十年(2010-2019)高考数学真题分类汇编(试卷版+解析版):函数
十年真题(2010_2019)高考数学真题分类汇编专题01集合文(含解析)

专题01集合历年考题细目表历年高考真题汇编1.【2019年新课标1文科02】已知集合U={1,2,3,4,5,6,7},A={2,3,4,5},B={2,3,6,7},则B∩∁U A=()A.{1,6} B.{1,7} C.{6,7} D.{1,6,7}【解答】解:∵U={1,2,3,4,5,6,7},A={2,3,4,5},B={2,3,6,7},∴∁U A={1,6,7},则B∩∁U A={6,7}故选:C.2.【2018年新课标1文科01】已知集合A={0,2},B={﹣2,﹣1,0,1,2},则A∩B=()A.{0,2} B.{1,2}C.{0} D.{﹣2,﹣1,0,1,2}【解答】解:集合A={0,2},B={﹣2,﹣1,0,1,2},则A∩B={0,2}.故选:A.3.【2017年新课标1文科01】已知集合A={x|x<2},B={x|3﹣2x>0},则()A.A∩B={x|x} B.A∩B=∅C.A∪B={x|x} D.A∪B=R【解答】解:∵集合A={x|x<2},B={x|3﹣2x>0}={x|x},∴A∩B={x|x},故A正确,B错误;A∪B={x||x<2},故C,D错误;故选:A.4.【2016年新课标1文科01】设集合A={1,3,5,7},B={x|2≤x≤5},则A∩B=()A.{1,3} B.{3,5} C.{5,7} D.{1,7}【解答】解:集合A={1,3,5,7},B={x|2≤x≤5},则A∩B={3,5}.故选:B.5.【2015年新课标1文科01】已知集合A={x|x=3n+2,n∈N},B={6,8,10,12,14},则集合A∩B中元素的个数为()A.5 B.4 C.3 D.2【解答】解:A={x|x=3n+2,n∈N}={2,5,8,11,14,17,…},则A∩B={8,14},故集合A∩B中元素的个数为2个,故选:D.6.【2014年新课标1文科01】已知集合M={x|﹣1<x<3},N={x|﹣2<x<1},则M∩N=()A.(﹣2,1)B.(﹣1,1)C.(1,3)D.(﹣2,3)【解答】解:M={x|﹣1<x<3},N={x|﹣2<x<1},则M∩N={x|﹣1<x<1},故选:B.7.【2013年新课标1文科01】已知集合A={1,2,3,4},B={x|x=n2,n∈A},则A∩B=()A.{1,4} B.{2,3} C.{9,16} D.{1,2}【解答】解:根据题意得:x=1,4,9,16,即B={1,4,9,16},∵A={1,2,3,4},∴A∩B={1,4}.故选:A.8.【2012年新课标1文科01】已知集合A={x|x2﹣x﹣2<0},B={x|﹣1<x<1},则()A.A⊊B B.B⊊A C.A=B D.A∩B=∅【解答】解:由题意可得,A={x|﹣1<x<2},∵B={x|﹣1<x<1},在集合B中的元素都属于集合A,但是在集合A中的元素不一定在集合B中,例如x∴B⊊A.故选:B.9.【2011年新课标1文科01】已知集合M={0,1,2,3,4},N={1,3,5},P=M∩N,则P的子集共有()A.2个B.4个C.6个D.8个【解答】解:∵M={0,1,2,3,4},N={1,3,5},∴P=M∩N={1,3}∴P的子集共有22=4故选:B.10.【2010年新课标1文科01】已知集合A={x||x|≤2,x∈R},B={x|4,x∈Z},则A∩B=()A.(0,2)B.[0,2] C.{0,2} D.{0,1,2}【解答】解:∵A={x||x|≤2}={x|﹣2≤x≤2}B={x|4,x∈Z}={0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16}则A∩B={0,1,2}故选:D.考题分析与复习建议本专题考查的知识点为:集合关系及其运算,历年考题主要以选择填空题型出现,重点考查的知识点为:交并补运算,预测明年本考点题目会比较稳定,备考方向以知识点交并补运算为重点较佳.最新高考模拟试题 1.若集合,,则AB =( )A .B .C .D .【答案】A 【解析】 解:,则,故选:A . 2.已知集合,,则AB =( )A .[2,3]B .(1,5)C .{}2,3D .{2,3,4}【答案】C 【解析】,,又,所以,故本题选C.3.已知集合,,则A B =( )A .B .{}1,0,1,2,3-C .{}3,2--D .【答案】B 【解析】因为,∴.4.已知全集U =R ,集合,则()U A B =ð( )A .(1,2)B .(]1,2 C .(1,3) D .(,2]-∞【答案】B 【解析】由24x >可得2x >,可得13x <<,所以集合,(,2]U A =-∞ð,所以()U A B =ð(]1,2,故选B.5.已知集合,集合,则集合A B ⋂的子集个数为( ) A .1 B .2C .3D .4【答案】D 【解析】由题意得,直线1y x =+与抛物线2y x =有2个交点,故A B ⋂的子集有4个. 6.已知集合,,则()R M N ⋂ð=( )A .{-1,0,1,2,3}B .{-1,0,1,2}C .{-1,0,1}D .{-1,3}【答案】D 【解析】 由题意,集合,则或3}x ≥又由,所以,故选D.7.已知集合,,则()R A B I ð=( )A .{}1,0-B .{}1,0,1-C .{}1,2,3D .{}2,3【答案】B 【解析】 因为,所以,又,所以.8.已知R 是实数集,集合,,则()AB =Rð( )A .{}1,0-B .{}1C .1,12⎡⎤⎢⎥⎣⎦D .1,2⎛⎫-∞ ⎪⎝⎭【答案】A 【解析】即故选A 。
十年真题(2010_2019)高考数学真题分类汇编专题03函数概念与基本初等函数理(含解析)

专题03函数概念与基本初等函数历年考题细目表题型年份考点试题位置单选题2019 对数函数2019年新课标1理科03单选题2018 分段函数2018年新课标1理科09单选题2017 函数的奇偶性2017年新课标1理科05单选题2017 指数函数2017年新课标1理科11单选题2016 指数函数2016年新课标1理科08单选题2014 函数的奇偶性2014年新课标1理科03单选题2014 函数模型2014年新课标1理科06单选题2013 分段函数2013年新课标1理科11单选题2011 函数的奇偶性2011年新课标1理科02单选题2011 函数的对称性2011年新课标1理科12单选题2010 函数模型2010年新课标1理科04单选题2010 函数的奇偶性2010年新课标1理科08单选题2010 分段函数2010年新课标1理科11填空题2015 函数的奇偶性2015年新课标1理科13历年高考真题汇编1.【2019年新课标1理科03】已知a=log20.2,b=20.2,c=0.20.3,则()A.a<b<c B.a<c<b C.c<a<b D.b<c<a【解答】解:a=log20.2<log21=0,b=20.2>20=1,∵0<0.20.3<0.20=1,∴c=0.20.3∈(0,1),∴a<c<b,故选:B.2.【2018年新课标1理科09】已知函数f(x),g(x)=f(x)+x+a.若g(x)存在2个零点,则a的取值范围是()A.[﹣1,0)B.[0,+∞)C.[﹣1,+∞)D.[1,+∞)【解答】解:由g(x)=0得f(x)=﹣x﹣a,作出函数f(x)和y=﹣x﹣a的图象如图:当直线y=﹣x﹣a的截距﹣a≤1,即a≥﹣1时,两个函数的图象都有2个交点,即函数g(x)存在2个零点,故实数a的取值范围是[﹣1,+∞),故选:C.3.【2017年新课标1理科05】函数f(x)在(﹣∞,+∞)单调递减,且为奇函数.若f(1)=﹣1,则满足﹣1≤f(x﹣2)≤1的x的取值范围是()A.[﹣2,2] B.[﹣1,1] C.[0,4] D.[1,3]【解答】解:∵函数f(x)为奇函数.若f(1)=﹣1,则f(﹣1)=1,又∵函数f(x)在(﹣∞,+∞)单调递减,﹣1≤f(x﹣2)≤1,∴f(1)≤f(x﹣2)≤f(﹣1),∴﹣1≤x﹣2≤1,解得:x∈[1,3],故选:D.4.【2017年新课标1理科11】设x、y、z为正数,且2x=3y=5z,则()A.2x<3y<5z B.5z<2x<3y C.3y<5z<2x D.3y<2x<5z【解答】解:x、y、z为正数,令2x=3y=5z=k>1.lgk>0.则x,y,z.∴3y,2x,5z.∵,.∴lg0.∴3y<2x<5z.另解:x、y、z为正数,令2x=3y=5z=k>1.lgk>0.则x,y,z.∴1,可得2x>3y,1.可得5z>2x.综上可得:5z>2x>3y.解法三:对k取特殊值,也可以比较出大小关系.故选:D.5.【2016年新课标1理科08】若a>b>1,0<c<1,则()A.a c<b c B.ab c<ba cC.a log b c<b log a c D.log a c<log b c【解答】解:∵a>b>1,0<c<1,∴函数f(x)=x c在(0,+∞)上为增函数,故a c>b c,故A错误;函数f(x)=x c﹣1在(0,+∞)上为减函数,故a c﹣1<b c﹣1,故ba c<ab c,即ab c>ba c;故B错误;log a c<0,且log b c<0,log a b<1,即1,即log a c>log b c.故D错误;0<﹣log a c<﹣log b c,故﹣b log a c<﹣a log b c,即b log a c>a log b c,即a log b c<b log a c,故C正确;故选:C.6.