余数和同余

合集下载

同余问题巧解

同余问题巧解

常出现的【同余同和】问题解决方法
核心问题:
1、余同【余同取余】
如一个数除以4余1,除以5余1,除以6余1,
4,5,6的最小公倍数是60,这个数可表示为60N+1 2、和同【和同加和】
一个数除以4余3,除以5余2,除以6余1,得到的除数、余数的和相同都为7,这个数可表示为60N+7
3、差同【差同减差】
一个数除以4余1,除以5余2,除以6余3,得到的除数、余数的差相同为3,这个数可表示为60N-3
例:一个三位数除以9余7,除以5余2,除以4余3,这样的三位数共有()
问:如果本题用不上同余和和同呢?
解答:这个问题曾经捆饶我很久,你可以换个思路
【1】除以5余2,除以4余3 看做一项5+2=4+3 (和同加和)
5 和4 公倍数是20所以为20N+7
【2】再用20N+7和9余7 看着一个整体(余同取余) 20和9的公倍数为180
所以180N+7
180*1+7,180*2+7, 180*3+7,180*4+7,180*5+7,共5个数。

2.1 同余的概念与基本性质

2.1  同余的概念与基本性质

2 同余同余是由大数学家高斯引入的一个概念.我们可以将它理解为“余同”,即余数相同.正如奇数与偶数是依能否被2整除而得到的关于整数的分类一样,考虑除以m (≥2)所得余数的不同,可以将整数分为m 类.两个属于同一类中的数相对于“参照物”m 而言,具有“余数相同”这个性质.这种为对比两个整数的性质,引入一个参照物的思想是同余理论的一个基本出发点.同余是初等数论中的一门语言,是一件艺术品.它为许多数论问题的表述赋予了统一的、方便的和本质的形式.2.1 同余的概念与基本性质定义 如果a 、b 除以m (≥1)所得的余数相同,那么称a 、b 对模m 同余,记作a ≡b (mod m ).否则,称a 、b 对模m 不同余,记作a b ≡(mod m ).性质1 a ≡b (mod m )的充要条件是|m a b -.性质2 若a ≡b (mod m ),c ≡d (mod m ),则a +c ≡b +d (mod m ),a -c ≡b -d (mod m ),ac ≡bd (mod m ). 证明 这些结论与等式的一些相关结论极其相似,它们都容易证明.我们只给出第3个式子的证明. 只需证明:|m ac bd -.因为ac -bd =ac -bc +bc -bd=(a -b )c +b (c -d )由条件|m a b -,|m c d -,知|m ac bd -.说明 与同余有关的许多结论都要用到性质1,事实上,很多数论教材中利用性质1来引入同余的定义.性质3 若a ≡b (mod m ),n 为正整数,则()mod n n a b m ≡.性质4 若a ≡b (mod 1m ),a ≡b (mod 2m ),则a ≡b (mod [1m ,2m ]).性质5 若ab ≡ac (mod m ),则()mod m b c a m ⎛⎫≡ ⎪ ⎪⎝⎭,. 在同余式两边约去一个数时,应将该数与m 的最大公因数在“参照物”中同时约去.性质6 如果(a ,m )=1,那么存在整数b ,使得ab ≡1(mod m ).这个b 称a 对模m 的数论倒数,记为()1mod a m -,在不会引起误解时常常简记为1a -.证明 利用贝祖定理,可知存在整数x 、y 使得ax +my =1.于是,|1m ax -,即()1mod ax m ≡,故存在符合条件的b . 说明 由数论倒数的定义,易知当(a ,m )=1时,()()11mod aa m ≡--.例1 求所有的素数p 、q 、r (p ≤q ≤r ),使得pq +r ,pq +2r ,qr +p ,qr +2p ,rp +q ,rp +2q 都是素数. 解:若p >2,则p 、q 、r 都是奇数,此时pq +r 是一个大于2的偶数,矛盾,故p =2.现在,数2q +r ,2q +2r ,qr +2,qr +4,2r +q ,2r +2q 都是素数.若q 、r 中有偶数,则qr +2为一个大于2的偶数,矛盾,故q 、r 都是奇素数.若q >3,则3qr .此时,若()1mod3qr ≡,则()20mod3qr ≡+,与qr +2为素数矛盾;若qr ≡2()mod3,则()40mod3qr ≡+,与qr +4为素数矛盾,故q =3.这样,数6+r ,6+2r ,3r +2,3r +4,2r +3,2r +9都是素数.若r ≠5,则()0mod5r ≡,但分别当1r ≡,2,3,4(mod5)时,对应地,数3r +2,3r +4,2r +9,6+r 为5的倍数,矛盾,故r =5.直接验证,可知它们满足条件,所求的素数为p =2,q =3,r =5.例2 设n 为大于1的正整数,且1!,2!,…,n !