:火车开出的时间和李伟从家到火车站的路程不变.【答案与解析】解:设李伟从家到火车站的路程为y 千米,则有:151530601860y y +=-,解得:452y = 由此得到李伟从家出发到火车站正点开车的时间为4515213060+=(小时). 李伟打算在火车开车前10分钟到达火车站时,设李伟骑摩托车的速度为x 千米/时, 则有:45227116060y x ===--(千米/时) 答:李伟此时骑摩托车的速度应是27千米/时.【总结升华】在解决问题时,当发现某种方法不能解决问题时,应该及时变换思维角度,如本题直接设未知数较难时,应迅速变换思维的角度,合理地设置间接未知数以寻求新的解决问题的途径和方法.8. (2015春•万州区校级月考)一项工程,甲单独做要10天完成,乙单独做要15天完成,两人合做4天后,剩下的部分由乙单独做,还需要几天完成?【答案与解析】解:设乙还需x 天完成,由题意得4×(+)+=1,解得x=5.答:乙还需5天完成.【总结升华】本题考查了一元一次方程的应用,解决问题的关键是找到所求的量的等量关系.当题中没有一些必须的量时,为了简便,可设其为1.举一反三:【变式】某商品进价2000元,标价4000元,商店要求以利润率不低于20%的售价打折出售,售货员最低可以打几折出售此商品?【答案】解:设售货员可以打x 折出售此商品,得:40000.12000(120%),x ⨯=+解得: 6.x =答:售货员最低可以打六折出售此商品.【巩固练习】一、选择题1.已知方程||(1)34m m x +-=是关于x 的一元一次方程,则m 的值是( ).A .±1B .1C .-1D .0或1 2.已知1x =是方程122()3x x a -=-的解,那么关于y 的方程(4)24a y ay a +=+的解是( ).A .y =1B .y =-1C .y =0D .方程无解3.已知2(1)3(1)4(1)x y x y y x y x ++--+=---+-,则x y +等于( ).A .65-B .65C .56-D .564.(2015春•镇巴县校级月考)甲数是2013,甲数是乙数的还多1.设乙数为x ,则可列方程为( )A .4(x ﹣1)=2013B .4x ﹣1=2013C . x+1=2013D .(x+1)=20135.一架飞机在两城间飞行,顺风要5.5小时,逆风要6小时,风速为24千米/时,求两城距离x 的方程是( )A .24245.56x x -=+ B .24245.56x x -+= C . 2245.56 5.5x x =-+ D .245.56x x -= 6.某商场的老板销售一种商品,他要以不低于进价20%价格才能出售,但为了获得更多利润,他以高出进价80%的价格标价.若你想买下标价为360元的这种商品,最多降价多少时商店老板才能出售( )A .80元B .100元C .120元D .160元7.某书中一道方程题:213x x ++= ,□处在印刷时被墨盖住了,查书后面的答案,得知这个方程的解是x =﹣2.5,那么□处应该是数字( ).A .-2.5B .2.5C .5D .78. 已知:2222233+=⨯,2333388+=⨯,244441515+=⨯,255552424+=⨯,…, 若21010b b a a+=⨯符合前面式子的规律,则a +b 的值为( ). A . 179 B . 140 C . 109 D . 210二、填空题9.已知方程2235522ax x x x a ++=-+是关于x 的一元一次方程,则这个方程的解为________.10.已知|4|m n -+和2(3)n -互为相反数,则22m n -=________.11.当x =________时,代数式453x -的值为-1. 12.一商店把某商品按标价的九折出售仍可获得20%的利润率,若该商品的进价是每件30元,则标价是每件 元.13.(2015•江西校级模拟)20××年3月份有5个星期六,它们的日期之和是80,若当月第三个星期六的日期为x ,那么x= .14.有一列数,按一定的规律排列:―1,2,―4,8,―16,32,―64,128,…,其中某三个相邻数之和为384,这三个数分别是 .15.已知关于x 的方程3242a x x x ⎡⎤⎛⎫--= ⎪⎢⎥⎝⎭⎣⎦和方程3151128x a x +--=有相同的解,则出该方程的解为 .16. x 表示一个两位数, y 表示一个三位数, 若把x 放在y 的左边组成一个五位数记作M 1, 把y 放在x 的左边组成一个五位数记作M 2, 则 M 1 - M 2 是 的倍数.三、解答题17.解方程:(1)0.40.90.030.0250.50.032x x x ++--=. (2))12(43)]1(31[21+=--x x x (3)|3x-2|-4=018.探究:当b 为何值时,方程|x-2|=b+1 ① 无解;②只有一个解;③ 有两个解.19.(2015•海淀区二模)小明坚持长跑健身.他从家匀速跑步到学校,通常需30分钟.某周日,小明与同学相约早上八点学校见,他七点半从家跑步出发,平均每分钟比平时快了40米,结果七点五十五分就到达了学校,求小明家到学校的距离.20.