【2014年新课标1理科03】设函数f(x),g(x)的定义域都为R,且f(x)是奇函数,g(x)是偶函数,则下列结论正确的是()A.f(x)•g(x)是偶函数B.|f(x)|•g(x)是奇函数C.f(x)•|g(x)|是奇函数D.|f(x)•g(x)|是奇函数【解答】解:∵f(x)是奇函数,g(x)是偶函数,∴f(﹣x)=﹣f(x),g(﹣x)=g(x),f(﹣x)•g(﹣x)=﹣f(x)•g(x),故函数是奇函数,故A错误,|f(﹣x)|•g(﹣x)=|f(x)|•g(x)为偶函数,故B错误,f(﹣x)•|g(﹣x)|=﹣f(x)•|g(x)|是奇函数,故C正确.|f(﹣x)•g(﹣x)|=|f(x)•g(x)|为偶函数,故D错误,故选:C.7.【2014年新课标1理科06】如图,圆O的半径为1,A是圆上的定点,P是圆上的动点,角x的始边为射线OA,终边为射线OP,过点P作直线OA的垂线,垂足为M,将点M到直线OP的距离表示为x的函数f(x),则y=f(x)在[0,π]的图象大致为()A.B.C.D.【解答】解:在直角三角形OMP中,OP=1,∠POM=x,则OM=|cos x|,∴点M到直线OP的距离表示为x的函数f(x)=OM|sin x|=|cos x|•|sin x||sin2x|,其周期为T,最大值为,最小值为0,故选:C.8.【2013年新课标1理科11】已知函数f(x),若|f(x)|≥ax,则a的取值范围是()A.(﹣∞,0] B.(﹣∞,1] C.[﹣2,1] D.[﹣2,0]【解答】解:由题意可作出函数y=|f(x)|的图象,和函数y=ax的图象,由图象可知:函数y=ax的图象为过原点的直线,当直线介于l和x轴之间符合题意,直线l为曲线的切线,且此时函数y=|f(x)|在第二象限的部分解析式为y=x2﹣2x,求其导数可得y′=2x﹣2,因为x≤0,故y′≤﹣2,故直线l的斜率为﹣2,故只需直线y=ax的斜率a介于﹣2与0之间即可,即a∈[﹣2,0]故选:D.9.【2011年新课标1理科02】下列函数中,既是偶函数又在(0,+∞)上单调递增的函数是()A.y=2x3B.y=|x|+1 C.y=﹣x2+4 D.y=2﹣|x|【解答】解:对于A.y=2x3,由f(﹣x)=﹣2x3=﹣f(x),为奇函数,故排除A;对于B.y=|x|+1,由f(﹣x)=|﹣x|+1=f(x),为偶函数,当x>0时,y=x+1,是增函数,故B正确;对于C.y=﹣x2+4,有f(﹣x)=f(x),是偶函数,但x>0时为减函数,故排除C;对于D.y=2﹣|x|,有f(﹣x)=f(x),是偶函数,当x>0时,y=2﹣x,为减函数,故排除D.故选:B.10.【2011年新课标1理科12】函数y的图象与函数y=2sinπx,(﹣2≤x≤4)的图象所有交点的横坐标之和等于()A.8 B.6 C.4 D.2【解答】解:函数y1,y2=2sinπx的图象有公共的对称中心(1,0),作出两个函数的图象,如图,当1<x≤4时,y1<0而函数y2在(1,4)上出现1.5个周期的图象,在(1,)和(,)上是减函数;在(,)和(,4)上是增函数.∴函数y1在(1,4)上函数值为负数,且与y2的图象有四个交点E、F、G、H相应地,y1在(﹣2,1)上函数值为正数,且与y2的图象有四个交点A、B、C、D且:x A+x H=x B+x G=x C+x F=x D+x E=2,故所求的横坐标之和为8.故选:A.11.【2010年新课标1理科04】如图,质点P在半径为2的圆周上逆时针运动,其初始位置为P0(,),角速度为1,那么点P到x轴距离d关于时间t的函数图象大致为()A.B.C.D.【解答】解:通过分析可知当t=0时,点P到x轴距离d为,于是可以排除答案A,D,再根据当时,可知点P在x轴上此时点P到x轴距离d为0,排除答案B,故选:C.12.【2010年新课标1理科08】设偶函数f(x)满足f(x)=2x﹣4(x≥0),则{x|f(x﹣2)>0}=()A.{x|x<﹣2或x>4} B.{x|x<0或x>4} C.{x|x<0或x>6} D.{x|x<﹣2或x>2}【解答】解:由偶函数f(x)满足f(x)=2x﹣4(x≥0),可得f(x)=f(|x|)=2|x|﹣4,则f(x﹣2)=f(|x﹣2|)=2|x﹣2|﹣4,要使f(|x﹣2|)>0,只需2|x﹣2|﹣4>0,|x﹣2|>2解得x>4,或x<0.应选:B.13.【2010年新课标1理科11】已知函数,若a,b,c互不相等,且f(a)=f (b)=f(c),则abc的取值范围是()A.(1,10)B.(5,6)C.(10,12)D.(20,24)【解答】解:作出函数f(x)的图象如图,不妨设a<b<c,则ab=1,则abc=c∈(10,12).故选:C.14.【2015年新课标1理科13】若函数f(x)=xln(x)为偶函数,则a=.【解答】解:∵f(x)=xln(x)为偶函数,∴f(﹣x)=f(x),∴(﹣x)ln(﹣x)=xln(x),∴﹣ln(﹣x)=ln(x),∴ln(﹣x)+ln(x)=0,∴ln(x)(x)=0,∴lna=0,∴a=1.故答案为:1.考题分析与复习建议本专题考查的知识点为:函数,函数的单调性与最值,函数的奇偶性与周期性,幂函数与二次函数,指数函数,对数函数,分段函数,函数的图象,函数与方程等.历年考题主要以选择填空题型出现,重点考查的知识点为:函数的单调性与最值,函数的奇偶性与周期性,指数函数,对数函数,分段函数,函数的图象,函数与方程等.预测明年本考点题目会比较稳定,备考方向以知识点函数的单调性与最值,函数的奇偶性与周期性,指数函数,对数函数,分段函数,函数的图象,函数与方程等为重点较佳.最新高考模拟试题1.已知()21f x ax bx =-+是定义域为[a ,a +1]的偶函数,则2b a a -=( )A .0B .34C D .4【答案】B 【解析】∵f (x )在[a ,a +1]上是偶函数, ∴﹣a =a +1⇒a 12=-, 所以f (x )的定义域为[12-,12], 故:f (x )12=-x 2﹣bx +1, ∵f (x )在区间[12-,12]上是偶函数,有f (12-)=f (12),代入解析式可解得:b =0;∴2b a a -13144=-=.故选:B .2.已知函数()y f x =的定义域为R ,)1(+x f 为偶函数,且对121x x ∀<≤,满足()()01212<--x x x f x f .若(3)1f =,则不等式()2log 1f x <的解集为( )A .1,82⎛⎫ ⎪⎝⎭B .)8,1(C .10,(8,)2⎛⎫⋃+∞ ⎪⎝⎭D .(,1)(8,)-∞⋃+∞【答案】A 【解析】因为对121x x ∀<≤,满足()()01212<--x x x f x f ,所以()y f x =当1≤x 时,是单调递减函数,又因为)1(+x f 为偶函数,所以()y f x =关于1x =对称,所以函数()y f x =当1>x 时,是增函数,又因为(3)1f =,所以有1)1(=-f ,当2log 1x ≤时,即当02x <≤时,()()222log 1log (11log 2221)1f x f x x x x f <⇒<-⇒>-⇒>∴<≤当2log 1x >时,即当2x >时,()()222log 1log (3)log 3828x x f x f x f x <⇒<⇒∴<<⇒<<,综上所述:不等式()2log 1f x <的解集为1,82⎛⎫ ⎪⎝⎭,故本题选A.3.函数22()log (34)f x x x =--的单调减区间为( )A .(,1)-∞-B .3(,)2-∞-C .3(,)2+∞D .(4,)+∞【答案】A 【解析】函数()()22log 34f x x x =--,所以 2340(4)(1)04x x x x x -->⇒-+>⇒>或1x <-,所以函数()f x 的定义域为4x >或1x <-,234y x x =--当3(,)2-∞时,函数是单调递减,而1x <-,所以函数()()22log 34f x x x =--的单调减区间为(),1-∞-,故本题选A 。
2010—2019“十年高考”数学真题分类汇总 三角函数的图象与性质(解析版 可下载)

D. f (x) 的最小正周期为 2π ,最大值为 4
【答案】B.
【解析】易知 f (x) 2 cos2 x sin 2 x 2 3cos2 x 1 3(2 cos2 x 1) 3 1
2
2
3 cos 2x 5 ,则 f (x) 的最小正周期为 ,
2
2
当 x k (k Z) 时, f (x) 取得最大值,最大值为 4.
6.(2018 全国卷Ⅱ)若 f (x) cos x sin x 在 [0, a] 是减函数,则 a 的最大值是
A. π 4
B. π 2
C. 3π 4
D. π
【答案】C.
【解析】解法一 f (x) cos x sin x 2 cos(x π) , 4
当 x [0, a] 时, x [ , a ] , 44 4
4
2
2 2
2.
故选 C.
5.(2018 全国卷Ⅰ)已知函数 f (x) 2 cos2 x sin 2 x 2 ,则
A. f (x) 的最小正周期为 ,最大值为 3
第 2 页 共 34 页
B. f (x) 的最小正周期为 ,最大值为 4
C. f (x) 的最小正周期为 2π ,最大值为 3
12
4
【解析】(I)因为 f (x ) sin(x ) 是偶函数,
所以,对任意实数x都有 sin(x ) sin(x ) ,
即 sin x cos cos x sin sin x cos cos x sin ,
故 2 sin x cos 0 ,所以 cos 0 .