中任意两个数除以n 所得的余数不同.证明:n 是一个素数.证明:注意到,()!0mod n n ≡,而n =4时,有2!()3mod4≡!.因此,如果能够证明:当n 为大于4的合数,都有()()1!0mod n n ≡-,就能依题中的条件导出矛盾,从而证出n 为素数.事实上,若n 为大于4的合数,则可对n 作分解,变为下述两种情形.情形一 可写n =pq ,2≤p <q ,p 、q 为正整数,这时1<p <q <n -1,从而()|1!pq n -, 即()()1!0mod n n ≡-.情形二 当2n p =,p 为素数时,由n >4,知p ≥3,故11<p <2q <(n -1),从而p · (2p ) ()|1!n -,于是,()()1!0mod n n ≡-.综上可知,n 只能是素数.说明 反过来,当n 为素数时,并不能保证1!,2!,…,n !中任意两个数对模n 不同余.例如p =5时,()31mod5≡!!.例3 设整数x 、y 、z 满足()()()x y y z z x x y z ---=++. ①证明:x +y +z 是27的倍数.证明:考虑x 、y 、z 除以3所得的余数,如果x 、y 、z 中任意两个对模3不同余,那么()0120mod3x y z ≡≡++++,但是()()()3x y y z z x ---,这与①矛盾.现在x 、y 、z 中必有两个对模3同余,由对称性,不妨设()mod3x ≡,这时由①式知 3|x y z ++,于是 ()()2mod3z x y x x ≡≡≡-+-,这表明 ()mod3x y z ≡≡,从而由①式知 27|x y z ++.例4 是否存在19个不同的正整数,使得在十进制表示下,它们的数码和相同,并且这19个数之和为1999?解:此题需要用到一个熟知的结论:在十进制表示下,每个正整数与它的数码和对模9同余.(这个结论只需利用()101mod9k ≡即可得证)若存在19个满足条件的不同正整数,则由它们的数码和相同(设这个相同的数码和为k ),可知()199919mod9k ≡,故()1mod9k ≡.又这19个数之和为1999,故其中必有一个数不大于199919,即有一个数≤105,所以k ≤18.结合()1mod9k ≡,知k =1或10. 若k =1,则这19个数为1,10,100,…,和不可能为1999,所以,k =10.而当k =10时,最小的数码和为10的20个正整数是19,28,37,…,91,109,118,127,…,190,208.前面19个数之和为1990,故符合要求的19个正整数中必有一个≥208,此时这19个数之和≥208+(19+28+…+91)+(109+118+127+…+181)=2198>1999, 矛盾.所以不存在19个不同的整数满足条件.例5 设m 、n 、k 为正整数,n ≥m +2,k 为大于1的奇数,并且×21np k =+为素数, 2|21m p +.证明:()121mod n k p ≡-.证明:由条件知()221mod mp ≡-,而n ≥m +2,故12m +是12n n •-的因数,所以, ()()122211mod n t n p •≡--=(这里22n m t n •--=). 现在,由()21mod n k p •≡-,知()()111222211mod n n n n k p ••≡----=,结合上面的结论,即可得()121mod n k p ≡-.说明 本题的背景是讨论费马数(形如221m m F =+的数为费马数)的素因数的性质.例6 设m 为正整数,证明:存在整数a 、b 、k ,使得a 、b 都是奇数,而k ≥0,并且2011201122m a b k •=++. ①证明:①式等价于(在左边不小于右边的情形下)()201120112mod 2m a b =+. ② 我们先证明:满足②的奇数a 、b 是存在的.注意到,对任意奇数x 、y ,有()()111110910x y x y x x y y ⋯-=-+++,上式右边10910x x y y ⋯+++是11个奇数之和,它应为奇数,因此,()111120110mod 2x y ≡- ()2011mod 2x y ⇔≡.这表明:在2011mod 2的意义下,数20111,20113,…,20111121(-)是 数1,3,5,…,201121-的一个排列,从而,存在奇数0b ,使得()112011021mod 2b m ≡-.现在,取一个充分小的负奇数b ,使得 ()20110mod 2b b ≡,且1121m b --≥0,则 ()11112011021210mod 2m b m b ≡≡----,于是,令()1120112112m b a b k b ⎛⎫ ⎪⎝⎭--,,=,,,则符合①.所以,满足条件的a 、b 、k 存在.。