商场计划拨款9万元,从厂家购进50台电视机,已知该厂家生产三种不同型号的电视机,出场价分别为甲种每台1500元,乙种每台2100元,丙种每台2500元.(1)若商场同时购进其中两种不同型号的电视机共50台,用去9万元,请你研究一下商场的进货方案;(2)若商场销售一台甲种电视机可获利150元,销售一台乙种电视机可获利200元,销售一台丙种电视机可获利250元.在同时购进两种不同型号的电视机的方案中,为使销售时获利最多,该选择哪种进货方案?【答案与解析】一、选择题1. 【答案】B【解析】由题意得|m |=1,且m+1≠0,所以m =1,故选B .2. 【答案】C【解析】由x =1是方程122()3x x a -=-的解,可代入求出a 的值,然后把a 的值代入方程a (y+4)=2ay+4a 中,求出y 的值.3. 【答案】D【解析】由原式可得:()2()233()4()4x y x y x y x y +-++=-+-++,将“x y +”看作整体,合并化简即可.4.【答案】C. 【解析】设乙数为x ,由题意得,x+1=2013.故选C .5. 【答案】A【解析】解:∵两城距离为x ,顺风要5.5小时,逆风要6小时,∴顺风速度=5.5x ,逆风速度=6x , ∵风速为24千米/时, ∴可列方程为:24245.56x x -=+ 6.【答案】C【解析】解:设最多降价x 元时商店老板才能出售.则可得:3601.8×(1+20%)+x=360 解得:x=120.7.【答案】C【解析】把x =-2.5代入方程,再把□当作未知数解方程即可.8.【答案】C【解析】观察规律可得b =10,a =b 2-1=99,所以a +b =109.二、填空题9.【答案】x =1【解析】首先将原方程整理成2(5)5520a x x a -++-=的形式,由一元一次方程的定义可知,二次项系数为0,所以a =5,代入方程中即可求出x 的值.10.【答案】-8【解析】两数互为相反数,则和为0,由非负数的性质可知m -n+4=0,且n -3=0.从而得m =-1,n =3.11.【答案】12【解析】由题意可得方程4513x -=-,化简方程可解出12x =. 12.【答案】40【解析】解:设标价为x 元,则有0.930(120%)x =+,解得:40x =13.【答案】16.【解析】根据当月第三个星期六的日期为x ,依题意得:x ﹣14+x ﹣7+x+7+x+x+14=80 解得:x=16,即这个月第三个星期三是16号.14.【答案】128,-256,512【解析】通过观察可得:第n 个数为:1(1)2n n --,所以第9,10个数分别为:256,512-,经检验满足题意.15.【答案】8177【解析】分别解得这两个关于x 的方程的解为37a x =,27221a x -=,由它们相等得2711a =,代入其中一解可得答案. 16.【答案】9【解析】M 1=1000x +y ,M 2=100y +x ,M 1 - M 2=9(111x -11y ),所以一定是9的倍数.三、解答题17.【解析】解:(1)整理,得49325532x x x ++--=, 去分母,得6(49)10(32)15(5)x x x +-+=-,去括号,得245430201575x x x +--=-,移项,得242015755430x x x --=--+,合并,得1199x -=-,系数化为1,得9x =.(2)原方程可化为:77612x -= 解得:x=12- (3)原式可化为:|3x-2|=4 由324x -=,可得:2x =;由324x -=-,可得:23x =-所以原方程的解为:x=2,x=-32; 18. 【解析】解:①当10b +<,即 b <-1时,原方程无解;②当10b +=,即 b=-1时,原方程只有一个解;③ 当10b +>,即b >-1时,原方程有两个解.19.【解析】解:设小明家到学校的距离为x 米, 由题意,得+40=, 解得x=6000.答:小明家到学校的距离为6000米.20.【解析】解:(1)①解:设购进甲种电视机x 台,则购进乙种电视机(50-x )台,根据题意,得1500x +2100(50-x )=90000.解得: x =25,则50-x =25.故第一种进货方案是购甲、乙两种型号的电视机各25台.②设购进甲种电视机y 台,则购进丙种电视机(50- y )台,根据题意,得1500y +2500(50-y )=90000.解得: y =35,则50-y =15.故第二种进货方案是购进甲种电视机35台,丙种电视机15台.③设购进乙种电视机z 台,则购进丙种电视机(50-z )台,根据题意,得2100z +2500(50-z )=90000.解得: z =87.5(不合题意).故此种方案不可行.(2)上述的第一种方案可获利:150×25+200×25=8750元,第二种方案可获利:150×35+250×15=9000元,因为8750<9000,故应选择第二种进货方案.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《一元一次方程》全章复习与巩固(基础)知识讲解
【学习目标】
1.理解方程,等式及一元一次方程的概念,并掌握它们的区别和联系;
2.会解一元一次方程,并理解每步变形的依据;
3.会根据实际问题列方程解应用题.
