连续搅拌釜式反应器的自适应预测控制器的设计

连续搅拌釜式反应器的自适应预测控制器的设计
连续搅拌釜式反应器的自适应预测控制器的设计

连续搅拌釜式反应器的自适应预测控制器的设计

摘要:本文主要论述了自适应预测控制器的设计。该预测控制器模型是基于线性模型和运用适应机制设计而成的。它可以被应用于非线性系统。在回归最小二乘法的每一次抽样中,大家建议把区分线性函数模型的范围作为自适应技巧。这种方法可作为一种非线性MIMO 系统应用于某一CSTR,这一系统包含很多可以测量到的干扰因素。模拟可在正常工作状态或有干扰因素影响的的状态下进行。

关键词:模型预测控制自适应CSTR

1. 介绍

一些流程工业如化工和石化厂有特别的应用,简单的产品规格控制算法无法完全涉及控制和经济要求的每一个方面。其中的一些规格多是非线性的,互动的,多变的以及存在干扰因素的。然而,在这些系统的自动化等级结构中,先进过程控制的应用除使控制和产品达到要求外,还带来很大的经济利益。

任何先进过程控制法的支柱是模型预测控制[1]。MPC(模型预测控制),是指一种计算,它估算一系列不同可操控的调整,使某一工厂运行良好。它最初是为了满足特殊的控制需求的发电厂和石油精炼厂研制而成,现在被广泛应用于不同领域,包括化学品、石油化工、食品加工,汽车、航空航天、冶金、纸浆和造纸[2、3、4]。对于MPC的理论问题,几位作者发表了极棒的评论,提出了经销商对工业MPC技术的观点,并总结了未来可能会出现的发展。

考虑到系统的非线性、线性模型的弱点,使人们从1990年开始研究非线性模型在MPC 中的应用。到目前为止,许多MPC & NMPC方法的实施方案(非线性MPC)已经被报道。[2、4]这使我们对商业上可用的MPC和NMPC技术有了一个全面的了解。根据多种操作点新情况的发生的线性模型的改变是来扩展控制器非线性的线性系统的解决方案。

在本文中,我们把CSTR看作为一个高度非线性系统。我们的模型预测控制器是基于一种(汽车ARMAX回归滑动平均与外部输入)模型的时候它的参数根据新的操作条件变化在恰当的位置。可测扰动被考虑在控制器设计中。这种适应基于机制线性模型的参数根据输入、输出和可测扰动的价值观与递推最小二乘(~)的识别。在第二章所提到的自适应模型预测控制器。综述模型预测控制的考虑到的可测扰动见2.1节中提出的。适应机制的解释在第2.2

条。在部分所选的三个模型介绍了连续搅拌釜式反应器。仿真是在第四节的结果显示设计的对应用CSTR有效性算法和谈论的以上提到的方案。最后得出一些结论,5作为结束语。

2自适应模型预测控制。

2.1模型预测控制

模型预测控制的概念涉及到反复优化绩效目标,如(1)超过一个有限的视野延伸至一个未来的时间地平线上升到预测镍N2期。给出一个定分r(k + j),一个参考w(k + j)re-filtering,产生和在优化的MPC成本功能之中的使用。控制变量k + u(j),关于了地平线上的控制,得到解决成本函数。

y^(t+i)是预测的输出向量和△u是输入向量的增量。R和Q是加权矩阵,和N1、N2、N n必须调整为控制器参数。

假设一个ARMAX模型的形式(2)。在这个方程式,给出了y、u、w、ζ分别代表输出向量,输入向量,可测干扰和噪声信号分别。A、B、D、C是矩阵多项式。I(t)一个假定的不断干扰和Dd是矩阵多项式。I(t)和Dd建模的不断的术语所产生的线性化的非线性系统中被使用。

(C是假定单位矩阵即白色噪音)。在接下来的分析中我们假设对自由的预测方程与强迫

响应来解决一个丢番图方程。以下方法很相似的推广预测控制(GPC)。这些扩展是从方程3的扩展推导扩展中得到的。

(3)方程可以代表用一个压缩形式来代表,作为4

Y^=GU+HW+f

(4)

4的所有的条款不是用于(1),但是他们中的一部分,基于预测和控制视野,作为(5)都可以使用。

并考虑(5)的索引表现在:(1)和解决它,输入的控制增量以及实现,作为(6)

同时,6可以依据二次规划被解决即使系统变量存在。

2.2非线性系统的适应机制

为利用 2.1节方程的我们必须把非线性系统的描述线性化在每一步的时间。这个方案,是很高效的。为了增加控制器线性化的速度,能在大时间尺度进行,但在这种情况下的线性模型的准确性会根据所选的时间尺度被降低。线性化后,线性状态空间的离散化模型,它是转化为转移作为一个ARMAX函数描述模型的形式。在这个例子中,我们有一个模型如表格(2)与舒适度干扰和恒定的任期传递函数的假定的常数,那是产生干扰线性化的因素。现在方程(1 - 6)即可用于计算控制输入本程序是重复的,每次步骤[8]。这个方法是费时的如果一个精确的系统模型和是不真实的可用的或系统参数的时间不同,这种方法可以不工作在恰当的位置。

此外方程(1 - 6)可以提出了一种用于预测控制器的自适应模型。

因此,系统传递函数的参数的识别也可作为一个适应机制。在这种情况下该系统的参数可以用众所周知的方法——最小二乘法[9]来辨识。

在这里e(t)是一种白噪声的向量。

在每一步的时间新参数线性传递函数的计算方法基于以前的输入,输出的和可衡量的扰动来考虑的。(10),(11)是基于方程估计参数。在这些方程中,q?参数矩阵,p误差协方差矩阵和l是遗忘因子。

这些参数用于MPC的街区。在人生的第一步是线性化获得适当的初始表现价值观在辨识算法。如果数量的模型参数多,参数识别会使模型变坏而导致这种措施不能正常运行。

3连续搅拌釜式反应器

CSTR系统是一个高度非线性的过程对工艺控制工程师来说有几个有趣的特色。图(2) 显示封装的化学反应器(CSTR),一个二阶放热反应(2A B)发生,其中2组成一个不可逆反应,具体反应速率为k,形成一个产品B[10]。这个反应速率常数k根据阿累尼乌斯(12)决定。

T t在特定的反应速率k通常为指数。这个指数温度代表一个根据这一方程,温度的效果,()

R

最依赖性最强的的非线性化学工程系统之一。

这个CSTR的数学模型涉及质量平衡,其中痣的流动的成分进入系统,减去流动的痣的系统的速度,再加上形成的鼹鼠一个组件的形式的化学物质反应等于变率的鼹鼠一个组件的内部系统。这所表达的概念是(13)。第一定律提出的热力学第二定律能量守恒原理。这必须包含一个数学模型在反应焓平衡块,俺焓(水平衡的夹克流经夹克)。在这种情况下,内部的流动的能量注入系统,流量的内在能量减去的该系统,再加上热添加到系统反应的速率是平等的改变内部能量内系统。在反应的平衡质量所提供的(14),其余的封面上的由(15)。为更多的有关细节,其参数管理制度您可以参阅[10]。质量平衡在一个

在反应焓平衡系统[m].