小学奥数知识点:余数问题

小学奥数知识点:余数问题

小学奥数知识点:余数问题
余数、同余与周期
一、同余的定义:
①若两个整数a、b除以m的余数相同,则称a、b对于模m同余。

②已知三个整数a、b、m,如果m|a-b,就称a、b对于模m同余,记作a≡b(mod m),读作a同余于b模m。

二、同余的性质:
①自身性:a≡a(mod m);
②对称性:若a≡b(mod m),则b≡a(mod m);
③传递性:若a≡b(mod m),b≡c(mod m),则a≡ c(mod m);
④和差性:若a≡b(mod m),c≡d(mo d m),则a+c≡b+d(mod m),a-c≡b-d(mod m);
⑤相乘性:若a≡ b(mod m),c≡d(mod m),则a×c≡ b×d(mod m);
⑥乘方性:若a≡b(mod m),则an≡bn(mod m);
⑦同倍性:若a≡ b(mod m),整数c,则a×c≡ b×c(mod m×c);
三、关于乘方的预备知识:
①若A=a×b,则MA=Ma×b=(Ma)b
②若B=c+d则MB=Mc+d=Mc×Md
四、被3、9、11除后的余数特征:
①一个自然数M,n表示M的各个数位上数字的和,则M≡n(mod 9)或(mod
3);
②一个自然数M,X表示M的各个奇数位上数字的和,Y表示M的各个偶数数位上数字的和,则M≡Y-X或M≡11-(X-Y)(mod 11);
五、费尔马小定理:如果p是质数(素数),a是自然数,且a不能被p整除,则ap-1≡1(mod p)。

数论之同余问题

数论之同余问题
13903及14589时能剩下相同余数的最大整数是
因为13903 13511 392,14589 13903 686,
由于13511,13903,14589要被同一个数除时,
余数相同,那么,它们两两之差必能被同一个数整 除.(392,686) 98,所以所求的最大整数是98.
(2003年南京市少年数学智力冬令营试题)22003与
定理,我们可以得到:这个数一定能整除这三个数
【解析】我们知道18,33的最小公倍数为[18,33]=198,
所以每198个数一次.
1〜198之间只有1,2,3,…,17,198(余0)
这18个数除以18及33所得的余数相同,
而999±198=5…•…9,所以共有5X18+9=99个
这样的数.
【巩固】(2008年仁华考题)一个三位数除以17和19都有余 数,并且除以17后所得的商与余数的和等于它除 以19后所得到的商与余数的和.那么这样的三位 数中最大数是多少,最小数是多少?
1998,2000,2003
2000,2003,2001,1995,1998,2000,2003,2001,1995.
[例4】(2005年全国小学数学奥林匹克试题)有一个整
数,用它去除70,110,160所得到的3个余数之
和是50,那么这个整数是.
【解析】(70 110 160) 50 290,50 316……2,除数应当是290的大于
【解析】设这个三位数为s'它除以17和19的商分别为a和b,余数分别为m和n,则s 17a m 19b n.
根据题意可知a m b n,所以s am s b n,即16a 18b,得8a 9..所以a是9的倍数,b是8的倍数.此时,
由于s为三位数,最小为100,最大为999,所以

