机器人和机器人传感器外文翻译

机器人和机器人传感器外文翻译
机器人和机器人传感器外文翻译

中文4387字

机器人和机器人传感器

介绍

工业机器人以及它的运行是本文的主题。工业机器人是应用于制造环境下以提高生产率的一种工具。它可用于承担常规的、冗长乏味的装配线工作,或执行那些对工人也许有危害的工作。例如,在第一代工业机器人中,曾有一台被用于更换核电厂的核燃料棒。从事这项工作的工人可能会暴露在有害量的放射线下。工业机器人也能够在装配线上操作——安装小型元件,例如将电子元件安装在线路板上。为此,工人可以从这种冗长乏味任务的常规操作中解放出来。通过编程的机器人还能去掉炸弹的雷管、为残疾者服务以及在我们社会的众多应用中发挥作用。

机器人可被看作将臂端执行工具、传感器以及/或夹爪移动到某个预定位置的一台机器。当机器人到达该位置,它将执行某个任务。该任务可能是焊接、密封、机械装载、机械卸载,或许多装配工作。除了编程以及打开和关闭系统之外,一般情况下,均不需要人们的参与就能完成这类工作。

机器人专业术语

机器人是一台可再编程的多功能机械手,它可通过可编程运动移动零件、物料、工具或特殊装置以执行某种不同任务。由这项定义可导致下面段落中被阐述的其他定义,它们为机器人系统提供了完整的写照。

预编程位置是机器人为了完成工作必须遵循和通过的途径。在这些位置的某点,机器人会停下来并执行某种操作,例如装配零件,喷漆或焊接。这些预编程位置被存储在机器人的记忆装置中供以后继续操作时使用。此外,当工作的要求发生变化时,不仅其他编程数据而且这些预编程位置均可作修改。因此,正由于这种编程的特点,一台工业机器人与一台可存储数据、以及可回忆及编辑的计算机十分相似。

机械手是机器人的手臂,它允许机器人俯仰、伸缩和转动。这种动作是由机械手的轴所提供的,机械手的轴又称为机器人的自由度。一台机器人可以具有

3至16根轴。在本人的后面部分,自由度这个术语总与一台机器人轴的数目相关联。

工具及夹爪并非属于机器人系统的本身,它们是装在机器人手臂端部的附件。有了与机器人手臂端部相连接的这些附件,机器人就可以提起零件、点焊、喷漆、弧焊、钻孔、去毛刺,还可以根据所提要求指向各种类型的任务。

机器人系统还可以控制操作机器人的工作单元。机器人工作单元是一种总体环境,在该环境下机器人必须执行赋予它的任务。该单元可包容控制器、机器人的机械手、工作台、安全装置,或输送机。机器人开展工作所需要的所有设备均被包括在这个工作单元中。此外,来自外界装置的信号能够与机器人进行交流,这样就可以告诉机器人什么时候它该装配零件、捡起零件或将零件卸到输送机。基本部件

机器人系统具有3个基本部件:机械手、控制器及动力源。在某些机器人系统中可以看到第4个部件,端部执行件,有关这些部件将在下面小节描述。机械手

机械手承担机器人系统的体力工作,它由两部分组成:机械部分及被连接的附属物。机械手还有一个与附属物相连的底座。

机械手的底座通常被固定在工作领域的地面。有时,底座也可以移动。在该情况下,底座被安装到导轨上,这样该机械手就可以从一处移动到另一处。例如,一台机器人可以为几台机床工作,为每台机床装载和卸载。

正如前面所述,附属物从机器人的底座伸出。该附属物是机器人的手臂。它既可以是一个直线型的可动臂,也可以是一个铰接臂。铰接臂也称关节臂。

机器人机械手的附属物可为机械手提供各种运动轴。这些轴与固定底座相连接,而该底座又被紧固到机架上。这个机架能确保该机械手被维持在某个位置上。

在手臂的端部连接着一个手腕。该手腕由附加轴及手腕法兰组成,有了该手腕法兰,机器人用户就可以根据不同的工作在手腕上安装不同的工具。

机械手的轴允许机械手在一定区域内执行工作。如前所述,该区域被称为

机器人的工作单元,它的尺度与机械手的尺寸相对应。当机器人的物理尺寸增大时,工作单元的尺寸必然也随之增加。

机械手的运动由驱动器,或驱动系统所控制。驱动器或驱动系统允许各根轴在工作单元内运动,驱动系统可利用电力的、液压的或气压动力。驱动系统发出的能量由各种机械驱动装置转换成机械动力。这些驱动装置通过机械联动机构接合在一起。这些联动机构依次驱动机器人的不同轴。机械联动机构由链轮机构,齿轮机构及滚珠丝杠所组成。

控制器

机器人系统的控制器是运行的心脏。控制器存储着为以后回忆所用的预编程信息,控制着外围设备,它还与厂内计算机进行交流以使生产不断更新。

控制器用于控制机器人机械手运动以及工作单元中的外围部件。工作人员可以利用手递示教盒将机械手的动作编程进入控制器。这种信息可被存储在控制器的记忆装置中以便以后回忆使用。控制器存储着机器人系统的所有程序数据。它可以存储几种不同的程序,并且它们中任一程序均可被编辑。

也可要求控制器与工作单元中外围设备进行交流。例如,控制器具有一根输入线,该输入线可识别某项机械加工什么时候完成。当该机械循环完成时,输入线被接通,它会吩咐控制器让机械手到位以便机械手能夹起以加工完的零件。接着,该机械手再捡起一根新的零件并将它安放到机床上,然后,控制器向该机床发出信号让它开始运转。

控制器可由机械操纵的磁鼓构成,这些鼓按工作发生的先后次序操作。这类控制器用于非常简单的机器人系统。在大多数机器人系统中见到的控制器是很复杂的装置,它们体现了现代化的电子科学。换言之,它们由微信息处理器操纵。这些微信息处理器不是8位、16位就是32位的信息处理器。这种功能使控制器的运行具有非常好的柔性。

