钢管订购与运输问题一的数学模型与求解

钢管订购与运输问题一的数学模型与求解
钢管订购与运输问题一的数学模型与求解

钢管订购和运输问题一代码和结果

function f=result(t) %求解问题1 tic; x0=zeros(8,15);vlb=zeros(8,15); m=zeros(1,7); s=[800 800 1000 2000 2000 2000 3000]; s(t)=s(t)-50; N=[1 1 1 0 1 1 0]; %每公里钢管从Si到达Ai站点的最小费用 C=[ ; ; ; ; ; ; ]; options=optimset('LargeScale','off','Algorithm' ,'active-set','MaxFunEvals' ,50000);%,'Tolx',; [x,f]=fmincon('myfun',x0,[],[],[],[],vlb,[],'mycon',options,C,N,s); for i=1:7 for j=1:15 m(i)=m(i)+N(i)*x(i,j); end end x,m,f; b=(f-1278600)/1278600*(s(t)+50)/50 toc function f=myfun(XX,C,N,s) %问题1的目标函数 x=XX(1:7,1:15); rl=XX(8,1:15); L=[104 301 750 606 194 205 201 680 480 300 220 210 420 500]; f=0; for i=1:7 for j=1:15 f=f+N(i)*x(i,j)*C(i,j);%运输费和成本费 end end

for i=1:14 f=f+(rl(i)*(rl(i)+1)/2+(L(i)-rl(i))*(L(i)-rl(i)+1)/2)*;%铺设时的运输费end f function [c,ceq]=mycon(XX,C,N,s) %问题1的约束条件 x=XX(1:7,1:15); rl=XX(8,1:15); L=[104 301 750 606 194 205 201 680 480 300 220 210 420 500]; m=zeros(1,7); a=zeros(1,15); cc=0; for i=1:7 for j=1:15 m(i)=m(i)+N(i)*x(i,j); end c(i)=m(i)-s(i); cc=cc+m(i); end for i=1:14 c(i+7)=rl(i)-L(i); end for i=2:14 for j=1:7 a(i)=a(i)+N(j)*x(j,i); end ceq(i-1)=a(i)-rl(i)+rl(i-1)-L(i-1); end t1=0;t2=0; for i=1:7 t1=t1+N(i)*x(i,1); t2=t2+N(i)*x(i,15); end ceq(14)=t1-rl(1); ceq(15)=rl(15); ceq(16)=cc-5171;

数学建模B题钢管订购和运输

关于下面3个问题(可以就是其中某个小问题),试分别建立模型.包括给出问题分析与建模思路、模型假设、变量说明、模型建立。不需要求解。 1B题钢管订购与运输 要铺设一条得输送天然气得主管道,如图一所示(见反面)。经筛选后可以生产这种主管道钢管得钢厂有.图中粗线表示铁路,单细线表示公路,双细线表示要铺设得管道(假设沿管道或者原来有公路,或者建有施工公路),圆圈表示火车站,每段铁路、公路与管道旁得阿拉伯数字表示里程(单位km)。 为方便计,1km主管道钢管称为1单位钢管。 一个钢厂如果承担制造这种钢管,至少需要生产500个单位.钢厂在指定期限内能生产该钢管 1 2 3 4 5 67 8000 16 5 150 160 1 里程(km) ≤300 301~350 351~400 401~450 451~500 运价(万元)20 2326 2932 里程(km)501~600601~700 701~800 801~900 901~1000 运价(万元) 3744 505560 公路运输费用为1单位钢管每公里0、1万元(不足整公里部分按整公里计算)。 钢管可由铁路、公路运往铺设地点(不只就是运到点,而就是管道全线)。 (1)请制定一个主管道钢管得订购与运输计划,使总费用最小(给出总费用). (2)请就(1)得模型分析:哪个钢厂钢管得销价得变化对购运计划与总费用影响最大,哪个钢厂钢管得产量得上限得变化对购运计划与总费用得影响最大,并给出相应得数字结果。 (3)如果要铺设得管道不就是一条线,而就是一个树形图,铁路、公路与管道构成网络,请就这种更一般得情形给出一种解决办法,并对图二按(1)得要求给出模型与结果。

数学建模大赛货物运输问题

货物配送问题 【摘要】 本文是针对解决某港口对某地区8个公司所需原材料A、B、C的运输调度问题提出的方案。我们首先考虑在满足各个公司的需求的情况下,所需要的运输的最小运输次数,然后根据卸载顺序的约束以及载重费用尽量小的原则,提出了较为合理的优化模型,求出较为优化的调配方案。 针对问题一,我们在两个大的方面进行分析与优化。第一方面是对车次安排的优化分析,得出①~④公司顺时针送货,⑤~⑧公司逆时针送货为最佳方案。第二方面我们根据车载重相对最大化思想使方案分为两个步骤,第一步先是使每个车次满载并运往同一个公司,第二步采用分批次运输的方案,即在第一批次运输中,我们使A材料有优先运输权;在第二批次运输中,我们使B材料有优先运输权;在第三批次中运输剩下所需的货物。最后得出耗时最少、费用最少的方案。耗时为小时,费用为元。 针对问题二,加上两个定理及其推论数学模型与问题一几乎相同,只是空载路径不同。我们采取与问题一相同的算法,得出耗时最少,费用最少的方案。耗时为小时,费用为元。 针对问题三的第一小问,我们知道货车有4吨、6吨和8吨三种型号。我们经过简单的论证,排除了4吨货车的使用。题目没有规定车子不能变向,所以认为车辆可以掉头。然后我们仍旧采取①~④公司顺时针送货,⑤~⑧公司逆时针送货的方案。最后在满足公司需求量的条件下,采用不同吨位满载运输方案,此方案分为三个步骤:第一,使8吨车次满载并运往同一公司;第二,6吨位车次满载并运往同一公司;第三,剩下的货物若在1~6吨内,则用6吨货车运输,若在7~8吨内用8吨货车运输。最后得出耗时最少、费用最省的方案。耗时为小时,费用为。 一、问题重述 某地区有8个公司(如图一编号①至⑧),某天某货运公司要派车将各公司所需的三种原材料A,B,C从某港口(编号⑨)分别运往各个公司。路线是唯一的双向道路(如图1)。货运公司现有一种载重 6吨的运输车,派车有固定成本20元/辆,从港口出车有固定成本为10元/车次(车辆每出动一次为一车次)。每辆车平均需要用15分钟的时间装车,到每个公司卸车时间平均为10分钟,运输车平均速度为60公里/小时(不考虑塞车现象),每日工作不超过8小时。运输车载重运费元/吨公里,运输车空载费用元/公里。一个单位的原材料A,B,C分别毛重4吨、3吨、1吨,原材料不能拆分,为了安全,大小件同车时必须小件在上,大件在下。卸货时必须先卸小件,而且不允许卸下来的材料再装上车,另外必须要满足各公司当天的需求量(见表1)。问题:

