高三复习导数常见题型归纳

高三复习导数常见题型归纳
高三复习导数常见题型归纳

导数常见题型归纳

1.高考命题回顾

例1.(2013全国1)已知函数()f x =2

x ax b ++,()g x =()x

e cx d +,若曲线()y

f x =和曲线()y

g x =都过点P(0,2),且在点P 处有相同的切线42y x =+(Ⅰ)求a ,b ,

c ,

d 的值;(Ⅱ)若x ≥-2时,()f x ≤()kg x ,求k 的取值范围。

分析:⑴2d c b 4,a ==== ⑵由⑴知()24x f 2

++=x x ,()()12+=x e

x g x

设()()()()24122

---+=-=x x x ke x f x kg x F x

,则()()()

122-+='x

ke x x F 由已知()100≥?≥k F ,令()k x x x F ln ,20-==?='

①若2

1e k <≤则021≤<-x ,从而当()1,2x x -∈时,()0<'x F ,()x F 递减

()+∞∈,1x x 时,()>'x F 0,()x F 递增。()()()02x 111≥+-=≥x x x F F

故当2-≥x 时()0≥x F 即()()x kg x f ≤恒成立。

②若2

e k = 则()()()

0222

2>-+='-e

e x e x F x 。()2->x 。 所以()x F 在()+∞-,2上单调递增,而()02=-F .所以-2x ≥时,()0≥x F 恒成立。 ③若2e k >,则()()

02222222

<--=+-=---e k e ke F ,从而()0≥x F 不可能恒成立

即()()x kg x f ≤不恒成立。 综上所述。k 的取值范围[]

2

,1e

例2.(2013全国2)已知函数)ln()(m x e x f x

+-=.(Ⅰ)设0x =是()f x 的极值点,

求m ,并讨论()f x 的单调性;(Ⅱ)当2m ≤时,证明()0f x >. 分析:(Ⅰ)1m =。()x f 在()0,1-上减。在()+∞,0上增。 (Ⅱ)当2≤m 。()+∞-∈,m x 时,()()2ln ln +≤+x m x 。

故只需证明2=m 时()0>x f 。

当2m =时。()2

1

+-

='x e x f x

在()+∞-,2上增。又()()00,0>'<'f x f 故()0='x f 在()+∞-,2上有唯一实根0x ,且()0,10-∈x 。 当()0,2x x -∈时,()0<'x f ,当()+∞∈,0x x 时,()0>'x f 从而()+∞-∈,2x 时,()()0x f x f ≥。()()0002ln 2

1

00

x x x e

x f x -=+?+=

?='

故()()()02

121

02

0000>++=++=≥x x x x x f x f

综上知,当2m ≤时,证明()0f x >.

例3. (2014全国1)设函数1

()ln x x

be f x ae x x

-=+,曲线()y f x =在点(1,(1)f )处的

切线为(1)2y e x =-+. (Ⅰ)求,a b ; (Ⅱ)证明:()1f x >. (1)解 函数f (x )的定义域为(0,+∞),f ′(x )=a e x ln x +a x e x -b x2e x -1+b

x e x -1.

由题意可得f (1)=2,f ′(1)=e.故a =1,b =2.

(2)证明 由(1)知,f (x )=e x ln x +2x e x -1, 从而f (x )>1等价于x ln x >x e -x -2

e .

设函数g (x )=x ln x ,则g ′(x )=1+ln x . 所以当x ∈???

?0,1

e 时,g ′(x )<0; 当x ∈????1e ,+∞时,g ′(x )>0. 故g (x )在????0,1e 上单调递减,在????1

e ,+∞上单调递增, 从而g (x )在(0,+∞)上的最小值为g ????1e =-1

e . 设函数h (x )=x e -x -2

e

,则h ′(x )=e -x (1-x ).

所以当x ∈(0,1)时,h ′(x )>0;当x ∈(1,+∞)时,h ′(x )<0. 故h (x )在(0,1)上单调递增,在(1,+∞)上单调递减,

从而h (x )在(0,+∞)上的最大值为h (1)=-1e

.综上,当x >0时,g (x )>h (x ),即f (x )>1.

例4.(2014全国2)已知函数()2x x

f x e e

x -=--。(Ⅰ)讨论()f x 的单调性;

(Ⅱ)设()(2)4()g x f x bf x =- ,当0x >时,()0g x >,求b 的最大值; (Ⅲ)已知1.41422 1.4143<<,估计2ln 的近似值(精确到0.001)

。 (Ⅰ)()02x f ≥-+='-x

x

e

e 所以()x

f 在R 上递增

(Ⅱ)()()

()x b e e b e e

x x x x

484x g 22-+---=--。

()(

)()

2222+-+-+='--b e e e

e x g x x x

x

①当2≤b 时,()0≥'x g ,()x g 在R 上单调递增,而()00=g 所以对任意

0>x ()0>x g

②当2>b 时,若x 满足222-<+<-b e e x x 即()

b b b x 21ln 02-+-<<时。

()0

综上b 的最大值为2 (Ⅲ)由(Ⅱ)知,()()2ln 122222

3

2ln -+-=b b g 当2=b 时,()02ln 624232ln >+-=

g ,6928.012

3282ln >-> 当14

2

3+=

b 时,()

2ln 21ln 2=-+-b b b ()()

02ln 22322232ln <++--=g 。6934.028

2

182ln <+<

所以ln2的近似值为0.693

例5【2015高考新课标1】已知函数f (x )=31

,()ln 4

x ax g x x ++

=-.(Ⅰ)当a 为何值时,x 轴为曲线()y f x = 的切线;(Ⅱ)用min {},m n 表示m,n 中的最小值,设函数

}{()min (),()

(0)h x f x g x x => ,讨论h (x )零点的个数.

解 (1)设曲线y =f (x )与x 轴相切于点(x 0,0),则f (x 0)=0,f ′(x 0)=0.即?????x30+ax 0+14=0,3x 20+a =0,

解得x 0=12,a =-34.因此,当a =-3

4时,x 轴为曲线y =f (x )的切线.

(2)当x ∈(1,+∞)时,g (x )=-ln x <0,从而h (x )=min{f (x ),g (x )}≤g (x )<0, 故h (x )在(1,+∞)无零点. 当x =1时,若a

5

4

,则f (1)=a +

54

0,h (1)=min{f (1),g (1)}=g (1)=0,故x =1是h (x )的零点;若a <-5

4,则f (1)<0,h (1)=min{f (1),g (

1)}=f (1)<0,故x =1不是h (x )的零点.

当x ∈(0,1)时,g (x )=-ln x >0.所以只需考虑f (x )在(0,1)的零点个数. (

)若a

-3或a

0,则f ′(x )=3x 2+a 在(0,1)无零点,故f (x )在(0,1)单调.而f (0)=

14,f (1)=a +54

,所以当a ≤-3时,f (x )在(0,1)有一个零点;当a ≥0时,f (x )在(0,1)没有零点. (

)若-3

?

??

?

0,

-a

3单调递减,在

?

??

?

-a

3,1单调递增,故在(0,1)中,当x =-a

3时,f (x )取得最小值,最小值为f ?

?

?

?-a

3=2a

3

-a 3+1

4.

①若f ??

??-a 3>0,即-3

4

②若f ???

?-a

3=0,即a =-3

4,则f (x )在(0,1)有唯一零点;

③若f ?

?

?