所以结合题意可知 a ≤ ,即 a ≤ 3 ,
(北京卷)十年真题(2010_2019)高考数学真题分类汇编专题05三角函数与解三角形文(含解析)

专题05三角函数与解三角形历年考题细目表历年高考真题汇编1.【2019年北京文科06】设函数f(x)=cos x+b sin x(b为常数),则“b=0”是“f(x)为偶函数”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件【解答】解:设函数f(x)=cos x+b sin x(b为常数),则“b=0”⇒“f(x)为偶函数”,“f(x)为偶函数”⇒“b=0”,∴函数f(x)=cos x+b sin x(b为常数),则“b=0”是“f(x)为偶函数”的充分必要条件.故选:C.2.【2019年北京文科08】如图,A,B是半径为2的圆周上的定点,P为圆周上的动点,∠APB是锐角,大小为β,图中阴影区域的面积的最大值为()A.4β+4cosβB.4β+4sinβC.2β+2cosβD.2β+2sinβ【解答】解:由题意可得∠AOB=2∠APB=2β,要求阴影区域的面积的最大值,即为直线QO⊥AB,即有QO=2,Q到线段AB的距离为2+2cosβ,AB=2•2sinβ=4sinβ,扇形AOB的面积为•2β•4=4β,△ABQ的面积为(2+2cosβ)•4sinβ=4sinβ+4sinβcosβ=4sinβ+2sin2β,S△AOQ+S△BOQ=4sinβ+2sin2β•2•2sin2β=4sinβ,即有阴影区域的面积的最大值为4β+4sinβ.故选:B.3.【2018年北京文科07】在平面直角坐标系中,,,,是圆x2+y2=1上的四段弧(如图),点P其中一段上,角α以Ox为始边,OP为终边.若tanα<cosα<sinα,则P所在的圆弧是()A.B.C.D.【解答】解:A.在AB段,正弦线小于余弦线,即cosα<sinα不成立,故A不满足条件.B.在CD段正切线最大,则cosα<sinα<tanα,故B不满足条件.C.在EF段,正切线,余弦线为负值,正弦线为正,满足tanα<cosα<sinα,D.在GH段,正切线为正值,正弦线和余弦线为负值,满足cosα<sinα<tanα不满足tanα<cosα<sinα.故选:C.4.【2013年北京文科05】在△ABC中,a=3,b=5,sin A,则sin B=()A.B.C.D.1【解答】解:∵a=3,b=5,sin A,∴由正弦定理得:sin B.故选:B.5.【2010年北京文科07】某班设计了一个八边形的班徽(如图),它由腰长为1,顶角为α的四个等腰三角形,及其底边构成的正方形所组成,该八边形的面积为()A.2sinα﹣2cosα+2 B.sinαcosα+3C.3sinαcosα+1 D.2sinα﹣cosα+1【解答】解:由正弦定理可得4个等腰三角形的面积和为:41×1×sinα=2sinα由余弦定理可得正方形边长为:故正方形面积为:2﹣2cosα所以所求八边形的面积为:2sinα﹣2cosα+2故选:A.6.【2018年北京文科14】若△ABC的面积为(a2+c2﹣b2),且∠C为钝角,则∠B=;的取值范围是.【解答】解:△ABC的面积为(a2+c2﹣b2),可得:(a2+c2﹣b2)ac sin B,,可得:tan B,所以B,∠C为钝角,A∈(0,),tan A,∈(,+∞).cos B sin B∈(2,+∞).故答案为:;(2,+∞).7.【2017年北京文科09】在平面直角坐标系xOy中,角α与角β均以Ox为始边,它们的终边关于y轴对称,若sinα,则sinβ=.【解答】解:∵在平面直角坐标系xOy中,角α与角β均以Ox为始边,它们的终边关于y轴对称,∴α+β=π+2kπ,k∈Z,∵sinα,∴sinβ=sin(π+2kπ﹣α)=sinα.故答案为:.8.【2016年北京文科13】在△ABC中,∠A,a c,则.【解答】解:在△ABC中,∠A,a c,由正弦定理可得:,,sin C,C,则B.三角形是等腰三角形,B=C,则b=c,则1.故答案为:1.9.【2015年北京文科11】在△ABC中,a=3,b,∠A,则∠B=.【解答】解:由正弦定理可得,,即有sin B,由b<a,则B<A,可得B.故答案为:.10.【2014年北京文科12】在△ABC中,a=1,b=2,cos C,则c=;sin A=.【解答】解:∵在△ABC中,a=1,b=2,cos C,∴由余弦定理得:c2=a2+b2﹣2ab cos C=1+4﹣1=4,即c=2;∵cos C,C为三角形内角,∴sin C,∴由正弦定理得:sin A.故答案为:2;.11.【2012年北京文科11】在△ABC中,若a=3,b,,则∠C的大小为.【解答】解:∵△ABC中,a=3,b,,∴由正弦定理得:,∴sin∠B.又b<a,∴∠B<∠A.∴∠B.∴∠C=π.故答案为:.12.【2011年北京文科09】在△ABC中.若b=5,,sin A,则a=.【解答】解:在△ABC中.若b=5,,sin A,所以,a.故答案为:.13.【2010年北京文科10】在△ABC中,若b=1,c,∠C,则a=.【解答】解:在△ABC中由正弦定理得,∴sin B,∵b<c,故B,则A由正弦定理得∴a 1故答案为:114.【2019年北京文科15】在△ABC中,a=3,b﹣c=2,cos B.(Ⅰ)求b,c的值;(Ⅱ)求sin(B+C)的值.【解答】解:(1)∵a=3,b﹣c=2,cos B.∴由余弦定理,得b2=a2+c2﹣2ac cos B,∴b=7,∴c=b﹣2=5;(2)在△ABC中,∵cos B,∴sin B,由正弦定理有:,∴sin A,∴sin(B+C)=sin(A)=sin A.15.【2018年北京文科16】已知函数f(x)=sin2x sin x cos x.(Ⅰ)求f(x)的最小正周期;(Ⅱ)若f(x)在区间[,m]上的最大值为,求m的最小值.【解答】解:(I)函数f(x)=sin2x sin x cos x sin2x=sin(2x),f(x)的最小正周期为Tπ;(Ⅱ)若f(x)在区间[,m]上的最大值为,可得2x∈[,2m],即有2m,解得m,则m的最小值为.16.【2017年北京文科16】已知函数f(x)cos(2x)﹣2sin x cos x.(I)求f(x)的最小正周期;(II)求证:当x∈[,]时,f(x).【解答】解:(Ⅰ)f(x)cos(2x)﹣2sin x cos x,(co2x sin2x)﹣sin2x,cos2x sin2x,=sin(2x),∴Tπ,∴f(x)的最小正周期为π,(Ⅱ)∵x∈[,],∴2x∈[,],∴sin(2x)≤1,∴f(x)17.【2016年北京文科16】已知函数f(x)=2sinωx cosωx+cos2ωx(ω>0)的最小正周期为π.(1)求ω的值;(2)求f(x)的单调递增区间.【解答】解:f(x)=2sinωx cosωx+cos2ωx,=sin2ωx+cos2ωx,,由于函数的最小正周期为π,则:T,解得:ω=1.(2)由(1)得:函数f(x),令(k∈Z),解得:(k∈Z),所以函数的单调递增区间为:[](k∈Z).18.【2015年北京文科15】已知函数f(x)=sin x﹣2sin2.(1)求f(x)的最小正周期;(2)求f(x)在区间[0,]上的最小值.【解答】解:(1)∵f(x)=sin x﹣2sin2=sin x﹣2=sin x cos x=2sin(x)∴f(x)的最小正周期T2π;(2)∵x∈[0,],∴x∈[,π],∴sin(x)∈[0,1],即有:f(x)=2sin(x)∈[,2],∴可解得f(x)在区间[0,]上的最小值为:.19.【2014年北京文科16】函数f(x)=3sin(2x)的部分图象如图所示.(Ⅰ)写出f(x)的最小正周期及图中x0,y0的值;(Ⅱ)求f(x)在区间[,]上的最大值和最小值.【解答】解:(Ⅰ)∵f(x)=3sin(2x),∴f(x)的最小正周期Tπ,可知y0为函数的最大值3,x0;(Ⅱ)∵x∈[,],∴2x∈[,0],∴当2x0,即x时,f(x)取最大值0,当2x,即x时,f(x)取最小值﹣320.【2013年北京文科15】已知函数f(x)=(2cos2x﹣1)sin2x cos4x.(1)求f(x)的最小正周期及最大值;(2)若α∈(,π),且f(α),求α的值.【解答】解:(Ⅰ)因为∴T,函数的最大值为:.(Ⅱ)∵f(x),,所以,∴,k∈Z,∴,又∵,∴.21.【2013年北京文科18】已知函数f(x)=x2+x sin x+cos x.(Ⅰ)若曲线y=f(x)在点(a,f(a))处与直线y=b相切,求a与b的值;(Ⅱ)若曲线y=f(x)与直线y=b有两个不同交点,求b的取值范围.【解答】解:(I)f′(x)=2x+x cos x=x(2+cos x),∵曲线y=f(x)在点(a,f(a))处与直线y=b相切,∴f′(a)=a(2+cos a)=0,f(a)=b,联立,解得,故a=0,b=1.(II)∵f′(x)=x(2+cos x).令f′(x)=0,得x=0,x,f(x),f′(x)的变化情况如表:所以函数f(x)在区间(﹣∞,0)上单调递减,在区间(0,+∞)上单调递增,f(0)=1是f(x)的最小值.当b≤1时,曲线y=f(x)与直线x=b最多只有一个交点;当b>1时,f(﹣2b)=f(2b)≥4b2﹣2b﹣1>4b﹣2b﹣1>b,f(0)=1<b,所以存在x1∈(﹣2b,0),x2∈(0,2b),使得f(x1)=f(x2)=b.由于函数f(x)在区间(﹣∞,0)和(0,+∞)上均单调,所以当b>1时曲线y=f(x)与直线y=b有且只有两个不同的交点.综上可知,如果曲线y=f(x)与直线y=b有且只有两个不同的交点,那么b的取值范围是(1,+∞).22.【2012年北京文科15】已知函数f(x).(1)求f(x)的定义域及最小正周期;(2)求f(x)的单调递减区间.【解答】解:(1)由sin x≠0得x≠kπ(k∈Z),故求f(x)的定义域为{x|x≠kπ,k∈Z}.∵f(x)=2cos x(sin x﹣cos x)=sin2x﹣cos2x﹣1sin(2x)﹣1∴f(x)的最小正周期Tπ.(2)∵函数y=sin x的单调递减区间为[2kπ,2kπ](k∈Z)∴由2kπ2x2kπ,x≠kπ(k∈Z)得kπx≤kπ,(k∈Z)∴f(x)的单调递减区间为:[kπ,kπ](k∈Z)23.【2011年北京文科15】已知f(x)=4cos x sin(x)﹣1.(Ⅰ)求f(x)的最小正周期;(Ⅱ)求f(x)在区间[,]上的最大值和最小值.【解答】解:(Ⅰ)∵,=4cos x()﹣1sin2x+2cos2x﹣1sin2x+cos2x=2sin(2x),所以函数的最小正周期为π;(Ⅱ)∵x,∴2x,∴当2x,即x时,f(x)取最大值2,当2x时,即x时,f(x)取得最小值﹣1.24.【2010年北京文科15】已知函数f(x)=2cos2x+sin2x﹣4cos x.(Ⅰ)求的值;(Ⅱ)求f(x)的最大值和最小值.