焓平衡护套

图(2);连续搅拌釜式反应器

在这个系统中,我们考虑以下变量将随时间变化。控制输入变量:W(t):饲料质量流率(磅/分钟) Wj(t):水冷却速度的夹克(磅/分钟)输出:CA(t):反应期中反应物浓度和出口流(磅/呎3)

Tr(t):反应器的温度(o F)

要(t):可提供的出口夹克的温度(o F)

可测扰动:CAi(t):磁疗中反应物的浓度(磅/英国《金融时报》

3)

Tji(t):进口夹克的温度(o F)

三(t):输入反应温度(o F)点的跟踪设定值

一、出口反应物的浓度

预测控制器的温度跟踪设计是公司的目标。因为反应器的温度必须在安全范围内,在控制器的设计中要考虑到。该模型所提供的(12 - 15)表示为(16)。

线性方程(16)后是泰勒在操作及级数展开点(17)的表达式。在这种情况下我们有一个线性状态空间模型。

A,B,N分别是系统矩阵、控制输入矩阵和可测干扰输入矩阵。No是一个不断n+1矩阵(n是许多状态变量)从线性化,将会从运行点附近的线性化中产生,因为非零初始值的存在。

4仿真结果

在这部分,设计的算法用于CSTR。CSTR的值是从[10中取得的。CSTR系统的有2个输出,3可测扰动和2的输入。为使利用的鉴别方法适应机制,我们想要使用(7)在基于向量在φ算法和必须的有相同的密度。在这里我们增加一个零输入数据的输入和考虑Tr作为第三个三分之一输出。假设条件模拟的目的是:随机噪声是:该过程和应用系统对输入的方差1,期望值与振幅为零10%的输入控制信号(信号可测扰动/噪声-有名义上的期望的价值观和随机的噪声方差1、零和期望和振幅的价值的10%标称值都被添加到他们。。(干扰噪音也是每干扰常数和等于90%)。参考轨迹,服从指数分布功能:一切遵循的设定值作为(18):顺利是持久的,等于比例90%)。

SP是一套分向量和y0是输出初始值向量。这个CSTR的——设定分有:CA = 3.5955磅/英国《金融时报》3要= 120.0222°F——的输入是有限0-1400][(磅/分钟)。对系统的动态和与一个尝试和错误操作,控制器参数,实现如下::

图(3)应用CSTR的反应后的所提出的自适应预测控制器。虚线是为的非线性自适应预测控制器系统和虚线,供大家参考

图(3)介绍响应的控制器那是用于CSTR。

图(4);第三个状态(Tr)

图显示。(4)Tr作为第三种状态的系统。无花果。(5)代表控制输入信号。在这种情况下,该控制器的正常工作。输出跟踪设定值与更少稳态误差和1%的Tr也是好的。如果模型的CSTR是受该系统的干扰或参数时变、识别的模型参数是一个好的解决方案在考虑但选择初始值与线性化为识别的模型参数重要的。因此,我们获得了在初始值从线性化的第一步识别。

图(5)控制输入信号;

现在我们考虑了系统,它的可测扰动将被改变。在这个例子中,我们假设的浓度一是增加反应物饲料中的50%(如下。蔡= 16.2磅/英国《金融时报》3)在时间t = 1500秒。讨论了两种情况下:例1:保护的价值衡量扰动改变但是实测CAi的价值,被送去控制器如以前一样。例2:保护的价值衡量干扰的更改,但在这种情况下的CAi软件是衡量价值的一样实际值,并将其

应用到CSTR。

图(6);钙&要应用后的适应性对CSTR预测控制器,它的可测干扰是改变(案例1 & 2)虚线是的自适应预测控制器摘要针对非线性系统和虚线,供大家参考。

无花果。(6)介绍CSTR的反应,在应用时的控制器反应物的浓度在饲料在两种不同的情况下增加50%。假设和控制器参数像以前一样。经过短暂的时间和带着一个小变化,该控制器可以控制输入信号的产生原因良好的跟踪的引用。这控制器具有良好的反应两例。

图(7);第三个状态(Tr)应用后的适应能力在这种情况下,预测控制器可测的干扰的改变。

图。(7)代表Tr两个提及病例。图。(8)也代表了控制输入信号的控制器,在这些情况下。们可以看到图。如果可测量(6),很好,它干扰测量据报道,该控制器违规行为,这个反应将会更好的和参考可以追踪速度更快。这是因为考虑到测量的设计的控制器的功能失调。

图(8);控制输入信号(可衡量的changed.-cases扰动是第一页和2) 5结论

首先提出了一种线性模型预测控制器和一个适应机制延伸到处理非线性系统。与适应机制是基于在识别的模型模型。此外可衡量的在推导,骚动是考虑该模型的预测控制器。如果一个准确的系统的模型是可行的,线性化方法是一种有效的解决方案,但它是费时。当参数的该系统是未知的,然后线性系统可以识别的延伸到非线性系统。该方法但它是更快的效率就会降低吗增加数量的参数。也初始值的选择,以便确认模型参数是非常重要的。为我们的模型参数识别初值的计算参数的获得线性化的非线性模型在第一步骤,然后我们雇用的适应机制。所提出的自适应预测控制器应用于CSTR为一个非线性的多输入多输出系统和结果进行了讨论正常情况下,两种不同的情况下,可衡量的骚动是改变。案例1这变化不大,但据报道,该控制器案例2是报道。在这些情况下控制器的作品比病例1。控制器正常的工作状态。案例2,参数递归的方式。以这种方式,用非线性控制器适应本身。

参考

[1]。Hammarstrom Sourande、m、l .,Erkkila > Meskanen a .,”的感受上先进的过程控制的化

学物质产业”的发展。IFA技术委员会会议、学术、希腊、10 - 1210月,2001年。

[2]。Badegwell秦、李宗,助教,“一个工业模型预测的概述国际.5th控制技术”会议在化学过程控制甘蔗糖业及缓存。加西亚·坎特J.C.,,,陈民彦、Camahan,B。(编辑),1997年,pp.232-256。

[3]。琼斯,Bordons,Camacho,c。”模型预测控制”。施普林格,1999年。

[4]。秦、S。J,Badgwell,助教,”一位摘要非线性预测的概述应用程序”。国际研讨会采用非线性模型预测控制,奥地利维也纳,瑞士,1998年。

[5].Garcia、C。陈正昌、Prett,d . M . Morari,M。模型预测控制理论与实务Automatica实践——一项最新调查表明,2005,21(3):1984年,页:190 ~ 198。

[6]。Rawlings >,刊于Muske)、大肠、草地,k . . R . .非线性模型预测控制:一个指南和问卷调查的方法,ADCHEM 94年诉讼、京都、Japan.1994。

[7]。>,刊于Froisy模型预测控制:过去、现在和未来,ISA反式,(33),1994年卷,,,,,,pp235-243。

[8]。K.J. Astrom,Wittenmark,同时,B。“自适应控制”,第2版。艾迪-卫斯里Publ有限公司,1995年。

[9]。古德温表示,特此通告”、“罪”、“自适应K.S.,过滤预测和控制的”。出版社,台北,台北市悬崖,1984年。

[10]。R.M.杂志,“实时在动态监测和故障诊断系统利用粒子滤波方法Instituto”,硕士论文,Superiores Technologico Y德Estudios德蒙特雷。蒙特雷,新里昂,墨西哥,2003年5月。