?-a

3<0,即-3

4,由于f (0)=1

4,f (1)=a +5

4,所以当-5

4

4

时,f (x )在(0,1)有两个零点;当-3

4

时,f (x )在(0,1)有一个零点.

综上,当a >-34或a <-54时,h (x )有一个零点;当a =-34或a =-5

4时,h (x )有两个零点;

当-54

时,h (x )有三个零点.

例6【2015高考新课标,理21】设函数()mx x e

mx

-+=2x f ,⑴证明()x f 在()0,∞-单

调递减,在()+∞,0单调递增。⑵若对于任意[]1,1,21-∈x x ,都有()()121-≤-e x f x f ,求m 的取值范围。

(1)证明 f ′(x )=m (e mx -1)+2x .

若m ≥0,则当x ∈(-∞,0)时,e mx -1≤0,f ′(x )<0;当x ∈(0,+∞)时,e mx -1≥0,f ′(x )>0. 若m <0,则当x ∈(-∞,0)时,e mx -1>0,f ′(x )<0;当x ∈(0,+∞)时,e mx -1<0,f ′(x )>0. 所以,f (x )在(-∞,0)单调递减, 在(0,+∞)上单调递增. (2)解

由(1)知,对任意的m ,f (x )在[-1,0]上单调递减,在[0,1]上单调递增,故f (x )在x =0处取得最小值.所以对于任意x 1,x 2∈[-1,1],|f (x 1)-f (x 2)|≤e -1

的充要条件是???f (1)-f (0)≤e -1,f (-1)-f (0)≤e -1,即???em -m≤e -1,

e -m +m≤e -1.

设函数g (t )=e t -t -e +1,则g ′(t )=e t -1.

当t <0时,g ′(t )<0;当t >0时,g ′(t )>0.故g (t )在(-∞,0)上单调递减,在(0,+∞)上单调递增. 又g (1)=0,g (-1)=e -1+2-e <0,故当t ∈[-1,1]时,g (t )≤0. 当m ∈[-1,1]时,g (m )≤0,g (-m )≤0,即①式成立; 当m >1时,由g (t )的单调性,g (m )>0,即e m -m >e -1; 当m <-1时,g (-m )>0,即e -m +m >e -1. 综上,m 的取值范围是[-1,1].

例7(2016全国1) 已知函数2

)1()2()(-+-=x a e x x f x

有两个零点.(Ⅰ)求a 的取值范围;(Ⅱ)设21,x x 是)(x f 的两个零点,证明:221<+x x . 解(1)f ′(x )=(x -1)e x +2a (x -1)=(x -1)(e x +2a ). ①设a =0,则f (x )=(x -2)e x ,f (x )只有一个零点.

②设a >0,则当x ∈(-∞,1)时,f ′(x )<0;当x ∈(1,+∞)时,f ′(x )>0,所以f (x )在(-∞,1)上单调递减,在(1,+∞)上单调递增. 又f (1)=-e,f (2)=a ,取b 满足b <0且b

a

2

,则f (b )>

a 2

(b -2)+a (b -1)2=a ????b2-3

2b >0,故f (x )存在两个零点. ③设a <0,由f ′(x )=0得x =1或x =ln(-2a ).

若a ≥-e

2

,则ln(-2a )≤1,故当x ∈(1,+∞)时,f ′(x )>0,因此f (x )在(1,+∞)上单调递增.

又当x ≤1时,f (x )<0,所以f (x )不存在两个零点. 若a <-e

2,则ln(-2a )>1,

故当x

(1,ln(-2a ))时,f ′(x )<0;当x

(ln(-2a ),+

∞)时,f ′(x )>0,因此f (x )在(1,ln(-2a ))上单调递减,在(ln(-2a ),+∞)上单调递增. 又当x ≤1时,f (x )<0,所以f (x )不存在两个零点. 综上,a 的取值范围为(0,+∞).

(2)不妨设x 1f (2-x 2),即f (2-x 2)<0. 由于f (2-x 2)=-x 2e 2-x 2+a (x 2-1)2,而f (x 2)=(x 2-2)e x 2+a (x 2-1)2=0, 所以f (2-x 2)=-x 2e 2-x 2-(x 2-2)e x 2.

设g (x )=-x e 2-x -(x -2)e x ,则g ′(x )=(x -1)(e 2-x -e x ),所以当x >1时,g ′(x )<0,而g (1)=0, 故当x >1时,g (x )<0,从而g (x 2)=f (2-x 2)<0,故x 1+x 2<2.

例8(2016全国2)(I)讨论函数2(x)e 2

x

x f x -=

+的单调性,并证明当0x >时,(2)e 20;x

x x -++> (II)证明:当[0,1)a ∈ 时,函数()2

e =(0)x ax a

g x x x --> 有最小值.

设()g x 的最小值为()h a ,求函数()h a 的值域. 解(1) f (x )的定义域为(-∞,-2)∪(-2,+∞). f ′(x )=

(x -1)(x +2)ex -(x -2)ex (x +2)2=

x2ex

(x +2)2≥0,

且仅当x =0时,f ′(x )=0,所以f (x )在(-∞,-2),(-2,+∞)单调递增.

因此当x ∈(0,+∞)时,f (x )>f (0)=-1.所以(x -2)e x >-(x +2),即(x -2)e x +x +2>0. (2)证明 g ′(x )=

(x -2)ex +a (x +2)x3

x +2

x3

(f (x )+a ).

由(1)知,f (x )+a 单调递增,对任意a ∈[0,1),f (0)+a =a -1<0,f (2)+a =a ≥0. 因此,存在唯一x a ∈( 0,2],使得f (x a )+a =0,即g ′(x a )=0. 当0x a 时,f (x )+a >0,g ′(x )>0,g (x )单调递增. 因此g (x )在x =x a 处取得最小值,最小值为

g (x a )=exa -a (xa +1)x2a =exa +f (xa )(x +1)x2a =exa

xa +2

.

于是h (a )=exa xa +2,由????ex x +2′=(x +1)ex (x +2)2>0,ex

x +2单调递增.

所以,由x a ∈(0,2],得12=e00+2

4.

因为

ex

x +2单调递增,对任意λ∈????12,e24,存在唯一的x a ∈(0,2],a =-f (x a )∈[0,1),使得h (a )=λ.所以h (a )的值域是????

12,e24.

综上,当a ∈[0,1)时,g (x )有最小值h (a ),h (a )的值域是? ??

??12,e2

4. 2. 知识点梳理

1、恒成立问题的转化:()a f x >恒成立?()max a f x >;()()min a f x a f x ≤?≤恒成立

2、能成立问题的转化:()a f x >能成立?()min a f x >;()()max a f x a f x ≤?≤能成立

3、恰成立问题的转化:()a f x >在M 上恰成立?()a f x >的解集为

M ()()R a f x M a f x C M ?>???≤??

在上恒成立在上恒成立

另一转化方法:若A x f D x ≥∈)(,在D 上恰成立,等价于)(x f 在D 上的最小值

A x f =)(min ,若,D x ∈

B x f ≤)(在D 上恰成立,则等价于)(x f 在D 上的最大值B x f =)(max .