控制器可通过通讯线路发出电子信号,发出能与机械手各轴线进行沟通的电信号,机器人机械手与控制器之间这种双向交流可使系统的位置及运行维持在不断修正及更新得状态下,控制器还可以控制安装在机器人手腕端部的任意工

具。

控制器还有与工厂中不同计算机开展交流的任务,这个通讯网络可使机器人成为计算机辅助制造(CAM)系统的一部分。

根据上述基本定义,机器人是一台可再编程序的多功能机械手。所以,控制器必须包含某种形式的记忆存储器,以微信息处理器为基础的系统常与固态记忆装置连同运行。这些记忆装置可以是磁泡、随机存取记忆装置、软塑料磁盘或磁带。每种记忆存储装置均可存储编程信息以便以后回忆使用。

动力源

动力源是向控制器及机械手供给动力得装置,有两类动力供给机器人系统。一类动力是供控制器运行的交流点动力,另一类被用于驱动机械手各轴。例如,若机器人的机械手由液压或气压装置控制,则控制信号被发送到这些装置才能使机器人运动。

每个机器人系统均需要动力来驱动机械手,这种动力既可由液压动力源、气压动力源,也可以由电力动力源提供,这些动力源是机器人工作单元总的部件及设备中的一部分。

当液压动力源与及机器人机械手底座相连接,液压源产生液压流体,这些流体输送到机械手各控制元件,于是,使轴绕机器人底座旋转。

压力空气被输送到机械手,使轴沿轨道作直线运动,也可将这种气动源连接到钻床,它可为钻头的旋转提供动力。一般情况下,可从工厂得供给站获取气动源并做调整,然后将它输入机器人机械手的轴。

电动机可以是交流式的,也可以是直流式的。控制器发出的脉冲信号被发送到机械手得电机。这些脉冲为电机提供必要的指令信息以使机械手在机器人底座上旋转。

用于机械手轴的三种动力系统任一种均需要使用反馈监督系统,这种系统会不断地将每个轴位置数据反馈给控制器。

每种机器人系统不仅需要动力来开动机械手的轴,还需要动力来驱动控制器,这种动力可由制造环境的动力源提供。

端部执行件

在大部分机器人应用的场合见到的端部执行件均是机械手手腕法兰相连接的一个装置,端部执行件可应用于生产领域中许多不同场合,例如,它可用于捡起零件,用于焊接,或用于喷漆,端部执行件为机器人系统提供了机器人运行时必须的柔性。

通常所设计得端部执行件可满足机器人用户的需要。这些部件可由机器人制造商或机器人系统的物主制造。

端部执行件事机器人系统中唯一可将一种工作变成另一种工作的部件,例如,即日起可与喷水割机相连,它在汽车生产线上被用于切割板边。也可要求机器人将零件安放到磁盘中,在这简单的过程中,改变了机器人端部执行件,该机器人就可以用于其它应用场合,端部执行件得变更以及机器人的再编程序可使该系统具有很高的柔性。

机器人传感器

尽管机器人有巨大的能力,但很多时候却比不过没有经过一点训练的工人。例如,工人们能够发现零件掉在地上或发现进料机上没有零件,但没有了传感器,机器人就得不到这些信息,及时使用最尖端的传感器,机器人也比不上一个经验丰富的工人,因此,一个好的机器人系统的设计需要使用许多传感器与机器人控制器相接,使其尽可能接近操作工人得感知能力。

机器人技术最经常使用的传感器分为接触式的与非接触式的。接触式传感器可以进一步分为触觉传感器、力和扭矩传感器。触觉或接触传感器可以测出受动器端与其他物体间的实际接触,微型开关就是一个简单的触觉传感器,当机器人得受动气端与其他物体接触时,传感器是机器人停止工作,避免物体间的碰撞,告诉机器人已到达目标;或者在检测时用来测量物体尺寸。力和扭矩传感器位于机器人得抓手与手腕的最后一个关节之间,或者放在机械手得承载部件上,测量反力与力矩。力和扭矩传感器有压电传感器和装在柔性部件上的应变仪等。

非接触传感器包括接近传感器、视觉传感器、声敏元件及范围探测器等。接近传感器和标示传感器附近的物体。例如,可以用涡流传感器精确地保持与钢

板之间的固定的距离。最简单的机器人接近传感器包括一个发光二极管发射机和一个光敏二极管接收器,接收反射面移近时的反射光线,这种传感器的主要缺点是移近物对光线的反射率会影响接收信号。其他得接近传感器使用的是与电容和电感相关的原理。

视觉传感系统十分复杂,基于电视摄像或激光扫描的工作原理。摄像信号经过硬件预处理,以30帧至60帧每秒的速度输入计算机。计算机分析数据并提取所需的信息,例如,物体是否存在以及物体的特征、位置、操作方向,或者检测元件的组装及产品是否完成。

声敏元件用来感应并解释声波,从基本的声波探测到人们连续讲话的逐字识别,各种声敏元件的复杂程序不等,除了人机语音交流外,机器人还可以使用声敏元件控制弧焊,听到碰撞或倒塌的声音时阻止机器人的运动,预测将要发生的机械破损及检测物体内部缺陷。

还有一种非接触系统使用投影仪和成像设备获取物体的表面形状信息或距离信息。

传感器有静态探测与闭环探测两种使用方法。当机器人系统的探测和操作动作交替进行时,通常就要使用传感器,也就是说探测时机器人不操作,操作时与传感器无关,这种方法被称为静态探测,使用这种方法,视觉传感器先寻找被捕捉物体的位置与方向,然后机器人径直朝那个地点移动。

相反,闭式探测的机器人在操作运动中,始终受传感器的控制,多数视觉传感器都采用闭环模式,它们随时监测机器人的实际位置与理想位置间的偏差,并驱动机器人修正这一偏差。在闭环探测中,即使物体在运动,例如在传送带上,机器人也能抓住它并把它送到预定位置。

Robots and robot sensor

Introduction

Industrial robot and its operation is the subject of this article. Industrial robots are used in manufacturing environment as a tool to increase productivity. It can be used to undertake routine, tedious assembly line work, or the implementation of those workers may be hazardous work. For example, in the first generation of industrial robots, there were a nuclear power plant is for the replacement of fuel rods. Workers engaged in this work may be exposed to harmful amounts of radiation in the next. Industrial robots can operate in the assembly line - to install small-scale components, such as electronic components mounted on circuit board. To this end, workers from the tedious task of this routine operation freed. The robot can be programmed to remove the bomb detonators for the disabled in our community services and play a role in many applications.