搅拌反应釜的设计

1 绪论 1.1 反应釜概况 搅拌设备是一种在一定容积的容器中,借助搅拌器向液相物料中传递必要的能量进行搅拌过程的化学反应设备。反应釜就是其中比较典型的一种,它适用于多种物性(如粘度、密度)和多种操作条件(温度、压力)的反应过程,广泛应用于石油化工、橡胶、农药、染料、医药等行业,是一种用以完成磺化、硝化、氢化、烃化、聚合、缩合等工艺过程,以及有机染料和中间体的许多其它工艺过程的反应设备。 搅拌式反应釜有很大的通用性,由于搅拌可以把多种液体物料相混合,把固体物料溶解在液体中、将几种不互溶的液体制成乳浊液、把固体微粒搅浑在液体中制成悬浮液或在液相中析出结晶等,故搅拌反应釜可以在带有搅拌的许多物理过程中广泛的应用。同时在研究容器的结构方面,如容器形状、搅拌装置、传热部件等,搅拌式反应釜都具有代表性。在大多数设备中,反映釜是作为反应器来应用的。例如在三大合成材料的生产中,搅拌设备作为反应器,约占反应器总数的90%。其它如染料、医药、农药、油漆等设备的使用亦很广泛。有色冶金部门对全国有色冶金行业中的搅拌设备作了调查及功率测试,结果是许多湿法车间的动力消耗50%以上是用在搅拌作业上。搅拌设备的应用范围之所以这样广泛,还因为搅拌设备操作条件(如浓度、温度、停留时间等)的可控范围广,又能适用于多样化的生产。 搅拌式反应釜在石油化工生产中被用于物料混合、溶解、传热、制备悬浮液、聚合反应、制备催化剂等。例如石油工业中,异种原油的混合调整和精致,汽油添加四乙基铅等添加物而进行混合,使原料液或产品均匀化。化工生产中,制造苯乙烯、乙烯、高压聚乙烯、聚丙烯、合成橡胶、苯胺燃料和油漆颜料等工艺过程,都装备着各种型式的搅拌设备。因为在石油工业中大量使用催化剂、添加剂,所以对于搅拌设备的需求量比较大。由于物料操作条件的复杂性、多样性、对搅拌

搅拌釜式反应器课程设计

搅拌釜式反应器课程设计任务书 一、设计内容安排 1. 釜式反应器的结构设计 包括:设备结构、人孔数量及位置,仪表接管选择、工艺接管管径计算等。 2. 设备壁厚计算及其强度、稳定性校核 3. 筒体和裙座水压试验应力校核 4. 编写设计计算书一份 5. 绘制装配图一张(电子版) 二、设计条件 三、设计要求 1.学生要按照任务书要求,独立完成塔设备的机械设计; 2.根据设计计算书、图纸及平时表现综合评分。 四、设计说明书的内容 1.符号说明 2.前言 (1)设计条件; (2)设计依据; (3)设备结构形式概述。 3.材料选择 (1)选择材料的原则; (2)确定各零、部件的材质;

(3)确定焊接材料。 4.绘制结构草图 (1)按照工艺要求,绘制工艺结构草图; (2)确定裙座、接管、人孔、控制点接口及附件、内部主要零部件的轴向及 环向位置,以单线图表示; (3)标注形位尺寸。 5.标准化零、部件选择及补强计算: (1)接管及法兰选择:根据结构草图统一编制表格。内容包括:代号,PN,DN, 法兰密封面形式,法兰标记,用途)。补强计算。 (2)人孔选择:PN,DN,标记或代号。补强计算。 (3)其它标准件选择。 6.结束语:对自己所做的设计进行小结与评价,经验与收获。 7.主要参考资料。 【设计要求】: 1.计算单位一律采用国际单位; 2.计算过程及说明应清楚; 3.所有标准件均要写明标记或代号; 4.设计计算书目录要有序号、内容、页码; 5.设计计算书中与装配图中的数据一致。如果装配图中有修改,在说明书中要注明变更; 6.设计计算书要有封面和封底,均采用A4纸,正文用小四号宋体,行间距1.25倍,横向装订成册。

釜式反应器的应用

釜式反应器的应用、技术进展 什么是釜式反应器?一种低高径比的圆筒形反应器,用于实现液相单相反应过程和液液、气液、液固、气液固等多相反应过程。器内常设有搅拌(机械搅拌、气流搅拌等)装置。在高径比较大时,可用多层搅拌桨叶。在反应过程中物料需加热或冷却时,可在反应器壁处设置夹套,或在器内设置换热面,也可通过外循环进行换热。 工业应用,釜式反应器按操作方式可分为:①间歇釜式反应器,或称间歇釜。操作灵活,易于适应不同操作条件和产品品种,适用于小批量、多品种、反应时间较长的产品生产。间歇釜的缺点是:需有装料和卸料等辅助操作,产品质量也不易稳定。但有些反应过程,如一些发酵反应和聚合反应,实现连续生产尚有困难,至今还采用间歇釜。②连续釜式反应器,或称连续釜。可避免间歇釜的缺点,但搅拌作用会造成釜内流体的返混。在搅拌剧烈、液体粘度较低或平均停留时间较长的场合,釜内物料流型可视作全混流,反应釜相应地称作全混釜。在要求转化率高或有串联副反应的场合,釜式反应器中的返混现象是不利因素。此时可采用多釜串联反应器,以减小返混的不利影响,并可分釜控制反应条件。③半连续釜式反应器。指一种原料一次加入,另一种原料连续加入的反应器,其特性介于间歇釜和连续釜之间。间歇式反应器操作灵活,易于适应不同操作条件和产品品种,适用于小批量、多品种、反应时间较长的产品生产。间歇釜的缺点是:需有装料和卸料等辅助操作,产品质量也不易稳定。但有些反应过程,如一些发酵反应和聚合反应,实现连续生产尚有困难,至今还采用间歇釜。 有搅拌器的釜式设备是化学工业中广泛采用的反应器之一,它可用来进行液液均相反应,也可用于非均相反应,如非均相液相、液固相、气液相、气液固相等。普遍应用于石油化工、橡胶、农药、染料、医药等工业,用来完成磺化、硝化、氢化、烃化、聚合、缩合等工艺过程,以及有机染料和医药中间体的许多其他工艺过程的反应设备。聚合反应过程约90%采用搅拌釜式反应器,如聚氯乙烯,在美国70%以上用悬浮法生产,采用10~1503m 的搅拌反应器:德国氯乙烯悬浮聚合采用的是2003m 的大型搅拌釜式反应器:中国生产聚氯乙烯,大多采用13.53m 、333m 不锈钢或复合钢板的聚合釜式反应器,以及73m 、143m 的搪瓷釜式反应器。又如涤纶树脂的生产采用本体熔融缩聚,聚合反应也使用釜式反应器。在精细化工的生产中,几乎所有的单元操作都可以在釜式反应器中进行。 釜式反应器的技术进展 1、大容积化,这是增加产量、减少批量生产之间的质量误差、降低产品成本的有效途径和发展趋势。染料生产用反应釜国内多为6000L 以下,其它行业有的达30m3;国外在染料行业有20000~40000L ,而其它行业可达120m3。 2、反应釜的搅拌器,已由单一搅拌器发展到用双搅拌器或外加泵强制循环。反应釜发展趋势除了装有搅拌器外,尚使釜体沿水平线旋转,从而提高反应速度。 3、以生产自动化和连续化代替笨重的间隙手工操作,如采用程序控制,既可保证稳定生产,提高产品质量,增加收益,减轻体力劳动,又可消除对环境的污染。 4、合理地利用热能,选择最佳的工艺操作条件,加强保温措施,提高传热效率,使热损失降至最低限度,余热或反应后产生的热能充分地综合利用。热管技术的应用,将是今后反应釜发展趋势。>

夹套搅拌反应器设计(DOCX 30页)

夹套搅拌反应器设计(DOCX 30页)

夹套搅拌反应器设计 课程设计说明书设计题目夹套搅拌反应器设计 学生 学号 专业班级 指导老师耿绍辉 化工设备基础 Nefu.20121228

夹套搅拌反应器设计 目录 第一章设计方案简介 1.1反应釜的基本结构 1.2反应釜的机械设计依据 第二章反应釜机械设计的内容和步骤 第三章反应釜釜体的设计 3.1 罐体和夹套计算 3.2厚度的选择 3.3设备支座 3.4手孔 3.5选择接管、管法兰、设备法兰 第四章搅拌转动系统设计 4.1转动系统设计方案 4.2转动设计计算:定出带型、带轮相关计算 4.3选择轴承 4.4选择联轴器 4.5罐体搅拌轴的结构设计、搅拌器与搅拌轴的连接结构设计4.6电动机选择 第五章绘制装配图 第六章绘制大V带轮零件图 第七章本设计的评价及心得体会 第八章参考文献