4、设函数()x f 、()x g ,对任意的[]b a x ,1∈,存在[]d c x ,2∈,使得()()21x g x f ≥,则()()x g x f min min ≥

5、设函数()x f 、()x g ,对任意的[]b a x ,1∈,存在[]d c x ,2∈,使得()()21x g x f ≤,则()()x g x f max max ≤

6、设函数()x f 、()x g ,存在[]b a x ,1∈,存在[]d c x ,2∈,使得()()21x g x f ≥,则()()x g x f min max ≥

7、设函数()x f 、()x g ,存在[]b a x ,1∈,存在[]d c x ,2∈,使得()()21x g x f ≤,则()()x g x f max min ≤

8、若不等式()()f x g x >在区间D 上恒成立,则等价于在区间D 上函数()y f x =和图象在函数()y g x =图象上方;

9、若不等式()()f x g x <在区间D 上恒成立,则等价于在区间D 上函数()y f x =和图象在函数()y g x =图象下方;

10.0)(x f 0='是可导函数)(x f y =在0x x =处取极值的必要不充分条件。

3.解题过程中需关注结论

2

ln ln ab b

a b a b a +<

--<

(对数平均不等式) ()0x 1,-x lnx >≤ x e x

+≥1 ()()1,1ln 1->≤+≤+x x x x x 。()1,211ln >-<+x x x x

()()()21ln ,11x x x x ->

>+ ()()

()21ln ,011x x x x -<<<+ ()12ln ,1x x x x <-> ()1

2ln ,01x x x x

>-<<

4.题型归纳

⑴导数的切线、单调性、极值、最值的直接应用。

例9.(最值)设函数()()()R k kx e x x

∈--=2

1x f ,当??

? ??∈1,2

1k 时,求函数()x f 在[]k ,0

上的最大值M

分析:()()

k e x x f x

2-=',令()0='x f ,得()k x x 2ln ,021==

令()()k k k g -=2ln 则()011>-==

'k k k x g ,所以()k g 在??

? ??∈1,21k 上增 所以()012ln <-≤k g ,从而()k k <2ln ,所以当()()k x 2ln ,0∈时,()0<'x f 当()()+∞∈,2ln k x 时,()0>'x f 。∴ ()(){}k f f M ,0m ax =

()()()31,10k e k k f f k --=-=,令()()113+--=k e k k h k 。 ()()

k e k k h k 3-=',令()k e k k 3-=?,则()033<-<-='e e k k ?

∴()k ?在???

??1,21上减,而()()0323121<-??? ?

?

-=??? ??e e ??

∴ ???

??∈?1,210x 使得()00=x ?。且()0.,210>'???

??∈k x k ?,()()0.1,0<'∈k x k ? ∴()k ?在??

? ??0,2

1x 上增,在()1,0x 上减。∴()()00=≤x k ??。()0≤'k h

()k h 在??

?

??1,21上减,∴()()01k h =≥h 。∴()()0k f f ≥

综上所述,函数()x f 在[]k ,0上的最大值M =()3

1k e k k

--

例10.(切线)设函数()a x -=2

x f ,当0>a 时,曲线()x f y =在点

()()11x f x P ()

a x >1处的切线为l ,它与x 轴交于点()0,2x A ,求证a x x >>21。

分析:容易求出曲线()x f y =在点()()11x f x P (

)

a x >

1处的切线为l :

a x x x y --=2

12,令0y =,得12

122x a x x +=,当()

a x >1时,021

2

1

12<-=-x x a x x

∴12x x <,又a x a

x x a x x =?>+=

1

111222222,∴a x x >>21。 例11.(单调性、切线、零点)已知函数()()x

e x g x ==.ln x

f ⑴若函数()()1

1

-+-

=x x x f x ?,求函数()x ?的单调区间 ⑵设直线l 为函数()x f 图像上一点()()00,x f x A 处的切线,证明:在区间()+∞,1上存在唯一的0x ,使得直线l 与曲线()x g y =相切。

分析与解答:⑴函数()x ?的单调增区间()()∞+,和1

1,0 ⑵易求切线l 的方程1ln x 1

y 00

-+=

x x ⑴ 设直线l 与曲线()x g y =相切于点(

)1

,x 1x e 。

∵()x

e x g =' ∴011

x e

x =

∴ 01ln x x -= ()0

ln 110x e x g x

==- 直线l 也为()0

0000001ln 1ln 1

x 1-

y x x x x x y x x x ++=?+=

⑵ 由⑴⑵得00001ln 1ln x x x x +=

- 1

1

ln 000-+=x x x 下证:在区间()∞+,

1上存在0x 且唯一 由⑴知函数()()1

1

-+-

=x x x f x ?在区间()+∞,1上递增。 又()01

211ln e <--=-+-

=e e e e ?,()01311ln 22222

2>--=-+-=e e e e e e ? 故。方程()0=x ?必在区间(

)2

,e

e 上有唯一的根0

x

,结论成立。

(完整)高中数学导数题型总结,推荐文档

导数 经典例题剖析 考点一:求导公式。 例1. ()f x '是3 1()213 f x x x = ++的导函数,则(1)f '-的值是 。 考点二:导数的几何意义。 例 2. 已知函数()y f x =的图象在点(1(1))M f ,处的切线方程是1 22 y x = +,则(1)(1)f f '+= 。 例3.曲线3 2 242y x x x =--+在点(13)-,处的切线方程是 。 考点三:导数的几何意义的应用。 例4.已知曲线C :x x x y 232 3 +-=,直线kx y l =:,且直线l 与曲线C 相切于点 ()00,y x 00≠x ,求直线l 的方程及切点坐标。 考点四:函数的单调性。 例5.已知()132 3 +-+=x x ax x f 在R 上是减函数,求a 的取值范围。 例6. 设函数3 2 ()2338f x x ax bx c =+++在1x =及2x =时取得极值。 (1)求a 、b 的值; (2)若对于任意的[03]x ∈, ,都有2 ()f x c <成立,求c 的取值范围。 点评:本题考查利用导数求函数的极值。求可导函数()x f 的极值步骤:①求导数()x f '; ②求()0'=x f 的根;③将()0'=x f 的根在数轴上标出,得出单调区间,由()x f '在各区间上取值的正负可确定并求出函数()x f 的极值。

例7. 已知a 为实数,()() ()a x x x f --=42 。求导数()x f ';(2)若()01'=-f ,求() x f 在区间[]2,2-上的最大值和最小值。 解析:(1)()a x ax x x f 442 3 +--=,∴ ()423'2 --=ax x x f 。 (2)()04231'=-+=-a f ,2 1= ∴a 。()()()14343'2 +-=--=∴x x x x x f 令()0'=x f ,即()()0143=+-x x ,解得1-=x 或3 4 =x , 则()x f 和()x f '在区间[] 2,2- ()2 91= -f ,275034-=??? ??f 。所以,()x f 在区间[]2,2-上的最大值为 275034-=?? ? ??f ,最 小值为()2 9 1= -f 。 答案:(1)()423'2 --=ax x x f ;(2)最大值为275034- =?? ? ??f ,最小值为()2 91=-f 。 点评:本题考查可导函数最值的求法。求可导函数()x f 在区间[]b a ,上的最值,要先求出函数()x f 在区间()b a ,上的极值,然后与()a f 和()b f 进行比较,从而得出函数的最大最小值。 考点七:导数的综合性问题。 例8. 设函数3 ()f x ax bx c =++(0)a ≠为奇函数,其图象在点(1,(1))f 处的切线与直线 670x y --=垂直,导函数'()f x 的最小值为12-。(1)求a ,b ,c 的值; (2)求函数()f x 的单调递增区间,并求函数()f x 在[1,3]-上的最大值和最小值。