Robot arm can be seen as the end of the implementation of tools, sensors, and / or jaws to move to a predetermined position of a machine. When the robot reaches the position, it will perform a task. The task may be welded, sealed, mechanical loading, mechanical unloading, or many assembly work. In addition to programming, and open and close the system, the general, not require the participation of people will be able to complete such work.

Robotics Glossary

Robot is a reprogrammable multifunctional manipulator that can be programmable motion moving parts, materials, tools or special devices to perform a different task. By the following paragraphs of this definition may lead to other definitions were described, which provides a complete system for the robot itself.

Location is pre-programmed robot must follow in order to complete the work and the way through. A point in these locations, the robot will stop and perform some operations, such as assembling parts, painting or welding. These pre-programmed robot position is stored in the memory device to continue operation for later use. In addition, when job requirements change, the only other programming data and these can be modified pre-programmed locations. Therefore, precisely because of the characteristics of this program, an industrial robot and one can store data, and can recall and edit the computer is very similar.

Robot is a robot arm, which allows the robot pitch, stretching and rotating. This action is provided by the robot axis, mechanical axis, also known as robot hand of freedom.

A robot can have 3-16 axis. In my later, the term degrees of freedom and a total number of robot axes associated.

Tools and not within the robot gripper itself, which is mounted on the robot arm end attachment. With the end of the robot arm connected to these attachments, the robot can lift parts, spot welding, painting, welding, drilling, deburring, the request can also point to various types of tasks.

Robot system can also control the operation of the robot's work unit. Robotic work cell is a general environment in the environment, the robot must perform the tasks entrusted to it. The unit can accommodate the controller, the robot manipulator,

working platforms, safety devices, or conveyor. Robot to carry out all the equipment needed for the work are included in this unit of work. In addition, the signal from the external device to communicate with the robot, so that you can tell the robot when it is part of the assembly, pick up the parts or the parts to the unloading conveyor.

Basic components

Robotic system has three basic components: the robot, controller and power source. In some robot system can be seen in the first four components, end of the implementation of parts, these parts will be described in the following sections. Manipulator

Robot bear robot system manual work, which consists of two parts: the mechanical parts and is connected to appendages. There is also a robot appendage connected to the base.

The base of the robot work area is usually fixed in the ground. Sometimes, the base can be moved. In that case, the base is installed to the rail so that the robot can move from one place to another. For example, a robot can work for a few machine tools, loading and unloading for each machine.

As mentioned earlier, the appendage extending from the base of the robot. The attachment is a robot arm. It can be a linear movable arm, it can be a hinged arm. Articulated arm, also known as articulated arm.

Adjunct manipulator can provide a variety of sports-axis robot. The shaft is connected with the fixed base, which base has been tightened to the rack. This rack can ensure that the robot is in a position to maintain.

Ends of the arm connected to a wrist. The axis of the wrist and wrist flange by additional components, with the flange of the wrist, the robot according to the different users can work in different tools installed on the wrist.

Axis allows the robot manipulator in a certain area implementation. As mentioned earlier, the region known as the robot work unit, and its scale and size of the corresponding robot. When the robot's physical size increases, the size of the unit of work must also increase.

Mechanical hand movements by the driver, or drive system control. Drive or shaft drive system allows the movement in the work unit, drive system using electric, hydraulic or pneumatic power. Drive the energy emitted from a variety of mechanical drive into mechanical power. These drives are joined together by a mechanical linkage. The linkage in turn drive the various robot axes. Mechanical linkage from the sprocket body, composed of gears and ball screws.

Controller

Robot controller is running in the heart. After the memory controller stores used for the pre-programmed information, control peripherals, to communicate it with the factory computer to make the production of constantly updated.

Controller used to control the manipulator motion and the outer parts of the work unit. Staff can use the box to teach hand-delivery actions programmed into the robot controller. This information can be stored in the controller's memory for later recall using the device. Robot controller stores all program data. It can store several different programs, and they can be in any program to be edited.

May also request the work unit controller and peripheral devices to communicate. For example, the controller has an input line, the input line can be identified when a mechanical process to complete. When the mechanical cycle is complete, the input line is connected, it will place orders for the controller to the robot manipulator to pick up the processing of finished parts. Then, the robot then picked up a new part and it is placed into the machine, then, the controller send a signal to the machine to get it started operation.

Mechanical manipulation of the drum controller can be constituted, the work place by order of the drum operation. The controller for a very simple robot system. Seen in most of the robot system controller is a very complex device, which reflects the modern electronic science. In other words, they are manipulated by the micro-information processor. These micro-information processors instead of 8 bits, 16 bits of information that is 32-bit processors. This feature allows the controller to run with very good flexibility.

Controller can send electronic signals through the communication line to issue with the mechanical hand signals to communicate with the axis of the robot manipulator and controller, this two-way communication between the location and operation makes the system constantly revised and updated to maintain the state may The controller can also control the robot wrist in the end installed any tools.

There are different controller computers and factory to carry out the task of communication, the communication network will enable the robot to become computer-aided manufacturing (CAM) part of the system.

