复合三角函数求最值

合集下载

三角函数最值的求解策略(解析版)

三角函数最值的求解策略(解析版)

三角函数最值的求解策略【高考地位】三角函数的最值或相关量的取值范围的确定始终是三角函数中的热点问题之一,所涉及的知识广泛,综合性、灵活性较强。

解这类问题时要注意思维的严密性,如三角函数值正负号的选取、角的范围的确定、各种情况的分类讨论、及各种隐含条件等等。

求三角函数的最值常用方法有:配方法、化一法、数形结合法、换元法、基本不等式法等等。

在高考各种题型均有出现如选择题、填空题和解答题,其试题难度属中档题. 【方法点评】方法一 化一法使用情景:函数表达式形如 f (x )a sin 2 xb cos 2 xc sin x cos xd 类型解题模板:第一步 运用倍角公式、三角恒等变换等将所给的函数式化为形如 ya sin xb cos xc 形式;第二步 利用辅助角公式a sin x b cos xa sin(x) 化为只含有一个函数名的形式;第三步 利用正弦函数或余弦函数的有界性来确定三角函数的最值.x4x cos4例1 已知函数 fx 在 x 0 ,2上的最x,则 f大值与最小值之差为 .【答案】3i n 2 2 s i n x2x66 , 76,即为换元思想,把2x6 看作一个整体,利用 ysin x 的单调性即可得出最值,这是解决 y a sin xb sin x 的常用做法.【变式演练1】设当x时,函数 f (x )2sin xcos x 取得最大值,则cos__________.【变式演练2】已知函数 f (x ) 4cos x sin(x )1(0) 的最小正周期是.6(1)求 f (x ) 的单调递增区间;3(2)求 f (x ) 在[ , ]上的最大值和最小值.【答案】58 8【答案】(1) 6 k , 3k k Z ; (2) 最大值2 、最小值 622所以 f x 在8 , 38上的最大值和最小值分别为2 、 6 2 2 .考点:1、三角函数的恒等变换;2、函数 yA sinx 的性质;【变式演练3】已知函数 f (x ) sin xa cos x 图象的一条对称轴是 x,且当 x(2) 当 3,88x时, 72,612 12x2sin 262fx x,4时,函数g(x) sin x f (x) 取得最大值,则cos.【答案】5【解析】考点:1、三角函数的图象与性质;2、三角恒等变换.2 x sin2 x) 2cos2(x ) 1的定义域为[0,]. 【变式演练4】已知 f (x) 3(cos4 2 (1)求 f (x) 的最小值.(2)ABC中, A 45 ,b 32 ,边a的长为函数3 3 f (x) 的最大值,求角 B 大小及ABC的面积.【答案】(1)函数 f (x) 的最小值 3 ;(2) ABC的面积S 9(3 1) .【解析】考点:1、三角恒等变形;2、解三角形.x x) 3cos 2 x 3 .【变式演练5】已知函数 f (x) cos(2(I)求 f (x) 的最小正周期和最大值;2(II)求 f (x) 在[ , ]上的单调递增区间.6 3【答案】(I) f (x) 的最小正周期为,最大值为1;(II)[, 5].6 12【解析】试题分析:(I )利用三角恒等变换的公式,化简 f x sin(2x ) ,即可求解 f (x )35的最小正周期和最大值;(II )由 f (x ) 递增时,求得kx k(kZ ),12125即可得到 f (x ) 在[ , ]上递增.6 12 试题解析: f (x ) (-cos x )()31cos2x 3221sin2x3 cos2x sin(2x)223(I ) f (x ) 的最小正周期为,最大值为1;(II ) 当 f (x ) 递增时,2k2x 2k (k Z ),2 325即kxk(kZ ),12125 所以, f(x ) 在[ ,]上递增 6 12 25即 f (x ) 在[ , ]上的单调递增区间是[ , ]6 3 6 12考点:三角函数的图象与性质.方法二 配方法使用情景:函数表达式可化为只含有一个三角函数的式子 解题模板:第一步先将所给的函数式化为只含有一个三角函数的式子,通常采取换元法将其变为多项式函数;第二步 利用函数单调性求解三角函数的最值. 第三步 得出结论.例2 函数 f (x ) cos 2x2sin x 的最小值为.函数 ycos 2 xa sin xa 22 a5有最大值2,【变式演练6】已知求实数a 的值.【答案】 a【解析】 试题分析: ysin 2 x a sin x a 2 2 a 6 ,令sin x t ,t 1,1,则 yt 2ata 22 a6 ,对称轴为ta ,【答案】考点:三角函数的最值.【点评】解本题的关键是利用换元法转化为关于sin x的二次函数,根据sin x 的取值范围[-1,1],利用对称轴进行分类讨论求出最大值,解出a的值.【变式演练7】函数 f x sin x cos x 2sin x cos x x4, 4 的最小值是__________.【答案】1【解析】f(x)=sinx+cosx+2sinxcosx,x∈ 4 , 4 ,化简f(x)=(sinx+cosx)2+sinx+cosx﹣1设sinx+cosx=t,则t=2sin(x)x+ ,那么函数化简为:g(t)=t2+t﹣1.∵x∈ 4 , 4t 1.∵函数g(t)=t2+t﹣1.∴x+ ∈[0,],所以:04 21开口向上,对称轴t=-,∴0 t 1是单调递增.2当t=0时,g(t)取得最小值为-1.求函数y 74sin x cos x4cos2 x4cos4 x的最大值与最小值.方法三直线斜率法使用情景:函数表达式可化为只含有一个三角函数的式子解题模板:第一步先将所给的函数式化为只含有一个三角函数的式子,通常采取换元法将其变为多项式函数;第二步利用函数单调性求解三角函数的最值.第三步得出结论.【点评】若函数表达式可化为形如 yat t 21(其中t 1,t 2 为含有三角函数的式子), b则通过构造直线的斜率,通过数与形的转化,利用器几何意义来确定三角函数的最值.【高考再现】) f (x )1.【2017全国III 文,6】函数的最大值为(例 3 求函数2 sin2 cosx yx的最值 .【答案】2 sin 2 cosx y x的最大值为4 3,最小值为 4 3.【变式演练 8 】求函数 21sin 1 sinx yx在区间 [0,) 2上的最小值 . 【答案】 1sin(x )cos(x )A. B.1C.D.【答案】A所以选A.【考点】三角函数性质【名师点睛】三角恒等变换的综合应用主要是将三角变换与三角函数的性质相结合,通过变换把函数化为y A sin(x )B的形式再借助三角函数图象研究性质,解题时注意观察角、函数名、结构等特征2.【2016高考新课标1卷】已知函数 f (x )sin(x+)(0,),x 为24418,536单调,则的最大 f (x ) 的零点, x为 y f (x ) 图像的对称轴,且 f (x ) 在值为( )(A )11 (B )9(C )7 (D )5【答案】B考点:三角函数的性质【名师点睛】本题将三角函数单调性与对称性结合在一起进行考查,叙述方式新颖, 是一道考查能力的好题.注意本题解法中用到的两个结论:① fx A sin x A 0,0的单调区间长度是半个周期;②若 f xA sinx A0,0的图像关于直线 xx 0 对称,则 fx 0A 或fx 0A .3. 【2016年高考北京理数】将函数 ysin(2x ) 图象上的点P ( ,t ) 向左平移s3 4(s 0 ) 个单位长度得到点P ',若P '位于函数 ysin2x 的图象上,则()A.t1 ,s 的最小值为B.t 3,s 的最小值为2626C.t1,s 的最小值为D.t3,s 的最小值为2 323【答案】A 【解析】试题分析:由题意得,t sin(2) 1,故此时P '所对应的点为(,1) ,此4 3212 2时向左平移 - 个单位,故选A.4 126考点:三角函数图象平移【名师点睛】三角函数的图象变换,有两种选择:一是先伸缩再平移,二是先平移再伸缩.特别注意平移变换时,当自变量x 的系数不为1时,要将系数先提出.翻折变换要注意翻折的方向;三角函数名不同的图象变换问题,应先将三角函数名统一,再进行变换4.【2015高考陕西,理3】如图,某港口一天6时到18时的水深变化曲线近似满足函数 y 3sin(x )k ,据此函数可知,这段时间水深(单位:m )的最大值6为( )A .5B .6C .8D .10【答案】C5.【2015高考安徽,理10】已知函数 f xsinx(,,均为正的常数)的最小正周期为,当 x2时,函数 fx取得最小值,则下列结论正3 确的是( )(A ) f2f2f(B ) f 0 f 2 f2(C ) f2ff2(D ) f 2 f 0 f2【答案】A【考点定位】1.三角函数的图象与应用;2.函数值的大小比较.【名师点睛】对于三角函数中比较大小的问题,一般的步骤是:第一步,根据题中所给的条件写出三角函数解析式,如本题通过周期判断出,通过最值判断出,从而得出三角函数解析式;第二步,需要比较大小的函数值代入解析式或者通过函数图象进行判断,本题中代入函数值计算不太方便,故可以根据函数图象的特征进行判断即可.6.【2015高考湖南,理9】将函数f (x) sin 2x的图像向右平移(0 )个单2位后得到函数g(x) 的图像,若对满足 f(x1) g(x2) 2 的x1,x2,有x1x2 min ,3 则()5 A. B. C. D.12 3 4 6【答案】D.【考点定位】三角函数的图象和性质.【名师点睛】本题主要考查了三角函数的图象和性质,属于中档题,高考题对于三角函数的考查,多以f (x) A sin(x ) 为背景来考查其性质,解决此类问题的关键:一是会化简,熟悉三角恒等变形,对三角函数进行化简;二是会用性质,熟悉正弦函数的单调性,周期性,对称性,奇偶性等.7.【2017全国II文,13】函数f (x) 2cos x sin x 的最大值为 .【答案】1 【解析】试题分析:化简三角函数的解析式:f x 1cosx 3cosxcos x 3cos x14 cos x2321,x 0,2可得:cos x0,1,当cos x3时,函数 f x 取得最大值1。