#蔬菜运输问题--数学建模

蔬菜运输问题 2012年8月22日 摘要 本文运用floyd算法求出各蔬菜采购点到每个菜市场的最短运输距离,然后用lingo软件计算蔬菜调运费用及预期短缺损失最小的调运方案,紧接着根据题目要求对算法加以修改得出每个市场短缺率都小于20%的最优调运方案,并求出了最佳的供应改进方案。 关键词 最短路问题 floyd算法运输问题 一、问题重述 光明市是一个人口不到15万人的小城市。根据该市的蔬菜种植情况,分别在花市(A),城乡路口(B)和下塘街(C)设三个收购点,再由各收购点分送到全市的8个菜市场,该市道路情况,各路段距离(单位:100m)及各收购点,菜市场①L⑧的具体位置见图1,按常年情况,A,B,C三个收购点每天收购量分别为200,170和160(单位:100 kg),各菜市场的每天需求量及发生供应短缺时带来的损失(元/100kg)见表 1.设从收购点至各菜市场蔬菜调运费为1元/(100kg.100m). ①7 ② 5 4 8 3 7 A 7 ⑼ 6 B ⑥ 6 8 5 5 4 7 11 7 ⑾ 4 ③ 7 5 6 6 ⑤ 3 ⑿ 5 ④ ⑽ 8 6 6 10 C 10 ⑧ 5 11 ⑦图1 表1 菜市场每天需求(100 kg)短缺损失(元/100kg) ①75 10 ②60 8 ③80 5 ④70 10 ⑤100 10 ⑥55 8 ⑦90 5 ⑧80 8 (a)为该市设计一个从收购点至个菜市场的定点供应方案,使用于蔬菜调运及预

期的短缺损失为最小; (b)若规定各菜市场短缺量一律不超过需求量的20%,重新设计定点供应方案 (c)为满足城市居民的蔬菜供应,光明市的领导规划增加蔬菜种植面积,试问增 产的蔬菜每天应分别向A,B,C三个采购点供应多少最经济合理。 二、问题分析 求总的运费最低,可以先求出各采购点到菜市场的最小运费,由于单位重量运费和距离成正比,题目所给的图1里包含了部分菜市场、中转点以及收购点之间的距离,(a)题可以用求最短路的方法求出各采购点到菜市场的最短路径,乘上单位重量单位距离费用就是单位重量各运输线路的费用,然后用线性方法即可解得相应的最小调运费用及预期短缺损失。 第二问规定各菜市场短缺量一律不超过需求量的20%,只需要在上题基础上加上新的限制条件,即可得出新的调运方案。 第三问可以在第二问的基础上用灵敏度分析进行求解,也可以建立新的线性问题进行求解。 三、模型假设 1、各个菜市场、中转点以及收购点都可以作为中转点; 2、各个菜市场、中转点以及收购点都可以的最大容纳量为610吨; 3、假设只考虑运输费用和短缺费用,不考虑装卸等其它费用; 4、假设运输的蔬菜路途中没有损耗; 5、忽略从种菜场地到收购点的运输费用。 四、符号说明 A收购点分送到全市的8个菜市场的供应量分别为a1,b1,c1,d1,e1,f1,g1,h1, B收购点分送到全市的8个菜市场的供应量分别为a2,b2,c2,d2,e2,f2,g2,h2, C收购点分送到全市的8个菜市场的供应量分别为a3,b3,c3,d3,e3,f3,g3,h3, 8个菜市场的短缺损失量分别为a,b,c,d,e,f,g,h(单位均为100kg)。 五、模型的建立和求解 按照问题的分析,首先就要求解各采购点到菜市场的最短距离,在图论里面关于最短路问题比较常用的是Dijkstra算法,Dijkstra算法提供了从网络图中某一点到其他点的最短距离。主要特点是以起始点为中心向外层层扩展,直到扩展到终点为止。但由于它遍历计算的节点很多,所以效率较低,实际问题中往往要求网络中任意两点之间的最短路距离。如果仍然采用Dijkstra算法对各点分别计算,就显得很麻烦。所以就可以使用网络各点之间的矩阵计算法,即Floyd 算法。 Floyd算法的基本是:从任意节点i到任意节点j的最短路径不外乎2种可能,1是直接从i到j,2是从i经过若干个节点k到j。i到j的最短距离不外乎存在经过i和j之间的k和不经过k两种可能,所以可以令k=1,2,3,...,n(n是城市的数目),在检查d(i,j)和d(i,k)+d(k,j)的值;在此d(i,k)和d(k,j)分别是目前为止所知道的i到k和k到j的最短距离。因此d(i,k)+d(k,j)就是i到j经过k的最短距离。所以,若有d(i,j)>d(i,k)+d(k,j),就表示从i出发经过k再到j的距离要比原来的i到j距离短,自然把i到j的d(i,j)重写为