夹套搅拌反应器设计 第一章设计方案简介 搅拌设备在石油、化工、食品等工业生产中应用范围很广,尤其是化学工业中,很多的化工生产或多或少地应用着搅拌操作,化学工艺过程的种种物理过程与化学过程,往往要采用搅拌操作才能得到好的效果。搅拌设备在许多场合时作为反应器来应用的,而带搅拌的反应器则以液相物料为特征,有液-液、液-固、液-气等相反应。 搅拌的目的是:1、使互不相溶液体混合均匀,制备均匀混合液、乳化液、强化传质过程;2、使气体在液体中充分分散,强化传质或化学反应;3、制备均匀悬浮液,促使固体加速溶解、浸取或发生液-固化学反应;4、强化传热,防止局部过热或过冷。所以根据搅拌的不同目的,搅拌效果有不同的表示方法。 搅拌操作分为机械搅拌和气流搅拌。气流搅拌是利用气体鼓泡通过液体层,对液体产生搅拌作用,或使气泡群以密集状态上升借所谓气升作用促进液体产生对流循环。与机械搅拌相比,仅气泡的作用对液体所进行的搅拌时比较弱的,所以在工业生产,大多数的搅拌操作均是机械搅拌。本设计实验要求的就是机械搅拌搅拌器设备的设计遵循以下三个过程:1根据搅拌目的和物理性质进行搅拌设备的选型。2在选型的基础进行工艺设计与计算。3进行搅拌设备的机械设计与费用评价。在工艺与计算中最重要的是搅拌功率的计算和传热计算。 1.1反应釜的基本结构

(完整版)釜式反应器-教案

釜式反应器 Tank Reactor 釜式反应器的学习任务 1、了解釜式反应器的基本结构、特点及工业应用。 2、掌握各类釜式反应器的计算。 3、了解釜式反应器的热稳定性。 4、掌握釜式反应器的操作技能。 项目一釜式反应器的结构 釜式反应器又称: 槽型反应器或锅式反应器一种低高径比的圆筒形反应器,用于实现液相单相反应过程和液液、气液、液固、气液固等多相反应过程。 反应器内常设有搅拌(机械搅拌、气流搅拌等)装置。在高径比较大时,可用多层搅拌桨叶。在反应过程中物料需加热或冷却时,可在反应器壁处设置夹套,或在器内设置换热面,也可通过外循环进行换热。 操作时温度、浓度容易控制,产品质量均一。在化工生产中,既可适用于间歇操作过程,又可用于连续操作过程;可单釜操作,也可多釜串联使用;但若应用在需要较高转化率的工艺要求时,有需要较大容积的缺点。通常在操作条件比较缓和的情况下,如常压、温度较低且低于物料沸点时,釜式反应器的应用最为普遍。 一、釜式反应器基本结构 釜式反应器的基本结构主要包括: 反应器壳体、搅拌装置、密封装置、换热装置、传动装置。 壳体结构:一般为碳钢材料,筒体皆为圆筒型。釜式反应器壳体部分的结构包括筒体、底、盖(或称封头)、手孔或人孔、视镜、安全装置及各种工艺接管口等。封头;反应釜的顶盖,为了满足拆卸方便以及维护检修。 平面形:适用于常压或压力不高时; 碟形:应用较广。 球形:适用于高压场合; 椭圆形:应用较广。 锥形:适用于反应后物料需要分层处理的场合。 手孔、人孔:为了检查内部空间以及安装和拆卸设备内部构件。 视镜: 观察设备内部物料的反应情况,也作液面指示用。 工艺接管: 用于进、出物料及安装温度、压力的测定装置。

反应釜搅拌器选型方法规范

反应釜搅拌器选型方法规范 反应釜搅拌器一个好的选型方法最好具备两个条件,一是选择结果合理,一是选择方法简便,而这两点却往往难以同时具备。 由于液体的粘度对搅拌状态有很大的影响,所以根据反应釜内搅拌介质粘度大小来选型是一种基本的方法。几种典型的搅拌器都随粘度的高低而有不同的使用范围。随粘度增高的各种搅拌器使用顺序为推进式、涡轮式、浆式、锚式和螺带式等,这里对推进式的分得较细,提出了大容量液体时用低转速,小容量液体时用高转速。这个选型图不是绝对地规定了使用浆型的限制,实际上各种浆型的使用范围是有重叠的,例如浆式由于其结构简单,用挡板可以改善流型,所以在低粘度时也是应用得较普遍的。而涡轮式由于其对流循环能力、湍流扩散和剪切力都较强,几乎是应用最广的一种浆型。 根据搅拌过程的目的与搅拌器造成的流动状态判断该过程所适用的浆型,这是一种比较合用的方法。由于苏联的浆型选择有其本国的习惯,所以与我国常用浆型并不尽相同。 推荐浆型是把浆型分成快速型与慢速型两类,前者在湍流状态操作,后者在层流状态操作。选用时根据搅拌目的及流动状态来决定浆型及挡板条件,流动状态的决定要受搅拌介质的粘度高低的影响。 其使用条件比较具体,不仅有浆型与搅拌目的,还有推荐的介质粘度范围、搅拌转速范围和槽的容量范围。 提出的选型表也是根据反应釜搅拌的目的及搅拌时的流动状态来选型,它的优点还在于根据不同搅拌过程的特点划分了浆型的使用范围,使得选型更加具体。比较上述表可以看到,选型的根据和结果还是比较一致的。下面对其中几个主要的过程再作些说明。 低粘度均相液体混合,是难度最小的一种搅拌过程,只有当容积很大且要求混合时间很短时才比较困难。由于推进式的循环能力强且消耗动力少,所以是最合用的。而涡轮式因其动力消耗大,虽有高的剪切能力,但对于这种混合的过程并无太大必要,所以若用在大容量液体混合时,其循环能力就不足了。

实验1连续搅拌釜式反应器停留时间分布的测定

实验一 连续搅拌釜式反应器停留时间分布的测定 一、 实验目的 (1) 加深对停留时间分布概念的理解; (2) 掌握测定液相停留时间分布的方法; (3) 了解停留时间分布曲线的应用。 (4)了解停留时间分布于多釜串联模型的关系,了解模型参数N 的物理意义及计算方法。 (5) 了解物料流速及搅拌转速对停留时间分布的影响。 二、 实验原理 (1)停留时间分布 当物料连续流经反应器时,停留时间及停留时间分布是重要概念。停留时间分布和流动模型密切相关。流动模型分平推流,全混流与非理想流动三种类型。 对于平推流,流体各质点在反应器内的停留时间均相等,对于全混流,流体各质点在反应器内的停留时间是不一的,在0~∞范围内变化。对于非理想流动,流体各质点在反应器内的停留时间分布情况介乎于以上两种理想状态之间,总之,无论流动类型如何,都存在停留时间分布与停留时间分布的定量描述问题。 (2)停留时间分布密度函数E (t ) 停留时间分布密度函数E (t )的定义: 当物料以稳定流速流入设备(但不发生化学变化)时,在时间t =0时,于瞬时间dt 进入设备的N 个流体微元中,具有停留时间为t 到(t +dt )之间的流体微元量dN 占当初流入量N 的分率为E (t )dt ,即 ()=dN E t dt N (1) E (t )定义为停留时间分布密度函数。 由于讨论的前提是稳定流动系统,因此,在不同瞬间同时进入系统的各批N 个流体微元均具有相同的停留时间分布密度,显然,流过系统的全部流体,物料停留时间分布密度为同一个E (t )所确定。根据E (t )定义,它必然具有归一化性质:

()1∞ =? E t dt (2) 不同流动类型的E (t )曲线形状如图1所示。根据E (t )曲线形状,可以定性分析物料在反应器(设备)内停留时间分布。 平推流 全混流 非理想流动 图1 各种流动的E (t )~t 关系曲线图 (3)停留时间分布密度函数E (t )的测定 停留时间分布密度函数E (t )的测定,常用的方法是脉冲法。此法采用的示踪剂,既不与被测流体发生化学反应,又不影响流体流动特性,也就是说,示踪物在反应器(设备)内的停留时间分布与被测流体的停留时间分布相同。所以,当注入一定量Q 的示踪物时,经过t →(t +dt )时间间隔流出的示踪物量占示踪物注入总量Q 的分率就是与示踪物注入同时进入系统的物料中,停留时间为t →(t +dt )的那部分流体物料占总流体的物料的分率, 即: 亦即: ()()??=V C t dt E t dt Q 或 () ()?= V C t E t Q (3) V ——流体体积流量,(ml/s) Q ——加入的示踪物总量,(mg) C (t )——示踪物的出口浓度,(mg/ml)

《搅拌釜式反应器设计条件》

长江大学工程技术学院课程设计 题目:________________________________ 学生:_________________________________ 系部:_________________________________ 专业班级:_________________________________ 指导教师:_________________________________ 辅导教师:_________________________________ 时间:______________至_________________

《搅拌釜式反应器设计条件》 工艺条件 管 口 工艺条件图

1. 确定筒体的直径和高度 根据反应釜的设计要求,由于液-液相类型选取H/D i =1.3 得,由 D i ≈3 /4Di H V π= 33 .125 .34??π=1.47m 圆整到标准公称直径系列,选取筒体直径D i =1400mm 。 查附录得,DN =1400mm 时标准椭圆封头高度h 1=350mm 直边h 2=25mm ,计算得每米高筒体的V 1=1.539m 3,表面积V h =0.398m 3 H= 1V V V h -=539 .1398.025.3-=1.853m 筒体高度圆整为H =1800m 于是H/D=1.285 核查结果符合原定范围内。 2. 确定夹套的直径和高度 夹套的内径 D j =D i +100=1500mm (符合压力容器公称直径系列要求) H j = 4 4.1398 .085.0*25.32 ?-π=1.537m 选取夹套H j =1600mm 则H 0=H -Hj=200mm 这样便于筒体法兰螺栓的装拆 验算夹套传热面积 F =F 1H j +F n =9.27 m 2>7.1m 2 即夹套传热面积符合设计要求 3. 确定夹套的材料和壁厚 夹套选取Q235-A 的材质,可以知道板厚在4.5~16mm ,设计温度在150℃时Q235-A 的许用应力[σ]t =113MPa ,因为有夹套有

反应釜搅拌器的种类与选择

反应釜搅拌器的种类与选择 反应釜搅拌器一个好的选型方法最好具备两个条件,一是选择结果合理,一是选择方法简便,而这两点却往往难以同时具备。由于液体的粘度对搅拌状态有很大的影响,所以根据搅拌介质粘度大小来选型是一种基本的方法。几种典型的搅拌器都随粘度的高低而有不同的使用范围。随粘度增高的各种搅拌器使用顺序为推进式、涡轮式、浆式、锚式和螺带式等,这里对推进式的分得较细,提出了大容量液体时用低转速,小容量液体时用高转速。这个选型图不是绝对地规定了使用浆型的限制,实际上各种浆型的使用范围是有重叠的,例如浆式由于其结构简单,用挡板可以改善流型,所以在低粘度时也是应用得较普遍的。而涡轮式由于其对流循环能力、湍流扩散和剪切力都较强,几乎是应用最广的 一种浆型。 根据搅拌过程的目的与搅拌器造成的流动状态判断该过程所适用的浆型,这是一种比较合用的方法。由于苏联的浆型选择有其本国的习惯,所以与我国常用浆型并不尽相同。 推荐浆型是把浆型分成快速型与慢速型两类,前者在湍流状态操作,后者在层流状态操作。选用时根据搅拌目的及流动状态来决定浆型及挡板条件,流动状态的决定要受搅拌介质的粘度高低的

影响。 其使用条件比较具体,不仅有浆型与搅拌目的,还有推荐的介质粘度范围、搅拌转速范围和槽的容量范围。 提出的选型表也是根据搅拌的目的及搅拌时的流动状态来选型,它的优点还在于根据不同搅拌过程的特点划分了浆型的使用范围,使得选型更加具体。比较上述表可以看到,选型的根据和结果还是比较一致的。下面对其中几个主要的过程再作些说明。低粘度均相液体混合,是难度最小的一种搅拌过程,只有当容积很大且要求混合时间很短时才比较困难。由于推进式的循环能力强且消耗动力少,所以是最合用的。而涡轮式因其动力消耗大,虽有高的剪切能力,但对于这种混合的过程并无太大必要,所以若用在大容量液体混合时,其循环能力就不足了。 对分散操作过程,涡轮式因具有高剪切力和较大循环能力,所以最为合用,特别是平直叶涡轮的剪力作用比折叶和弯叶的剪力作用大,就更为合适。推进式、浆式由于其剪切力比平直叶涡轮式的小,所以只能在液体分散量较小的情况下可用,而其中浆式很少用于分散操作。分散操作都有挡板来加强剪切效果。 固体悬浮操作以涡轮式的使用范围最大,其中以开启涡轮式为最好。它没有中间的圆盘部分,不致阻碍桨叶上下的液相混合,而且弯叶开启涡轮的优点更突出,它的排出性好、桨叶不易磨损,

连续搅拌釜式反应器设计

连续搅拌釜式反应器设 计 内部编号:(YUUT-TBBY-MMUT-URRUY-UOOY-DBUYI-0128)

学院:化工学院 专业:化学工程与工艺

目 录 一、设计任务 某工段需要每天生产8吨乙酸丁酯。以乙酸和丁醇为原料,要求乙酸的转化率大于等于50%.其中原料中乙酸的浓度l/L 0.00175km o A0 C 。设计一反应器以达到要求。

二、确定反应器及各种条件 选用连续釜式反应器(CSTR ),选用螺旋导流板夹套,取5.0Af =X ,查文献资料得:可取反应温度为100℃,反应动力学方程为 )min)7.4L/(kmol 1( C 2 A ?==k k r A (A 为乙酸)搅拌釜内的操作压力为 MPa 1.0p cr =;夹套内为冷却水,入口温度为30℃,出口温度为40℃,工 作压力MPa 2.0'p cr =; 反应方程为: 三、反应釜相关数据的计算 1.体积 由于该反应为液相反应,物料的密度变化很小,故可近似认为是恒容过程。 原料处理量:54.73L/min 3284.07L/h 0.001750.5 1 11624109Q 30==????= 反应器出料口物料浓度: km ol/L 000875.0)5.01(00175.0-1Af A0A =-?==)(X C C 反应釜内的反应速率:kmol/L 10332.1000875.04.17522A A -?=?==kC r 空时:min 69.6510332.15 .000175.0/Q V 5 A Af A0A A A00r =??==-== -r X C r C C τ 理论体积:L 21.359569.6573.54Q V 0r =?==τ