三角函数最值问题常见的求解策略

三角函数最值问题常见的求解策略

三角函数最值问题常见的求解策略三角函数最值问题是三角函数学习中的难点之一.求三角函数的最值,往往要涉及二次函数、不等式等其他重要知识,是历年高考考查的热点之一.本文试对常见三角函数最值问题作归纳、梳理.1.y=asinx+b型应对策略:令t=sinx,化为求一次函数y=at+b在闭区间上的最值.例1 求函数y=-3sinx+2的最值.解 令t=sinx,则原式化为y=-3t+2,t∈[-1,1],得-1≤y≤5.故ymin=-1,ymax=5.2.y=asinx+bcosx+c型应对策略:引进辅助角φtanφ=b()a,化为y=a2+b槡2sin(x+φ)+c,再利用正弦、余弦函数的有界性.例2 已知x∈-π2,π[]2,求函数f(x)=5sinx+槡53cosx的最值.解 f(x)=5sinx+槡53cosx=10sinx+π()3,令t=x+π3,则y=10sint,t∈-π6,5π[]6.故当t=-π6时,sint有最小值-12,f(x)min=-5;当t=π2时,sint有最大值1,f(x)max=10.3.y=asin2x+bsinx+c型应对策略:令t=sinx,化为求二次函数y=at2+bt+c在闭区间上的最值.例3 求y=2sin2x+sinx+3-π2≤x≤π()6的最值.解 令t=sinx,则由-π2≤x≤π6,得t[∈-1,]12.于是y=2t2+t+3=2t+()142+238.当t=-14时,ymin=238;当t=-1或12时,ymax=4.4.y=asin2x+bsinxcosx+cos2x型应对策略:降次,整理化为类型2,求y=Asin2x+Bcos2x+c的最大值、最小值.例4 函数f(x)=6sinxcosx+8cos2x,求f(x)的周期与最大值.解 f(x)=3sin2x+4cos2x+4=5sin(2x+φ)+4.故周期T=π,f(x)最大值为9.5.y=asinxcosx+b(sinx±cosx)+c型应对策略:令t=sinx±cosx,化为求二次函数y=±a2(t2-1)+bt+c在t∈[-槡2,槡2]上的最值.例5 求函数y=(1+sinx)(1+cosx)的最值.解 y=1+sinxcosx+(sinx+cosx),令t=sinx+cosx,则y=1+t+t2-12=12(t+1)2,t∈[-槡2,槡2].当t=槡2时,ymax=3+槡222;当t=-1时,ymin=0.6.y=asinx+bcsinx+d型应对策略:反解出sinx,利用正弦函数的有界性或用分析法来求解.例6 求函数y=sinx-3sinx+3的最值.解法一:解出sinx=3(y+1)1-y,由|sinx|≤1,得-2≤y≤-12.解法二:(“部分分式”分析法)原式=1-6sinx+3,再由|sinx|≤1,解得-2≤y≤-12.故ymin=-2,ymax=-12.7.y=asinx+bccosx+d型 十种特殊条件下的 三角恒等变换□韩玉宝 三角变换的关键在于发现题目中条件与结论之间在角、函数名称、次数这三方面的差异及联系,然后通过角变换、函数名称变换、升降幂变换等方法找到已知式与所求式之间的联系.三角变换的方法很多,本文将课本中出现的特殊条件下的一些变换方法归纳如下:一、条件或所求中出现“sinα+cosα”,将其平方.例1 设α∈(0,π),sinα+cosα=713,求tanα的值.解 将sinα+cosα=713两边平方,得sinαcosα=-60169,两式联立解得sinα=1213,cosα=-513,从而tanα=-125.二、已知tanα,求asin2α+bsinαcosα+ccos2α的值,先将asin2α+bsinαcosα+ccos2α除以(sin2α+cos2α)(即1),然后分子、分母同除以cos2α.例2 已知tanα=2,求sin2α+3sinαcosα+4的值.解 sin2α+3sinαcosα+4=sin2α+3sinαcosα+4sin2α+cos2α=tan2α+3tanα+4tan2α+1=145.三、化简1+sin槡α,1-sin槡α,1+cos槡α,1-cos槡α,引用倍角公式或将1用平方代换.应对策略:化归为y′=Asinx+Bcosx型求解或用数形结合法(常用到直线斜率的几何意义).例7 求函数y=sinxcosx+2的最大值及最小值.解法一:将原式ycosx-sinx+2y=0化为y2+槡1sin(x+φ)=-2y,即sin(x+φ)=-2yy2+槡1,由|sin(x+φ)|≤1,得-2yy2+槡1≤1,解得-槡33≤y≤槡33.故ymin=-槡33,ymax=槡33.解法二:函数y=sinxcosx+2的几何意义为点P(-2,0)与点Q(cosx,sinx)连线的斜率k,而点Q的轨迹为单位圆,如右图,可知-槡33≤k≤槡33.故ymin=-槡33,ymax=槡33.8.y=asinx+bsinx型应对策略:转化为利用函数y=ax+bx的单调性求最值.例8 求函数y=sinx+4sinxx∈0,π(]()2的最小值.解 令t=sinx,x∈0,π(]2,则y=t+4t,t∈(0,1].利用函数y=ax+bx的单调性得,函数y=t+4t在t∈(0,1]上为单调递减函数.故当t=1时,ymin=5.巩固练习1.若函数y=2sinx+槡acosx+4的最小值为1,求a的值.2.求函数y=-2cos2x+2sinx+3的值域.3.求函数y=(sinx+槡3)(cosx+槡3)的最值.(参考答案见第41页)由π4-α=π12-()α+π6,可得cosα-π()4=-槡3+4310.故所求值为:槡-33+20350.《常见三角函数最值问题的求解策略》1.a=5. 2.y∈12,[]5. 3.ymax=72槡+6,ymin=72槡-6.《十种特殊条件下的三角恒等变换》1.略. 2.116.《“整体思维”巧解三角恒等变换题》1.5972. 2.±712. 3.5665. 4.14. 5.1.《例谈构造法在三角问题中的妙用》1.提示:解析式看作是动点P(cosx,sinx)与定点Q(3,0)连线的斜率,为此构造直线斜率这一几何模型处理.y=sinxcosx-3最小值为-槡24,最大值为槡24.2.提示:已知条件可视为关于sinα2的一元二次方程模型去证明.3.提示:构造几何模型将条件化为(1-cosβ)cosα-sinβsinα+cosβ-32=0.因为点(cosα,sinα)在直线(1-cosβ)x-sinβy+cosβ-32=0上,同时也在圆x2+y2=1上,所以直线和圆有公共点,故d≤r,即cosβ-32(1-cosβ)2+sin2槡β≤1,整理得cosβ-()122≤0,即cosβ=12.又β为锐角,所以β=π3.同理α=π3.《向量问题的几何解法》1.a21+a22=b21+b22. 2.120°. 3.槡6.《一道课本向量题的探究与应用》1.设→AG=→ mGC,→ FG=→ nGE,则→ BG=→ BA+→mBC1+m.又→BG=→ BF+→ nBE1+n=→ BA+→ AF+→nBE1+n=→BA+13→ AD+n2→ BC1+n=→ BA+13+n()2→BC1+n.故11+m=11+n,m1+m=13+n21+烅烄烆n m=n=23.从而→AG=23→ GC,→ AG=25→ AC.单元测试参考答案1.1 2.5665 3.③ 4.槡459 5.116 6.[槡-3,槡3] 7.2 8.π2 9.槡2-12 10.d1d211.因为sinC=sin(A+B)=sinAcosB+cosAsinB,所以sinAcosB=cosAsinB,即sin(A-B)=0.所以三角形是等腰三角形.12.原式=2sin50°+2sin80°cos10°12cos10°+槡32()sin10°槡2cos5°=2sin50°+2sin80°cos10°cos(60°-10°)槡2cos5°=2槡22sin50°+槡22()cos50°cos5°=2cos(50°-45°)cos5°=2.13.因为tanα+β2=槡62,所以cos(α+β)=1-tan2α+β21+tan2α+β2=-15,即cosαcosβ-sinαsinβ=-15.①又因为tanαtanβ=137,所以sinαsinβcosαcosβ=137,即13cosαcosβ-7sinαsinβ=0②联立①、②,解得cosαcosβ=730,sinαsinβ=1330.。