同余定理公式

同余定理公式

同余定理公式
中国古代数学家张丘建在《九章算术》中提出了同余定理,它是一种有用的数学定理,用
于解决模数运算中的问题。

同余定理的公式是:若a ≡ b (mod n),则a和b在模n下同余。

同余定理的公式表明,当两个数a和b模n同余时,它们之间的差值可以被n整除。


意味着,如果a和b模n同余,那么a-b可以被n整除,即a-b=kn,其中k是一个整数。

同余定理的应用非常广泛,它可以用来解决模数运算中的问题。

例如,假设有一个模数运
算问题,要求求出满足条件a ≡ b (mod n)的所有整数a和b。

这时,可以使用同余定理的
公式来解决这个问题。

除此之外,同余定理还可以用来解决求余数的问题。

例如,假设有一个求余数的问题,要
求求出a除以n的余数。

这时,可以使用同余定理的公式来解决这个问题,即a ≡ b (mod n),其中b就是a除以n的余数。

此外,同余定理还可以用来解决求模的问题。

例如,假设有一个求模的问题,要求求出a
除以n的模。

这时,可以使用同余定理的公式来解决这个问题,即a ≡ b (mod n),其中b
就是a除以n的模。

另外,同余定理还可以用来解决求最大公约数的问题。

例如,假设有一个求最大公约数的问题,要求求出a和b的最大公约数。

这时,可以使用同余定理的公式来解决这个问题,即a ≡ b (mod n),其中n就是a和b的最大公约数。

总之,同余定理是一种有用的数学定理,它可以用来解决模数运算、求余数、求模和求最大公约数等问题。

它的公式是:若a ≡ b (mod n),则a和b在模n下同余。

余数问题

余数问题

【小升初奥数知识点讲解】余数问题
余数、同余与周期
一、同余的定义:
①若两个整数a、b除以m的余数相同,则称a、b对于模m 同余。

②已知三个整数a、b、m,如果m|a-b,就称a、b对于模m 同余,记作ab(mod m),读作a同余于b模m。

二、同余的性质:
①自身性:aa(mod m);
②对称性:若ab(mod m),则ba(mod m);
③传递性:若ab(mod m),bc(mod m),则a c(mod m);
④和差性:若ab(mod m),cd(mod m),则a+cb+d(mod m),a-cb-d(mod m);
⑤相乘性:若a b(mod m),cd(mod m),则ac bd(mod m);
⑥乘方性:若ab(mod m),则anbn(mod m);
⑦同倍性:若a b(mod m),整数c,则ac bc(mod mc);
三、关于乘方的预备知识:
①若A=ab,则MA=Mab=(Ma)b
②若B=c+d则MB=Mc+d=McMd
四、被3、9、11除后的余数特征:
①一个自然数M,n表示M的各个数位上数字的和,则Mn(mod
9)或(mod 3);
②一个自然数M,X表示M的各个奇数位上数字的和,Y表示M的各个偶数数位上数字的和,则MY-X或M11-(X-Y)(mod 11);
五、费尔马小定理:如果p是质数(素数),a是自然数,且a不能被p整除,则ap-11(mod p)。

小学五年级奥数—数论之同余问题

数论之同余问题余数问题是数论知识板块中另一个内容丰富,题目难度较大的知识体系,也是各大杯赛小升初考试必考的奥数知识点,所以学好本讲对于学生来说非常重要。

许多孩子都接触过余数的有关问题,并有不少孩子说“遇到余数的问题就基本晕菜了!”余数问题主要包括了带余除法的定义,三大余数定理(加法余数定理,乘法余数定理,和同余定理),及中国剩余定理和有关弃九法原理的应用。

知识点拨:一、带余除法的定义及性质:一般地,如果a是整数,b是整数(b≠0),若有a÷b=q……r,也就是a=b×q+r,0≤r<b;我们称上面的除法算式为一个带余除法算式。

这里:r=时:我们称a可以被b整除,q称为a除以b的商或完全商(1)当0r≠时:我们称a不可以被b整除,q称为a除以b的商或不完全商(2)当0一个完美的带余除法讲解模型:如图,这是一堆书,共有a本,这个a就可以理解为被除数,现在要求按照b本一捆打包,那么b就是除数的角色,经过打包后共打包了c捆,那么这个c就是商,最后还剩余d本,这个d就是余数。

这个图能够让学生清晰的明白带余除法算式中4个量的关系。

并且可以看出余数一定要比除数小。

二、三大余数定理:1.余数的加法定理a与b的和除以c的余数,等于a,b分别除以c的余数之和,或这个和除以c的余数。

例如:23,16除以5的余数分别是3和1,所以23+16=39除以5的余数等于4,即两个余数的和3+1.当余数的和比除数大时,所求的余数等于余数之和再除以c的余数。

例如:23,19除以5的余数分别是3和4,故23+19=42除以5的余数等于3+4=7除以5的余数,即2.2.余数的乘法定理a与b的乘积除以c的余数,等于a,b分别除以c的余数的积,或者这个积除以c所得的余数。

例如:23,16除以5的余数分别是3和1,所以23×16除以5的余数等于3×1=3。

当余数的和比除数大时,所求的余数等于余数之积再除以c的余数。

余数性质及同余定理答案

知识框架一、带余除法的定义及性质1. 定义:一般地,如果a是整数,b是整数(b工0若有a4)=q••…r,也就是a= b X q+ r,0奇v b ;我们称上面的除法算式为一个带余除法算式。