【解答】解:(Ⅰ);(Ⅱ)f(x)=2(2cos2x﹣1)+(1﹣cos2x)﹣4cos x=3cos2x﹣4cos x﹣1,因为cos x∈[﹣1,1],所以当cos x =﹣1时,f (x )取最大值6;当时,取最小值.考题分析与复习建议本专题考查的知识点为:同角三角函数基本关系、诱导公式,三角函数的图象与性质,三角恒等变换,正余弦定理,解三角形的综合应用等.历年考题主要以选择填空或解答题题型出现,重点考查的知识点为:诱导公式,三角函数的图象与性质,三角恒等变换,正余弦定理,解三角形等.预测明年本考点题目会比较稳定,备考方向以同角三角函数基本关系、诱导公式,三角函数的图象与性质,三角恒等变换,正余弦定理,解三角形的综合应用等为重点较佳.最新高考模拟试题1.函数2sin()(0,0)y x ωϕωϕπ=+><<的部分图象如图所示.则函数()f x 的单调递增区间为( )A .,63k k ππππ轾犏-+犏臌,k z ∈ B .,33k k ππππ⎡⎤-+⎢⎥⎣⎦,k z ∈C .,36k k ππππ⎡⎤-+⎢⎥⎣⎦,k z ∈D .,66k k ππππ⎡⎤-+⎢⎥⎣⎦,k z ∈2.将函数()2sin(2)3f x x π=+的图像先向右平移12π个单位长度,再向上平移1个单位长度,得到()g x 的图像,若()()129g x g x =且12,[2,2]x x ππ∈-,则122x x -的最大值为( )A .4912π B .356π C .256π D .174π 3.将函数222()2cos 4x f x ϕ+=(0πϕ-<<)的图像向右平移3π个单位长度,得到函数()g x 的图像,若()(4)g x g x π=-则ϕ的值为( )A .23-π B .3π-C .6π-D .2π-4.已知函数()sin()(0,0)f x x ωϕωϕπ=+><<的图象经过两点(0,(,0)24A B π, ()f x 在(0,)4π内有且只有两个最值点,且最大值点大于最小值点,则()f x =( ) A .sin 34x π⎛⎫+⎪⎝⎭B .3sin 54x π⎛⎫+⎪⎝⎭C .sin 74x π⎛⎫+⎪⎝⎭D .3sin 94x π⎛⎫+⎪⎝⎭5.已知函数()cos f x x x =,则下列结论中正确的个数是( ). ①()f x 的图象关于直线3x π=对称;②将()f x 的图象向右平移3π个单位,得到函数()2cos g x x =的图象;③,03π⎛⎫- ⎪⎝⎭是()f x 图象的对称中心;④()f x 在,63ππ⎡⎤⎢⎥⎣⎦上单调递增. A .1B .2C .3D .46.在ABC ∆中,角A 、B 、C 的对边长分别a 、b 、c ,满足()22sin 40a a B B -+=,b =则ABC △的面积为A .BC .D 7.设锐角三角形ABC 的内角,,A B C 所对的边分别为,,a b c ,若2,2a B A ==,则b 的取值范围为( )A .(0,4)B .(2,C .D .4)8.已知V ABC 的内角,,A B C 所对的边分别为,,a b c ,若6sin cos 7sin2C A A =,53a b =,则C =( ). A .3π B .23π C .34π D .56π9.若函数()2sin()f x x ωϕ=+ (01ω<<,02πϕ<<)的图像过点,且关于点(2,0)-对称,则(1)f -=_______.10.若实数,x y 满足()()()2221122cos 11x y xyx y x y ++--+-=-+.则xy 的最小值为____________11.设函数()sin(2)3f x x π=+,若120x x <,且12()()0f x f x +=,则21x x -的取值范围是_______.12.已知角α为第一象限角,sin cos a αα-=,则实数a 的取值范围为__________.13.已知函数sin 2cos ()()(()0)f x x x ϕϕϕ+=+<<π-的图象关于直线x π=对称,则cos 2ϕ=___.14.如图,四边形ABCD 中,4AB =,5BC =,3CD =,90ABC ∠=︒,120BCD ∠=°,则AD 的长为______15.在锐角ABC ∆中,角AB C ,,的对边分别为a b c ,,.且c o s c o s A B a b +=,b =则a c +的取值范围为_____.16.在ABC ∆中,已知AB 边上的中线1CM =,且1tan A ,1tan C ,1tan B成等差数列,则AB 的长为________.17.在ABC ∆中,AB C ,,的对边分别a b c ,,,60,cos A B ︒==(Ⅰ)若D 是BC 上的点,AD 平分BAC ∠,求DCBD的值; (Ⅱ)若 ccos cos 2B b C +=,求ABC ∆的面积.18.在ABC ∆中,角,,A B C 所对的边分别,,a b c ,()()()()2sin cos sin f x x A x B C x R =-++∈,函数()f x 的图象关于点,06π⎛⎫⎪⎝⎭对称. (1)当0,2x π⎛⎫∈ ⎪⎝⎭时,求()f x 的值域;(2)若7a =且sin sin 14B C +=,求ABC ∆的面积.19.在ABC ∆中,已知2AB =,cos B =,4C π=.(1)求BC 的长; (2)求sin(2)3A π+的值.20.如图,在四边形ABCD 中,60A ∠=︒,90ABC ∠=︒.已知AD =BD =.。
(2010-2019)十年高考数学真题分类汇编:三角函数(含解析)

(2010-2019)十年高考数学真题分类汇编:三角函数(含解析)1.(2019·全国2·理T10文T11)已知α∈0,π2,2sin 2α=cos 2α+1,则sin α=()A.15B.√55C.√33D.2√55【答案】B【解析】∵2sin 2α=cos 2α+1,∴4sin αcos α=2cos2α.∵α∈(0,π2),∴cos α>0,sin α>0,∴2sin α=cos α.又sin2α+cos2α=1,∴5sin2α=1,即sin2α=15.∵sin α>0,∴sin α=√55.故选B.2.(2019·全国2·文T8)若x1=π4,x2=3π4是函数f(x)=sin ωx(ω>0)两个相邻的极值点,则ω=()A.2B.32C.1 D.12【答案】A【解析】由题意,得f(x)=sin ωx的周期T=2πω=23π4−π4=π,解得ω=2,故选A.3.(2019·全国2·理T9)下列函数中,以π2为周期且在区间π4,π2单调递增的是()A.f(x)=|cos 2x|B.f(x)=|sin 2x|C.f(x)=cos|x|D.f(x)=sin|x|【答案】A【解析】y=|cos 2x|的图象为,由图知y=|cos 2x|的周期为π2,且在区间(π4,π2)内单调递增,符合题意;y=|sin 2x|的图象为,由图知它的周期为π2,但在区间(π4,π2)内单调递减,不符合题意;因为y=cos|x|=cos x,所以它的周期为2π,不符合题意;y=sin |x|的图象为,由图知其不是周期函数,不符合题意.故选A.4.(2019·天津·理T7)已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<π)是奇函数,将y=f(x)的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),所得图象对应的函数为g(x).若g(x)的最小正周期为2π,且g(π4)=√2,则f(3π8)=()A.-2B.-√2C.√2D.2【答案】C【解析】已知函数为奇函数,且|φ|<π,故φ=0. f(x)=Asin ωx.∴g(x)=Asin x.∵g(x)的最小正周期为2π,∴2πω=2π,∴ω=1. ∴g(x)=Asin x.由g(π4)=√2,得Asin π4=√2,∴A=2.∴f(x)=2sin 2x.∴f(3π8)=2sin 3π4=√2.故选C.5.(2019·北京·文T8)如图,A,B是半径为2的圆周上的定点,P为圆周上的动点,∠APB是锐角,大小为β.图中阴影区域的面积的最大值为( )A.4β+4cos βB.4β+4sin βC.2β+2cos βD.2β+2sin β【答案】B【解析】(方法一)如图,设圆心为O ,连接OA ,OB ,半径r=2,∠AOB=2∠APB=2β,阴影部分Ⅰ(扇形)的面积S 1=βr 2=4β为定值,S △OAB =12|OA||OB|sin 2β=2sin 2β为定值,全部阴影部分的面积S=S △PAB +S 1-S △OAB .当P 为弧AB 的中点时S △PAB 最大,最大值为12(2|OA|sin β)(OP+|OA|cosβ)=2sin β(2+2cos β)=4sin β+2sin 2β,所以全部阴影部分的面积S 的最大值为4β+4sin β,故选B.(方法二)观察图象可知,当P 为弧AB 的中点时,阴影部分的面积S 取最大值,此时∠BOP=∠AOP=π-β,面积S的最大值为βr 2+S △POB +S △POA =4β+12|OP||OB|sin(π-β)+12|OP||OA|sin(π-β)=4β+2sin β+2sinβ=4β+4sin β,故选B.6.(2019·全国3·理T12)设函数f(x)=sin (ωx +π5)(ω>0),已知f(x)在[0,2π]有且仅有5个零点,下述四个结论:①f(x)在(0,2π)有且仅有3个极大值点 ②f(x)在(0,2π)有且仅有2个极小值点 ③f(x)在(0,π10)单调递增 ④ω的取值范围是[125,2910) 其中所有正确结论的编号是( )A.①④B.②③C.①②③D.①③④ 【答案】D【解析】∵f(x)=sin (ωx +π5)(ω>0)在区间[0,2π]上有且仅有5个零点, ∴5π≤2πω+π5<6π, 解得125≤ω<2910,故④正确.画出f(x)的图像(图略),由图易知①正确,②不正确. 当0<x<π10时,π5<ωx+π5<ωπ10+π5, 又125≤ω<2910,∴ωπ10+π5<29π100+20π100=49π100<π2,∴③正确.综上可知①③④正确.故选D.7.(2018·北京·文T7)在平面直角坐标系中,AB ⏜,CD ⏜,EF ⏜,GH ⏜是圆x 2+y 2=1上的四段弧(如图),点P 在其中一段上,角α以Ox 为始边,OP 为终边.若tan α<cos α<sin α,则P 所在的圆弧是( ) A.AB⏜ B.CD⏜C.EF ⏜ D.GH ⏜【答案】C【解析】若P 在AB⏜上,则由角α的三角函数线知,cos α>sin α,排除A;若P 在CD ⏜上,则tan α>sin α,排除B;若P 在GH⏜上,则tan α>0,cos α<0,sin α<0,排除D;故选C. 8.(2018·全国1·文T11)已知角α的顶点为坐标原点,始边与x 轴的非负半轴重合,终边上有两点A(1,a),B(2,b),且cos 2α=23,则|a-b|=( ) A.15 B.√55C.2√55D.1【答案】B。
十年真题(2010-2019)高考数学(理)分类汇编专题05 三角函数与解三角形(新课标Ⅰ卷)(原卷版)