2020年高考文科数学《导数的综合应用》题型归纳与训练

a - a (- ),( , +∞) 单调递增, 在 (- ( 2020 年高考文科数学《导数的综合应用》题型归纳与训练 【题型归纳】 题型一 含参数的分类讨论 例1 已知函数 f ( x ) = ax 3 - 12 x ,导函数为 f '( x) , (1)求函数 f ( x ) 的单调区间; (2)若 f '(1)= -6, 求函数f ( x ) 在[—1,3]上的最大值和最小值。 【答案】略 【解析】(I ) f '( x ) = 3ax 2 - 12 = 3(ax 2 - 4) ,(下面要解不等式 3(ax 2 - 4) > 0 ,到了分类讨论的时机,分 类标准是零) 当 a ≤ 0时, f '( x ) < 0, f ( x )在(-∞, +∞) 单调递减; 当 a > 0时,当x 变化时, f '( x ), f ( x ) 的变化如下表: x (-∞, - 2 ) 2 2 2 , ) a a 2 a ( 2 a , +∞) f '( x ) + 0 — + f ( x ) 极大值 极小值 此时, f ( x )在(-∞, - 2 2 6 a 2 2 , ) 单调递减; a a (II )由 f '(1) = 3a -12 = -6, 得a = 2. 由(I )知, f ( x )在(-1, 2) 单调递减 ,在( 2 ,3)单调递增。 【易错点】搞不清分类讨论的时机,分类讨论不彻底 【思维点拨】分类讨论的难度是两个, 1)分类讨论的时机,也就是何时分类讨论,先按自然的思路推理, 由于参数的存在,到了不能一概而论的时候,自然地进入分类讨论阶段;(2)分类讨论的标准,要做到不 重复一遗漏。还要注意一点的是,最后注意将结果进行合理的整合。 题型二 已知单调性求参数取值范围问题 例 1 已知函数 f ( x) = 1 3 x 3 + x 2 + ax - 5 , 若函数在[1,+∞) 上是单调增函数,求 a 的取值范围

第21讲 导数中参数问题的求解策略高中数学常见题型解法归纳反馈训练及详细解析

【知识要点】 导数中参数的问题是高考的重点和难点,也是学生感到比较棘手的问题.导数中参数问题的处理常用的有分离参数和分类讨论两种方法,并且先考虑分离参数,如果分离参数不行,可以再考虑分类讨论.因为分离参数解题效率相对高一点. 【方法讲评】 方法一 分离参数法 解题步骤 先分离参数,再解答. 【例1】已知函数()ln ()f x a x a R x = -∈. (1)若()()2h x f x x =-,当3a =-时,求()h x 的单调递减区间; (2)若函数()f x 有唯一的零点,求实数a 的取值范围. 如图,作出函数()x ?的大致图象,则要使方程1 ln x x a =的唯一的实根, 【点评】1 ln a x x = 有唯一的实根,如果直接研究,左边函数含有参数a ,和右边的函数分析交点,不是很方便,但是分离参数后得1 ln x x a =,左边函数没有参数,容易画出它的图像,右边是一个常数函数, 交点分析起来比较方便. 【反馈检测1】已知函数()()2x f x x e =-和()3 2g x kx x =--. (1)若函数()g x 在区间()1,2不单调,求实数k 的取值范围; (2)当[)1,x ∈+∞时,不等式()()2f x g x x ≥++恒成立,求实数k 的最大值. 【反馈检测2】已知()2ln f x x x =,32 ()2g x x ax x =+-+. (1)如果函数()g x 的单调递减区间为1(,1)3 -,求函数()g x 的解析式; (2)在(1)的条件下,求函数()y g x =的图象在点(1,(1))P g --处的切线方程; (3)已知不等式()'()f x g x ≤2+恒成立,若方程0a ae m -=恰有两个不等实根,求m 的取值范围. 方法二 分类讨论法 解题步骤 就参数分类讨论解答. 【例2】已知函数,其中为常数. (1)讨论函数 的单调性;

2020高考导数压轴题型归类总结

导数压轴题型归类总结 目 录 一、导数单调性、极值、最值的直接应用 (1) 二、交点与根的分布 (23) 三、不等式证明 (31) (一)作差证明不等式 (二)变形构造函数证明不等式 (三)替换构造不等式证明不等式 四、不等式恒成立求字母范围 (51) (一)恒成立之最值的直接应用 (二)恒成立之分离常数 (三)恒成立之讨论字母范围 五、函数与导数性质的综合运用 (70) 六、导数应用题 (84) 七、导数结合三角函数 (85) 书中常用结论 ⑴sin ,(0,)x x x π<∈,变形即为sin 1x x <,其几何意义为sin ,(0,)y x x π=∈上的的点与原点连线斜率小于1. ⑵1x e x >+ ⑶ln(1)x x >+ ⑷ln ,0x x x e x <<>. 一、导数单调性、极值、最值的直接应用 1. (切线)设函数a x x f -=2)(. (1)当1=a 时,求函数)()(x xf x g =在区间]1,0[上的最小值; (2)当0>a 时,曲线)(x f y =在点)))((,(111a x x f x P >处的切线为l ,l 与x 轴交于点)0,(2x A 求证:a x x >>21. 解:(1)1=a 时,x x x g -=3)(,由013)(2=-='x x g ,解得3 3 ±=x .

所以当33= x 时,)(x g 有最小值9 32)33(-=g . (2)证明:曲线)(x f y =在点)2,(211a x x P -处的切线斜率112)(x x f k ='= 曲线)(x f y =在点P 处的切线方程为)(2)2(1121x x x a x y -=--. 令0=y ,得12 122x a x x +=,∴12 1 112 11222x x a x x a x x x -=-+=- ∵a x >1,∴ 021 21 <-x x a ,即12x x <. 又∵1122x a x ≠,∴a x a x x a x x a x x =?>+=+= 1 1111212222222 所以a x x >>21. 2. (2009天津理20,极值比较讨论) 已知函数22()(23)(),x f x x ax a a e x =+-+∈R 其中a ∈R ⑴当0a =时,求曲线()(1,(1))y f x f =在点处的切线的斜率; ⑵当2 3 a ≠ 时,求函数()f x 的单调区间与极值. 解:本小题主要考查导数的几何意义、导数的运算、利用导数研究函数的单调性与极值等基础知识,考查运算能力及分类讨论的思想方法。 ⑴.3)1(')2()(')(022e f e x x x f e x x f a x x =+===,故,时,当 .3))1(,1()(e f x f y 处的切线的斜率为在点所以曲线= ⑵[] .42)2()('22x e a a x a x x f +-++= .223 2 .220)('-≠-≠-=-==a a a a x a x x f 知,由,或,解得令 以下分两种情况讨论: ①a 若> 3 2 ,则a 2-<2-a .当x 变化时,)()('x f x f ,的变化情况如下表: )(所以x f .3)2()2(2)(2a ae a f a f a x x f -=---=,且处取得极大值在函数 .)34()2()2(2)(2--=---=a e a a f a f a x x f ,且处取得极小值在函数 ②a 若<3 2 ,则a 2->2-a ,当x 变化时,)()('x f x f ,的变化情况如下表:

导数各类题型方法总结(含答案)