数学建模-钢管订购和运输

221 案例10 订购和运输 一、问题重述和分析 要铺设一条1521A A A →→→ 的输送天然气的主管道,如图1所示,经筛选后可以生产这种主管道的钢厂有721,,,S S S . 图中粗线表示铁路,单细线表示公路,双细线表示要铺设的管道(假设沿管道或者原来有公路,或者建有施工公路),圆圈表示火车站,每段铁路、公路和管道旁的阿拉伯数字表示里程(单位km ). 图1 为了方便,1km 主管道称为1单位钢管. 一个钢厂如果承担制造这种钢管,至少 需要生产500个单位. 钢厂i S 在指定期限内能生产该钢管的最大生产数量为i s 个单位,钢厂出厂销价为i p 万元,如下表: A 1 3 2 5 810 10 31 20 12 42 70 10 88 10 70 62 70 30 20 2 30 45 104 301 750 606 194 205 201 680 480 300 220 210 420 500 600 306 195 202 720 690 52 170 690 462 16 320 160 11290 115 1100 1200 A 2 A 3 A 4 A 5 A 6 A 7 A8 A 9 A 10 A 11 A 12 A 13 A 14A 15 S 1 S 2 S 3 S 4 S5S 6 S 7

222 表1 i 1 2 3 4 5 6 7 i s 800 800 1000 2000 2000 2000 3000 i p 160 155 155 160 155 150 160 1单位钢管的铁路运价如下表: 表2 里程(km ) 300≤ 350~301 351~400 401~450 451~500 运价(万元) 20 23 26 29 32 里程(km ) 501~600 601~700 701~800 801~900 901~1000 运价(万元) 37 44 50 55 60 1000km 以上每增加1至100km 运价增加5万元. 公路运输费用为1单位管道每公里0.1万元(不足整公里的按整公里计算). 管道可由铁路、公路运往铺设地点(不只是运到点1521A A A →→→ ,而是管道全线). 问题1. 制定一个主管道钢管的订购和运输计划,使总费用最小,并给出总费用. 问题2. 就(1)的模型进行分析:哪个钢厂钢管的销价的变化对购运计划和总费用影响最大,哪个钢厂钢管的产量的上限的变化对购运计划和总费用的影响最大,并给出相应的数字结果. 二、基本假设 1. 在计算运费时,沿管道铺设路线上的公路与其它普通公路相同(1单位钢管每 公里0.1万元); 2. 订购的钢管数量刚好等于需要铺设的钢管数量; 3. 管道可由铁路、公路、管道全线运往铺设地点(不只是运到点1521,,,A A A ); 4. 模型只考虑钢管销价费用和钢管从钢管厂运送到铺设点的钢管运费,而不考虑 其它费用,如不计换车、转站的时间和费用,不计装卸费用等; 5. 不计运输时由于运输工具出现故障等意外事故引起工期延误造成损失; 6. 销售价和运输价不受市场价格变化的影响. 三、符号说明 i S : 第i 钢管厂 i s : 表示i S 的最大生产能力 j A : 表示需要铺设管道路径上的车站 i j x : 从所有i S 运往j A 的钢管数

数学建模运输问题

数学建模运输问题公司内部档案编码:[OPPTR-OPPT28-OPPTL98-OPPNN08]

运输问题 摘要 本文主要研究的是货物运输的最短路径问题,利用图论中的Floyd 算法、Kruskal算法,以及整数规划的方法建立相关问题的模型,通过matlab,lingo编程求解出最终结果。 关于问题一,是一个两客户间最短路程的问题,因此本文利用Floyd 算法对其进行分析。考虑到计算的方便性,首先,我们将两客户之间的距离输入到网络权矩阵中;然后,逐步分析出两客户间的最短距离;最后,利用Matlab软件对其进行编程求解,运行得到结果:2-3-8-9-10总路程为85公里。 关于问题二,运输公司分别要对10个客户供货,必须访问每个客户,实际上是一个旅行商问题。首先,不考虑送货员返回提货点的情形,本文利用最小生成树问题中的Kruskal算法,结合题中所给的邻接矩阵,很快可以得到回路的最短路线:-9-10-2;然后利用问题一的Floyd算法编程,能求得从客户2到客户1(提货点)的最短路线是:2-1,路程为50公里。即最短路线为:-9-10-2-1。但考虑到最小生成树法局限于顶点数较少的情形,不宜进一步推广,因此本文建立以路程最短为目标函数的整数规划模型;最后,利用LINGO软件对其进行编程求解,求解出的回路与Kruskal算法求出的回路一致。 关于问题三,是在每个客户所需固定货物量的情况下,使得行程之和最短。这样只要找出两条尽可能短的回路,并保证每条线路客户总需

求量在50个单位以内即可。因此我们在问题二模型的基础上进行改进,以货车容量为限定条件,建立相应的规划模型并设计一个简单的寻路算法,对于模型求解出来的结果,本文利用Kruskal算法结合题中所给的邻接矩阵进行优化。得到优化结果为:第一辆车:-1,第二辆车:,总路程为280公里。 关于问题四,在问题一的基础上我们首先用Matlab软件编程确定提货点到每个客户点间的最短路线,然后结合一些限定条件建立一个目标模型,设计一个较好的解决方案进行求解可得到一种很理想的运输方案。根据matlab运行结果分析得出4条最优路线分别为:1-5-2,1-4-3-8,1-7-6,1-9-10。最短总路线为245公里,最小总费用为645。 关键词: Floyd算法 Kruskal算法整数规划旅行商问题 一、问题重述 某运输公司为10个客户配送货物,假定提货点就在客户1所在的位置,从第i个客户到第j个客户的路线距离(单位公里)用下面矩阵中的(,) i j=位置上的数表示(其中∞表示两个客户之间无直接的 i j(,1,,10) 路线到达)。 1、运送员在给第二个客户卸货完成的时候,临时接到新的调度通知,让 他先给客户10送货,已知送给客户10的货已在运送员的车上,请帮运送员设计一个到客户10的尽可能短的行使路线(假定上述矩阵中给出了所有可能的路线选择)。 2、现运输公司派了一辆大的货车为这10个客户配送货物,假定这辆货车 一次能装满10个客户所需要的全部货物,请问货车从提货点出发给