专题05三角函数与解三角形历年考题细目表解答题2018 解三角形2018年新课标1理科17解答题2017 解三角形2017年新课标1理科17解答题2016 解三角形2016年新课标1理科17解答题2013 解三角形2013年新课标1理科17解答题2012 解三角形2012年新课标1理科17历年高考真题汇编1.【2019年新课标1理科11】关于函数f()=sin||+|sin|有下述四个结论:①f()是偶函数②f()在区间(,π)单调递增③f()在[﹣π,π]有4个零点④f()的最大值为2其中所有正确结论的编号是()A.①②④B.②④C.①④D.①③2.【2017年新课标1理科09】已知曲线C1:y=cos,C2:y=sin(2),则下面结论正确的是()A.把C1上各点的横坐标伸长到原的2倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线C2B.把C1上各点的横坐标伸长到原的2倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线C2C.把C1上各点的横坐标缩短到原的倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线C2D.把C1上各点的横坐标缩短到原的倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线C23.【2016年新课标1理科12】已知函数f()=sin(ω+φ)(ω>0,|φ|),为f()的零点,为y=f()图象的对称轴,且f()在(,)上单调,则ω的最大值为()A.11 B.9 C.7 D.54.【2015年新课标1理科02】sin20°cos10°﹣cos160°sin10°=()A. B.C.D.5.【2015年新课标1理科08】函数f()=cos(ω+φ)的部分图象如图所示,则f()的单调递减区间为()A.(π,π),∈B.(2π,2π),∈C.(,),∈D.(,2),∈6.【2014年新课标1理科08】设α∈(0,),β∈(0,),且tanα,则()A.3α﹣βB.3α+βC.2α﹣β D.2α+β7.【2012年新课标1理科09】已知ω>0,函数f()=sin(ω)在区间[,π]上单调递减,则实数ω的取值范围是()A.B.C.D.(0,2]8.【2011年新课标1理科05】已知角θ的顶点与原点重合,始边与轴的正半轴重合,终边在直线y=2上,则cos2θ=()A.B.C.D.9.【2011年新课标1理科11】设函数f()=sin(ω+φ)+cos(ω+φ)的最小正周期为π,且f(﹣)=f(),则()A.f()在单调递减B.f()在(,)单调递减C.f()在(0,)单调递增D.f()在(,)单调递增10.【2010年新课标1理科09】若,α是第三象限的角,则()A.B.C.2 D.﹣211.【2018年新课标1理科16】已知函数f()=2sin+sin2,则f()的最小值是.12.【2015年新课标1理科16】在平面四边形ABCD中,∠A=∠B=∠C=75°.BC=2,则AB的取值范围是.13.【2014年新课标1理科16】已知a,b,c分别为△ABC的三个内角A,B,C的对边,a=2且(2+b)(sin A﹣sin B)=(c﹣b)sin C,则△ABC面积的最大值为.14.【2013年新课标1理科15】设当=θ时,函数f()=sin﹣2cos取得最大值,则cosθ=.15.【2011年新课标1理科16】在△ABC中,B=60°,AC,则AB+2BC的最大值为.16.【2010年新课标1理科16】在△ABC中,D为边BC上一点,BD DC,∠ADB=120°,AD=2,若△ADC的面积为,则∠BAC=.17.【2019年新课标1理科17】△ABC的内角A,B,C的对边分别为a,b,c.设(sin B﹣sin C)2=sin2A ﹣sin B sin C.(1)求A;(2)若a+b=2c,求sin C.18.【2018年新课标1理科17】在平面四边形ABCD中,∠ADC=90°,∠A=45°,AB=2,BD=5.(1)求cos∠ADB;(2)若DC=2,求BC.19.【2017年新课标1理科17】△ABC的内角A,B,C的对边分别为a,b,c,已知△ABC的面积为.(1)求sin B sin C;(2)若6cos B cos C=1,a=3,求△ABC的周长.20.【2016年新课标1理科17】△ABC的内角A,B,C的对边分别为a,b,c,已知2cos C(a cos B+b cos A)=c.(Ⅰ)求C;(Ⅱ)若c,△ABC的面积为,求△ABC的周长.21.【2013年新课标1理科17】如图,在△ABC中,∠ABC=90°,AB,BC=1,P为△ABC内一点,∠BPC=90°.(1)若PB,求P A;(2)若∠APB=150°,求tan∠PBA.22.【2012年新课标1理科17】已知a,b,c分别为△ABC三个内角A,B,C的对边,a cos C a sin C﹣b ﹣c=0(1)求A;(2)若a=2,△ABC的面积为,求b,c.考题分析与复习建议本专题考查的知识点为:同角三角函数基本关系、诱导公式,三角函数的图象与性质,三角恒等变换,正余弦定理,解三角形的综合应用等.历年考题主要以选择填空或解答题题型出现,重点考查的知识点为:诱导公式,三角函数的图象与性质,三角恒等变换,正余弦定理,解三角形等.预测明年本考点题目会比较稳定,备考方向以同角三角函数基本关系、诱导公式,三角函数的图象与性质,三角恒等变换,正余弦定理,解三角形的综合应用等为重点较佳.最新高考模拟试题专题05三角函数与解三角形1.函数2sin()(0,0)y x ωϕωϕπ=+><<的部分图象如图所示.则函数()f x 的单调递增区间为( )A .,63k k ππππ轾犏-+犏臌,k z ∈ B .,33k k ππππ⎡⎤-+⎢⎥⎣⎦,k z ∈C .,36k k ππππ⎡⎤-+⎢⎥⎣⎦,k z ∈D .,66k k ππππ⎡⎤-+⎢⎥⎣⎦,k z ∈2.将函数()2sin(2)3f x x π=+的图像先向右平移12π个单位长度,再向上平移1个单位长度,得到()g x 的图像,若()()129g x g x =且12,[2,2]x x ππ∈-,则122x x -的最大值为( )A .4912π B .356π C .256π D .174π 3.将函数222()2cos 4x f x ϕ+=(0πϕ-<<)的图像向右平移3π个单位长度,得到函数()g x 的图像,若()(4)g x g x π=-则ϕ的值为( )A .23-π B .3π-C .6π-D .2π-4.已知函数()sin()(0,0)f x x ωϕωϕπ=+><<的图象经过两点2(0,(,0)24A B π, ()f x 在(0,)4π内有且只有两个最值点,且最大值点大于最小值点,则()f x =( )A .sin 34x π⎛⎫+⎪⎝⎭B .3sin 54x π⎛⎫+⎪⎝⎭C .sin 74x π⎛⎫+⎪⎝⎭D .3sin 94x π⎛⎫+⎪⎝⎭5.已知函数()cos f x x x =,则下列结论中正确的个数是( ). ①()f x 的图象关于直线3x π=对称;②将()f x 的图象向右平移3π个单位,得到函数()2cos g x x =的图象;③,03π⎛⎫- ⎪⎝⎭是()f x 图象的对称中心;④()f x 在,63ππ⎡⎤⎢⎥⎣⎦上单调递增. A .1B .2C .3D .46.在ABC ∆中,角A 、B 、C 的对边长分别a 、b 、c ,满足()22sin 40a a B B -++=,b =则ABC △的面积为A .B C .D7.设锐角三角形ABC 的内角,,A B C 所对的边分别为,,a b c ,若2,2a B A ==,则b 的取值范围为( )A .(0,4)B .(2,C .D .4)8.已知V ABC 的内角,,A B C 所对的边分别为,,a b c ,若6sin cos 7sin2C A A =,53a b =,则C =( ). A .3π B .23π C .34π D .56π9.若函数()2sin()f x x ωϕ=+ (01ω<<,02πϕ<<)的图像过点,且关于点(2,0)-对称,则(1)f -=_______.10.若实数,x y 满足()()()2221122cos 11x y xyx y x y ++--+-=-+.则xy 的最小值为____________11.设函数()sin(2)3f x x π=+,若120x x <,且12()()0f x f x +=,则21x x -的取值范围是_______.12.已知角α为第一象限角,sin cos a αα-=,则实数a 的取值范围为__________.13.已知函数sin 2cos ()()(()0)f x x x ϕϕϕ+=+<<π-的图象关于直线x π=对称,则cos 2ϕ=___.14.如图,四边形ABCD 中,4AB =,5BC =,3CD =,90ABC ∠=︒,120BCD ∠=°,则AD 的长为______15.在锐角ABC ∆中,角A B C ,,的对边分别为a b c ,,.且cos cos A B a b +=233Ca,23b =则a c +的取值范围为_____.16.在ABC ∆中,已知AB 边上的中线1CM =,且1tan A ,1tan C ,1tan B成等差数列,则AB 的长为________.17.在ABC ∆中,A B C ,,的对边分别a b c ,,,360,cos A B ︒==(Ⅰ)若D 是BC 上的点,AD 平分BAC ∠,求DCBD的值; (Ⅱ)若 ccos cos 2B b C +=,求ABC ∆的面积.18.在ABC ∆中,角,,A B C 所对的边分别,,a b c ,()()()()2sin cos sin f x x A x B C x R =-++∈,函数()f x 的图象关于点,06π⎛⎫⎪⎝⎭对称. (1)当0,2x π⎛⎫∈ ⎪⎝⎭时,求()f x 的值域; (2)若7a =且133sin sin B C +=,求ABC ∆的面积. 19.在ABC ∆中,已知2AB =,2cos 10B =,4C π=.(1)求BC 的长; (2)求sin(2)3A π+的值.20.如图,在四边形ABCD 中,60A ∠=︒,90ABC ∠=︒.已知3AD =6BD =.(Ⅰ)求sin ABD ∠的值;(Ⅱ)若2CD =,且CD BC >,求BC 的长.21.在ABC ∆中,内角A ,B ,C 的对边分别为a ,b ,c ,且234cos 2sin 22A b b aB =+. (1)求cos A ;(2)若25a =5c =,求b .22.已知在△ABC 中,222a c ac b +-=. (Ⅰ)求角B 的大小; (Ⅱ)求cos cos A C +的最大值.。
2010-2019高考数学理科真题分类汇编专题二 函数概念与基本初等函数 第五讲函数与方程含答案