这里:(1)当r 0时:我们称a可以被b整除,q称为a除以b的商或完全商(2)当r 0时:我们称a不可以被b整除,q称为a除以b的商或不完全商一个完美的带余除法讲解模型:如图屈这是一堆书,共有a本,这个a就可以理解为被除数,现在要求按照b本一捆打包,那么b就是除数的角色,经过打包后共打包了c捆,那么这个c就是商,最后还剩余d本,这个d就是余数。

这个图能够让学生清晰的明白带余除法算式中4个量的关系。

并且可以看出余数一定要比除数小。

2. 余数的性质⑴ 被除数除数商余数;除数(被除数余数)商;商(被除数余数)除数;⑵余数小于除数.二、余数定理:1.余数的加法定理a与b的和除以c的余数,等于a,b分别除以c的余数之和,或这个和除以c的余数。

例如:23, 16除以5的余数分别是3和1 ,所以23+16 = 39除以5的余数等于4,即两个余数的和3+1. 当余数的和比除数大时,所求的余数等于余数之和再除以c的余数。

例如:23, 19除以5的余数分别是3和4,所以23+19 = 42除以5的余数等于3+4=7除以5的余数为22.余数的加法定理a与b的差除以c的余数,等于a,b分别除以c的余数之差。

例如:23, 16除以5的余数分别是3和1,所以23 —16= 7除以5的余数等于2,两个余数差3- 1当余数的差不够减时时,补上除数再减。

例如:23, 14除以5的余数分别是3和4 , 23- 14= 9除以5的余数等于4,两个余数差为3 + 5-4 =43.余数的乘法定理a与b的乘积除以c的余数,等于a,b分别除以c的余数的积,或者这个积除以c所得的余数。

例如:23, 16除以5的余数分别是3和1,所以23X 16除以5的余数等于3X1= 3。

小学奥数 数论 余数问题 同余问题.题库版

1. 学习同余的性质2. 利用整除性质判别余数同余定理 1、定义:若两个整数a 、b 被自然数m 除有相同的余数,那么称a 、b 对于模m 同余,用式子表示为:a ≡b ( mod m ),左边的式子叫做同余式。

同余式读作:a 同余于b ,模m 。

2、重要性质及推论:(1)若两个数a ,b 除以同一个数m 得到的余数相同,则a ,b 的差一定能被m 整除例如:17与11除以3的余数都是2,所以1711 ()能被3整除. (2)用式子表示为:如果有a ≡b ( mod m ),那么一定有a -b =mk ,k 是整数,即m |(a -b )3、余数判别法当一个数不能被另一个数整除时,虽然可以用长除法去求得余数,但当被除位数较多时,计算是很麻烦的.建立余数判别法的基本思想是:为了求出“N 被m 除的余数”,我们希望找到一个较简单的数R ,使得:N 与R 对于除数m 同余.由于R 是一个较简单的数,所以可以通过计算R 被m 除的余数来求得N 被m 除的余数.⑴ 整数N 被2或5除的余数等于N 的个位数被2或5除的余数;⑵ 整数N 被4或25除的余数等于N 的末两位数被4或25除的余数;⑶ 整数N 被8或125除的余数等于N 的末三位数被8或125除的余数;知识点拨教学目标5-5-3.同余问题⑷整数N被3或9除的余数等于其各位数字之和被3或9除的余数;⑸整数N被11除的余数等于N的奇数位数之和与偶数位数之和的差被11除的余数;(不够减的话先适当加11的倍数再减);⑹整数N被7,11或13除的余数等于先将整数N从个位起从右往左每三位分一节,奇数节的数之和与偶数节的数之和的差被7,11或13除的余数就是原数被7,11或13除的余数.例题精讲模块一、两个数的同余问题【例 1】有一个整数,除39,51,147所得的余数都是3,求这个数.【考点】两个数的同余问题【难度】1星【题型】解答【解析】(法1) 39336-=,51-3=48,1473144-=,(36,144)12=,12的约数是1,2,3,4,6,12,因为余数为3要小于除数,这个数是4,6,12;(法2)由于所得的余数相同,得到这个数一定能整除这三个数中的任意两数的差,也就是说它是任意两数差的公约数.513912-=,14739108-=,(12,108)12=,所以这个数是4,6,12.【答案】4,6,12【例 2】某个两位数加上3后被3除余1,加上4后被4除余1,加上5后被5除余1,这个两位数是______. 【考点】两个数的同余问题【难度】2星【题型】填空【关键词】2003年,人大附中,分班考试【解析】“加上3后被3除余1”其实原数还是余1,同理这个两位数除以4、5都余1,这样,这个数就是[3、4、5]+1=60+1=61。