导数各种题型方法总结 一、基础题型:函数的单调区间、极值、最值;不等式恒成立; 1、此类问题提倡按以下三个步骤进行解决: 第一步:令0)(' =x f 得到两个根; 第二步:画两图或列表; 第三步:由图表可知; 其中不等式恒成立问题的实质是函数的最值问题, 2、常见处理方法有三种: 第一种:分离变量求最值-----用分离变量时要特别注意是否需分类讨论(>0,=0,<0) 第二种:变更主元(即关于某字母的一次函数)-----(已知谁的范围就把谁作为主元); 例1:设函数()y f x =在区间D 上的导数为()f x ',()f x '在区间D 上的导数为()g x ,若在区间D 上,()0g x <恒成立,则称函数()y f x =在区间D 上为“凸函数”,已知实数m 是常数, 4323()1262 x mx x f x =-- (1)若()y f x =在区间[]0,3上为“凸函数”,求m 的取值范围; (2)若对满足2m ≤的任何一个实数m ,函数()f x 在区间(),a b 上都为“凸函数”,求b a -的最大值. 解:由函数4323()1262x mx x f x =-- 得32 ()332 x mx f x x '=-- 2()3g x x mx ∴=-- (1) ()y f x =在区间[]0,3上为“凸函数” , 则 2 ()30g x x mx ∴=--< 在区间[0,3]上恒成立 解法一:从二次函数的区间最值入手:等价于max ()0g x < (0) 0302(3) 09330g m g m <-??<--=-的最大值(03x <≤)恒成立, 而3 ()h x x x =-(03x <≤)是增函数,则max ()(3)2h x h == 2m ∴> (2)∵当2m ≤时()f x 在区间(),a b 上都为“凸函数” 则等价于当2m ≤时2 ()30g x x mx =--< 恒成立 变更主元法 再等价于2 ()30F m mx x =-+>在2m ≤恒成立(视为关于m 的一次函数最值问题) 2 2 (2)023011(2)0230F x x x F x x ?->--+>?????-<-+>??? 2b a ∴-=

高考数学导数题型归纳(_好)

导数题型归纳 请同学们高度重视: 首先,关于二次函数的不等式恒成立的主要解法: 1、分离变量;2变更主元;3根分布;4判别式法 5、二次函数区间最值求法:(1)对称轴(重视单调区间) 与定义域的关系 (2)端点处和顶点是最值所在 其次,分析每种题型的本质,你会发现大部分都在解决“不等式恒成立问题”以及“充分应用数形结合思想”,创建不等关系求出取值范围。 最后,同学们在看例题时,请注意寻找关键的等价变形和回归的基础 一、基础题型:函数的单调区间、极值、最值;不等式恒成立; 1、此类问题提倡按以下三个步骤进行解决: 第一步:令0)(' =x f 得到两个根; 第二步:画两图或列表; 第三步:由图表可知; 其中不等式恒成立问题的实质是函数的最值问题, 2、常见处理方法有三种: 第一种:分离变量求最值-----用分离变量时要特别注意是否需分类讨论(>0,=0,<0) 第二种:变更主元(即关于某字母的一次函数)-----(已知谁的范围就把谁作为主元); 例1:设函数()y f x =在区间D 上的导数为()f x ',()f x '在区间D 上的导数为()g x ,若在区间D 上,()0g x <恒成立,则称函数()y f x =在区间D 上为“凸函数”,已知实数m 是常数, 4323()1262 x mx x f x =-- (1)若()y f x =在区间[]0,3上为“凸函数”,求m 的取值范围; (2)若对满足2m ≤的任何一个实数m ,函数()f x 在区间(),a b 上都为“凸函数”,求b a -的最大值. 解:由函数4323()1262x mx x f x =-- 得32 ()332x mx f x x '=-- 2 ()3g x x mx ∴=-- (1) ()y f x =Q 在区间[]0,3上为“凸函数”, 则 2 ()30g x x mx ∴=--< 在区间[0,3]上恒成立 解法一:从二次函数的区间最值入手:等价于max ()0g x < (0)030 2(3)09330g m g m <-? ?<--

高考导数压轴题型归类总结

导数压轴题型归类总结 目 录 一、导数单调性、极值、最值的直接应用 (1) 二、交点与根的分布 (23) 三、不等式证明 (31) (一)作差证明不等式 (二)变形构造函数证明不等式 (三)替换构造不等式证明不等式 四、不等式恒成立求字母范围 (51) (一)恒成立之最值的直接应用 (二)恒成立之分离常数 (三)恒成立之讨论字母范围 五、函数与导数性质的综合运用 (70) 六、导数应用题 (84) 七、导数结合三角函数 (85) 书中常用结论 ⑴sin ,(0,)x x x π<∈,变形即为sin 1x x <,其几何意义为sin ,(0,)y x x π=∈上的的点与原点连线斜率小于1. ⑵1x e x >+ ⑶ln(1)x x >+ ⑷ln ,0x x x e x <<>.

一、导数单调性、极值、最值的直接应用 1. (切线)设函数a x x f -=2)(. (1)当1=a 时,求函数)()(x xf x g =在区间]1,0[上的最小值; (2)当0>a 时,曲线)(x f y =在点)))((,(111a x x f x P >处的切线为l ,l 与x 轴交于点)0,(2x A 求证:a x x >>21. 解:(1)1=a 时,x x x g -=3)(,由013)(2=-='x x g ,解得3 3 ±=x . 所以当33= x 时,)(x g 有最小值9 32)33(-=g . (2)证明:曲线)(x f y =在点)2,(211a x x P -处的切线斜率112)(x x f k ='= 曲线)(x f y =在点P 处的切线方程为)(2)2(1121x x x a x y -=--. 令0=y ,得12 122x a x x +=,∴12 1 112 11222x x a x x a x x x -=-+=- ∵a x >1,∴ 021 21 <-x x a ,即12x x <. 又∵1122x a x ≠,∴a x a x x a x x a x x =?>+=+= 1 1111212222222 所以a x x >>21. 2. (2009天津理20,极值比较讨论) 已知函数22()(23)(),x f x x ax a a e x =+-+∈R 其中a ∈R ⑴当0a =时,求曲线()(1,(1))y f x f =在点处的切线的斜率; ⑵当2 3 a ≠ 时,求函数()f x 的单调区间与极值. 解:本小题主要考查导数的几何意义、导数的运算、利用导数研究函数的单调性与极值等基础知识,考查运算能力及分类讨论的思想方法。 ⑴.3)1(')2()(')(022e f e x x x f e x x f a x x =+===,故,时,当 .3))1(,1()(e f x f y 处的切线的斜率为在点所以曲线= ⑵[] .42)2()('22x e a a x a x x f +-++= .223 2 .220)('-≠-≠-=-==a a a a x a x x f 知,由,或,解得令

高考数学导数题型归纳(文科)-

文科导数题型归纳 高度重视: 首先,关于二次函数的不等式恒成立的主要解法: 1、分离变量;2变更主元;3根分布;4判别式法 5、二次函数区间最值求法:(1)对称轴(重视单调区间) 与定义域的关系 (2)端点处和顶点是最值所在 其次,分析每种题型的本质,你会发现大部分都在解决“不等式恒成立问题”以及“充分应用数形结合思想”,创建不等关系求出取值范围。 最后,在看例题时,请注意寻找关键的等价变形和回归的基础 一、基础题型:函数的单调区间、极值、最值;不等式恒成立; 1、此类问题提倡按以下三个步骤进行解决: 第一步:令0)(' =x f 得到两个根; 第二步:画两图或列表; 第三步:由图表可知; 其中不等式恒成立问题的实质是函数的最值问题, 2、常见处理方法有三种: 第一种:分离变量求最值-----用分离变量时要特别注意是否需分类讨论(>0,=0,<0) 第二种:变更主元(即关于某字母的一次函数)-----(已知谁的范围就把谁作为主元); (请同学们参看2010省统测2) 例1:设函数()y f x =在区间D 上的导数为()f x ',()f x '在区间D 上的导数为()g x ,若在区间D 上,()0g x <恒成立,则称函数()y f x =在区间D 上为“凸函数”,已知实数m 是常 数,432 3()1262 x mx x f x =-- (1)若()y f x =在区间[]0,3上为“凸函数”,求m 的取值范围; (2)若对满足2m ≤的任何一个实数m ,函数()f x 在区间(),a b 上都为“凸函数”,求b a -的最大值. 解:由函数4323()1262x mx x f x =-- 得32 ()332 x mx f x x '=-- 2()3g x x mx ∴=-- (1) ()y f x =在区间[]0,3上为“凸函数” , 则 2 ()30g x x mx ∴=--< 在区间[0,3]上恒成立 解法一:从二次函数的区间最值入手:等价于max ()0g x < (0)030 2(3)09330 g m g m <-? ?<--