专题二 函数概念与基本初等函数Ⅰ第五讲 函数与方程2019年1.(2019全国Ⅱ理12)设函数()f x 的定义域为R ,满足(1) 2 ()f x f x +=,且当(0,1]x ∈时,()(1)f x x x =-.若对任意(,]x m ∈-∞,都有8()9f x ≥-,则m 的取值范围是 A .9,4⎛⎤-∞ ⎥⎝⎦B .7,3⎛⎤-∞ ⎥⎝⎦C .5,2⎛⎤-∞ ⎥⎝⎦D .8,3⎛⎤-∞ ⎥⎝⎦2.(2019江苏14)设(),()f x g x 是定义在R 上的两个周期函数,()f x 的周期为4,()g x 的周期为2,且()f x 是奇函数.当2(]0,x ∈时,()1)f x ,(2),01()1,122k x x g x x +<≤⎧⎪=⎨-<≤⎪⎩,其中k >0.若在区间(0,9]上,关于x 的方程()()f x g x =有8个不同的实数根,则k 的取值范围是 .3.(2019浙江9)已知,a b ∈R ,函数32,0()11(1),032x x f x x a x ax x <⎧⎪=⎨-++≥⎪⎩,若函数()y f x ax b =--恰有3个零点,则A .a <-1,b <0B .a <-1,b >0C .a >-1,b <0D .a >-1,b >02010-2018年一、选择题1.(2018全国卷Ⅰ)已知函数0()ln 0⎧=⎨>⎩,≤,,,x e x f x x x ()()=++g x f x x a .若()g x 存在2个零点,则a 的取值范围是 A .[1,0)-B .[0,)+∞C .[1,)-+∞D .[1,)+∞2.(2017新课标Ⅲ)已知函数211()2()x x f x x x a ee --+=-++有唯一零点,则a =A .12-B .13C .12D .13.(2017山东)已知当[0,1]x ∈时,函数2(1)y mx =-的图象与y m =的图象有且只有一个交点,则正实数m 的取值范围是 A .(])0,123,⎡+∞⎣B .(][)0,13,+∞C .()23,⎡+∞⎣D .([)3,+∞4.(2016年天津)已知函数()f x =2(4,0,log (1)13,03)ax a x a x x x ⎧+<⎨++≥-+⎩(0a >,且1a ≠)在R 上单调递减,且关于x 的方程|()|2f x x =-恰好有两个不相等的实数解,则a 的取值范围是 A .(0,23] B .[23,34] C .[13,23]{34} D .[13,23){34} 5.(2015安徽)下列函数中,既是偶函数又存在零点的是A .y cos x =B .y sin x =C .y ln x =D .21y x =+ 6.(2015福建)若,a b 是函数()()20,0f x x px q p q =-+>> 的两个不同的零点,且,,2a b - 这三个数可适当排序后成等差数列,也可适当排序后成等比数列,则p q +的值等于A .6B .7C .8D .97.(2015天津)已知函数()()22,22,2x x f x x x ⎧-≤⎪=⎨->⎪⎩ 函数()()2g x b f x =-- ,其中 b R ∈ ,若函数()()y f x g x =- 恰有4个零点,则b 的取值范围是A .7(,)4+∞ B .7(,)4-∞ C .7(0,)4 D .7(,2)48.(2015陕西)对二次函数2()f x ax bx c =++(a 为非零整数),四位同学分别给出下列结论,其中有且仅有一个结论是错误的,则错误的结论是 A .-1是()f x 的零点 B .1是()f x 的极值点 C .3是()f x 的极值 D .点(2,8)在曲线()y f x =上9.(2014山东)已知函数()12+-=x x f ,()kx x g =.若方程()()f x g x =有两个不相等的实根,则实数k 的取值范围是A .),(210B .),(121C .),(21D .),(∞+210.(2014北京)已知函数()26log f x x x=-,在下列区间中,包含()f x 零点的区间是 A .()0,1 B .()1,2 C .()2,4 D .()4,+∞11.(2014重庆)已知函数13,(1,0]()1,(0,1]x f x x x x ⎧-∈-⎪=+⎨⎪∈⎩, 且()()g x f x mx m =--在(1,1]-内有且仅有两个不同的零点,则实数m 的取值范围是A .]21,0(]2,49(⋃--B .]21,0(]2,411(⋃-- C .]32,0(]2,49(⋃-- D .]32,0(]2,411(⋃--12.(2014湖北)已知()f x 是定义在R 上的奇函数,当0x ≥时,2()=3f x x x -.则函数()()+3g x f x x =-的零点的集合为A .{1,3}B .{3,1,1,3}-- C.{23} D.{21,3}- 13.(2013安徽)已知函数32()f x x ax bx c =+++有两个极值点12,x x ,若112()f x x x =<,则关于x 的方程23(())2()0f x af x b ++=的不同实根个数为A .3B .4C .5D .614.(2013重庆)若a b c <<,则函数()()()()()()()f x x a x b x b x c x c x a =--+--+--的两个零点分别位于区间A .(),a b 和(),b c 内B .(),a -∞和(),a b 内C .(),b c 和(),c +∞内D .(),a -∞和(),c +∞内15.(2013湖南)函数()2ln f x x =的图像与函数()245g x x x =-+的图象的交点个数为A .3B .2C .1D .0 16.(2013天津)函数0.5()2|log |1x f x x =-的零点个数为A .1B .2C .3D .417.(2012北京)函数121()()2xf x x =-的零点个数为A .0B .1C .2D .3 18.(2012湖北)函数2()cos f x x x =在区间[0,4]上的零点个数为A .4B .5C .6D .719.(2012辽宁)设函数)(x f ()x R ∈满足()()f x f x -=,()(2)f x f x =-,且当[]0,1x ∈时,()3=f x x .又函数()()=cos g x x x π,则函数()()()h x g x f x =-在13[,]22-上的零点个数为A .5B .6C .7D .8 20.(2011天津)对实数a 与b ,定义新运算“⊗”:,1,, 1.a ab a b b a b -≤⎧⊗=⎨->⎩ 设函数()()22()2,.f x x x x x R =-⊗-∈若函数()y f x c =-的图像与x 轴恰有两个公共点,则实数c 的取值范围是 A .(]3,21,2⎛⎫-∞-⋃- ⎪⎝⎭ B .(]3,21,4⎛⎫-∞-⋃-- ⎪⎝⎭C .11,,44⎛⎫⎛⎫-∞⋃+∞ ⎪⎪⎝⎭⎝⎭ D .311,,44⎛⎫⎡⎫--⋃+∞ ⎪⎪⎢⎝⎭⎣⎭21.(2011福建)若关于x 的方程210x mx ++=有两个不相等的实数根,则实数m 的取值范围是A .(-1,1)B .(-2,2)C .(-∞,-2)∪(2,+∞)D .(-∞,-1)∪(1,+∞) 22.(2011全国新课标)函数11y x =-的图像与函数2sin (24)y x x π=-≤≤的图像所有交点的横坐标之和等于A .2B .4C .6D .823.(2011山东)已知()f x 是R 上最小正周期为2的周期函数,且当02x <≤时,3()f x x x =-,则函数()y f x =的图象在区间[0,6]上与x 轴的交点的个数为A .6B .7C .8D .924.(2010年福建)函数223,0()2ln ,0x x x f x x x ⎧+-=⎨-+>⎩≤,的零点个数为A .0B .1C .2D .325.(2010天津)函数()23xf x x =+的零点所在的一个区间是A .(-2,-1)B .(-1,0)C .(0,1)D .(1,2) 26.(2010广东)“14m <”是“一元二次方程20x x m ++=有实数解”的 A .充分非必要条件 B .充分必要条件 C .必要非充分条件 D .非充分非必要条件27.(2010浙江)设函数()4sin(21)f x x x =+-,则在下列区间中函数()f x 不.存在零点的是A .[]4,2--B .[]2,0-C .[]0,2D .[]2,4 二、填空题28.(2018全国卷Ⅲ)函数()cos(3)6f x x π=+在[0,]π的零点个数为________.29.(2018天津)已知0a >,函数222,0,()22,0.x ax a x f x x ax a x ⎧++=⎨-+->⎩≤若关于x 的方程()f x ax=恰有2个互异的实数解,则a 的取值范围是 .30.(2018江苏)若函数32()21()f x x ax a =-+∈R 在(0,)+∞内有且只有一个零点,则()f x 在[1,1]-上的最大值与最小值的和为 .31.(2018浙江)已知λ∈R ,函数24,()43,x x f x x x x λλ-⎧=⎨-+<⎩≥,当2λ=时,不等式()0f x <的解集是_____.若函数()f x 恰有2个零点,则λ的取值范围是______.32.(2018浙江)我国古代数学著作《张邱建算经》中记载百鸡问题:“今有鸡翁一,值钱五;鸡母一,值钱三;鸡雏三,值钱一.凡百钱,买鸡百只,问鸡翁、母、雏各几何?”设鸡翁,鸡母,鸡雏个数分别为x ,y ,z ,则1001531003x y z x y z ++=⎧⎪⎨++=⎪⎩,当81z =时,x = ,y = .33.(2017江苏)设()f x 是定义在R 且周期为1的函数,在区间[0,1)上,2,(),x x Df x x x D⎧∈=⎨∉⎩其中集合1{|,}n D x x n n-==∈*N ,则方程()lg 0f x x -=的解的个数是 . 34.(2016年山东)已知函数2||,()24,x x m f x x mx m x m ⎧=⎨-+>⎩≤ 其中0m >,若存在实数b ,使得关于x 的方程()f x b =有三个不同的根,则m 的取值范围是_________. 35.(2015湖北)函数2π()4coscos()2sin |ln(1)|22x f x x x x =---+的零点个数为 . 36.(2015北京)设函数()()()2142 1.xa x f x x a x a x ⎧-<⎪=⎨--⎪⎩≥‚‚‚①若1a =,则()f x 的最小值为;②若()f x 恰有2个零点,则实数a 的取值范围是.37.(2015湖南)已知函数32,(),x x af x x x a ⎧=⎨>⎩≤,若存在实数b ,使函数()()g x f x b =-有两个零点,则a 的取值范围是 .38.(2014江苏)已知)(x f 是定义在R 上且周期为3的函数,当)3,0[∈x 时,|212|)(2+-=x x x f .若函数a x f y -=)(在区间]4,3[-上有10个零点(互不相同),则实数a 的取值范围是 .39.