According to the basic definition, the robot is a multi-function can be re-programmed robot. Therefore, the controller must include some form of memory storage, to micro-processor-based information systems are often associated with solid-state memory device with the operation. These memory devices can be magnetic bubbles, random access memory device, soft plastic disk or tape. Each memory storage device programming information can be stored for later recall using the.

Power source

Source of power to the controller and the robot was powered device, there are two types of robot power supply system. Controller for a class of power is power to run the exchange point, and the other is used to drive the robot axes. For example, if the robot manipulator controlled by a hydraulic or pneumatic device, the control signal is sent to these devices to make the robot movement.

Each robot systems require power to drive the robot, this source of power either by hydraulic power, pneumatic power source, power source can also be provided by electricity, the power source is a unit of work the robot parts and equipment in the total part.

When the hydraulic power source with and connected to the base manipulator, hydraulic pressure source to produce the hydraulic fluid, the fluid transport of the control components to the robot, so the robot base rotated around the axis.

Pressure air is fed to the robot, the axis along the track in a straight line, the source can also be connected to such a pneumatic drill, it can provide power for the drill rotation. Under normal circumstances, can be obtained from the factory air supply

station for the source and make adjustments, and then enter it in the axis manipulator. AC motor type can also be a DC-style. Controller sends out pulses of the signal was sent to the robot motors. These pulses provide the necessary instructions for the motor information to enable the robot in the robot base rotation.

The three-axis robot for power systems either require the use of feedback control systems, this system will continue to position data for each axis of feedback to the controller.

Each robot system not only need power to start the robot axis, also need power to drive the controller, this dynamic manufacturing environment, the power source can provide.

Implementation of end pieces

In most applications where the robot to see implementation of end pieces are connected to the robot wrist flange of a device, end pieces can be used in the production areas of the implementation of many different occasions, for example, it can be used to pick up parts, used for welding, or for painting, the implementation of parts for the robot end system provides the flexibility of the robot must run.

Usually designed to meet the end of the implementation of pieces of the robot users. These components can robot manufacturer or owner of manufacturing robot system. The implementation of the system end the only thing the robot can be a work into another working parts, for example, are available from the cutting machine is connected with the water, which is used in the automotive production line cutting edge. May also request the robot placed the parts to disk, in this simple process, change the end of the implementation of parts of the robot, the robot can be used for other applications, the implementation of end pieces may change, and then the robot programmed allows the system to have high flexibility.

Robot Sensor

Although the robot has great ability, but often than not with a little practice, but the workers. For example, workers can find parts that fall to the ground or no parts feeder, but not the sensor, the robot will not get this information in a timely manner using the most sophisticated sensors, the robot is smaller than an experienced worker Therefore, a good robot system design requires many sensor and robot controller using the phase, it was as close as possible operative awareness.

The most frequently used robotics sensors into contact with the non-contact. Contact sensors can be further divided into tactile sensors, force and torque sensors. Tactile or contact sensors can be measured by the drive-side and the actual contact between other objects, micro-switch is a simple tactile sensor, the robot may be angry when the client contact with other objects, the sensor is the robot to stop work and avoid objects between collisions, tell the robot has reached the goal; or when used to measure the size of objects detected. Force and torque sensors in the robot gripper and wrist was the last joint, or between the parts on the robot to carry a measured reaction force and torque. Force and torque sensors are mounted on the flexible piezoelectric sensors and strain gauges on the parts.

Non-contact sensors include proximity sensors, vision sensors, sound detectors, sensitive components and scope. Proximity sensors and labeling of objects near the

sensor. For example, eddy current sensor can be used to accurately maintain a fixed distance between the plates. The most simple robot proximity sensors including a light-emitting diode and a photodiode receiver transmitter, receiver reflector closer to the reflection of light, the main disadvantage of this sensor is closer to the object reflectance of light will affect the received signal. The other was close to the sensor using a capacitance and inductance associated with the principle.

Visual sensing system is very complex, based on the TV camera or laser scanner works. Video signal through the hardware pretreatment to 30-60 per second input into the computer. Computer analysis of the data and extract the required information, for example, the existence of objects and object features, location, operating direction, or components of the assembly and product testing is complete.

Sound sensitive devices used to sense and interpret sound waves, sound waves detected from the basic people recognize continuous speech, word for word, all kinds of sound ranging from sensitive components of the complex procedures, in addition to human-computer voice communication, the robot can also use the sound sensitive devices control of arc welding, I heard the sound of collision or collapse of the movement to stop the robot to predict the mechanical damage will occur and the detection of objects within the defects.

There is also a non-contact systems for projector and imaging the surface of the object shape information or distance information.

Static detection and closed-loop sensor probe used in two ways. When the detection and operation of the robot system moves alternately, it is usually necessary to use sensors that detect when the robot is not operating, the operation has nothing to do with the sensors, this method is called static detection, using this method, visual Find the sensor captured the first position and orientation of objects, and then the robot moves straight to the site.

In contrast, closed manipulation and motion detection robot, always under the control of sensors, vision sensors are used the majority of closed-loop mode, which monitor the robot's actual position at any time and the deviation between the ideal position, and drive the robot fix this error . In the closed-loop detection, even if the object in motion, for example, the conveyor belt, the robot can grasp it and send it to the desired location.