三角函数中的最值问题(4种方法)

三角函数中的最值问题(4种方法)

三角函数中的最值问题(4种方法)基本方法1、直接法:形如f (x )=a sin x +b (或y =a cos x +b ),值域为[-|a |+b ,|a |+b ],形如y=asinx+bcsinx+c 的函数可反解出sinx,利用|sinx|≤1求解,或分离常数法.2、化一法:形如f (x )=a sin x +b cos x ,f (x )=a sin 2x +b cos 2x +c sin x cos x 的函数可化为f (x )=A sin(ωx +φ)的形式,利用正弦函数的有界性求解,给定x 范围时要注意讨论ωx +φ的范围,注意利用单位圆或函数图象.3、换元法:形如f (x )=a sin 2x +b sin x +c 或f (x )=a cos 2x +b sin x +c 或f (x )=a (sin x ±cos x )+b sin x ·cos x 的函数可通过换元转化为二次函数在某区间上的值域求解.4、几何法(数形结合):形如dx c bx a y ++=cos sin 转化为斜率问题,或用反解法.典型例题例1已知函数f (x )=(sin x+cos x )2+cos 2x ,求f (x )在区间.解:(化一法)因为f (x )=sin 2x+cos 2x+2sin x cos x+cos 2x=1+sin 2x+cos 2x=2sin 2 +1,当x ∈0,2 ∈由正弦函数y=sin x 当2x+π4π2,即x=π8时,f (x )取最大值2+1;当2x+π45π4,即x=π2时,f (x )取最小值0.综上,f (x )在0,上的最大值为2+1,最小值为0.例2求函数y =2+sin x +cos x 的最大值.解:(化一法)y =2+2sin(x +π4),当x =π4+2k π(k ∈Z )时,y max =2+2例3求函数f (x )=cos2x +6cos(π2-x )的最大值.解:(换元法)f (x )=1-2sin 2x +6sin x =-2(sin x -32)2+112.令sin x =t ,则t ∈[-1,1],函数y =-2(t -32)2+112在[-1,1]上递增,∴当t =1时,y 最大=5,即f (x )max =5,例4已知x 是三角形的最小内角,求函数y =sin x +cos x -sin x cos x 的最小值.解:(换元法)由0≤x ≤π3,令t =sin x +cos x =2sin(x +π4),又0<x ≤π3,∴π4<x +π4≤712π,得1<t ≤2;又t 2=1+2sin x cos x ,得sin x cos x =t 2-12,得y =t -t 2-12=-12(t -1)2+1,例5已知sin α+sin β=22,求cos α+cos β的取值范围.解:(换元法)令cos α+cos β=t ,则(sin α+sin β)2+(cos α+cos β)2=t 2+12,即2+2cos(α-β)=t 2+12⇒2cos(α-β)=t 2-32,∴-2≤t 2-32≤2⇒-12≤t 2≤72,∴-142≤t ≤142,即-142≤cos α+cos β≤142.例6求函数y =1+sin x3+cos x的值域解法一:(几何法)1+sin x3+cos x可理解为点P (-cos x ,-sin x )与点C (3,1)连线的斜率,点P (-cos x ,-sin x )在单位圆上,如图所示.故t =1+sin x3+cos x满足k CA ≤t ≤k CB ,设过点C (3,1)的直线方程为y -1=k (x -3),即kx -y +1-3k =0.由原点到直线的距离不大于半径1,得|1-3k |k 2+1≤1,解得0≤k ≤34.从而值域为[0,34].解法二:(反解法)由y =1+sin x3+cos x 得sin x -y cos x =3y -1,∴sin(x +φ)=3y -11+y2其中sin φ=-y 1+y 2,cos φ=11+y 2.∴|3y -11+y2|≤1,解得0≤y ≤34.例7求函数y =2sin x +1sin x -2的值域解法一:(分离常数法)y =2sin x +1sin x -2=2+5sin x -2,由于-1≤sin x ≤1,所以-5≤5sin x -2≤-53,∴函数的值域为[-3,13].解法二:(反解法)由y =2sin x +1sin x -2,解得sin x =2y +1y -2,∵-1≤sin x ≤1,∴-1≤2y +1y -2≤1,解得-3≤y ≤13,∴函数的值域为[-3,13].针对训练1.函数y =3-2cos(x +π4)的最大值为____.此时x =____.2.函数xxy cos -3sin -4的最大值为.3.函数f (x )=sin 2x+3cos ∈的最大值是.4.函数y =12+sin x +cos x的最大值是【解析】1.函数y =3-2cos(x +π4)的最大值为3+2=5,此时x +π4=π+2k π(k ∈Z ),即x =3π4+2k π(k ∈Z ).2.解析式表示过A (cos x ,sin x ),B (3,4)的直线的斜率,则过定点(3,4)与单位圆相切时的切线斜率为最值,所以设切线的斜率为k ,则直线方程为y-4=k (x-3),即kx-y-3k+4=+11,∴k max3.由题意可知f (x )=1-cos 2x+3cos x-34=-cos 2x+3cos x+14=-cos -+1.因为x ∈0,cos x ∈[0,1].所以当cos f (x )取得最大值1.4.∵y =12+2sin (x +π4),又2-2≤2+2sin(x +π4)≤2+2∴y ≤12-2=1+22,含参问题一、单选题1.已知函数()sin cos (0,0)62af x x x a πωωω⎛⎫=++>> ⎪⎝⎭,对任意x ∈R ,都有()f x ≤,若()f x 在[0,]π上的值域为3[2,则ω的取值范围是()A.11,63⎡⎤⎢⎥⎣⎦B.12,33⎡⎤⎢⎣⎦C.1,6⎡⎫+∞⎪⎢⎣⎭D.1,12⎡⎤⎢⎥⎣⎦【解析】()sin cos 62af x x x πωω⎛⎫=++ ⎪⎝⎭1cos 2a x x ωω++max ()f x =02a a >∴= ,())3f x x πω∴=+0,0x πω≤≤> ,333x πππωωπ∴≤+≤+,3()2f x ≤ 2233πππωπ∴≤+≤,1163ω∴≤≤.故选:A2.已知函数()()cos 0f x x x ωωω=+>,当()()124f x f x -=时,12x x -最小值为4π,把函数()f x 的图像沿x 轴向右平移6π个单位,得到函数()g x 的图像,关于函数()g x ,下列说法正确的是()A.在,42ππ⎡⎤⎢⎣⎦上是增函数B.其图像关于直线6x π=对称C.在区间,1224ππ⎡⎤-⎢⎥⎣⎦上的值域为[]2,1--D.函数()g x 是奇函数【解析】因()()cos 2sin 06f x x x x πωωωω⎛⎫=+=+> ⎪⎝⎭,当()()124f x f x -=时,12x x -最小值为4π,则()f x 的最小正周期为22T ππω==,即4ω=,所以()2sin 46f x x π⎛⎫=+ ⎪⎝⎭,把函数()f x 的图像沿x 轴向右平移6π个单位,得()2sin 42sin 42cos 46662f x g x x x x ππππ⎡⎤⎛⎫⎛⎫⎛⎫-=-+=-=- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦=,所以,()g x 为偶函数,故D 选项不正确;由4,k x k k Z πππ≤≤+∈,即,44k k x k Z πππ+≤≤∈,故()g x 在区间(),44k k k Z πππ+⎡⎤∈⎢⎥⎣⎦上为减函数,所以()g x 在区间,42ππ⎡⎤⎢⎥⎣⎦上为减函数,故A选项不正确;由4,2x k k Z ππ=+∈,即,48k x k Z ππ=+∈,所以()g x 图像关于,48k x k Z ππ=+∈对称,故B选项不正确;当,1224x ππ⎡⎤∈-⎢⎥⎣⎦时,4,36x ππ⎡⎤∈-⎢⎣⎦,则()21g x -≤≤-,所以C 选项正确.