导数高考常见题型

导数的应用常见题型 一、常用不等式与常见函数图像 1、1+≥x e x x x ≤+)1ln( 1-ln 1-1x x x ≤≤ 2、常见函数图像 二、选择题中的函数图像问题 (一)新型定义问题 对与实数,a b ,定义运算“*”:a *b=22,,a ab a b b ab a b ì-??í?->?,设()(21)*(1)f x x x =--且关于x 的方程()()f x m m R =?恰有三个互不相等的实数根123,,x x x ,则123x x x 的取值范围为 (二)利用导数确定函数图像 ①已知函数32()31f x ax x =-+,若()f x 存在唯一的零点0x ,且00x >,则a 的取值范围为( ) A 、(2,)+? B 、(,2)-? C 、(1,)+? D 、(,1)-? ②设函数()f x =(21)x e x ax a --+,其中a 1,若存在唯一的整数0x ,使得0()f x 0,则a 的取值范围是( ) (A)[-32e ,1) (B)[-32e ,34) (C)[32e ,34) (D)[32e ,1) 三、导数与单调性

实质:导数的正负决定了原函数的单调性 处理思路:①求导,解不等式[0)('0)('<>x f x f 或] ②求解0)('=x f ,分段列表 ③根据)('x f y =的图像确定 (一)分段列表 ①已知函数()f x =2x x e e x --- (Ⅰ)讨论()f x 的单调性; (Ⅱ)设()()()24g x f x bf x =-,当0x >时,()0g x >,求b 的最大值; ②已知函数x x xe e x x f -+-=2)2()(,讨论函数的单调性 ③设函数mx x e x f mx -+=2)( (Ⅰ)证明:)(x f 在(-∞,0)单调递减,在(0,+∞+)单调递增; (Ⅱ)若对于任意]1,0[,21∈x x ,都有1)()(21-≤-e x f x f ,求m 的取值范围 (二)根据导函数图像确定 ①已知函数x x a ax x f ln )1(2 1)(2+-+-=,试讨论函数的单调性 ②已知函数a a ax x x a x x f +--++-=2222ln )(2)(,其中0>a .设)(x g 是)(x f 的导函数,讨论)(x g 的单调性

(完整word版)高考导数题型归纳

高考压轴题:导数题型及解题方法 (自己总结供参考) 一.切线问题 题型1 求曲线)(x f y =在0x x =处的切线方程。 方法:)(0x f '为在0x x =处的切线的斜率。 题型2 过点),(b a 的直线与曲线)(x f y =的相切问题。 方法:设曲线)(x f y =的切点))(,(00x f x ,由b x f x f a x -='-)()()(000求出0x ,进而解决相关问题。 注意:曲线在某点处的切线若有则只有一,曲线过某点的切线往往不止一条。 例 已知函数f (x )=x 3﹣3x . (1)求曲线y=f (x )在点x=2处的切线方程;(答案:0169=--y x ) (2)若过点A )2)(,1(-≠m m A 可作曲线)(x f y =的三条切线,求实数m 的取值范围、 (提示:设曲线)(x f y =上的切点()(,00x f x );建立)(,00x f x 的等式关系。将问题转化为关于m x ,0的方程有三个不同实数根问题。(答案:m 的范围是()2,3--) 练习 1. 已知曲线x x y 33 -= (1)求过点(1,-3)与曲线x x y 33-=相切的直线方程。答案:(03=+y x 或027415=--y x ) (2)证明:过点(-2,5)与曲线x x y 33-=相切的直线有三条。 2.若直线0122=--+e y x e 与曲线x ae y -=1相切,求a 的值. (答案:1) 题型3 求两个曲线)(x f y =、)(x g y =的公切线。 方法:设曲线)(x f y =、)(x g y =的切点分别为()(,11x f x )。()(,22x f x );

高考导数压轴题型归类总结

高考导数压轴题型归类总结 一、导数单调性、极值、最值的直接应用 已知函数1()ln 1()a f x x ax a R x -=-+-∈ ⑴当1a =-时,求曲线()y f x =在点(2,(2))f 处的切线方程; ⑵当1 2 a ≤时,讨论()f x 的单调性. 1. 已知函数221()2,()3ln .2 f x x ax g x a x b =+=+ ⑴设两曲线()()y f x y g x ==与有公共点,且在公共点处的切线相同,若0a >,试建立b 关于a 的函数关系式,并求b 的最大值; ⑵若[0,2],()()()(2)b h x f x g x a b x ∈=+--在(0,4)上为单调函数,求a 的取值范围。 2. (最值直接应用)已知函数)1ln(2 1)(2x ax x x f +--=,其中a ∈R . (Ⅰ)若2x =是)(x f 的极值点,求a 的值; (Ⅱ)求)(x f 的单调区间; (Ⅲ)若)(x f 在[0,)+∞上的最大值是0,求a 的取值范围. 设函数221 ()(2)ln (0)ax f x a x a x +=-+ <. (1)讨论函数()f x 在定义域内的单调性; (2)当(3,2)a ∈--时,任意12,[1,3]x x ∈, 12(ln 3)2ln 3|()()|m a f x f x +->-恒成立,求实数m 的取值范围. 3. (最值应用,转换变量) 4. (最值应用) 已知二次函数()g x 对x R ?∈都满足2(1)(1)21g x g x x x -+-=--且(1)1g =-,设 函数19 ()()ln 28 f x g x m x =+++(m R ∈,0x >). (Ⅰ)求()g x 的表达式; (Ⅱ)若x R +?∈,使()0f x ≤成立,求实数m 的取值范围;

高中数学函数与导数常考题型归纳

高中数学函数与导数常考题型整理归纳 题型一:利用导数研究函数的性质 利用导数研究函数的单调性、极值、最值是高考的热点问题之一,每年必考,一般考查两类题型:(1)讨论函数的单调性、极值、最值,(2)利用单调性、极值、最值求参数的取值范围. 【例1】已知函数f (x )=ln x +a (1-x ). (1)讨论f (x )的单调性; (2)当f (x )有最大值,且最大值大于2a -2时,求实数a 的取值范围. 解 (1)f (x )的定义域为(0,+∞),f ′(x )=1 x -a . 若a≤0,则f′(x )>0,所以f (x )在(0,+∞)上单调递增. 若a >0,则当x ∈? ???? 0,1a 时,f ′(x )>0; 当x ∈? ?? ?? 1a ,+∞时,f ′(x )<0, 所以f (x )在? ???? 0,1a 上单调递增,在? ?? ??1a ,+∞上单调递减. 综上,知当a≤0时,f (x )在(0,+∞)上单调递增; 当a >0时,f (x )在? ???? 0,1a 上单调递增,在? ?? ??1a ,+∞上单调递减. (2)由(1)知,当a ≤0时,f (x )在(0,+∞)上无最大值; 当a >0时,f (x )在x =1a 处取得最大值,最大值为f ? ?? ??1a =ln 1 a +a ? ?? ??1-1a =-ln a +a -1. 因此f ? ?? ?? 1a >2a -2等价于ln a +a -1<0. 令g (a )=ln a +a -1,则g (a )在(0,+∞)上单调递增, g (1)=0. 于是,当0<a <1时,g (a )<0; 当a >1时,g (a )>0. 因此,实数a 的取值范围是(0,1). 【类题通法】(1)研究函数的性质通常转化为对函数单调性的讨论,讨论单调性要先求函数定义域,再讨论导数在定义域内的符号来判断函数的单调性.