机器人外文翻译

英文原文出自《Advanced Technology Libraries》2008年第5期 Robot Robot is a type of mechantronics equipment which synthesizes the last research achievement of engine and precision engine, micro-electronics and computer, automation control and drive, sensor and message dispose and artificial intelligence and so on. With the development of economic and the demand for automation control, robot technology is developed quickly and all types of the robots products are come into being. The practicality use of robot products not only solves the problems which are difficult to operate for human being, but also advances the industrial automation program. At present, the research and development of robot involves several kinds of technology and the robot system configuration is so complex that the cost at large is high which to a certain extent limit the robot abroad use. To development economic practicality and high reliability robot system will be value to robot social application and economy development. With the rapid progress with the control economy and expanding of the modern cities, the let of sewage is increasing quickly: With the development of modern technology and the enhancement of consciousness about environment reserve, more and more people realized the importance and urgent of sewage disposal. Active bacteria method is an effective technique for sewage disposal,The lacunaris plastic is an effective basement for active bacteria adhesion for sewage disposal. The abundance requirement for lacunaris plastic makes it is a consequent for the plastic producing with automation and high productivity. Therefore, it is very necessary to design a manipulator that can automatically fulfill the plastic holding. With the analysis of the problems in the design of the plastic holding manipulator and synthesizing the robot research and development condition in recent years, a economic scheme is concluded on the basis of the analysis of mechanical configuration, transform system, drive device and control system and guided by the idea of the characteristic and complex of mechanical configuration,

人形机器人论文中英文资料对照外文翻译

中英文资料对照外文翻译 最小化传感级别不确定性联合策略的机械手控制 摘要:人形机器人的应用应该要求机器人的行为和举止表现得象人。下面的决定和控制自己在很大程度上的不确定性并存在于获取信息感觉器官的非结构化动态环境中的软件计算方法人一样能想得到。在机器人领域,关键问题之一是在感官数据中提取有用的知识,然后对信息以及感觉的不确定性划分为各个层次。本文提出了一种基于广义融合杂交分类(人工神经网络的力量,论坛渔业局)已制定和申请验证的生成合成数据观测模型,以及从实际硬件机器人。选择这个融合,主要的目标是根据内部(联合传感器)和外部( Vision 摄像头)感觉信息最大限度地减少不确定性机器人操纵的任务。目前已被广泛有效的一种方法论就是研究专门配置5个自由度的实验室机器人和模型模拟视觉控制的机械手。在最近调查的主要不确定性的处理方法包括加权参数选择(几何融合),并指出经过训练在标准操纵机器人控制器的设计的神经网络是无法使用的。这些方法在混合配置,大大减少了更快和更精确不同级别的机械手控制的不确定性,这中方法已经通过了严格的模拟仿真和试验。 关键词:传感器融合,频分双工,游离脂肪酸,人工神经网络,软计算,机械手,可重复性,准确性,协方差矩阵,不确定性,不确定性椭球。 1 引言 各种各样的机器人的应用(工业,军事,科学,医药,社会福利,家庭和娱乐)已涌现了越来越多产品,它们操作范围大并呢那个在非结构化环境中运行 [ 3,12,15]。在大多数情况下,如何认识环境正在发生变化且每个瞬间最优控制机器人的动作是至关重要的。移动机器人也基本上都有定位和操作非常大的非结构化的动态环境和处理重大的不确定性的能力[ 1,9,19 ]。每当机器人操作在随意性自然环境时,在给定的工作将做完的条件下总是存在着某种程

工业机器人外文翻译

附录外文文献 原文 Industrial Robots Definition “A robot is a reprogrammable,multifunctional machine designed to manipulate materials,parts,tools,or specialized devices,through variable programmed motions for the performance of a variety of tasks.” --Robotics Industries Association “A robot is an automatic device that performs functions normally ascribrd to humans or a machine in orm of a human.” --Websters Dictionary The industrial robot is used in the manufacturing environment to increase productivity . It can be used to do routine and tedious assembly line jobs , or it can perform jobs that might be hazardous to do routine and tedious assembly line jobs , or it can perform jobs that might be hazardous to the human worker . For example , one of the first industrial robots was used to replace the nuclear fuel rods in nuclear power plants . A human doing this job might be exposed to harmful amounts of radiation . The industrial robot can also operate on the assembly line , putting together small components , such as placing electronic components on a printed circuit board . Thus , the human worker can be relieved of the routine operation of this tedious task . Robots can also be programmed to defuse bombs , to serve the handicapped , and to perform functions in numerous applications in our society . The robot can be thought of as a machine that will move an end-of-arm tool , sensor , and gripper to a preprogrammed location . When the robot arrives at this location , it will perform some sort of task . This task could be welding , sealing , machine loading , machine unloading , or a host of assembly jobs . Generally , this work can be accomplished without the involvement of a human being , except for programming and for turning the system on and off . The basic terminology of robotic systems is introduced in the following :

机器人结构论文中英文对照资料外文翻译文献

中英文对照资料外文翻译文献 FEM Optimization for Robot Structure Abstract In optimal design for robot structures, design models need to he modified and computed repeatedly. Because modifying usually can not automatically be run, it consumes a lot of time. This paper gives a method that uses APDL language of ANSYS 5.5 software to generate an optimal control program, which mike optimal procedure run automatically and optimal efficiency be improved. 1)Introduction Industrial robot is a kind of machine, which is controlled by computers. Because efficiency and maneuverability are higher than traditional machines, industrial robot is used extensively in industry. For the sake of efficiency and maneuverability, reducing mass and increasing stiffness is more important than traditional machines, in structure design of industrial robot. A lot of methods are used in optimization design of structure. Finite element method is a much effective method. In general, modeling and modifying are manual, which is feasible when model is simple. When model is complicated, optimization time is longer. In the longer optimization time, calculation time is usually very little, a majority of time is used for modeling and modifying. It is key of improving efficiency of structure optimization how to reduce modeling and modifying time. APDL language is an interactive development tool, which is based on ANSYS and is offered to program users. APDL language has typical function of some large computer languages. For example, parameter definition similar to constant and variable definition, branch and loop control, and macro call similar to function and subroutine call, etc. Besides these, it possesses powerful capability of mathematical calculation. The capability of mathematical calculation includes arithmetic calculation, comparison, rounding, and trigonometric function, exponential function and hyperbola function of standard FORTRAN language, etc. By means of APDL language, the data can be read and then calculated, which is in database of ANSYS program, and running process of ANSYS program can be controlled.