故选:C.3.已知函数()()sin 04f x x πωω⎛⎫=-> ⎪⎝⎭,0,2x π⎡⎤∈⎢⎥⎣⎦的值域是⎡⎤⎢⎥⎣⎦,则ω的取值范围是()A.30,2⎛⎤ ⎥⎝⎦B.3,32⎡⎤⎢⎥⎣⎦C.73,2⎡⎤⎢⎥⎣⎦D.57,22⎡⎤⎢⎥⎣⎦【解析】因为0>ω,所以当0,2x π⎡⎤∈⎢⎥⎣⎦时,[,]4424x ππωππω-∈--因为函数()()sin 04f x x πωω⎛⎫=-> ⎪⎝⎭,0,2x π⎡⎤∈⎢⎥⎣⎦的值域是⎡⎤⎢⎥⎣⎦所以52244πωπππ≤-≤,解得332ω≤≤,故选:B.4.已知函数()(2)f x x ϕ=+22ππϕ-≤≤,若()0f x >在5(0,)12π上恒成立,则3(4f π的最大值为()B.0C.D.2-【解析】因为5(0,)12x π∈,故52(,)6x πϕϕϕ+∈+;由()0f x >,即1sin(2)2x ϕ+>-,得722266k x k πππϕπ-+<+<+,k Z ∈,故57(,)(2,2)666k k πππϕϕππ+⊆-++,k Z ∈,故2657266k k πϕπππϕπ⎧≥-+⎪⎪⎨⎪+≤+⎪⎩,解得2263k k πππϕπ-+≤≤+,k Z ∈;又22ππϕ-≤≤,故63ππϕ-≤≤,5.已知曲线()sin cos f x x m x ωω=+,()m R ∈相邻对称轴之间的距离为2π,且函数()f x 在0x x =处取得最大值,则下列命题正确的个数为()①当0,126x ππ⎡⎤∈⎢⎥⎣⎦时,m的取值范围是⎣;②将()f x 的图象向左平移04x 个单位后所对应的函数为偶函数;③函数()()y f x f x =+的最小正周期为π;④函数()()y f x f x =+在区间00,3x x π⎛⎫+ ⎪⎝⎭上有且仅有一个零点.故33()()42f ππϕϕ⎡⎤+++-⎢⎥⎣⎦,故3()4f π的最大值为0.故选:BA.1B.2C.3D.4【解析】函数()f x 的相邻对称轴之间的距离为2π,则周期为22T ππ=⨯=,∴22πωπ==,()sin 2cos 2f x x m x =+)x ϕ=+,其中cos ϕ=,sin ϕ=[0,2)ϕπ∈,()f x 在0x 处取最大值,则022,2x k k Z πϕπ+=+∈,0222k x πϕπ=+-,k Z ∈,①若0[,]126x ππ∈,则[2,2]63k k ππϕππ∈++,1sin 2ϕ≤≤,12解m ≤正确.②如()sin(28f x x π=+,0316x π=时函数取最大值,将()f x 的图象向左平移04x 个单位后得313()sin[2(4)sin(2)1688g x x x πππ=+⨯+=+,不是偶函数,错;③()()y f x f x =+中,()y f x =是最小正周期是π,()y f x =的最小正周期是2π,但()()y f x f x =+的最小正周期还是π,正确;④003[,44x x x ππ∈++时,()()0y f x f x =+=,因此在区间00,3x x π⎛⎫+ ⎪⎝⎭上有无数个零点,错;∴正确的命题有2个.故选:B.6.已知函数()cos 4cos 12=+-xf x x 在区间[0,]π的最小值是()A.-2B.-4C.2D.4【解析】22()cos 4cos 12cos 14cos 12(cos 1)42222x x x x f x x =+-=-+-=+-,由[0,]x π∈知,[0,]22x π∈,cos [0,1]2x ∈,则当x π=时,函数()f x 有最小值min ()2f x =-.故选:A.7.已知()cos31cos xf x x=+,将()f x 的图象向左平移6π个单位,再把所得图象上所有点的横坐标变为原来的12得到()g x 的图象,下列关于函数()g x 的说法中正确的个数为()①函数()g x 的周期为2π;②函数()g x 的值域为[]22-,;③函数()g x 的图象关于12x π=-对称;④函数()g x 的图象关于,024π⎛⎫⎪⎝⎭对称.A.1个B.2个C.3个D.4个【解析】()()cos 2cos311cos cos x x xf x x x+=+=+cos 2cos sin 2sin 12cos 2cos x x x x x x -=+=.即:()2cos 2f x x =且,2x k k Z ππ≠+∈.()2cos(4)3g x x π=+且,62k x k Z ππ≠+∈.①因为函数()g x 的周期为2π,因此①正确.②因为,62k x k Z ππ≠+∈,故() 2.g x ≠-因此②错误.③令4,3x k k Z ππ+=∈,得,124k x k Z ππ=-+∈.故③正确k ππ二、填空题8.函数()2sin()sin()2sin cos 66f x x x x x ππ=-++在区间[0,2π上的值域为__________.【解析】由11(x)sinx cosx)(sinx cosx)sin 2x2222f =-++22312(sin x cos x)sin 2x 44=-+2231sin cos sin 222x x x=-+11cos 2sin 22x x =--+1x )24π=-当[0,]2x π∈时,2[,]444x ππ3π-∈-,则sin(2)[42x π-∈-,所以11(x)[,22f ∈-.故答案为:11[,22-9.若函数()()2cos 2cos 202f x x x πθθ⎛⎫=++<< ⎪⎝⎭的图象过点()0,1M ,则()f x 的值域为__________.【解析】由题意可得()02cos 2cos 02cos 211f θθ=+=+=,得cos 20θ=,02πθ<<,02θπ∴<<,22πθ∴=,则4πθ=,()22cos cos 2cos 22sin 2sin 2sin 12f x x x x x x x π⎛⎫∴=++=-=--+ ⎪⎝⎭2132sin 22x ⎛⎫=-++ ⎪⎝⎭,令[]sin 1,1t x =∈-,则213222y t ⎛⎫=-++ ⎪⎝⎭.当12t =-时,该函数取最大值,即max 32y =,当1t =时,该函数取最小值,即min 3y =-.因此,函数()y f x =的值域为33,2⎡⎤-⎢⎥⎣⎦.故答案为:33,2⎡⎤-⎢⎥⎣⎦.10.函数32()sin 3cos ,32f x x x x ππ⎛⎫⎡⎤=+∈- ⎪⎢⎥⎣⎦⎝⎭的值域为_________.【解析】由题意,可得()3232ππf x sin x 3cos x sin x 3sin x 3,x ,,32⎡⎤=+=-+∈-⎢⎥⎣⎦,令t sinx =,t ⎡⎤∈⎢⎥⎣⎦,即()32g t t 3t 3=-+,t ⎡⎤∈⎢⎥⎣⎦,则()()2g't 3t 6t 3t t 2=-=-,当t 0<<时,()g't 0>,当0t 1<<时,()g't 0>,即()y g t =在⎡⎤⎢⎥⎣⎦为增函数,在[]0,1为减函数,又g ⎛=⎝⎭()g 03=,()g 11=,故函数的值域为:⎤⎥⎣⎦.11.(2019·广东高三月考(文))函数()cos 2|sin |f x x x =+的值域为______.【解析】2219()cos 2|sin |12|sin ||sin |2|sin |48f x x x x x x ⎛⎫=+=-+=--+ ⎪⎝⎭,所以当1sin 4x =时,()f x 取到最大值98,当sin 1x =时,()f x 取到最小值0,所以()f x 的值域为90,8⎡⎤⎢⎥⎣⎦故答案为:90,8⎡⎤⎢⎥⎣⎦。