钢管订购和运输论文

承诺书 我们仔细阅读了全国大学生数学建模的竞赛规则(https://www.360docs.net/doc/c98573823.html,)。 我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与本队以外的任何人(包括指导教师)研究、讨论与赛题有关的问题。 我们知道,抄袭别人的成果是违反竞赛规则的, 如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。 我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。如有违反竞赛规则的行为,我们愿意承担由此引起的一切后果。 我们的参赛(报名)队号为:32 参赛组别(研究生或本科):本科 参赛队员:兰潇根、柳达强、汪锡平

钢管订购和运输 摘要:本文拟建立一个最合理的钢管运输与铺设方案模型。利用离散数学和数 据结构中图论相关知识,应用最短路径的floyd算法和灵敏度分析法建立一个以总费用为目标函数的非线性规划模型,对于钢管订购和运输的总费用,分为三部分:购买钢管费用,由钢厂运送到站点的费用以及由站点开始铺设的费用,对于由钢厂运送到站点的费用,用Floyd算法,求出铁路网和公路网的最短路径,然后转化为最少运输费用,之后利用Lingo软件编程,求解分析,解决问题。 关键词:Floyd算法,非线性规划,Lingo

要铺设一条1521A A A →→→ 的输送天然气的主管道, 如题图一所示。经筛选后可以生产这种主管道钢管的钢厂有721,,S S S 。图中粗线表示铁路,单细线表示公路,双细线表示要铺设的管道(假设沿管道或者原来有公路,或者建有施工公路),圆圈表示火车站,每段铁路、公路和管道旁的阿拉伯数字表示里程(单位km)。为方便计,1km 主管道钢管称为1单位钢管。 一个钢厂如果承担制造这种钢管,至少需要生产500个单位。钢厂i S 在指定期限内能生产该钢管的最大数量为i s 个单位,钢管出厂销价1单位钢管为i p 万元,如下表: 1 公路运输费用为1单位钢管每公里0.1万元(不足整公里部分按整公里计算)。 钢管可由铁路、公路运往铺设地点(不只是运到点1521,,,A A A ,而是管道全线)。 (1)请制定一个主管道钢管的订购和运输计划,使总费用最小(给出总费用)。 (2)请就(1)的模型分析:哪个钢厂钢管的销价的变化对购运计划和总费用影响最大,哪个钢厂钢管的产量的上限的变化对购运计划和总费用的影响最大,并给出相应的数字结果。 (3)如果要铺设的管道不是一条线,而是一个树形图,铁路、公路和管道构成网络,请就这种更一般的情形给出一种解决办法,并对题图二按(1)的要求给出模型和结果。

钢管订购和运输求解(1)

钢管订购和运输 1、问题描述: 2000网易杯全国大学生数学建模竞赛题目B 题 钢管订购和运输 要铺设一条1521A A A →→→ 的输送天然气的主管道, 如图一所示(见下页)。经筛选后可以生产这种主管道钢管的钢厂有721,,S S S 。图中粗线表示铁路,单细线表示公路,双细线表示要铺设的管道(假设沿管道或者原来有公路,或者建有施工公路),圆圈表示火车站,每段铁路、公路和管道旁的阿拉伯数字表示里程(单位km)。 为方便计,1km 主管道钢管称为1单位钢管。 一个钢厂如果承担制造这种钢管,至少需要生产500个单位。钢厂i S 在指定期限内能生产该钢管的最大数量为i s 个单位,钢管出厂销价1单位钢管为i p 万元,如下表: 7

1单位钢管的铁路运价如下表: 注:1000km 以上每增加1至100km 运价增加5 公路运输费用为1单位钢管每公里0.1万元(不足整公里部分按整公里计算)。钢管可由铁路、公路运往铺设地点(不只是运到点1521,,,A A A ,而是管道全线)。 (1)请制定一个主管道钢管的订购和运输计划,使总费用最小(给出总费用)。 (2)请就(1)的模型分析:哪个钢厂钢管的销价的变化对购运计划和总费用影响最大,哪个钢厂钢管的产量的上限的变化对购运计划和总费用的影响最大,并给出相应的数字结果。 (3)如果要铺设的管道不是一条线,而是一个树形图,铁路、公路和管道构成网络,请就这种更一般的情形给出一种解决办法,并对图二按(1)的要求给出模型和结果。 2、运费矩阵的计算模型 7