管道机器人外文翻译

一款使用离合器连接类型的内窥管道机器人 摘要-这篇论文展示了一款使用离合器的新型内窥管道机器人,用于直径小于或等于100mmde 管道内窥。这款机器人拥有三条驱动轴,且每条驱动轴各有一个离合器,离合器的设计依据平行联动原理。内窥管道机器人牢固的模型机构已经过驱动,原型机也被制作出来。机器人系统已经过一系列的仿真软件模拟和实验验证。 1.简介 管内机器人经过漫长的发展,根据运动模型可分为几种基本类型,比如轮驱动、蠕动、自动足、螺旋驱动、爬行、PIG和惰性运行等类型。在这些类型之中,轮式驱动应用最为广泛。在过去的十年时间间,机器人各式各样的驱动类型研究呈现井喷式增长。不同的驱动类型的机器人一般会有三个驱动轴,依靠单独控制各轴的速度,可以让机器人实现通过关节或者T型管道。而且这种类型机器人与轮式驱动、螺旋驱动和PIG等类型比较起来会有较大的可折叠区域,比较节省空间。 近来,随着小型化管道机器人市场的扩大,对直径小于100mm的管道机器人的关注同时愈来愈热。因为室内管道的清洁程度会直接影响到人的健康,因此,对室内管道的清洁与监测变得愈加重要,同时直径小于100mm的机器人也将主要用于室内管道清洁。机械装置使用的是平行连杆机构,有助于实现装置

减速功能。减速器与其他使用两个底板的典型减速器不同,第二部分将会详细介绍机器人系统的特征。第三部分将会讲解机构的运动学分析。机构的有效性将会通过软件仿真与实验验证,这些会在第四部分展示出来。最后,同时也是至关重要的是总结。 2.机器人特征 A机器人硬件设备及系统 如例1所示,机器人系统包括控制盒与机器人装备。根据模块化设置,控制盒与机器人硬件设备室分开的。 机器人硬件设备包含主体,三条链轮和如例2显示的三个离合轮部分。机器人长80mm,外扩至100mm。机械联动装置可确保制动功能的实现,这是因为装置有效避免了电磁制动器的缺点,比如滑移、电力不足以及规格限制。 例1.装备有机械离合装置的管道检测机器人系统 机器人装置可实现两种不同的操作模式:驱动模式与制动模式。驱动模式下的机器人会运行,制动模式会使机器人停止运行并且

外文翻译:机器人本科生外文翻译资料

外文翻译资料原文 学院 专业班级 学生姓名 指导教师

Robot Darrick Addison (dtadd95@https://www.360docs.net/doc/cd7984293.html,), Senior Software Engineer/Consultant, ASC Technologies Inc. 01 Sep 2001 "A re-programmable, multifunctional manipulator designed to move material, parts, tools, or specialized devices through various programmed motions for the performance of a variety of tasks." -- From the Robot Institute of America, 1979 Darrick Addison, an experienced developer in databases, networks, user interfaces, and embedded systems, introduces the field of robotics and the issues surrounding robotic systems. He covers mechanical design, sensory systems, electronic control, and software. He also discusses microcontroller systems, including serial and memory-mapped interfacing, and talks about some of the available open source software options. The word "robot" originates from the Czech word for forced labor, or serf. It was introduced by playwright Karel Capek, whose fictional robotic inventions were much like Dr. Frankenstein's monster -- creatures created by chemical and biological, rather than mechanical, methods. But the current mechanical robots of popular culture are not much different from these fictional biological creations. Basically a robots consists of: ? A mechanical device, such as a wheeled platform, arm, or other construction, capable of interacting with its environment ?Sensors on or around the device that are able to sense the environment and give useful feedback to the device ?Systems that process sensory input in the context of the device's current situation and instruct the device to perform actions in response to the situation In the manufacturing field, robot development has focused on engineering robotic arms that perform manufacturing processes. In the space industry, robotics focuses on highly specialized, one-of-kind planetary rovers. Unlike a highly automated manufacturing plant, a planetary rover operating on the dark side of the moon -- without radio communication -- might run into unexpected situations. At a minimum, a planetary rover must have some source of sensory input, some way of interpreting that input, and a way of modifying its actions to respond to a changing world. Furthermore, the need to sense and adapt to a partially unknown environment requires intelligence (in other words, artificial intelligence).

智能避障机器人设计外文翻译

INTELLIGENT VEHICLE Our society is awash in “machine intelligence” of various kinds.Over the last century, we have witnessed more and more of the “drudgery” of daily living being replaced by devices such as washing machines. One remaining area of both drudgery and danger, however, is the daily act ofdriving automobiles 1.2 million people were killed in traffic crashes in 2002, which was 2.1% of all globaldeaths and the 11th ranked cause of death . If this trend continues, an estimated 8.5 million people will be dying every year in road crashes by 2020. In fact, the U.S. Department of Transportation has estimated the overall societal cost of road crashes annually in the United States at greater than $230 billion. When hundreds or thousands of vehicles are sharing the same roads at the same time, leading to the all too familiar experience of congested traffic. Traffic congestion undermines our quality of life in the same way air pollution undermines public health.Around 1990, road transportation professionals began to apply them to traffic and road management. Thus was born the intelligent transportation system(ITS). Starting in the late 1990s, ITS systems were developed and deployed. In developed countries, travelers today have access to signifi-cant amounts of information about travel conditions, whether they are driving their own vehicle or riding on public transit systems. As the world energy crisis, and the war and the energy

搬运机器人外文翻译

外文翻译 专业机械电子工程 学生姓名张华 班级 B机电092 学号 05 指导教师袁健

外文资料名称:Research,design and experiment of end effector for wafer transfer robot 外文资料出处:Industrail Robot:An International Journal 附件: 1.外文资料翻译译文 2.外文原文