三角函数最值问题求解

三角函数最值问题求解

三角函数最值问题求解作者:李秀林来源:《试题与研究·教学论坛》2016年第20期摘要:本文对中学数学中常见三角函数最值问题做了归纳总结,从具体函数实例出发,列举了几种常用的解题思想方法.关键词:三角函数;最值;方法;构造三角函数是重要的数学运算工具之一,三角函数最值问题是三角函数中的基本内容,也是高中数学中经常涉及的问题。

这部分内容是一个难点,它对三角函数的恒等变形能力及综合应用要求较高。

解决这一类问题的基本途径,同求解其他函数最值一样,一方面应充分利用三角函数自身的特殊性,另一方面还要注意将求解三角函数最值问题转化为求一些我们所熟知的函数最值问题。

下面就介绍几种常见的求三角函数最值的方法:1.用三角函数的有界性求最值在三角函数中,正弦函数和余弦函数有一个最基本也最重要的特征—有界性.利用正弦函数和余弦函数的有界性是求解三角函数最基本的方法.3.三角函数中的几何方法例6:求函数y=(0解:将函数表达式y=,y可以看作连结两点A(2,0)与点B(cosx,sinx)的直线斜率,由于点B(cosx,sinx)的轨迹是单位圆的上半圆,所以求y的最小值就是在这个圆上求一点.使得相应的直线斜率最小.设过点A的切线与半圆相切于点B,则kAB≤y所以y最小值-(此时x=),由于sin2x+cos2x=1,所以从图形的角度考虑,点B(sinx,cosx)在单位圆上,这样对一类既含有正弦函数又含有余弦函数的三角函数的最值可考虑用几何方法求得.三角函数最值问题类型繁多,所涉及的知识面广,解法灵活。

所以在解题过程中,注意函数表达式的内在特点,题型结构特征,选用恰当的求解策略和方法技巧,使解题过程简捷巧妙,收到事半功倍的效果。

参考文献:1.张国良.三角函数有界性的应用2.毛传宝.三角函数最值的几种求法(作者单位:云南省大理白族自治州弥渡县第一完全中学)。

三角函数最值求解常用“十策”

三角函数最值求解常用“十策”
- t
当 s x= 一 i n 1时 , = . Yi 6
评 注 : 果所 给 的 函数是 同名 不 同次或 可化 为 如
同名 不 同次及 其 它能够 进行 配方 的 形 式 , 可采 用 此
方法. 此种 方法在 求 三 角 函数 的值 域 或 最值 问题 中 较 为 常见 , 在 最后 讨论 值域 时 , 但 往往 容 易忽略 自变 量 ( l中以 s x为 自变量 ) 例 i n 的取 值 范 围 而 出现 错
・ . .

_ ; + 。 + cs 。i bo
COS + j X
, 一l OX . 且 ≤CS ≤1
= b+ ̄ a 口+ , b+( / 4 Ⅱ一b i 2 . ) s x n


当 CS OX=一l时 ,一 =1 Y , 当 CS OX=1 , : . 时 Y| 0 n
的最大 值.
>. 0解得÷≤ ≤ (≠ ) y 3y 1.