问题分析: 我们只考虑本题第一问的求解。首先,所有钢管必须要运到天然气主管道铺设线上的节点1521,,,A A A ,然后才能向左或右铺设,因此,必须求出从每个钢管厂721,,S S S (记为i=1,……,7)到每个节点1521,,,A A A (记为j=1,……,15)的每单位钢管最小运费Cij (不妨称为运费矩阵)及其对应的运输方式和线路。 因为题目中没有给出装卸成本,我们简单假设总是采用最经济的运输方式,虽然这个铺设在实际中可能不太接近现实,也就是说,在运输过程中需要多次装卸也是允许的(如铁路转公路,再转铁路,等等)。自然的想法是运输路线应该是走最短路径,但由于有两种运输和计价方式(铁路和公路),公路运输费用为1单位钢管每公里0.1万元(不足整公里部分按整公里计算),运费是路程的线性函数;然而,铁路运费要通过运输里程查表得到,是一个阶梯函数。这两种计价方式混合在一起,使得我们不能直接在整个铁路、公路混合的运输网络上计算最短路径作为运输路线,但可以分析分别在铁路、公路网上技计算最短路径,然后换算成相应的费用;最后在整个网络上以两个子网上相应的运费为权,再求一次最短路问题,就可以把它们统一成一个标准的运费矩阵。 铁路子网络: 假设铁路运输线应该是走最短路径,而且采用连续路径计价方式一定优于分段计价方式(其实题中数据并不符合这一规定。例如题中650km 的运价为44万元,而分成300km 和350km 两段计价只需要43万元,这种情况不太符合实际,可能是每题时选择数据的疏忽,我们不过多考虑这种情况)。这时,我们可以把铁路运输子网独立出来,在这个网络上计算任意两个节点i ,j 之间的最短路径长度dij 1,然后按照这个最短路长度查铁路运价表得到最小费用Cij 1。 在无向网络上求任意两点之间最短路径算法很多,尤其对本题这种弧上的权(距离)全为正数的情况,存在相对比较的算法。例如,求任意两点之间最短路径的Floyd-Warshall 算法是(可参阅网络优化的有关书籍) (24) 这实际上是一种标号算法,其中n 是网络节点数(节点编号为1,2,……,n );wij 是给定的网络上相邻节点i,j 之间的直接距离(i,j 不相邻时取wij 充分大就可以了);u ij (k)可以看成是任意两个节点i,j 之间距离的中间迭代值,(或称为临时编号),即从节点i 到j 但不 允许经过其他节点k,k+1,……,n 时的最短距离;自然u ij (k+1)就是i,j 之间的最短距离(或 称为永久标号),即dij 1。 下面说明如何用LINGO 软件求最短路。对图中节点编号(除已经编号的节点si 、Ai 外,在增加编号B1……B17,如图所示)。实际上如果令铁路运输子网以外的节点间的距离为充分大,就可以把整个铁路、公路网络放在一起考虑。这样虽然增加了问题的规模,但对于最后将两个网络合并起来考虑是有利的。所以我们采用这种想法来做。对于本题,我们设这个充分大的数为BIG=20000(km),显然这已经足够大了。 ?????=+=≠==+.,,1,,},,min{,,,0)()()()1()1()1(n k j i u u u u j i w u u k kj k ik k ij k ij ij ij ii

数学建模运输问题

运输问题 摘要 本文主要研究的是货物运输的最短路径问题,利用图论中的Floyd算法、Kruskal算法,以及整数规划的方法建立相关问题的模型,通过matlab,lingo 编程求解出最终结果。 关于问题一,是一个两客户间最短路程的问题,因此本文利用Floyd算法对其进行分析。考虑到计算的方便性,首先,我们将两客户之间的距离输入到网络权矩阵中;然后,逐步分析出两客户间的最短距离;最后,利用Matlab软件对其进行编程求解,运行得到结果:2-3-8-9-10总路程为85公里。 关于问题二,运输公司分别要对10个客户供货,必须访问每个客户,实际上是一个旅行商问题。首先,不考虑送货员返回提货点的情形,本文利用最小生成树问题中的Kruskal算法,结合题中所给的邻接矩阵,很快可以得到回路的最短路线:1-5-7-6-3-4-8-9-10-2;然后利用问题一的Floyd算法编程,能求得从客户2到客户1(提货点)的最短路线是:2-1,路程为50公里。即最短路线为:1-5-7-6-3-4-8-9-10-2-1。但考虑到最小生成树法局限于顶点数较少的情形,不宜进一步推广,因此本文建立以路程最短为目标函数的整数规划模型;最后,利用LINGO软件对其进行编程求解,求解出的回路与Kruskal算法求出的回路一致。 关于问题三,是在每个客户所需固定货物量的情况下,使得行程之和最短。这样只要找出两条尽可能短的回路,并保证每条线路客户总需求量在50个单位以内即可。因此我们在问题二模型的基础上进行改进,以货车容量为限定条件,建立相应的规划模型并设计一个简单的寻路算法,对于模型求解出来的结果,本文利用Kruskal算法结合题中所给的邻接矩阵进行优化。得到优化结果为:第一辆车:1-5-2-3-4-8-9-1,第二辆车:1-7-6-9-10-1,总路程为280公里。 关于问题四,在问题一的基础上我们首先用Matlab软件编程确定提货点到每个客户点间的最短路线,然后结合一些限定条件建立一个目标模型,设计一个较好的解决方案进行求解可得到一种很理想的运输方案。根据matlab运行结果分析得出4条最优路线分别为:1-5-2,1-4-3-8,1-7-6,1-9-10。最短总路线为245公里,最小总费用为645。 关键词: Floyd算法 Kruskal算法整数规划旅行商问题 一、问题重述 某运输公司为10个客户配送货物,假定提货点就在客户1所在的位置,从第i个客户到第j个客户的路线距离(单位公里)用下面矩阵中的 i j=L位置上的数表示(其中∞表示两个客户之间无直接的路线到i j(,1,,10) (,) 达)。 1、运送员在给第二个客户卸货完成的时候,临时接到新的调度通知,让他先给 客户10送货,已知送给客户10的货已在运送员的车上,请帮运送员设计一个到客户10的尽可能短的行使路线(假定上述矩阵中给出了所有可能的路线选择)。 2、现运输公司派了一辆大的货车为这10个客户配送货物,假定这辆货车一次能 装满10个客户所需要的全部货物,请问货车从提货点出发给10个客户配送