晶片传送机器人末端效应器研究、设计和实验 刘延杰、徐梦、曹玉梅 张华译 摘要:目的——晶片传送机器人扮演一个重要角色IC制造行业并且末端执行器是一个重要的组成部分的机器人。本文的目的是使晶片传送机器人通过研究其末端执行器提高传输效率,同时减少晶片变形。 设计/方法/方法——有限元方法分析了晶片变形。对于在真空晶片传送机器人工作,首先,作者运用来自壁虎的超细纤维阵列的设计灵感研究机器人的末端执行器,和现在之间方程机器人的交通加速度和参数的超细纤维数组。基于这些研究,一种微阵列凹凸设计和应用到一个结构优化的末端执行器。对于晶片传送机器人工作在大气环境中,作者分析了不同因素的影响晶片变形。在吸收面积的压力分布的计算公式,提出了最大传输加速度。最后, 根据这些研究得到了一个新的种末端执行器设计大气机器人。 结果——实验结果表明, 通过本文研究应用晶片传送机器人的转换效率已经得到显着提高。并且晶片变形吸收力得到控制。 实际意义——通过实验可以看出,通过本文的研究,可以用来提高机器人传输能力, 在生产环境中减少晶片变形。还为进一步改进和研究末端执行器打下坚实的基础,。 创意/价值——这是第一次应用研究由壁虎启发了的超细纤维阵列真空晶片传送机器人。本文还通过有限元方法仔细分析不同因素在晶片变形的影响。关键词:晶片传送机器人末端执行器、超细纤维数组、晶片 1.介绍

人工智能专业外文翻译-机器人

译文资料: 机器人 首先我介绍一下机器人产生的背景,机器人技术的发展,它应该说是一个科学技术发展共同的一个综合性的结果,同时,为社会经济发展产生了一个重大影响的一门科学技术,它的发展归功于在第二次世界大战中各国加强了经济的投入,就加强了本国的经济的发展。另一方面它也是生产力发展的需求的必然结果,也是人类自身发展的必然结果,那么随着人类的发展,人们在不断探讨自然过程中,在认识和改造自然过程中,需要能够解放人的一种奴隶。那么这种奴隶就是代替人们去能够从事复杂和繁重的体力劳动,实现人们对不可达世界的认识和改造,这也是人们在科技发展过程中的一个客观需要。 机器人有三个发展阶段,那么也就是说,我们习惯于把机器人分成三类,一种是第一代机器人,那么也叫示教再现型机器人,它是通过一个计算机,来控制一个多自由度的一个机械,通过示教存储程序和信息,工作时把信息读取出来,然后发出指令,这样的话机器人可以重复的根据人当时示教的结果,再现出这种动作,比方说汽车的点焊机器人,它只要把这个点焊的过程示教完以后,它总是重复这样一种工作,它对于外界的环境没有感知,这个力操作力的大小,这个工件存在不存在,焊的好与坏,它并不知道,那么实际上这种从第一代机器人,也就存在它这种缺陷,因此,在20世纪70年代后期,人们开始研究第二代机器人,叫带感觉的机器人,这种带感觉的机器人是类似人在某种功能的感觉,比如说力觉、触觉、滑觉、视觉、听觉和人进行相类比,有了各种各样的感觉,比方说在机器人抓一个物体的时候,它实际上力的大小能感觉出来,它能够通过视觉,能够去感受和识别它的形状、大小、颜色。抓一个鸡蛋,它能通过一个触觉,知道它的力的大小和滑动的情况。第三代机器人,也是我们机器人学中一个理想的所追求的最高级的阶段,叫智能机器人,那么只要告诉它做什么,不用告诉它怎么去做,它就能完成运动,感知思维和人机通讯的这种功能和机能,那么这个目前的发展还是相对的只是在局部有这种智能的概念和含义,但真正完整意义的这种智能机器人实际上并没有存在,而只是随着我们不断的科学技术的发展,智能的概念越来越丰富,它内涵越来越宽。 下面我简单介绍一下我国机器人发展的基本概况。由于我们国家存在很多其

管道机器人(英文)

A SIMPLE ARCHITECTURE FOR IN-PIPE INSPECTION ROBOTS Mihaita HORODINCA, Ioan DOROFTEI, Emmanuel MIGNON, André PREUMONT Active Structures Laboratory UNIVERSITE LIBRE DE BRUXELLES Av. F. D. Roosevelt 50, cp 165/42, Brussels, Belgium Phone: (32)2-6504663 Fax: (32)2-6504660 e-mail: andre.preumont@ulb.ac.be Abstract: The paper presents an original robot architecture for in-pipe inspection. The robot consists of two parts articulated with a universal joint. One part is guided along the pipe by a set of wheels moving parallel to the axis of the pipe, while the other part is forced to follow an helical motion thanks to tilted wheels rotating about the axis of the pipe. A single motor is placed between the two bodies to produce the motion. All the wheels are mounted on a suspension to accommodate for changing tube diameter and curves in the pipe. The robot is autonomous and carries its own batteries and radio link. Four different prototypes have been constructed for pipe diameters of 170, 70 and 40 mm, respectively. For smaller diameters, the batteries and the radio receiver may be placed on an additional body attached to the others. The autonomy of the prototypes is about 2 hours. This architecture is very simple and the rotary motion can be exploited to carry out scrubbing or inspection tasks. Keywords: Autonomous mobile robot, In-pipe inspection, Helical motion Introduction Pipe inspection robots have been studied for a long time, and many original locomotion concepts have been proposed to solve the numerous technical difficulties associated with the change in pipe diameter, curves and energy supply. Although an exhaustive review of the literature is impossible due to the limited space available, a few broad categories can be identified: (i) For small size, many projects follow the earthworm principle consisting of a central part moving axially while the two end parts are provided with blocking devices connected temporarily to the pipe. Pneumatic versions of this concept have been proposed (e.g. [1]), but they require an umbilical for power. For smaller diameter (10 mm or less), a piezoelectric actuation has been considered, according to the inchworm principle, or according to an inertial locomotion driven by a saw-tooth wave voltage [2], or using vibrating fins with differential friction coefficients [3]. (ii) For medium size piping, classical electromechanical systems have been proposed with various architectures involving wheels and tracks, with more or less complicated kinematical structures, depending on the diameter adaptability and turning capability (e.g. [4,5]). (iii) For large pipes, walking tube crawlers have also been proposed [6].