连续搅拌釜反应器中乙酸乙酯的水解反应

实验报告 课程名称:化工专业实验指导老师:黄灵仙成绩:________________ 实验名称:连续搅拌釜反应器中乙酸乙酯的水解反应实验类型:反应工程实验 一、实验目的和要求 二、实验内容和原理 三、主要仪器设备 四、操作方法和实验步骤 五、实验数据记录和处理 六、实验结果与分析 七、讨论、心得 一、实验目的 1.了解和掌握搅拌釜反应器非理想流动产生的原因; 2.掌握搅拌釜反应器达到全混流状态的判断和操作; 3.了解和掌握某一反应在全混釜中连续操作条件下反应结果的测量方法,以及与间歇反应器内反应结果的差别。 二、实验原理 在稳定条件下,根据全混釜反应器的物料衡算基础,有 A m A A A m A A A A x C C C C C C V F r ττ0000)1()()=-=-= (-(1) 对于乙酸乙脂水解反应: OH H C COO CH H COOC CH OH 52-3K 523-+?→?+ A B C D 当C A0=C B0,且在等分子流量进料时,其反应速度(-r A )可表示如下形式: 2 20A 20 2 A 02)1))/exp()A A A A A x kC C C C RT E k kC r -=-==(((-(2) 则根据文献(物化实验)的乙酸乙酯动力学方程,由(1),(2)可计算出x A 2 20A m )1A A A x kC x C -=(τ(3) 同时由于C A0∝(L 0-L ∞),C A ∝(L t -L ∞),由实验值得: )( 100∞ ---=L L L L x t A (4) 式中: L 0,L ∞—— 分别为反应初始和反应完毕时的电导率 L t —— 空时为m τ时的电导率 根据反应溶液的电导率的大小,由(4)式可以直接得到相应的反应转化率,由(3)式计算得到相同条件下的转化率,两者进行比较可知目前反应器的反应结果偏离全混流反应的理论计算值。 专业: 姓名: 学号: 日期: 地点:

反应釜搅拌器选型指南

搅拌器的选型 搅拌器是反应釜的重要组成部分,是一种广泛应用的操作单元,它的复杂性在于它的原理要涉及流体力学、传热、传质和化学反应等多种过程。 一、搅拌器在化工生产中的用途 化工生产的各种工艺过程涉及到各种不同特性的物料,各种不同的搅拌目的,所选的搅拌器不同,工艺过程种类多,搅拌的用途也多。 1、液体的互溶 两种或多种液体的互溶、混合,但是均相液体的搅拌又应区分均相液体混合物中是否发生化学反应,对于没有化学反应的情况,通常称为互溶液体的调和或调匀。对于两种或数种互溶液体间存在化学反应的情形,为了加速反应或使反应完全,也应进行搅拌。 2、互不相容液体的分散 这种操作目的是互不相溶的液体相互接触,相互充分分散,以有利于传质或换学反应,或制备悬浊液和乳化液。搅拌的作用是使液滴细化,增大相对接触面积。 3、气液相的接触 这种搅拌使气体成为细微气泡,在液相中均匀分散,形成稳定的分散质,或增强液体吸收气体,或加快气液相发展化学反应等。 4、固液相的分散 顾叶祥的搅拌用途较广,有时是制备均匀悬浮液,有时是固体的溶解,有时是固液相间发生化学反应,有时是固相在液体中洗涤,有时是从饱和液体中析出晶体等。 5、加强传热 有些液体反应的时候需要加热或者冷却,通过搅拌提高液体的传热速度或者使液体的温度更均匀。 二、搅拌器的形式 搅拌过程对搅拌器的要求各有不同,搅拌过程的情况千差万别,使搅拌器的形式也多种多样,下面是几种常用的搅拌器:

1、推进式搅拌器 推进式搅拌器常用整体铸造,加工方便, 结构类似于轮船的螺旋推进器,常有三片桨叶 组成。 推进式搅拌器直径取反应釜内经的1/4~ 1/3,切向线速度可达5~15m/s,转速为300~ 600rpm,最高转速可达1750rpm。一般说小直 径取高转速,大直径取低转速。搅拌时能使物 料在反应釜内循环流动,所起的作用以容积循 环为主,剪切作用小,上下翻腾效果好,但采 用挡板或者导流筒则轴向循环更强。 2、桨式搅拌器 桨式搅拌器是一种结构和加工都非常简单的搅拌器,共两片桨叶,桨叶安装形式可分为平直叶和折叶两种,平直叶就是叶面与旋转方向互相垂直,折叶则是叶面与旋转方向呈一定的倾斜角度。 桨式搅拌器直径取反应釜内经的1/3~4/5,一般取1/2,不宜采用太长的桨叶,因为搅拌器消耗的功率与桨叶直径的五次方成正比。桨式搅拌器的运转速度较慢,转速一般为20~80rpm,圆周速度在1.5~3m/s 范围内比较合适。平直叶搅拌器其低速时以水平环向流为主,速度高时为径流型;有挡板时为上下循环流;折叶搅拌器有轴向分流、径向分流和环向分流,一般在层流、过度流状态时操作。 在料液层比较高的情况下,装有几层桨叶,相邻两层桨叶常交叉成90°角安装。在一般情况下,几层桨叶安装位置如下: 一层安装在下封头对接环焊缝高度处; 二层的话,一层安装在下封头对接环焊缝高度处;另一层安装在下封头对接环焊缝与液面的中间的二分之一处或者稍高处; 三层的话,一层安装在下封头对接环焊缝高度处,另一层安装在液面下约200mm处,中间再安装一层。

釜式反应器设计说明书123

一概述 1.1醋酸乙酯生产工艺的现状和特点 醋酸乙酯分子式C4H8O2,又名:乙酸乙酯,英文名称:acetic ester;ethyl acetate,简称EA。醋酸乙酯是醋酸工业重要的下游产品,也是一种重要的绿色有机溶剂,溶解能力及快干性能均属上乘,主要用做涂料(油漆和瓷漆)、油墨和粘合剂配方中的活性溶剂,也可用做制药和有机化学合成的工艺溶剂。 EA可用于制造乙酰胺、乙酰醋酸酯、甲基庚烯酮等,并在香料、油漆、医药、火胶棉、硝化纤维、人造革、染料等行业中广泛应用,还可用作萃取剂和脱水剂,亦可用于食品工业。还可用于硝酸纤维、乙基纤维、氯化橡胶和乙烯树脂、乙酸纤维素脂、纤维素乙酸丁酯和合成橡胶等的生产过程;也可用于复印机的液体硝基纤维墨水。在纺织工业中用作清洗剂;在食品工业中作为特殊改性酒精的香味萃取剂;在香料工业中是重要的香料添加剂,可作为调香剂的组份。同时醋酸乙酯本身也是制造染料、香料和药物的原料。在高级油墨、油漆及制鞋用胶生产过程中,对醋酸乙酯的质量要求较高。 当前全球醋酸乙酯的市场状况是:欧美等发达国家醋酸乙酯的市场发展比较成熟,产量和消费量的增长都比较缓慢,亚洲尤其是中国成为醋酸乙酯生产和消费增长最为快速的国家和地区。由于中国国内快速发展的市场,尤其是建筑、汽车等行业的强劲发展,推动国内醋酸乙酯的需求,但是同时,醋酸乙酯生产能力的增长也非常快速,市场未来发展充满了机遇与挑战。 醋酸乙酯消费持续增长的主要原因是它取代了污染空气环境的用于表面涂层和油墨