(2014福建)函数()⎩⎨⎧>+-≤-=0,ln 620,22x x x x x x f 的零点个数是_________.40.(2014天津)已知函数2()|3|f x x x =+,x ∈R .若方程()|1|0f x a x --=恰有4个互异的实数根,则实数a 的取值范围为__________.41.(2012福建)对于实数a 和b ,定义运算“*”:22,,,,a ab a b a b b ab a b ⎧-*=⎨->⎩… 设()f x =(21)(1)x x -*-,且关于x 的方程为()f x m =(m ∈R )恰有三个互不相等的实数根123,,x x x ,则123x x x 的取值范围是____________.42.(2011北京)已知函数32,2()(1),2x f x x x x ⎧≥⎪=⎨⎪-<⎩,若关于x 的方程()f x =k 有两个不同的实根,则数k 的取值范围是_______.43.(2011辽宁)已知函数a x e x f x +-=2)(有零点,则a 的取值范围是_____.专题二 函数概念与基本初等函数Ⅰ第五讲 函数与方程答案部分 2019年1.解析:因为(1)2()f x f x +=,所以()2(1)f x f x =-,当(0,1]x ∈时,1()(1),04f x x x ⎡⎤=-∈-⎢⎥⎣⎦, 当(1,2]x ∈时,1(0,1]x -∈,1()2(1)2(1)(2),02f x f x x x ⎡⎤=-=--∈-⎢⎥⎣⎦, 当(2,3]x ∈时,1(1,2]x -∈,[]()2(1)4(2)(3)1,0f x f x x x =-=--∈-, 当(2,3]x ∈时,由84(2)(3)9x x --=-解得73x =或83x =,若对任意(,]x m ∈-∞,都有8()9f x -…,则73m ….故选B .2.解析 作出函数()f x 与()g x 的图像如图所示,由图可知,函数()f x 与1()(12,34,56,78)2g x x x x x =-<<<<剟剟仅有2个实数根;要使关于x 的方程()()f x g x =有8个不同的实数根,则()f x =,(0,2]x ∈与()(2)g x k x =+,(0,1]x ∈的图象有2个不同交点, 由(1,0)到直线20kx y k -+=的距离为11=,解得0)k k =>,因为两点(2,0)-,(1,1)连线的斜率13k =,所以13k <…,即k的取值范围为1[3.3.解析:当0x <时,()(1)y f x ax b x ax b a x b =--=--=--,最多一个零点;当0x …时,32321111()(1)(1)3232y f x ax b x a x ax ax b x a x b =--=-++--=-+-, 2(1)y x a x '=-+,当10a +…,即1a -…时,0y '>,()y f x ax b =--在上递增,()y f x ax b=--最多一个零点不合题意;当10a +>,即1a >-时,令0y '>得(1,)x a ∈++∞,函数递增,令0y '<得(0,1)x a ∈+,函数递减;函数最多有2个零点;根据题意函数()y f x ax b =--恰有3个零点函数()y f x ax b =--在(,0)-∞上有一个零点,在[0,)+∞上有2个零点, 如下图:所以01b a <-且3211(1)(1)(1)032b a a a b ->⎧⎪⎨+-++-<⎪⎩, 解得0b <,10a ->,31(1)6b a >-+. 故选C .2010-2018年1.C 【解析】函数()()=++g x f x x a 存在 2个零点,即关于x 的方程()=--f x x a 有2个不同的实根,即函数()f x 的图象与直线=--y x a 有2个交点,作出直线=--y x a 与函数()f x 的图象,如图所示,由图可知,1-≤a ,解得1≥a ,故选C . 2.C 【解析】令()0f x =,则方程112()2x x a ee x x --++=-+有唯一解,设2()2h x x x =-+,11()x x g x e e --+=+,则()h x 与()g x 有唯一交点,又11111()2x x x x g x ee e e--+--=+=+≥,当且仅当1x =时取得最小值2.而2()(1)11h x x =--+≤,此时1x =时取得最大值1,()()ag x h x =有唯一的交点,则12a =.选C . 3.B 【解析】当01m <≤时,11m≥,函数2()(1)y f x mx ==-,在[0,1]上单调递减,函数()y g x m ==,在[0,1]上单调递增,因为(0)1f =,(0)g m =,2(1)(1)f m =-,(1)1g m =+,所以(0)(0)f g >,(1)(1)f g <,此时()f x 与()g x 在[0,1]x ∈有一个交点;当1m >时,101m<<,函数2()(1)y f x mx ==-,在 1[0,]m 上单调递减,在1[,1]m 上单调递增,此时(0)(0)f g <,在1[0,]m无交点, 要使两个函数的图象有一个交点,需(1)(1)f g ≥,即2(1)1m m -+≥,解得3m ≥. 选B .4.C 【解析】当0x <时,()f x 单调递减,必须满足4302a --…,故304a <…,此时函数()f x 在[0,)+∞上单调递减,若()f x 在R 上单调递减,还需31a …,即13a …,所以1334a 剟.当0x …时,函数|()|y f x =的图象和直线2y x =-只有一个公共点,即当0x …时,方程|()|2f x x =-只有一个实数解.因此,只需当0x <时,方程|()|2f x x =-只有一个实数解,根据已知条件可得,当0x <时,方程2(43)x a x +-+32a x =-,即22(21)320x a x a +-+-=在(,0)-∞上恰有唯一的实数解.判别式24(21)4(32)4(1)(43)a a a a ∆=---=--,当34a =时,0∆=,此时12x =-满足题意;令2()2(21)32h x x a x a =+-+-,由题意得(0)0h <,即320a -<,即23a <时,方程22(21)320x a x a +-+-=有一个正根、一个负根,满足要求;当(0)0h =,即23a =时,方程22(21)320x a x a +-+-=有一个为0、一个根为23-,满足要求;当(0)0h >,即320a ->,即2334a <<时对称轴(21)0a --<,此时方程22(21)320x a x a +-+-=有两个负根,不满足要求;综上实数a 的取值范围是123[,]{}334. 5.A 【解析】cos y x =是偶函数且有无数多个零点,sin y x =为奇函数,ln y x =既不是奇函数又不是偶函数,21y x =+是偶函数但没有零点.故选A .6.D 【解析】由韦达定理得a b p +=,a b q ⋅=,则0,0a b >>,当,,2a b -适当排序后成等比数列时,2-必为等比中项,故4a b q ⋅==,4b a=.当适当排序后成等差数列时,2-必不是等差中项,当a 是等差中项时,422a a=-,解得1a =,4b =; 当4a是等差中项时,82a a =-,解得4a =,1b =,综上所述,5a b p +==,所以p q +9=,选D .7.D 【解析】由()()22,2,2,2,x x f x x x -≤⎧⎪=⎨->⎪⎩得222,0(2),0x x f x x x --≥⎧⎪-=⎨<⎪⎩, 所以222,0()(2)42,0222(2),2x x x y f x f x x x x x x x ⎧-+<⎪=+-=---≤≤⎨⎪--+->⎩, 即222,0()(2)2,0258,2x x x y f x f x x x x x ⎧++<⎪=+-=≤≤⎨⎪-+>⎩, ()()()(2)y f x g x f x f x b =-=+--,所以()()y f x g x =-恰有4个零点等价于方程()(2)0f x f x b +--=有4个不同的解,即函数y b =与函数()(2)y f x f x =+-的图象的4个公共点,由图象可知724b <<. x8.A 【解析】由A 知0a b c -+=;由B 知()2f x ax b '=+,20a b +=;由C 知()2f x ax b '=+,令()0f x '=可得2b x a =-,则()32bf a-=,则2434ac b a -=; 由D 知428a b c ++=,假设A 选项错误,则2020434428a b c a b ac b a a b c -+≠⎧⎪+=⎪⎪⎨-=⎪⎪++=⎪⎩,得5108a b c =⎧⎪=-⎨⎪=⎩,满足题意,故A 结论错误,同理易知当B 或C 或D 选项错误时不符合题意,故选A . 9.B 【解析】如图所示,方程()()f x g x =有两个不相等的实根等价于两个函数的图象有两个不同的交点,结合图象可知,当直线y kx =的斜率大于坐标原点与点(2,1)的连续的斜率,且小于直线1y x =-的斜率时符合题意,故选112k <<.10.C 【解析】∵2(1)6log 160f =-=>,2(2)3log 220f =-=>,231(4)log 4022f =-=-<,∴()f x 零点的区间是()2,4. 11.A 【解析】()()g x f x mx m =--在(1,1]-内有且仅有两个不同的零点就是函数()y f x =的图象与函数(1)y m x =+的图象有两个交点,在同一直角坐标系内作出函数13,(1,0]()1,(0,1]x f x x x x ⎧-∈-⎪=+⎨⎪∈⎩,和函数(1)y m x =+的图象,如图,当直线(1)y m x =+与13,(1,0]1y x x =-∈-+和,(0,1]y x x =∈都相交时 102m <≤;当直线(1)y m x =+与13,(1,0]1y x x =-∈-+有两个交点时,由(1)131y m x y x =+⎧⎪⎨=-⎪+⎩,消元得13(1)1m x x -=++,即2(1)3(1)10m x x +++-=, 化简得2(23)20mx m x m ++++=,当940m ∆=+=,即94m =-时直线 (1)y m x =+与13,(1,0]1y x x =-∈-+相切,当直线(1)y m x =+过点(0,2)- 时,2m =-,所以9(,2]4m ∈--,综上实数m 的取值范围是91(,2](0,]42--⋃.12.D 【解析】当0x ≥时,函数()g x 的零点即方程()3f x x =-的根,由233x x x -=-,解得1x =或3;当0x <时,由()f x 是奇函数得2()()3()f x f x x x -=-=--,即()f x =23x x --,由()3f x x =-得2x =--. 