【知识网络】
【要点梳理】
知识点一、一元一次方程的概念
1.方程:含有未知数的等式叫做方程.
2.一元一次方程:只含有一个未知数(元),未知数的次数都是1,这样的方程叫做一元一
次方程.
要点诠释:
(1)一元一次方程变形后总可以化为ax+b=0(a≠0)的形式,它是一元一次方程的标准形
式.
(2)判断是否为一元一次方程,应看是否满足:①只含有一个未知数,未知数的次数为1;
②未知数所在的式子是整式,即分母中不含未知数.
3.方程的解:使方程的左、右两边相等的未知数的值叫做这个方程的解.
4.解方程:求方程的解的过程叫做解方程.
知识点二、等式的性质与去括号法则
1.等式的性质:
等式的性质1:等式两边加(或减)同一个数(或式子),结果仍相等.
等式的性质2:等式两边乘同一个数,或除以同一个不为0的数,结果仍相等.
2.合并法则:合并时,把系数相加(减)作为结果的系数,字母和字母的指数保持不变.
3.去括号法则:
(1)括号外的因数是正数,去括号后各项的符号与原括号内相应各项的符号相同.
(2)括号外的因数是负数,去括号后各项的符号与原括号内相应各项的符号相反.
知识点三、一元一次方程的解法
解一元一次方程的一般步骤:
(1)去分母:在方程两边同乘以各分母的最小公倍数.
(2)去括号:依据乘法分配律和去括号法则,先去小括号,再去中括号,最后去大括号.
(3)移项:把含有未知数的项移到方程一边,常数项移到方程另一边.
(4)合并:逆用乘法分配律,分别合并含有未知数的项及常数项,把方程化为ax=b(a≠0)
的形式.
(5)系数化为1:方程两边同除以未知数的系数得到方程的解bxa(a≠0).
(6)检验:把方程的解代入原方程,若方程左右两边的值相等,则是方程的解;若方程左右
两边的值不相等,则不是方程的解.
知识点四、用一元一次方程解决实际问题的常见类型
1.行程问题:路程=速度×时间
2.和差倍分问题:增长量=原有量×增长率
3.利润问题:商品利润=商品售价-商品进价
4.工程问题:工作量=工作效率×工作时间,各部分劳动量之和=总量
5.银行存贷款问题:本息和=本金+利息,利息=本金×利率×期数
6.数字问题:多位数的表示方法:例如:32101010abcdabcd.
【典型例题】
类型一、一元一次方程的概念
1.下列方程中,哪些是一元一次方程? 哪些不是?
(1)225411xxx; (2)2x+y=5; (3)x2-5x+6=0; (4)23xx;
(5)1123yy.
【思路点拨】若一个整式方程经过化简变形后,只含有一个未知数,并且未知数的次数都是
1,系数不为0,则这个方程是一元一次方程.
【答案】 (1)、(5)是一元一次方程.因为它们或等价变形后是只含有一个未知数、并且未
知数的次数是1的方程;
(2)、(3)、(4)都不是一元一次方程,因为(2)中含有两个未知数;(3)中未知数的最高次数
是2;(4)中分母含有未知数,它不是整式方程.
【解析】判断一个方程是不是一元一次方程,有时需要对方程进行等价变形后再判断.例如:
225411xxx,可化为:5411x,所以 22
5411xxx
是一元一次方程.