将 Y=1 人原方 程 解得 t 0= 代 a n 0∈R, 以 Y= 所
解由 = 1c 2 导 c 詈 :)s0 +s s ・s , ,i ( 。 i 。 n = n 2
再 拆项 变形 得
1 函数值. 是
所以 ) 3 =,i . 寺≤, , ≤ 故Y 3 = Y 1
+ ,
题, 分子、 分母的三角函数 同角、 同名 , 类三角 函数一 这
般 先化为部分分式 , 用三 角函数 的有 }去解 . 再利 生
4 换 元法
例 4 试 求 函数 Y=s x+CS i n OX+2i cs s xox+2 n 的最大 值 和最小值 .
评 注 : 用 三 角 函 数 的 有 界 性 如 IixI 1 利 n ≤ , s

三角函数的最值求法

三角函数的最值求法

三角函数的最值求法掌握三角函数的单调性和有界性,能够利用三角函数的单调性及有界性来求得一些三角函数的最大值和最小值,是近年高考的热点内容之一.三角函数的最值问题,其本质上是对含有三角函数的复合函数求最值,因此,求函数最值得方法都能适用.当然还其他特殊的方法.三角函数的最值都是在限定区间上取得的,因而要特别注意题设中所给的区间.求三角函数最值时,一般要进行一些代数变换和三角变换,要注意函数有意义的条件、弦函数的有界性及变换的等价性.选择适当的方法是解题的关键.下面就例谈几种解决三角函数最值的方法.题型一:用换元法求函数的最值例1:若,求函数的最小值.思路:注意到函数的特征,若用万能公式,能将它化为关于的有理函数,从而不难用判别式方法求解.解析:令=t,,,则,当t=-1时,y=0;当y 0时,由于t为实数,从而有或.由于,故函数的最小值为.点评:展开函数式,得到一个含有、的对称式,运用变换“”同样可解得上一题.题型二:用均值不等式法求函数的最值例2:已知,且,求的最大值.思路:在三角函数关系的条件下,要求得角的最值,一般应设法转化为求该角的某一三角函数的最值.依题意,本题可以优先求y的正切的最值.解析:,且,当且仅当,即时,,又函数在上单调递增,.点评:选函数来求的角的最值时,必须注意选定函数的单调性,若选定的函数与角的最值取得时刻相同时,解题较为方便.题型三:利用三角函数的有界性来求函数的最值例3:求函数的最小值,并求出取得最小值时x的值.思路:先化简函数,再由正、余弦函数的有界性来思考,同时应注意角度的限定范围.解析:由降幂公式和倍角公式,得== .的最小值是,此时.点评:形如(a、b、c、d为常数)的式子,都能仿照上例变形为形如的式子,从而有关问题可在变形式的基础上求解.另外,求最值时不能忽视对定义域的思考.例4:已知圆的半径为R,其内接三角形ABC有成立,求的面积S的最大值.解析:由已知式可得,.==当时,点评:利用三角函数的性质来求三角函数的最值问题,是最常见的基本方法.因此,在解题时要认真解题,看该题结构特点是否能化为一个三角函数式,若能,要充分利用所有三角函数公式化为一个三角函数式,从而利用三角函数性质,求出最值.望大家在解题时注意.题型四:转化为二次函数求函数的最值例5:是否存在实数,使得函数在闭区间上的最大值是1?若存在,求出对应的a值,若不存在,试说明理由.解析:=当时,若,即,则当时,(舍去)若即,则当时,即或(舍去),若,即,则当时,(舍去)综上所述,存在符合题设.点评:求包含参数的三角函数最值时,应根据三角函数或本身的取值范围来进行分类讨论.题型五:轮换对偶求函数的最值例6:已知、、为锐角,且,求函数的最小值.解析:由= ,令,结合,得+ -得,所以当且仅当时,等号成立.故.题型六:利用判别式法求函数的最值例7:求函数的最值.解析:原式化为即当时,得到当时,代入原方程综上.点评:求分式形式的含正、余切三角函数的最值时,应考虑到用判别式法来求得.题型七:利用斜率求函数的最值例8:求函数的最值.解析:设平面上两点的坐标为,,则AB的斜率为.又A为定点,B在单位圆上,故直线AB:是圆的切线时得k值为函数y的最值,此时点评:求分式形式含正、余弦的三角函数的最值时,应考虑巧用斜率来求得.求三角函数最值的方法有:配方法、化为一个角的三角函数、换元法、基本不等式法等.三角函数的最值都是在给定区间上取得的,因而要加更注意题设中所给出的区间.求三角函数的最值时,一般要进行一些三角变换以及代数换元,须注意函数有意义的条件和弦函数的有界性.在求包含参数函数的最值时,解题要注意参数的作用和影响.(陕西洋县城关中学)。

求复合三角函数最值时的几何解法(原稿)

求复合三角函数最值时的几何解法浙江省温州市乐清国际外国语学校 冯米鸿 325600关键词:三角函数 最值 几何 图像数学家拉格朗日说过“代数与几何两门学科一旦联袂而行,它们就会从对方吸收新鲜的活力,从而大踏步地走向各自的完美.”事实上,有些繁难的代数题,若我们根据题目的结构,联想、挖掘出它的几何背景,构造几何模型,把代数问题转换成几何问题讨论,往往能峰回路转,探索出十分巧妙的解法.求函数的最大值与最小值是高中数学代数部分的重要内容,也是高考中的常见题型,尤其是含有三角函数的复合函数的最值问题。

这类问题通常具有一定灵活性和变通性,考查的知识面广,信息综合性强,解法丰富多变。

面对这类问题我们除了可以通过三角函数的恒等变形,使变量归一、函数归一等代数方法解题之外,还可以发挥想象力和创新力,尝试从几何的角度来分析问题,建构几何模型解决问题。