16.第十六讲 数论(4) 余数问题——带余除式与同余定理

第十六讲数论(4)余数问题——带余除式与同余定理知识点汇总:例题练习:1、已知2008被一些自然数去除,余数都是10。

这样的自然数共有______个。

【举一反三】用一自然数去除另一整数,商40余16,被除数、除数、商与余数的和为933。

求被除数和除数各是多少?2、一个自然数除429、791、500所得余数分别是a+5、2a、a。

求这个自然数与a的值。

【举一反三】有一个大于1的整数,除以45、59、101所得余数相同,求这个数。

3、1357911131517…103除以9余______。

4、利用余数性质求余数:20092009除以9余______。

5、利用除数分拆求余数:20042004200420042004L 14444244443÷45余______。

【本讲重要内容回顾】小试牛刀1.一个两位数除310,余数是37,这样的两位数有( )A .21和33B .91和33C .39和21D .39和912.一个大于1的数去除290,235,200时,得余数分别为a ,a +2,a +5,则这个自然数是( )?A .17B .18C .19D .203.将1至2008这2008个自然数,按从小到大的次序依次写出,得一个多位数:12345678910111213…20072008,试求这个多位数除以9的余数是( )A .1B .2C .3D .44.20032与22003的和除以7的余数是________。

A .5B .4C .3D .05.将自然数1,2,3,4,……依次写下去,若最终写到2000,成为123……19992000,那么这个自然数除以36的余数是( )A .0B .10C .2D .12。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

小升初奥数综合训练
(十八+十九)余数和同余

【知识要点】
1、 例如:37÷5=7……2,四者之间的数量关系:被除数=除数×商+余数
2、 同余的概念:两个整数,被同一个大于1的整数m除,所得余数如果相同,那么,这两个整数对于除数m来说
是同余的。例如:14和26这两个数虽然大小不同,但它们分别除以6所得的余数相同,我们把14和26叫做
关于模6同余。
3、 同余最基本的性质是:几个同余式(模相同)相加、减、乘、乘方仍然同余。
【典型例题】
例1、 两个整数相除商8,余16;并且被除数、除数、商及余数的和是463.那么被除数是多少?

例2、 被3除余2,被5除余3,被7除余4的最小自然数是多少?

例3、 五(3)班同学上体育课,排成3行少1人,排成4行多3人,排成5行少1人,排成6行多5人,
问上体育课的同学最少多少名?

例4、 小刚在一次计算除法时,把被除数171错写成117,结果商少了3而余数恰好相同,这题中的除数
是几?

【精英班】例5、有一个三位数,其中个位上的数是百位上的数的3倍,且这个三位数除以5余4,除以11余3.这
个三位数是多少?

【竞赛班】例6、11+22+33+44+55+66+77+88+99除以3的余数是多少?
【课后分层练习】
A组:入门级
1、 被2、3、5除都余1,且不等于1的最小整数是多少?

2、 两个整数相除得商数是12,余数是26.被除数、除数、商数及余数的和等于454,除数是多少?
小升初奥数综合训练
3、 有民兵在操场上列队,只知人数在90~110之间,排成三列无余,排成五列不足2人,排成七列不足4人,共

有民兵多少人?

4、 一个整数除300、262、205,得到相同的余数,问这个整数是几?

5、 某个月里有三个星期日的日期为偶数,请你推算出这个月的15日式星期几?
B组:进阶级
1、甲、乙两数的和是1088,甲数除以乙数商11余32,求甲、乙两数。

2、有一个整数,用它去除70,110,160得到的三个余数之和是50。求这个数。
4、 求478×296×351除以17的余数。
5、在10000以内,除以3余2,除以7余3,除以11余4的数有几个?
C组:挑战级
1、甲、乙两个代表团乘车去参观,每辆车可乘36人。两代表团坐满若干辆车后,甲代表团余下的11人与乙代表
团余下的成员正好又坐满一辆车。参观完,甲代表团的每个成员与乙代表团的每个成员两两合拍一张照片留念。如
果每个胶卷可拍36张照片,那么拍完最后一张照片后,相机里的胶卷还可拍几张照片?

2、学校要安排66名新生住宿,小房间可以住4人,大房间可以住7人,需要多少间大、小房间,才
能正好将66名新生安排下?

3、已知2008被一些自然数除,得到余数都是10,这些自然数共有多少个?

相关文档
最新文档