【总结升华】凡是分母中含有未知数的方程一定不是一元一次方程.
举一反三:
【高清课堂:一元一次方程复习 393349 等式和方程 例(1)】
【变式】下列说法中正确的是( ).
A.2a-a=a不是等式 B.x2-2x-3是方程 C.方程是等式 D.等式是方程
【答案】C
2. 若方程3(x-1)+8=2x+3与方程253xkx的解相同,求k的值.
【答案与解析】
解:解方程3(x-1)+8=2x+3,得x=-2.
将x=-2代入方程253xkx中,得22253k.
解这个关于k的方程,得263k.
所以,k的值是263k.
【总结升华】由于两个方程的解相同,所以可以将其中一个方程的解代入另一个方程中,从
而求得问题的答案.
举一反三:
【变式】若关于x的方程2(x-1)-a=0的解是x=3,则a的值是( ).
A.4 B.-4 C.5 D.-5
【答案】A.
类型二、一元一次方程的解法
3.解方程235146yy
【思路点拨】通过方程的同解原理(去分母,去括号,合并同类项,系数化为1),一步一步
将一个复杂的方程转化成与它同解的最简的方程,从而达到求解的目的.
【答案与解析】
解:去分母,得3(y+2)-2(3-5y)=12
去括号,得3y+6-6+10y=12
合并同类项,得13y=12
未知数的系数化为1,得1213y
【总结升华】转化思想是初中数学中一种常见的思想方法,它能将复杂的问题转化为简单的
问题,将生疏的问题转化为熟悉的问题,将未知转化为已知.事实上解一元一次方程就是利
用方程的同解原理,将复杂的方程转化为简单的方程直至求出它的解.
4.解方程:113(1)(1)2(1)(1)22xxxx
【思路点拨】本题按常规方法求解,比较繁锁,如能根据题目的特点,巧用“整体思维”,
就能算得又快又对,起到事半功倍的效果.
【答案与解析】
解:113(1)(1)2(1)(1)22xxxx
75
(1)(1)22xx
7(1)5(1)xx
7755xx
212x
x=-6
【总结升华】直接去括号太繁琐,若将(x+1)及(x-1)看作一个整体,并移项合并同类项,
解答十分巧妙,可免去去分母的步骤及简化去括号的过程.
举一反三:
【变式】解方程:278(x-4)-463(8-2x)-888(7x-28)=0
【答案】
解:原方程可化为278(x-4)+463×2(x-4)-888×7(x-4)=0
(x-4)(278+463×2-888×7)=0
x-4=0
x=4
类型三、一元一次方程的应用
5. (南京)甲车从A地出发以60 km/h的速度沿公路匀速行驶,0.5 h后,乙车也从
A地出发,以80 km/h的速度沿该公路与甲车同向匀速行驶,求乙车出发后几小时追上甲
车.
【答案与解析】
解:设乙车出发后x小时追上甲车,依题意得60×0.5+60x=80x,解得x=1.5.
答:乙车出发后1.5小时追上甲车.
【总结升华】此题的等量关系为:甲前0.5 h的行程+甲后来的行程=乙的行程.
6. (南昌)剃须刀由刀片和刀架组成.某时期,甲、乙两厂家分别生产老式剃须刀(刀
片不可更换)和新式剃须刀(刀片可更换).有关销售策略与售价等信息如下表所示:
某段时间内,甲厂家销售了8400把剃须刀,乙厂家销售的刀片数量是刀架数量的50
倍,乙厂家获得的利润是甲厂家的两倍,问这段时间内乙厂家销售了多少把刀架?多少片刀
片?
【答案与解析】
解:设这段时间内乙厂家销售了x把刀架.
依题意,得(0.55-0.05)·50x+(1-5)x=2×(2.5—2)×8400,
解得x=400.
销售出的刀片数:50×400=20000(片).
答:这段时间内乙厂家销售了400把刀架,20000片刀片.
【总结升华】本题的相等关系为:甲厂家利润×2=乙厂家利润.
举一反三:
【高清课堂:一元一次方程复习 393349 一元一次方程的解法和应用例6】
【变式】某文具店为促销X型计算器,优惠条件是一次购买不超过10个,每个38元,超
过10个,超过部分每个让利2元(即每个36元),问李老师用812元共买了多少个?
【答案】
解:设李老师用812元共买了x个,依题意可得:
381036(10)812x
解得:22x
答:李老师用812元共买了22个.