现举例说明: 例1 求函数1sin 2cos x y x+=+的最大值及最小值.一、常见方法解法1:利用sin()A x ωϕ+的有界性求最值.2cos 1sin sin cos 12sin()sin y y x x x y x y x θθ+=+⇒-=-⎛⎫ ⇒+==- ⎝其中因为sin()1,x θ+≤1,≤整理得2340,y y -≤即40.3y ≤≤故m ax m in 4,0.3y y ==解法2:利用基本不等式求最值. 令tan,2x t =则由万能公式知22221sin ,cos ,11t t x x tt-==++代入原方程有:22222221sin 21221112cos 331txt t t t y tx ttt+++-+====+-++++22(1)1.(1)2(1)4t t t -=+-+-+当t >1时,2(1)41;43121t y t t -=+≤-++-当t =1时,1y =; 当t <1时,2(1)10.4121t y t t-=+≥-++-故m ax m in 4,0.3y y ==二、几何模型法解法3:利用目标函数的几何意义求最值. 令sin ,cos ,Y x X x ==则原式1,2Y y X +=+此时可以看成点(,)P x y 和(2,1)Q --两点连线的斜率,即求PQ 连线斜率的最大值及最小值.(,)P x y 满足221,X Y +=则转换成在圆221X Y +=上找一点,使其和(2,1)Q --连线的斜率为最大和最小,此时过(2,1)Q --向圆引切线,切线的斜率为最大和最小.设过Q 的切线方程为1(2),y k x +=+由1,d == 解得1240,,3k k ==故m ax m in 4,0.3y y ==点评:这是一道求含有三角函数的复合函数的最值的问题.解法1是三角函数求最值的常见解法,借助sin()y A x ωϕ=+的有界性,得到关与y 的不等式,由不等式的解得到y 的取值范围;解法2中通过三角函数的恒等变形,使变量归一;解法3通过对已知条件“22sin cos 1x x +=”的利用和隐含条件“1,2Y y X +=+此时可以看成点(,)P x y 和(2,1)Q --两点连线的斜率,即求PQ 连线斜率的最大值及最小值”的挖掘,将原代数问题几何图像化.例2 求函数xx y sin 22sin +=,(0,),x ∈π的最小值一、常见方法解法1: 因为(0,),x ∈π所以, sin (0,1),x ∈ ⎪⎭⎫ ⎝⎛++=+=x x x xx y sin 3sin 1sin 21sin 22sin . 由2sin 22sin ≥+xx 且xsin 3在sin (0,1)x ∈上是减函数.所以当且仅当sin 1x =,即2x π=时,以上两式同时取最小值.所以m in 52y =.解法2: 因为(0,),x ∈π所以sin 0x >,⎪⎭⎫ ⎝⎛++++=+=x x x x x xx y sin 1sin 1sin 1sin 1sin 21sin 22sin25s i n 125s i n 1s i n 521534≥=⎪⎭⎫⎝⎛⨯≥xx x .当且仅当sin 1x =,即2x π=时,m in 52y =.利用函数的单调性解法3: 令sin t x =, 因为(0,),x ∈π 所以(0,1)t ∈. 令tt t f 22)(+=,易证)(t f 在(0,1)上为减函数.所以当1t =即2x π=时, m in 5()2f t =, 即m in 52y =.解法4: xx y sin 22sin +==42sin sin 22+⎪⎭⎫ ⎝⎛-x x,因为2sin sin 2x x-在sin (0,1)x ∈上是减函数,且2sin sin 2x x->0,所以当sin 1x =,即2x π=时,m in 52y =.解法5:⎥⎥⎦⎤⎢⎢⎣⎡++⎪⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛+=+=2sin 3sin 1sin 21sin 4sin 21sin 22sin 2x x x x x xx y252sin 321≥⎪⎭⎫⎝⎛+≥x .显然以上两个“≥”均当sin 1x =时取“=”. 所以当sin 1x =,即2x π=时,m in 52y =.二、几何模型法 解法6: 令u =2sin x ,v =xsin 2,则uv =1, ( 0<u 21≤)于是问题就转化为双曲线弧uv =1,( 0<u 21≤)与直线u +v =y 有公共点时在v 轴上的截距y 的最小值 .由图易知,当直线过点⎪⎭⎫⎝⎛2,21时,m in 52y =. 解法7: 因为0sin )4(sinsin 4sin222---=+=x x xx y , 令u =sin x ,v =x 2sin , 则0)4(2---=u v y,(0<u ≤1),于是问题转化为求抛物线2u v =(0<u ≤1)弧上一点与交点(0,-4)连线的斜率的最小值.由图知,当取抛物线上的点(1,1)时,斜率最小.所以(2y )min =501)4(1=---,所以y min =25.点评:解法6和解法7都是通过变量代换和化简转化为常见代数式,通过代数式的特性联想到解析几何中的曲线方程,从而利用曲线的图像特征直观的解决问题. 相较于其他解法,这类几何解法更加直观、生动。

[方案]三角函数中的最大值与最小值

三 角 函 数 中 的 最 大 值 与 最 小 值湖南省南县一中 陈敬波(*****************)(413200)三角函数的最值问题是对三角函数的概念、图象与性质以及诱导公式、同角间的基本关系、两角的和与差公式的综合考查,也是函数思想的具体体现.解决三角函数的最值问题可通过适当的三角变换或代数换元,化归为某种三角函数或代数函数,再利用三角函数的有界性或常用的求函数最值的方法去处理,通常有以下六种类型.(1) sin y a x b =+(或cos y a x b =+)型的函数此类函数利用sin 1x ≤(或cos 1x ≤)即可求解,max min ||,|a|+b,y a b y =+=-显然这里x R ∈.例1.求sin cos 6y x x π⎛⎫=-⎪⎝⎭的最大值与最小值.解:111sin cos sin 2sin sin 2,6266264y x x x x ππππ⎡⎤⎛⎫⎛⎫⎛⎫=-=--=-- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦()max min 1111131,1.244244y y ∴=⨯-==⨯--=-(若不要求记忆和差与积互化公式,则按下列解法)解:21111cos 2cos cos cos cos 22222111111112cos 2sin 2cos 2sin 24442224264x y x x x x x x x x x x x x π⎫+=-=-=-⨯⎪⎪⎝⎭⎛⎫⎛⎫=--=⨯--=-- ⎪ ⎪⎝⎭⎝⎭()max min 1111131,1.244244y y ∴=⨯-==⨯--=-(2) sin cos y a x b x =+型的函数()αϕ+其中辅助角ϕ所在的象限由a,b 的符号确定,角ϕ的值由tan ba ϕ=确定.例2.当22x ππ-≤≤时,函数()sin f x x x =的( )A. 最大值是1,最小值是-1 B. 最大值是1,最小值是-121C. 最大值是2,最小值是-2 D. 最大值是2,最小值是-1解析:()sin 2sin .3f x x x x π⎛⎫==+⎪⎝⎭()()max min 5,,22636,,2,3261,,2 1.3622x x x x f x x x f x πππππππππππ-≤≤∴-≤+≤∴+===⎛⎫+=-=-=⨯-=- ⎪⎝⎭故选(D)(3) 22sin sin cos cos y a x b x x c x =++型的函数此类函数可先降次,再整理转化为()sin y A x B ωϕ=++的形式来解决.例3.求22sin 2sin cos 3cos y x x x x =++的最小值,并求y 取最小值时的x 的集合.解:()22222sin 2sin cos 3cos sin cos 2sin cos 2cos y x x x x x x x x x=++=+++()1sin 21cos 2sin 2cos 2224x x x x x π⎛⎫=+++=++=++ ⎪⎝⎭,∴当sin 214x π⎛⎫+=- ⎪⎝⎭即()322,428x k x k k Z πππππ+=-+=-∈时,y 取最小值2,使y 取最小值的x 的集合为3|,.8x x k k Z ππ⎧⎫=-∈⎨⎬⎩⎭(4) 2sin cos y a x b x c =++型的函数此类函数可转化为形如()211y At Bt C t =++-≤≤的二次函数,从而讨论其最值.例4.求函数2cos 2sin y x a x a =--(a 为定值)的最大值M.解: ()()2222cos 2sin 1sin 2sin sin 1.y x a x a x a x a x a a a =--=---=-++-+令sin x t =,则()()221||1.y t a a a t =-++-+≤如下图(1)若-a<-1,即a>1,则当t=-1时,有最大值M=-(-1+a)2+a 2-a+1=a;(2)若-1≤-a ≤1,即-1≤a ≤1,则当t=-a 时,有最大值M=a 2-a+1;(3)若-a>1,即a<-1,则当t=1时,有最大值M=-3a.注:本例借助函数思想,把所求的问题转化为给定区间上的二次函数的最值问题.(5) sin cos a x cy b x d+=+型的函数此类函数可转化为()()sin x g y ϕ+=去处理,或利用万能公式换元后用判别去处理.例5.求下列函数的最大值与最小值.()()()3cos 2cos 1;2.2sin 2cos x xy y x R x x-+==∈+-解:(1)原函数可变形为sin cos 32,y x x y +=-即()sin x ϕ+=又()|sin |1x ϕ+≤()22213213128022y y y y y ≤⇔-≤+⇔-+≤⇔≤≤故所求最小值与最大值分别为:2(2)原函数可转化为()21cos ,1y x y -=+则()221131030,1y y y y -≤⇒-+≤+解得min max 113,, 3.33y y y ≤≤∴==(6) 巧用换元法转化为代数函数的最值问题① 对于含有s i n c o s ,s i n c o x x x x ±的函数的最值问题,常用的解决方法是令sin cos ,x x t ±=||t ,将sin cos x x 转化为t 的关系式,最终化归为二次函数或其他函数的最值问题.例6.已知0a <≤求函数()()sin cos y x a x a =++的最值解: ()()()2sin cos sin cos sin cos y x a x a x x a x x a=++=+++设sin cos x x t +=,则21||cos ,2t t x x -≤=()222211122t y at a t a a -⎡⎤∴=++=++-⎣⎦.当t a =-时,2min 12a y -=;当t =, 2max 1.2y a =++例7.求函数sin 21sin cos xy x x =+-的最大值与最小值.解: sin 22sin cos 1sin cos 1sin cos x x xy x x x x==+-+-令:sin cos ,x x t -=则||t ≤且1t ≠-原函数变为:211.1t y t t-==+-则[11)(1,1y ∈--min max 11y y ==② 首先利用换元法转化为代数函数by ax x=+,再利用函数的单调性求最值.例8.已知1sin cos ,0,sin cos 2y x x x x x π⎛⎫=+∈ ⎪⎝⎭,求y 的最小值.解析:令11sin cos sin 2,0,,(0,]222u x x x x u π⎛⎫==∈∈ ⎪⎝⎭则11,(0,].2y u u u =+∈由函数的单调性的定义易证1y u u =+在1(0,]2u ∈上是减函数,min 152.22y ∴=+=。