配方的甲乙酮和甲基异丁基酮。醋酸乙酯作为优良溶剂,正逐步替代一些低档溶剂,发展潜力较大。 受消费拉动,20世纪90年代以来,我国醋酸乙酯生产发展迅速。“八五”期间,产量年均增长率为13.0%;1995-2000年,年均增长率达到20.5%;2000-2002年,年均增长率高达30.5%。目前我国有醋酸乙酯生产企业30多家,年产能力为57.2万吨。其中,万吨级以上规模的企业有14家,年产能力为47万吨。2001年5月,山东金沂蒙集团将醋酸乙酯产能增至8万吨/年,2003年6月又扩能至16万吨/年;2001年,上海石化采用黑龙江省石化研究院技术,建成2万吨/年乙醛缩合法生产醋酸乙酯装置;2002年5月,中英合资BP--扬子江乙酰化工有限公司8万吨/年醋酸乙酯装置投产,采用BP 切换式醋酸乙酯技术生产醋酸乙酯和醋酸丁酯,工艺技术国内领先;2001年,江西南昌赣江溶剂厂将醋酸乙酯年产能力从2万吨扩至8万吨;2003年,江门谦信化工发展有限公司将产能从1.5万吨/年扩至3.5万吨/年。近2-3年内,国内新增醋酸乙酯年产能力达31万吨。 虽然我国醋酸乙酯市场仍有潜力,但由于扩能速度太快,近两年已出现开工率不足的现象。据了解,2002年国内装置平均开工率约77%,预计2003年平均开工率将为66%。目前市场已经饱和,产品价格呈走软趋势,利润已渐微薄。而在建和拟建醋酸乙酯项目尚有20万吨/年产能。如果这些项目到2005年如期投产,我国醋酸乙酯供应将平衡有余。随着国内新增能力陆续投产,近两年我国醋酸乙酯进口量有所下降。2001年进口5.35万吨,2002年进口4.8万吨,2003年上半年进口2.45万吨。 醋酸乙酯制备方法主要有醋酸酯化法、乙醛缩合法、乙醇脱氢法和乙烯加成法。 用醋酸和乙醇酯化制醋酸乙酯是开发较早,工艺成熟,且为目前主要采用的方法。反应在酸催化剂(如硫酸)存在下进行液相酯化,分为间歇法和连续法。间歇法使用釜式反

反应釜、搅拌器的选型参考

反应釜、搅拌器的选型参考 反应釜是工业生产中必不可少的设备,它是可以适应物理或化学反应的容器,也叫做反应器,通过对反应釜结构的设计,从而实现生产过程中:加热、蒸发、冷却、低高速的混配功能。 目前反应釜广泛适用于:农药、化工、医药、食品、橡胶、石油等行业中,用来完成硫化、硝化、氢化、聚合、缩合等工艺过程,材质多为:不锈钢、钛、碳锰钢及其他复合材料。 很多采购者在选择反应釜是不知道该选择哪种类型的反应釜,为方便大家对反应釜有一个初步系统的认识,我们给大家总结了一下反应釜的分类及其适用条件。 【反应釜选型】 按照材质分类:

【反应搅拌器的选择】 由于反应釜内溶液的粘稠度不同,对搅拌状态有很大的影响,我们根据反应釜内搅拌介质的粘稠程度来选择搅拌器是一种基本方法。随着溶液粘稠度从低到高,适用的搅拌器类型顺序为:推进式、涡轮 式、桨式、锚式和螺带式等。 推进式 (1)小的搅拌功率,能获得较好的搅拌效果。(温度均匀,在低浓度固止淤泥沉降等。

涡轮式 是一种应用范围较广的搅拌器,能处理粘度范围很广的流体。涡轮在旋转时造成高度湍动的径向流动,适用于气体及不互溶液体的分散和液液相反应过程。力,可使流体微团分散的很细,适用于低粘度到中等粘度流体的混合、液以及促进良好的传热、传质和化学反应。

在同样排量下,折叶氏比平叶式 的功耗少,操作费用低,故轴流 桨叶使用较多。流体的上下交换,代替价格高的螺带式叶轮,能获得良好的效果。 锚式 适用于粘度在体搅拌,当流体粘度在 10~100Pa·s 加一横桨叶,即为框式搅拌器,以增加容器中的混合。螺带式 螺带式搅拌器通常是在层流状态下操作,专门用于搅拌高粘度液体体 大家在选择反应釜时一定要根据实际生产工况来进行选择,多对比,多查阅资料,选择最适合自己的设备。

反应釜搅拌器种类与选择

反应釜搅拌器种类与选择 反应釜搅拌器一个好的选型方法最好具备两个条件,一是选择结果合理,一是选择方法简便,而这两点却往往难以同时具备。 由于液体的粘度对搅拌状态有很大的影响,所以根据搅拌介质粘度大小来选型是一种基本的方法。几种典型的搅拌器都随粘度的高低而有不同的使用范围。随粘度增高的各种搅拌器使用顺序为推进式、涡轮式、浆式、锚式和螺带式等,这里对推进式的分得较细,提出了大容量液体时用低转速,小容量液体时用高转速。这个选型图不是绝对地规定了使用浆型的限制,实际上各种浆型的使用范围是有重叠的,例如浆式由于其结构简单,用挡板可以改善流型,所以在低粘度时也是应用得较普遍的。而涡轮式由于其对流循环能力、湍流扩散和剪切力都较强,几乎是应用最广的一种浆型。 根据搅拌过程的目的与搅拌器造成的流动状态判断该过程所适用的浆型,这是一种比较合用的方法。由于苏联的浆型选择有其本国的习惯,所以与我国常用浆型并不尽相同。 推荐浆型是把浆型分成快速型与慢速型两类,前者在湍流状态操作,后者在层流状态操作。选用时根据搅拌目的及流动状态来决定浆型及挡板条件,流动状态的决定要受搅拌介质的粘度高低的影响。 其使用条件比较具体,不仅有浆型与搅拌目的,还有推荐的介质粘度范围、搅拌转速范围和槽的容量范围。 提出的选型表也是根据搅拌的目的及搅拌时的流动状态来选型,它的优点还在于根据不同搅拌过程的特点划分了浆型的使用范围,使得选型更加具体。比较上述表可以看到,选型的根据和结果还是比较一致的。下面对其中几个主要的过程再作些说明。 低粘度均相液体混合,是难度最小的一种搅拌过程,只有当容积很大且要求混合时间很短时才比较困难。由于推进式的循环能力强且消耗动力少,所以是最合用的。而涡轮式因其动力消耗大,虽有高的剪切能力,但对于这种混合的过程并无太大必要,所以若用在大容量液体混合时,其循环能力就不足了。 对分散操作过程,涡轮式因具有高剪切力和较大循环能力,所以最为合用,特别是平直叶涡轮的剪力作用比折叶和弯叶的剪力作用大,就更为合适。推进式、浆式由于其剪切力比平直叶涡轮式的小,所以只能在液体分散量较小的情况下可用,而其中浆式很少用于分散操作。分散操作都有挡板来加强剪切效果。 固体悬浮操作以涡轮式的使用范围最大,其中以开启涡轮式为最好。它没有中间的圆盘部分,不致阻碍桨叶上下的液相混合,而且弯叶开启涡轮的优点更突出,它的排出性好、桨叶不易磨损,所以用于固体悬浮操作更我合适。推进式的使用范围较窄,固液比重差大或固液比在50%以上时不适用。使用挡板时,要注意防止固体颗粒在挡板角落上的堆积。一般固液比较低时,才用挡板,而折叶开启涡轮、推进式都有轴向流,所以也可以不用挡板。 气体吸收过程以圆盘式涡轮最合适,它的剪切力强,而且圆盘的下面可以存住一些气体,使气体的分撒更平稳,而开启涡轮就没有这个优点。浆式及推进式对气体吸收过程基本上不合用,只有在少量以吸收的气体要求分散度不高时还能应用。

连续搅拌反应釜系统的设计与仿真

吉林化工学院毕业设计说明书 连续搅拌反应釜系统的控制器设计与仿真Controller Design and Simulation for CSTR 学生学号:11510210 学生姓名:严新宇 专业班级:自动1102 指导教师:王野 职称:工程师 起止日期:2015.03.09~2015.06.26 吉林化工学院 Jilin Institute of Chemical Technology