外文翻译-多自由度步行机器人

多自由度步行机器人 摘要在现实生活中设计一款不仅可以倒下而且还可以站起来的机器人灵活智能机器人很重要。本文提出了一种两臂两足机器人,即一个模仿机器人,它可以步行、滚动和站起来。该机器人由一个头,两个胳膊和两条腿组成。基于远程控制,设计了双足机器人的控制系统,解决了机器人大脑内的机构无法与无线电联系的问题。这种远程控制使机器人具有强大的计算头脑和有多个关节轻盈的身体。该机器人能够保持平衡并长期使用跟踪视觉,通过一组垂直传感器检测是否跌倒,并通过两个手臂和两条腿履行起立动作。用实际例子对所开发的系统和实验结果进行了描述。 1 引言随着人类儿童的娱乐,对于设计的双足运动的机器人具有有站起来动作的能力是必不可少。 为了建立一个可以实现两足自动步行的机器人,设计中感知是站立还是否躺着的传感器必不可少。两足步行机器人它主要集中在动态步行,作为一种先进的控制问题来对待它。然而,在现实世界中把注意力集中在智能反应,更重要的是创想,而不是一个不会倒下的机器人,是一个倒下来可以站起来的机器人。 为了建立一个既能倒下又能站起来的机器人,机器人需要传感系统就要知道它是否跌倒或没有跌倒。虽然视觉是一个机器人最重要的遥感功能,但由于视觉系统规模和实力的限制,建立一个强大的视觉系统在机器人自己的身体上是困难的。如果我们想进一步要求动态反应和智能推理经验的基础上基于视觉的机器人行为研究,那么机器人机构要轻巧足以够迅速作出迅速反应,并有许多自由度为了显示驱动各种智能行为。至于有腿机器人,只有一个以视觉为基础的

小小的研究。面临的困难是在基于视觉有腿机器人实验研究上由硬件的显示所限制。在有限的硬件基础上是很难继续发展先进的视觉软件。为了解决这些问题和推进基于视觉的行为研究,可以通过建立远程脑的办法。身体和大脑相连的无线链路使用无线照相机和远程控制机器人,因为机体并不需要电脑板,所以它变得更加容易建立一个有许多自由度驱动的轻盈机身。 在这项研究中,我们制定了一个使用远程脑机器人的环境并且使它执行平衡的视觉和起立的手扶两足机器人,通过胳膊和腿的合作,该系统和实验结果说明如下。图 1 远程脑系统的硬件配置图 2 两组机器人的身体结构 2 远程脑系统 远程控制机器人不使用自己大脑内的机构。它留大脑在控制系统中并且与它用无线电联系。这使我们能够建立一个自由的身体和沉重大脑的机器人。身体和大脑的定义软件和硬件之间连接的接口。身体是为了适应每个研究项目和任务而设计的。这使我们提前进行研究各种真实机器人系统。 一个主要利用远程脑机器人是基于超级并行计算机上有一个大型及重型颅脑。虽然硬件技术已经先进了并拥有生产功能强大的紧凑型视觉系统的规模,但是硬件仍然很大。摄像头和视觉处理器的无线连接已经成为一种研究工具。远程脑的做法使我们在基于视觉机器人技术各种实验问题的研究上取得进展。 另一个远程脑的做法的优点是机器人机体轻巧。这开辟了与有腿移动机器人合作的可能性。至于动物,一个机器人有 4 个可以行走的四肢。我们的重点是基于视觉的适应行为的4肢机器人、机械动物,在外地进行试验还没有太多的研究。 大脑是提出的在母体环境中通过接代遗传。大脑和母体可以分享新设计

智能机器人外文翻译

Robot Robot is a type of mechantronics equipment which synthesizes the last research achievement of engine and precision engine, micro-electronics and computer, automation control and drive, sensor and message dispose and artificial intelligence and so on. With the development of economic and the demand for automation control, robot technology is developed quickly and all types of the robots products are come into being. The practicality use of robot products not only solves the problems which are difficult to operate for human being, but also advances the industrial automation program. At present, the research and development of robot involves several kinds of technology and the robot system configuration is so complex that the cost at large is high which to a certain extent limit the robot abroad use. To development economic practicality and high reliability robot system will be value to robot social application and economy development. With the rapid progress with the control economy and expanding of the modern cities, the let of sewage is increasing quickly: With the development of modern technology and the enhancement of consciousness about environment reserve, more and more people realized the importance and urgent of sewage disposal. Active bacteria method is an effective technique for sewage disposal,The lacunaris plastic is an effective basement for active bacteria adhesion for sewage disposal. The abundance requirement for lacunaris plastic makes it is a consequent for the plastic producing with automation and high productivity. Therefore, it is very necessary to design a manipulator that can automatically fulfill the plastic holding. With the analysis of the problems in the design of the plastic holding manipulator and synthesizing the robot research and development condition in recent years, a economic scheme is concluded on the basis of the analysis of mechanical configuration, transform system, drive device and control system and guided by the idea of the characteristic and complex of mechanical configuration, electronic, software and hardware. In this article, the mechanical configuration combines the character of direction coordinate and the arthrosis coordinate which can improve the stability and operation flexibility of the system. The main function of the transmission mechanism is to transmit power to implement department and complete the necessary movement. In this transmission structure, the screw transmission mechanism transmits the rotary motion into linear motion. Worm gear can give vary transmission

相关文档
最新文档