2000年数学建模B题钢管订购和运输资料

关于下面3个问题(可以是其中某个小问题),试分别建立模型。包括给出问题分析和建模思路、模型假设、变量说明、模型建立。不需要求解。 1 B 题 钢管订购和运输 要铺设一条1521A A A →→→ 的输送天然气的主管道, 如图一所示(见反面)。经筛选后可 以生产这种主管道钢管的钢厂有721,,S S S 。图中粗线表示铁路,单细线表示公路,双细线表示要铺设的管道(假设沿管道或者原来有公路,或者建有施工公路),圆圈表示火车站,每段铁路、公路和管道旁的阿拉伯数字表示里程(单位km)。 为方便计,1km 主管道钢管称为1单位钢管。 一个钢厂如果承担制造这种钢管,至少需要生产500个单位。钢厂i S 在指定期限内能生产该钢管的最大数量为i s 个单位,钢管出厂销价1单位钢管为i p 万元,如下表: 1单位钢管的铁路运价如下表: 1000km 以上每增加1至100km 运价增加5 公路运输费用为1单位钢管每公里0.1万元(不足整公里部分按整公里计算)。 钢管可由铁路、公路运往铺设地点(不只是运到点1521,,,A A A ,而是管道全线)。 (1)请制定一个主管道钢管的订购和运输计划,使总费用最小(给出总费用)。 (2)请就(1)的模型分析:哪个钢厂钢管的销价的变化对购运计划和总费用影响最大,哪个钢厂钢管的产量的上限的变化对购运计划和总费用的影响最大,并给出相应的数字结果。 (3)如果要铺设的管道不是一条线,而是一个树形图,铁路、公路和管道构成网络,请就这种更一般的情形给出一种解决办法,并对图二按(1)的要求给出模型和结果。

7 7

问题分析 问题一,首先,所有钢管必须运到天然气主管道铺设路线上的节点 1521A A A →→→ ,然后才能向左或右铺设。必须求出每个钢管厂721,,S S S 到每 个节点1521A A A →→→ 的每单位钢管的最小运输费用。 问题二,通过问题一里面Lingo 编程运行得出的结果,分析哪个钢厂钢管的销价的变化对购运计划和总费用影响最大,哪个钢厂钢管的产量的上限的变化对购运计划和总费用的影响最大。 问题三,利用同问题一一样的方法,从而可求出某钢厂到某某铺设点运输单位钢管的最少运输费用。(具体算法及程序见附录) 1) 基本假设: ○1要铺设的管道侧有公路,可运送所需钢管。 ○2钢管在运输中由铁路运转为公路运时不计中转(换车)费用; ○3所需钢管均由)7,...,1(=i S i 钢厂提供; ④假设运送的钢管路途中没有损耗。 2) 符号说明: i S : 钢厂i S 的最大生产能力; i p : 钢厂i S 的出厂钢管单位价格(单位: 万元) ; d : 公路上一单位钢管的每公里运费(d = 0. 1 万元) ; e : 铁路上一单位钢管的运费(分段函数见表1) ; ij c : 1 单位钢管从钢厂i S 运到j A 的最小费用(单位: 万元) ; j b : 从 j A 到 1 +j A 之间的距离(单位: 千米) ; ij x : 钢厂i S 运到 j A 的钢管数; y j : 运到 j A 地的钢管向左铺设的数目;

数学建模--运输问题

数学建模--运输问题

运输问题 摘要 本文主要研究的是货物运输的最短路径问题,利用图论中的Floyd算法、Kruskal算法,以及整数规划的方法建立相关问题的模型,通过matlab,lingo 编程求解出最终结果。 关于问题一,是一个两客户间最短路程的问题,因此本文利用Floyd算法对其进行分析。考虑到计算的方便性,首先,我们将两客户之间的距离输入到网络权矩阵中;然后,逐步分析出两客户间的最短距离;最后,利用Matlab软件对其进行编程求解,运行得到结果:2-3-8-9-10总路程为85公里。 关于问题二,运输公司分别要对10个客户供货,必须访问每个客户,实际上是一个旅行商问题。首先,不考虑送货员返回提货点的情形,本文利用最小生成树问题中的Kruskal算法,结合题中所给的邻接矩阵,很快可以得到回路的最短路线:1-5-7-6-3-4-8-9-10-2;然后利用问题一的Floyd算法编程,能求得从客户2到客户1(提货点)的最短路线是:2-1,路程为50公里。即最短路线为:1-5-7-6-3-4-8-9-10-2-1。但考虑到最小生成树法局限于顶点数较少的情形,不宜进一步推广,因此本文建立以路程最短为目标函数的整数规划模型;最后,利用LINGO软件对其进行编程求解,求解出的回路与Kruskal算法求出的回路一致。 关于问题三,是在每个客户所需固定货物量的情况下,使得行程之和最短。这样只要找出两条尽可能短的回路,并保证每条线路客户总需求量在50个单位以内即可。因此我们在问题二模型的基础上进行改进,以货车容量为限定条件,建立相应的规划模型并设计一个简单的寻路算法,对于模型求解出来的结果,本文利用Kruskal算法结合题中所给的邻接矩阵进行优化。得到优化结果为:第 一辆车:1-5-2-3-4-8-9-1,第二辆车:1-7-6-9-10-1,总路程为280公里。 关于问题四,在问题一的基础上我们首先用Matlab软件编程确定提货点到每个客户点间的最短路线,然后结合一些限定条件建立一个目标模型,设计一个较好的解决方案进行求解可得到一种很理想的运输方案。根据matlab运行结果分析得出4条最优路线分别为:1-5-2,1-4-3-8,1-7-6,1-9-10。最短总路线为245公里,最小总费用为645。 关键词: Floyd算法 Kruskal算法整数规划旅行商问题