吉林化工学院信控学院毕业设计说明书 摘要 连续搅拌反应釜(CSTR)是发酵、化工、石油生产、生物制药等工业生产过程中应用最广泛的一种化学反应器,其控制质量直接影响到生产的效益和质量指标。对连续搅拌反应釜通过控制内部的工艺参数,如温度、压力、浓度等稳定,保证反应的正常运行。本文针对连续搅拌反应釜的数学模型,应用泰勒展开得到了线性状态空间表达式,在此基础上设计了LQR控制器,仿真结果表明,控制效果令人满意。 本设计将CSTR的非线性动态模型进行了输入输出线性化,得到CSTR线性状态空间模型。设计出连续搅拌反应釜的极点配置控制器并对系统进行仿真。设计出连续搅拌反应釜的LQR控制器并对其系统进行仿真。并对两种控制方法的控制效果进行了比较。 关键词:连续反应搅拌釜;LQR控制器;MATLAB仿真 I

连续搅拌反应釜系统的控制器设计与仿真 Abstract Continuous stirred tank reactor (CSTR) is the most widely used in fermentation, chemical engineering, petroleum production, bio pharmaceutical and other industrial production process as a chemical reactor, control the quality directly affect the production efficiency and quality index. For continuous stirred tank reactor by controlling the process parameters, such as temperature, pressure, concentration and so on, ensure the normal operation of the reaction. In this paper, based on a continuous stirred reactor mathematical model, the application of Taylor expansion is obtained for the linear state space representation, on this basis, design the LQR controller. Simulation results show that the control effect is satisfactory. In this paper, the nonlinear dynamic model of CSTR is linearized, and the CSTR linear state space model is obtained. The pole assignment controller for continuous stirred tank reactor was designed and the simulation of the system was carried out. The LQR controller of the continuous stirred tank reactor is designed and the system is simulated. The control effect of the two control methods is compared. Key Words: Continuous Stirred Tank; LQR Controller; MATLAB Simulation II

搅拌叶.搅拌器系列介绍(图文并茂)

工业搅拌设备系列:搅拌器系列介绍(图文并茂) 一、各种搅拌叶片 材质:304,316L,321,202等多种不锈钢! H001 H002 H003 H004 H005 H006 H007 H008 H009 H0010 H0011 H012

H013 H014 H015 H016 H017 H018 H019 H020 H021 二、侧入式搅拌器 侧入式搅拌机是将搅拌装置安装在设备筒体的侧壁上,搅拌机上的搅拌器通常采用轴流型,以推进式搅拌器为多,在消耗同等功率情况下,能得到最高的搅拌效果,功率消耗仅为顶搅拌的1/3~2/3,成本仅为顶搅拌的1/4~1/3。转速可在200~750r/min。 广泛用于脱硫、除硝以及各种大型贮罐或贮槽的搅拌。特别是在大型贮槽或贮罐中利用一台或多台侧入式搅拌机一起工作,在消耗低能耗的情况下便可以得到良好的搅拌效果。

三、移动式搅拌器 可移动式搅拌机 选用新型先进的搅拌技术设备,是降低生产成本,提高产品质量的重要环节,我厂不断开发研究搅拌新技术,为用户提供理想的搅拌设备,用户只需提供工艺过程参数及搅拌混合要求,我们将为您设计、制造出满意的搅拌混合设备,配备国内外名牌电机、减速机、联轴器、机密封,并匹配理想的搅拌叶轮,达到理想的混合效果,各类常压、带压容器、反应釜,严格按照国家有关制造标准和工程规范进行制造。

使用独特的虎钳,可在开式槽上部边缘直接安装。 工作时,搅拌轴偏离槽的中央位置,而且与垂直方向倾斜一定角度。 搅拌轴与垂直方向倾斜夹角为5°~20°,因而根据鲁辛顿(Rushton)理论,在槽内即使不安装挡板也不会出现打旋现象或局部死区,搅拌效率高。 小型轻便、结构简单。 可移动式搅拌机应用范围 食品工业——奶油、巧克力、牛奶、酱油、辣酱油、蛋黄酱、果汁等 涂料工业——墨水、油漆 化工工业——化妆品、乳液等 染料工业——染料、氧化钛、粘胶 药品工业——药品、农药、医药 污水处理——生活废水、工业污水、硫酸铝等 酿造工业——绍兴酒(老酒)、威士忌酒、未过滤的酱油、啤酒 净水厂——自来水、工业用水 石油工业——原油、汽油、柏油、沥青、甲醇、苯、甲苯 其它——如用于溶解、混合、传热、分散、吸收、防止沉淀、反应、稀释、乳化、悬浮及结晶等领域 四、框式搅拌器(锚式搅拌器) 框式搅拌器(锚式搅拌器) 框式搅拌器根据不同介质的物理学性质、容量、搅拌目的选择相应的搅拌器,对促进化学反应速度、提高生产效率能起到很大的作用。框式搅拌器一般使用于粥状物料的搅拌,搅拌转数以60-130r/min 为宜。 框式搅拌器可视为桨式搅拌器的变形,其结构比较坚固,搅动物料量大。如果这类搅拌器底部形状和反应釜下封头形状相似时,通常称为锚式搅拌器。框式搅拌器直径较大,一般取反应器内径的2/3~9/10,50~70r/min。框式搅拌器与釜壁间隙较小,有利于传热过程的进行,快速旋转时,搅拌器叶片所带动的液体把静止层从反应釜壁上带下来;慢速旋转时,有刮板的搅拌器能产生良好的热传导。这类搅拌器常用于传热、晶析操作和高粘度液体、高浓度淤浆和沉降性淤浆的搅拌。

连续搅拌釜式和管式反应器液相反应的动力学参数测定

连续搅拌釜式反应器液相反应的动力学参数测定 一、实验目的 连续流动搅拌釜式反应器与管式反应器相比较,就生产强度或溶剂效率而论,搅拌釜 式反应器不如管式反应器,但搅拌釜式反应器具有其独特性能,在某些场合下,比如对于 反应速度较慢的液相反应,选用连续流动的搅拌釜式反应器就更为有利,因此,在工业上, 这类反应器有着特殊的效用。 对于液相反应动力学研究来说,间歇操作的搅拌釜式反应器和连续流动的管式反应器 都不能直接测得反应速度,而连续操作的搅拌釜式反应器却能直接测得反应速度。但连续 流动搅拌釜式反应器的性能显著地受液体的流动特性的影响。当连续流动搅拌釜式反应器 的流动状况达到全混流时,即为理想流动反应器——全混流反应器,否则为非理想流动反 应器。在全混流反应器中,物料的组成和反应温度不随时间和空间而变化,即浓度和温度 达到无梯度,流出液的组成等于釜内液的组成。对于偏离全混流的非理想流动搅拌釜式反 应器,则上述状况不复存在。因此,用理想的连续搅拌釜式反应器(全混流反应器)可以 直接测得本征的反应速度,否则,测得的为表观反应速度。 用连续流动搅拌釜式反应器进行液相反应动力学,通常有三种实验方法:连续输入法、 脉冲输入法和阶跃输入法。本实验采用连续输入的方法,在定常流动下,实验测定乙酸乙 酯皂化反应的反应速度和反应常数。同时,根据实验测得不同温度下的反应速度常数,求 取乙酸乙酯皂化反应的活化能,进而建立反应速度常数与温度关系式(Arrhenius formula ) 的具体表达式。通过实验练习初步掌握一种液相反应动力学的实验研究方法。并进而加深 对连续流动反应器的流动特性和模型的了解;加深对液相反应动力学和反应器原理的理解。 二、实验原理 1.反应速度 连续流动搅拌釜式反应器的摩尔衡算基本方程: dt dn dV r F F A v A A AO =---?)(0 (1) 对于定常流动下的全混流反应器,上式可简化为 0)(=---V r F F A A AO (2) 或可表达为 V F F r A AO A -=-)( (3) 式中; AO F ——流入反应器的着眼反应物A 的摩尔流率, 1 -?s mol ;

相关文档
最新文档