最新高考导数问题常见题型总结

高考有关导数问题解题方法总结 一、考试内容 导数的概念,导数的几何意义,几种常见函数的导数; 两个函数的和、差、基本导数公式,利用导数研究函数的单调性和极值,函数的最大值和最小值。 二、热点题型分析 题型一:利用导数研究函数的极值、最值。 1. 32 ()32f x x x =-+在区间[]1,1-上的最大值是 2 2.已知函数2)()(2 =-==x c x x x f y 在处有极大值,则常数c = 6 ; 3.函数3 31x x y -+=有极小值 -1 ,极大值 3 题型二:利用导数几何意义求切线方程 1.曲线3 4y x x =-在点 ()1,3--处的切线方程是 2y x =- 2.若曲线x x x f -=4 )(在P 点处的切线平行于直线03=-y x ,则P 点的坐标为 (1,0) 3.若曲线4 y x =的一条切线l 与直线480x y +-=垂直,则l 的方程为 430x y --= 4.求下列直线的方程: (1)曲线123++=x x y 在P(-1,1)处的切线; (2)曲线2 x y =过点P(3,5)的切线; 解:(1) 123|y k 23 1)1,1(1x /2/2 3===∴+=∴++=-=-上,在曲线点-x x y x x y P 所以切线方程为02 11=+-+=-y x x y 即, (2)显然点P (3,5)不在曲线上,所以可设切点为),(00y x A ,则2 00x y =①又函数的导数为x y 2/=, 所以过 ) ,(00y x A 点的切线的斜率为 /2|0x y k x x ===,又切线过),(00y x A 、P(3,5)点,所以有 3 5 2000--= x y x ②,由①②联立方程组得,??????====25 5 110 000y x y x 或,即切点为(1,1)时,切线斜率为 ; 2201==x k ;当切点为(5,25)时,切线斜率为10202==x k ;所以所求的切线有两条,方程分 别为2510 12 )5(1025)1(21-=-=-=--=-x y x y x y x y 或即, 或 题型三:利用导数研究函数的单调性,极值、最值 1.已知函数 ))1(,1()(,)(2 3f P x f y c bx ax x x f 上的点过曲线=+++=的切线方程为y=3x+1

2019《导数》题型全归纳

2019届高三理科数学《导数》题型全归纳 学校:___________姓名:___________班级:___________ 一、导数概念 29.函数,若满足,则__________. 二、导数计算(初等函数的导数、运算法则、简单复合函数求导) 1.下列式子不正确的是( ) A. B. C. D. 2.函数的导数为() A. B. C. D. 3.已知函数,则() A. B. C. D. 33.已知函数,为的导函数,则的值为______. 34.已知,则__________. 三、导数几何意义(有关切线方程) 31.若曲线在点处的切线方程为_________. 30.若曲线在点处的切线与曲线相切,则的值是_________. 32.已知,过点作函数图像的切线,则切线方程为__________. 4.已知曲线f(x)=lnx+在点(1,f(1))处的切线的倾斜角为,则a的值为()A. 1 B.﹣4 C.﹣ D.﹣1 1

5.若曲线y=在点P处的切线斜率为﹣4,则点P的坐标是() A.(,2) B.(,2)或(﹣,﹣2) C.(﹣,﹣2) D.(,﹣2) 6.若直线与曲线相切于点,则( ) A. 4 B. 3 C. 2 D. 1 7.如果曲线在点处的切线垂直于直线,那么点的坐标为()A. B. C. D. 8.直线分别与曲线交于,则的最小值为() A. 3 B. 2 C. D. 四、导数应用 (一)导数应用之求函数单调区间问题 9.函数f(x)=x-lnx的单调递减区间为( ) A. (0,1) B. (0,+∞) C. (1,+∞) D. (-∞,0)∪(1,+∞) 10.函数f(x)=2x2-ln x的单调递减区间是( ) A. B.和 C. D.和 11.的单调增区间是 A. B. C. D. 12.函数在区间上( ) A.是减函数 B.是增函数 C.有极小值 D.有极大值 13.已知函数在区间[1,2]上单调递增,则a的取值范围是

导数题型分类大全

导数题型分类(A ) 题型一:导数的定义及计算、常见函数的导数及运算法则 (一)导数的定义:函数)(x f y =在0x 处的瞬时变化率x x f x x f x y o x x ?-?+=??→?→?)()(lim lim 000称为函数)(x f y =在0x x =处的导数,记作)(0/ x f 或0/x x y =,即 x x f x x f x f x ?-?+=→?) ()(lim )(0000/ 如果函数)(x f y =在开区间),(b a 内的每点处都有导数,此时对于每一个),(b a x ∈,都对 应着一个确定的导数)(/ x f ,从而构成了一个新的函数)(/ x f 。称这个函数)(/ x f 为函数 )(x f y =在开区间内的导函数,简称导数,也可记作/y ,即)(/x f =/y = x x f x x f x ?-?+→?) ()(lim 导数与导函数都称为导数,这要加以区分:求一个函数的导数,就是求导函数;求函数)(x f y =在0x 处的导数0 / x x y =,就是导函数)(/ x f 在0x 处的函数值,即0 / x x y ==)(0/ x f 。 例1.函数()a x x f y ==在处的导数为A ,求 ()()t t a f t a f t 54lim +-+→。 例2.2 3 33 x y x x += =+求在点处的导数。 (二)常见基本初等函数的导数公式和运算法则 : +-∈==N n nx x C C n n ,)(; )(01''为常数; ;sin )(cos ;cos )(sin ''x x x x -== a a a e e x x x x ln )(;)(''==; e x x x x a a log 1)(log ;1)(ln ''== 法则1: )()()]()(['''x v x u x v x u ±=± 法则2: )()()()()]()([' ''x v x u x v x u x v x u += 法则3: )0)(() ()()()()(])()([2' ''≠-=x v x v x v x u x v x u x v x u (理)复合函数的求导:若(),()y f u u x ?==,则'()'()x y f x x ?'= 如,sin ()'x e =_______________;(sin )'x e =_____________ 公式1 / )(-=n n nx x 的特例:①=')x (______; ②=' ?? ? ??x 1_______, ③=')x (_________. 题型二:利用导数几何意义及求切线方程 导数的几何意义:函数)(x f y =在0x 处的导数是曲线)(x f y =上点()(,00x f x )处的切线的斜率.因此,如果)(0x f '存在,则曲线)(x f y =在点()(,00x f x )处的切线方程为______________________

导数各类题型方法总结(绝对经典)