数学建模运输问题

华东交通大学数学建模 2012年第一次模拟训练题 所属学校:华东交通大学(ECJTU ) 参赛队员:胡志远、周少华、蔡汉林、段亚光、 李斌、邱小秧、周邓副、孙燕青 指导老师:朱旭生(博士) 摘要: 本文的运输问题是一个比较复杂的问题,大多数问题都集中在最短路径的求解问题上,问题特点是随机性比较强。 根据不同建模类型 针对问题一 ,我们直接采用Dijkstra 算法(包括lingo 程序和手算验证),将问题转化为线性规划模型求解得出当运送员在给第二个客户卸货完成的时,若要他先给客户10送货,此时尽可能短的行使路线为:109832V V V V V →→→→,总行程85公里。 针对问题二,我们首先利用prim 算法求解得到一棵最小生成树: 121098436751V V V V V V V V V V V →→→→→→→→→→ 再采用Dijkstra 算法求得客户2返回提货点的最短线路为12V V →故可得到一条理想的回路是:121098436751V V V V V V V V V V V →→→→→→→→→→ 后来考虑到模型的推广性,将问题看作是哈密顿回路的问题,建立相应的线性规划模型求解,最终找到一条满足条件的较理想的的货车送货的行车路线: 121098436751V V V V V V V V V V V →→→→→→→→→→。 针对问题三,我们首先直接利用问题二得一辆车的最优回路,以货车容量为限定条件,建立相应的规划模型并设计一个简单的寻路算法,最终可为公司确定合理的一号运输方案:两辆车全程总和为295公里(见正文);然后建立线性规划模型得出二号运输方案:两辆车全程总和为290公里(见正文); 针对问题四,

钢管订购和运输问题一代码和结果

钢管订购和运输问题一 代码和结果 公司内部档案编码:[OPPTR-OPPT28-OPPTL98-OPPNN08]

function f=result(t) %求解问题1 tic; x0=zeros(8,15);vlb=zeros(8,15); m=zeros(1,7); s=[800 800 1000 2000 2000 2000 3000]; s(t)=s(t)-50; N=[1 1 1 0 1 1 0]; %每公里钢管从Si到达Ai站点的最小费用 C=[ ; ; ; ; ; ; ]; options=optimset('LargeScale','off','Algorithm' ,'active- set','MaxFunEvals' ,50000);%,'Tolx',; [x,f]=fmincon('myfun',x0,[],[],[],[],vlb,[],'mycon',options,C, N,s);

for i=1:7 for j=1:15 m(i)=m(i)+N(i)*x(i,j); end end x,m,f; b=(f-1278600)/1278600*(s(t)+50)/50 toc function f=myfun(XX,C,N,s) %问题1的目标函数 x=XX(1:7,1:15); rl=XX(8,1:15); L=[104 301 750 606 194 205 201 680 480 300 220 210 420 500]; f=0; for i=1:7 for j=1:15 f=f+N(i)*x(i,j)*C(i,j);%运输费和成本费 end end for i=1:14

数学模型结业课程设计求解钢管订购和运输问题

《数学模型》课程结业论文 题目钢管订购与运输 院系理学院 专业信息与计算科学 学号 学生姓名 任课教师单锋 沈阳航空航天大学 2013年4月

任 务 书 [要求] 1、将所给的问题翻译成汉语; 2、给论文起个题目(名字或标题) 3、根据任务来完成数学模型论文; 4、论文书写格式要求按给定要求书写; 5、态度要认真,要独立思考,独立完成任务; 6、论文上交时间:5月30日前(要求交纸质论文和电子文档)。 7、严禁抄袭行为,若发现抄袭,则成绩记为“不及格”。 [任务] 钢管订购和运输 要铺设一条1521A A A →→→ 的输送天然气的主管道, 如图一所示(见下页)。经筛选后可以生产这种主管道钢管的钢厂有721,,S S S 。图中粗线表示铁路,单细线表示公路,双细线表示要铺设的管道(假设沿管道或者原来有公路,或者建有施工公路),圆圈表示火车站,每段铁路、公路和管道旁的阿拉伯数字表示里程(单位km)。 为方便计,1km 主管道钢管称为1单位钢管。 一个钢厂如果承担制造这种钢管,至少需要生产500个单位。钢厂i S 在指定期限内能生产该钢管的最大数量为i s 个单位,钢管出厂销价1单位钢管为p 万元,如下表: 1单位钢管的铁路运价如下表:

1000km 以上每增加1至100km 运价增加5万元。 公路运输费用为1单位钢管每公里0.1万元(不足整公里部分按整公里计算)。 钢管可由铁路、公路运往铺设地点(不只是运到点1521,,,A A A ,而是管道全线)。 (1)请制定一个主管道钢管的订购和运输计划,使总费用最小(给出总费用)。 (2)请就(1)的模型分析:哪个钢厂钢管的销价的变化对购运计划和总费用影响最大,哪个钢厂钢管的产量的上限的变化对购运计划和总费用的影响最大,并给出相应的数字结果。 (3)如果要铺设的管道不是一条线,而是一个树形图,铁路、公路和管道构成网络,请就这种更一般的情形给出一种解决办法,并对图二按(1)的要求给出模型和结果。

钢管的订购和运输问题数学建模论文1

摘要 本文针对钢管订购和运输的这一题目的要求,建立了非线性规划模型。在给定钢管运输方式、价格、厂家生产量上下限、运输路线等条件下,本文利用非线性规划模型和图论最短路算法等基础知识,得到了最优的钢管订购运输方案,使总费用最小,并进行了灵敏度分析。 对于问题(1),本文选取钢管订购和运输的最小总费用作为该模型的目标函数,用floyd 算法分别求出铁路最短路矩阵和公路最短路矩阵,进而转化为费用,得到两个矩阵的最小费用,将两者合并求得总体最小运输费用矩阵。然后用lingo 求解得到最优的钢管订购运输方案,为表1: 表1: 对于问题(2),本文根据题目要求改变钢厂钢管的售价和钢厂钢管的产量上限,然后用lingo 求解,观察得到表格,对改变以上两个条件后总运费及方案受到的影响进行了分析,可知钢厂1S 钢厂2S 钢厂3S 单位钢管销售价发生变化时,对方案中总运费的影响最大。钢厂1S 的产量上限的变化对购运费用和总费用影响最大。 对于问题(3),由于问(3)与问题(1)很相似,不同之处在于问题(3)中的钢管铺设路线变成了树形,本文仍然采用问题(1)的建模思路,仅对特殊之处进行修改。采用图论中的floyd 算法,求得总体最小运输费用矩阵。然后用lingo 求解得到最优的钢管订购运输方案,为表2: 表2: 每家厂家的生产量: 关键词: floyd 算法 非线性规划模型 最小总费用 正文