三角函数的最值


∴f(x) 的单调递增区间为 [k- 3 , k+ ](kZ); 6 (2)由 2x+ = 得 x= [0, 2 ], 6 6 2 故当 x= 时, f(x) 取最大值 3+a. 由题设 3+a=4, ∴a=1. 6
5.设 [0, ], 且 cos2+2msin-2m-2<0 恒成立, 求 m 的取 2 值范围. 解:由已知 0≤sin≤1 且 1-sin2+2msin-2m-2<0 恒成立. 令 t=sin, 则 0≤t≤1 且 1-t2+2mt-2m-2<0 恒成立. 即 f(t)=t2-2mt+2m+1=(t-m)2-m2+2m+1>0 对 t[0, 1] 恒成立. 故可讨论如下: (1)若 m<0, 则 f(0)>0. 即 2m+1>0. 解得 m>- 1 , ∴- 1 <m<0; 2 2 (2)若 0≤m≤1, 则 f(m)>0. 即 -m2+2m+1>0. 亦即 m2-2m-1<0. 解得: 1- 2<m<1+ 2 , ∴0≤m≤1; (3)若 m>1, 则 f(1)>0. 即 0m+2>0. ∴mR, ∴m>1. 综上所述 m>- 1. 即 m 的取值范围是 (- 1 , +∞). 2 2
∴当 t=-1, 即 x= 时, y 取最大值 27. 当 t= 2 , 即 x= 时, y 取最小值 20-8 2 4 .
5.已知函数 f(x)=2asin2x-2 3 asinxcosx+a+b(a0) 的定义域 为[0, ], 值域为 [-5, 1], 求常数 a, b 的值. 2 解: f(x)=a(1-cos2x)- 3 asin2x+a+b =-a(cos2x+ 3 sin2x)+2a+b

三角函数最值问题的几种常见类型

三角函数最值问题的几种常见类型三角函数是重要的数学运算工具,三角函数最值问题是三角函数基础知识的综合应用,近几年的高考题中经常出现,这部分内容是一个难点。

三角函数的最值问题不仅与三角自身的所有基础知识密切相关,而且与代数中的二次函数、一元二次方程、不等式及某些几何知识的联系也很密切。

因此,三角函数的最值问题的求解,不仅需要用到三角函数的定义域、值域、单调性、图象以及三角函数的恒等变形,还经常涉及到函数、不等式、方程以及几何计算等众多知识。

这类问题往往概念性较强,具有一定的综合性和灵活性。

学生在解题时,常常出现解题思路不清楚,难以抓住最值问题的本质,不能给予恰如其分的分析。

因此有必要让学生对求三角函数的最值求解的方法有个总体的认识,以培养学生的数学解题能力和思维能力。

下面介绍几种典型的三角函数最值问题的类型。

?И?1 y=asin x +b(或y=a cos x+b)型的函数这种类型的函数的特点是含有正弦或者余弦函数,并且是一次式。

解这类的三角函数的最大值、最小值问解这类三角函数的最值问题时首先要让学生知道最值都是在给定的区间上取得的,因而要特别注意题设中所给出的区间或是挖掘题中的隐含条件。

例1:求y=sin6x+cos6x的最值。

解:y=(sin2x+cos2x) ( sin4x-sin2x cos2x+cos4x)=(sin2x+cos2x)2-3sin2x cos2x=1-34 sin22x=1-3 8 (1-cos4x)=58+38cos4x∴当x= Kπ2(k ∈z)时,有ymax=1当x= Kπ2+π4(k ∈z)时,有ymin= 14点评:求三角函数的最值时,常常通过恒等变换,而恒等变换,一般要综合运用同角三角函数间的关系、和角、半角、半角的三角函数及和差化积、积化和差公式。

2 y=asinx+bcosx型的函数这种类型的函数的特点是含有正余弦函数,并且是一次式。

解决此类问题的指导思想是把正、余弦函数转化为只有一种三角函数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

复合三角函数求最值
复合三角函数是由两个或多个三角函数组合而成的函数。

在数学中,我们经常需要求解复合三角函数的最值,这是因为这些函数在实际问题中经常出现,例如在物理、工程和经济学中。

我们需要了解什么是复合三角函数。

复合三角函数是由两个或多个三角函数组合而成的函数,例如sin(cos(x))或cos(sin(x))。

这些函数可以通过使用三角函数的基本性质和公式来简化。

接下来,我们需要知道如何求解复合三角函数的最值。

通常,我们可以使用微积分的方法来求解最值。

具体来说,我们可以使用导数来找到函数的最值点。

最值点是函数的局部最大值或局部最小值。

为了找到最值点,我们需要计算函数的导数。

对于复合三角函数,我们可以使用链式法则来计算导数。

链式法则告诉我们,如果
y=f(g(x)),那么y' = f'(g(x)) * g'(x)。

因此,我们可以将复合三角函数看作是一个外层函数和一个内层函数的组合,然后使用链式法则来计算导数。

一旦我们计算出函数的导数,我们就可以找到函数的最值点。

最值点是导数为零的点或导数不存在的点。

我们可以使用一些技巧来找到这些点,例如使用牛顿法或二分法。

我们需要检查最值点是否是函数的最大值或最小值。

我们可以使用二阶导数测试来确定这一点。

如果二阶导数为正,那么最值点是函
数的局部最小值;如果二阶导数为负,那么最值点是函数的局部最大值。

求解复合三角函数的最值是一个重要的数学问题。

我们可以使用微积分的方法来找到函数的最值点,并使用二阶导数测试来确定最值点是否是函数的最大值或最小值。

这些技巧在实际问题中经常使用,例如在物理、工程和经济学中。

相关文档
最新文档