第一章 导数及其应用 一, 导数的概念 1..已知x f x f x x f x ?-?+=→?) 2()2(lim ,1 )(0 则的值是( ) A. 4 1- B. 2 C. 41 D. -2 变式1:()()()为则设h f h f f h 233lim ,430--='→( ) A .-1 B.-2 C .-3 D .1 变式2:()()() 0000 3,lim x f x x f x x f x x x ?→+?--??设在可导则等于 ( ) A .()02x f ' B .()0x f ' C .()03x f ' D .()04x f ' 导数各种题型方法总结 请同学们高度重视: 首先,关于二次函数的不等式恒成立的主要解法: 1、分离变量;2变更主元;3根分布;4判别式法 5、二次函数区间最值求法:(1)对称轴(重视单调区间) 与定义域的关系 (2)端点处和顶点是最值所在 其次,分析每种题型的本质,你会发现大部分都在解决“不等式恒成立问题”以及“充分应用数形结合思想”,创建不等关系求出取值范围。 最后,同学们在看例题时,请注意寻找关键的等价变形和回归的基础 一、基础题型:函数的单调区间、极值、最值;不等式恒成立; 1、此类问题提倡按以下三个步骤进行解决: 第一步:令0)(' =x f 得到两个根; 第二步:画两图或列表; 第三步:由图表可知; 其中不等式恒成立问题的实质是函数的最值问题,

2、常见处理方法有三种: 第一种:分离变量求最值-----用分离变量时要特别注意是否需分类讨论(>0,=0,<0) 第二种:变更主元(即关于某字母的一次函数)-----(已知谁的范围就把谁作为主元); (请同学们参看2010省统测2) 例1:设函数()y f x =在区间D 上的导数为()f x ',()f x '在区间D 上的导数为()g x ,若在区间D 上,()0 g x <恒成立,则称函数()y f x =在区间D 上为“凸函数”,已知实数m 是常数,432 3()1262 x mx x f x =-- (1)若()y f x =在区间[]0,3上为“凸函数”,求m 的取值范围; (2)若对满足2m ≤的任何一个实数m ,函数()f x 在区间(),a b 上都为“凸函数”,求b a -的最大值. 解:由函数4323()1262x mx x f x =-- 得32 ()332x mx f x x '=-- 2()3g x x mx ∴=-- (1) ()y f x =Q 在区间[]0,3上为“凸函数”, 则 2 ()30g x x mx ∴=--< 在区间[0,3]上恒成立 解法一:从二次函数的区间最值入手:等价于max ()0g x < (0)030 2(3)09330g m g m <-? ?<--=-的最大值(03x <≤)恒成立, 而3 ()h x x x =- (03x <≤)是增函数,则max ()(3)2h x h == 2m ∴> (2)∵当2m ≤时()f x 在区间(),a b 上都为“凸函数” 则等价于当2m ≤时2 ()30g x x mx =--< 恒成立

高中数学函数与导数常考题型整理归纳

高中数学函数与导数常考题型整理归纳 题型一:利用导数研究函数的性质 利用导数研究函数的单调性、极值、最值是高考的热点问题之一,每年必考,一般考查两类题型:(1)讨论函数的单调性、极值、最值,(2)利用单调性、极值、最值求参数的取值范围. 【例1】已知函数f (x )=ln x +a (1-x ). (1)讨论f (x )的单调性; (2)当f (x )有最大值,且最大值大于2a -2时,求实数a 的取值范围. 解 (1)f (x )的定义域为(0,+∞),f ′(x )=1x -a . 若a ≤0,则f′(x )>0,所以f (x )在(0,+∞)上单调递增. 若a >0,则当x ∈? ?? ??0,1a 时,f ′(x )>0; 当x ∈? ?? ??1a ,+∞时,f ′(x )<0, 所以f (x )在? ????0,1a 上单调递增,在? ?? ??1a ,+∞上单调递减. 综上,知当a ≤0时,f (x )在(0,+∞)上单调递增; 当a >0时,f (x )在? ????0,1a 上单调递增,在? ?? ??1a ,+∞上单调递减. (2)由(1)知,当a ≤0时,f (x )在(0,+∞)上无最大值; 当a >0时,f (x )在x =1a 处取得最大值,最大值为f ? ????1a =ln 1a +a ? ?? ??1-1a =-ln a +a -1. 因此f ? ?? ??1a >2a -2等价于ln a +a -1<0. 令g (a )=ln a +a -1,则g (a )在(0,+∞)上单调递增, g (1)=0. 于是,当0<a <1时,g (a )<0; 当a >1时,g (a )>0. 因此,实数a 的取值范围是(0,1). 【类题通法】(1)研究函数的性质通常转化为对函数单调性的讨论,讨论单调性要先求函数定义域,再讨论导数在定义域内的符号来判断函数的单调性. (2)由函数的性质求参数的取值范围,通常根据函数的性质得到参数的不等式,再解出参数的范围.若不等式是初等的一次、二次、指数或对数不等式,则可以直接解不等式得参数的取值范围;若不等式是一个不能直接解出的超越型不等式时,如求解ln a +a -1<0,则需要构造函数来解.

高考理科数学导数题型归纳定稿版

高考理科数学导数题型 归纳 HUA system office room 【HUA16H-TTMS2A-HUAS8Q8-HUAH1688】

导数题型归纳 请同学们高度重视: 首先,关于二次函数的不等式恒成立的主要解法: 1、分离变量;2变更主元;3根分布;4判别式法 5、二次函数区间最值求法:(1)对称轴(重视单调区间) 与定义域的关系 (2)端点处和顶点是最值所在 其次,分析每种题型的本质,你会发现大部分都在解决“不等式恒成立问题”以及“充分应用数形结合思想”,创建不等关系求出取值范围。 最后,同学们在看例题时,请注意寻找关键的等价变形和回归的基础 一、基础题型:函数的单调区间、极值、最值;不等式恒成立; 1、此类问题提倡按以下三个步骤进行解决: 第一步:令0)(' x f 得到两个根;’ 第二步:画两图或列表; 第三步:由图表可知; 其中不等式恒成立问题的实质是函数的最值问题, 2、常见处理方法有三种: 第一种:分离变量求最值-----用分离变量时要特别注意是否需分类讨论(>0,=0,<0)

第二种:变更主元(即关于某字母的一次函数)-----(已知谁的范围就把谁作为主元); 例1:设函数()y f x =在区间D 上的导数为()f x ',()f x '在区间D 上的导数为()g x ,若在区间D 上,()0g x <恒成立,则称函数()y f x =在区间D 上为“凸函数”,已知实数 m 是常数,432 3()1262 x mx x f x =-- (1)若()y f x =在区间[]0,3上为“凸函数”,求m 的取值范围; (2)若对满足2m ≤的任何一个实数m ,函数()f x 在区间(),a b 上都为“凸函数”,求b a -的最大值. 解:由函数4323()1262x mx x f x =-- 得32 ()332 x mx f x x '=- - (1) ()y f x =在区间[]0,3上为“凸函数”, 则 2()30g x x mx ∴=--< 在区间[0,3]上恒成立 - 解法一:从二次函数的区间最值入手:等价于max ()0g x < 解法二:分离变量法: ∵ 当0x =时, 2()330g x x mx ∴=--=-<恒成立, 当03x <≤时, 2()30g x x mx =--<恒成立 等价于233 x m x x x ->=-的最大值(03x <≤)恒成立,

相关文档
最新文档