1.问题重述 要铺设一条1521A A A →→→ 的输送天然气的主管道(如图一所示),可以生产这种主管道钢管的钢厂有721,,S S S 。图中粗线表示铁路,单细线表示公路,双细线表示要铺设的管道 (铺设点有公路),圆圈表示火车站,每段铁路、公路和管道旁的阿拉伯数字表示里程(单位km)。 为方便计,1km 主管道钢管称为1单位钢管。 一个钢厂如果承担制造这种钢管,至少需要生产500个单位。钢厂i S 在指定期限内能生产该钢管的最大数量为i s 个单位,钢管出厂销价1单位钢管为i p 万元,如下表: i 1 2 3 4 5 6 7 i s 800 800 1000 2000 2000 2000 3000 i p 160 155 155 160 155 150 160 1里程(km) ≤300 301~350 351~400 401~450 451~500 运价(万元) 20 23 26 29 32 里程(km) 501~600 601~700 701~800 801~900 901~1000 运价(万 元) 37 44 50 55 60 公路运输费用为1单位钢管每公里0.1万元(不足整公里部分按整公里计算)。 钢管可由铁路、公路运往铺设地点(不只是运到点1521,,,A A A ,而是管道全线) (1)请制定一个主管道钢管的订购和运输计划,使总费用最小(给出总费用)。 (2)请就(1)的模型分析:哪个钢厂钢管的销价的变化对购运计划和总费用影响最大,哪个钢厂钢管的产量的上限的变化对购运计划和总费用的影响最大,并给出相应的数字结果。 (3)如果要铺设的管道不是一条线,而是一个树形图,铁路、公路和管道构成网络,请就这种更一般的情形给出一种解决办法,并对图二按(1)的要求给出模型和结果。

钢管订购和运输计划

钢管的订购和运输计划 摘要 在钢管的订购和运输计划中,在第一问中用最短路算法,求解出每个钢厂到 站点152...A A 的最小费用(包括运输费和出厂销售价),考虑到在铺设时管道要沿 铺设路线离散地卸货,即运货到A j 后,还要在铺设路线上运输,因为不足整公里部分要按照整公里计算,所以我们认为沿管道路线每铺设1公里就要卸下1 单位钢管,因此从某点A j 向左铺设或向右铺设y 时,此段运费应为: 1 (1)*0.10.05(1)2 y y y y +=+ 点A j 向右铺设z j ,从A j+1向左铺设y j+1,为了保证合拢,则z j +y j+1=a j ,在这些条件之下,利用lingo 软件,求解出总费用最小。 分析模型的销售价灵敏度的时候,将各个钢厂单位钢管的销售价分别增加和减少若干万元,再用lingo 求解第一问题的模型,看总费用的变化大小,变化大的就是影响结果比较大的;用同样的方法可以分析生产上限的灵敏度。 第三问得时候,我们利用求解第一问的方式来求解问题。 关键字:最短路算法,lingo ,分别改变同样的条件来对比

一,问题重述(略) 二,符号说明: a ij 站点A j至A j+1的里程(铺设管道需要的钢管量) s i s i钢厂的最大生产量 x ij从钢厂s i到A j的钢管数量 c ij从钢厂s i运往A j的单位钢材费用最短路,即亮点运输单位钢材所需的最少 费用,包括运输费和出厂销价 y j A j点往左铺设的钢管数量 zj A j点往右铺设钢管的数量 f 总费用 三,问题分析: (1)对问题一的分析: 从钢厂s i向点A j运输钢管时,为了降低费用,应该走费用最小的路径,从一个工厂s i到一个点A j的路线并不唯一,需要从中找出费用最短的路,相应的最小费用为c ij,包括运输费和销售费。 从图我们可以看到,七个钢材厂要到A1这点必须要经过A2,所以在考虑最低费用路径的时候,可以把A1和A2看做一个点来考虑,。 根据图,我们由最短路问题的算法。 例:从s1到 2 A最短的铁路为:2902km,根据1单位钢管的铁路运价表,可知铁路花费为:60+5*20=160万元,公路运费为3*0.1=0.3万元,并且s1钢厂出厂1单位刚窜为160万元,所以, 总费用=铁路运费+公路运费+销售价 即1600.316 ij c=++=320.3(万元); 用同样的方法,我们可以得到A j的最小费用(单位:万元): A2 A3 A4 A5 A6 A7 A8 A9 A1 A1 1 A1 2 A13 A1 4 A1 5 S 1 320 .3 300 .2 258 .6 19 8 180 .5 163 .1 181 .2 224 .2 25 2 25 6 26 6 281 .2 28 8 30 2 S 2 360 .3 345 .2 326 .6 26 6 250 .5 241 226 .2 269 .2 29 7 30 1 31 1 326 .2 33 3 34 7 S 3 375 .3 355 .2 336 .6 27 6 260 .5 251 241 .2 203 .2 23 7 24 1 25 1 266 .2 27 3 28 7 S 4 410 .3 395 .2 376 .6 31 6 300 .5 291 276 .2 244 .2 22 2 21 1 22 1 236 .2 24 3 25 7 S 5 400 .3 380 .2 361 .6 30 1 285 .5 276 266 .2 234 .2 21 2 18 8 20 6 226 .2 22 8 24 2 S40538536630290281 2712342120191761617

相关文档
最新文档