13.A 【解析】2'()32f x x ax b =++,12,x x 是方程2320x ax b ++=的两根,由23(())2()0f x af x b ++=,则又两个()f x 使得等式成立,11()x f x =,211()x x f x >=,其函数图象如下:x21)=x 1如图则有3个交点,故选A.14.A 【解析】由a b c <<,可得()()()0f a a b a c =-->,()()()0f b b c b a =--<,()()()0f c c a c b =-->.显然()()0f a f b ⋅<,()()0f b f c ⋅<,所以该函数在(,)a b 和(,)b c 上均有零点,故选A .15.B 【解析】二次函数()245g x x x =-+的图像开口向上,在x 轴上方,对称轴为2x =,(2)1g =; (2)2ln 2ln 41f ==>.所以(2)(2)g f <,从图像上可知交点个数为2.16.B 【解析】令()0f x =,可得0.51log 2x x =,由图象法可知()f x 有两个零点. 17.B 【解析】因为()f x 在[0,)+∞内单调递增,又1(0)10,(1)02f f =-<=>,所以()f x 在[0,)+∞内存在唯一的零点.18.C 【解析】0)(=x f ,则0=x 或0cos 2=x ,Z k k x ∈+=,22ππ,又[]4,0∈x ,4,3,2,1,0=k 所以共有6个解.选C .19.B 【解析】由题意()()f x f x -=知,所以函数()f x 为偶函数,所以()(2)(2)f x f x f x =-=-,所以函数()f x 为周期为2的周期函数,且(0)0f =,(1)1f =,而()|cos()|g x x x π=为偶函数,且113(0)()()()0222g g g g ==-==,在同一坐标系下作出两函数在13[,]22-上的图像,发现在13[,]22-内图像共有6个公共点,则函数()()()h x g x f x =-在13[,]22-上的零点个数为6,故选B .20.B 【解析】由题意知,若222()1x x x ---≤,即312x -≤≤时,2()2f x x =-;当222()1x x x --->,即1x <-或32x >时,2()f x x x =-,要使函数()y f x c =-的图像与x 轴恰有两个公共点,只须方程()0f x c -=有两个不相等的实数根即可,即函数()y f x =的图像与直线y c =有两个不同的交点即可,画出函数()y f x =的图像与直线y c =,不难得出答案B .21.C 【解析】由一元二次方程有两个不相等的实数根,可得判别式0∆>,即240m ->,解得2m <-或2m >,故选C . 22.D 【解析】图像法求解.11y x =-的对称中心是(1,0)也是2sin (24)y x x π=-≤≤的中心,24x -≤≤他们的图像在1x =的左侧有4个交点,则1x =右侧必有4个交点.不妨把他们的横坐标由小到大设为1,2345678,,,,,,x x x x x x x x , 则182736452x x x x x x x x +=+=+=+=,所以选D23.B 【解析】因为当02x ≤<时, 3()f x x x =-,又因为()f x 是R 上最小正周期为2的周期函数,且(0)0f =,所以(6)(4)(2)(0)0f f f f ====,又因为(1)0f =,所以(3)0f =,(5)0f =,故函数()y f x =的图象在区间[0,6]上与x 轴的交点的个数为7个,选B .24.C 【解析】当0x ≤时,令2230x x +-=解得3x =-;当0x >时,令2ln 0x -+=解得100x =,所以已知函数有两个零点,选C . 25.B 【解析】因为1(1)230f --=-<,0(0)2010f =-=>,所以选B . 26.A 【解析】20x x m ++=有实数解等价于140m ∆=-≥,即14m ≤.当14m <时,14m ≤成立,但14m ≤时,14m <不一定成立,故选A .27.A 【解析】(0)4sin10f =>,(2)4sin 52f =-,由于52ππ<<,所以(2)0f <,故函数()f x 在[0,2]上存在零点;由于(1)4sin(1)10f -=-+<,故函数()f x 在[1,0]-上存在零点,在[0,2]上也存在零点,令52[2,4]4x π-=∈, 则52552()4sin 0424f πππ--=->,而(2)0f <, 所以函数在[2,4]上存在零点,故选A . 28.3【解析】由题意知,cos(3)06x π+=,所以362x k πππ+=+,k ∈Z ,所以93k x ππ=+,k ∈Z ,当0k =时,9x π=;当1k =时,49x π=;当2k =时,79x π=,均满足题意,所以函数()f x 在[0,]π的零点个数为3.29.(48),【解析】当0x ≤时,由22x ax a ax ++=,得2a x ax =--;当0x >时,由222x ax a ax -+-=,得22a x ax =-+.令22,0(),0x ax x g x x ax x ⎧--=⎨-+>⎩≤,作出直线y a =,2y a =,函数()g x 的图象如图所示,()g x 的最大值为222424a a a -+=,由图象可知,若()f x ax =恰有2个互异的实数解,则224a a a <<,得48a <<. 30.3-【解析】2()622(3)f x x ax x x a '=-=-(a ∈R ),当0a ≤时()0f x '>在(0,)+∞上恒成立,则()f x 在(0,)+∞上单调递增,又(0)1f =,所以此时()f x 在(0,)+∞内无零点,不满足题意.当0a >时,由()0f x '>得3a x >,由()0f x '<得03a x <<,则()f x 在(0,)3a上单调递减,在(,)3a +∞上单调递增,又()f x 在(0,)+∞内有且只有一个零点,所以3()10327a a f =-+=,得3a =,所以32()231f x x x =-+, 则()6(1)f x x x '=-,当(1,0)x ∈-时,()0f x '>,()f x 单调递增,当(0,1)x ∈时,()0f x '<,()f x 单调递减,则max ()(0)1f x f ==,(1)4f -=-,(1)0f =,则min ()4f x =-,所以()f x 在[1,1]-上的最大值与最小值的和为3-.31.(1,4);(1,3](4,)+∞【解析】若2λ=,则当2x ≥时,令40x -<,得24x <≤;当2x <时,令2430x x -+<,得12x <<.综上可知14x <<,所以不等式()0f x <的解集为(1,4).令40x -=,解得4x =;令2430x x -+=,解得1x =或3x =.因为函数()f x 恰有2个零点,结合函数的图象(图略)可知13λ<≤或4λ>.32.8;11【解析】因为81z =,所以195373x y x y +=⎧⎨+=⎩,解得811x y =⎧⎨=⎩.33.8【解析】由于()[0,1)f x ∈,则需考虑110x ≤<的情况,在此范围内,x ∈Q 且x D ∈时,设*,,,2qx p q p p=∈≥N ,且,p q 互质, 若lg x ∈Q ,则由lg (0,1)x ∈,可设*lg ,,,2nx m n m m=∈≥N ,且,m n 互质, 因此10n mq p=,则10()nm q p =,此时左边为整数,右边为非整数,矛盾, 因此lg x ∉Q ,因此lg x 不可能与每个周期内x D ∈对应的部分相等, 只需考虑lg x 与每个周期x D ∉的部分的交点,画出函数图象,图中交点除外(1,0)其他交点横坐标均为无理数,属于每个周期x D ∉的部分,且1x =处11(lg )1ln10ln10x x '==<,则在1x =附近仅有一个交点,因此方程()lg 0f x x -=的解的个数为8.34.(3,)+∞【解析】由题意,当x m >时,222()24()4f x x mx m x m m m =-+=-+-,其顶点为2(,4)m m m -;当x m …时,函数()f x 的图象与直线x m =的交点为(,)Q m m .①当24m m m m>⎧⎨-⎩…,即03m <…时,函数()f x 的图象如图1所示,此时直线y b =与函数()f x 的图象有一个或两个不同的交点,不符合题意;②当240m m m m ⎧-<⎨>⎩,即3m >时,函数()f x 的图象如图2所示,则存在实数b 满足24m m b m -<…,使得直线y b =与函数()f x 的图象有三个不同的交点,符合题意.综上,m 的取值范围为(3,)+∞.图1 图235.2【解析】因为2()4coscos()2sin |ln(1)|22x f x x x x π=---+ 2(1cos )sin 2sin |ln(1)|x x x x =+⋅--+=sin 2|ln(1)|x x -+36.1- 1[,1)2[2,)+∞【解析】①若1a =,则21()4()(2) 1.x a x f x x a x a x ⎧-<=⎨--⎩≥‚‚‚,作出函数()f x 的图象如图所示,由图可知()f x 的最小值为1-.②当1a ≥时,要使()f x 恰好有3个零点,需满足120a -≤,即2a ≥.所以2a ≥;当1a <时,要使()f x 恰好有2个零点,需满足11220a a a <⎧⎨->⎩≤,解得112a <≤.37.),1()0,(+∞-∞ 【解析】分析题意可知,问题等价于方程)(3a xb x ≤=与方程)(2a x b x >=的根的个数和为2,若两个方程各有一个根:则可知关于b 的不等式组⎪⎪⎩⎪⎪⎨⎧≤->≤a b a b a b 31有解,从而1>a ;若方程)(3a x b x ≤=无解,方程)(2a xb x >=有2个根:则可知关于b 的不等式组⎪⎩⎪⎨⎧>->ab ab 31有解,从而0<a ;综上,实数a 的取值范围是),1()0,(+∞-∞ .38.1(0,)2【解析】函数()y f x a =-在区间[3,4]-上有互不相同的10个零点,即函数()y fx =与y a =的图象有10个不同的交点,在坐标系中作出函数()y f x =在一个周期内的图象,可知102a <<.39.2【解析】当0x ≤时,令220x -=,解得x =当0x >时,()26ln f x x x =-+,∵1()20f x x'=+>,∴()f x 在(0,)+∞上单调递增,因为(1)40f =-<,(3)ln30f =>,所以函数()26ln f x x x =-+在(0,)+∞有且只有一个零点,所以()f x 的零点个数为2.40.01a <<或9a >【解析】法一 显然0a >.(ⅰ)当(1)y a x =--与23y x x =--相切时,1a =,此时()|1|0f x a x --=恰有3个互异的实数根. (ⅱ)当直线(1)y a x =-与函数23y x x =+相切时,9a =,此时()|1|0f x a x --=恰有2个互异的实数根.结合图象可知01a <<或9a >.法二:显然1a ¹,所以231x xa x +=-.令1t x =-,则45a t t =++.因为4(,4]t t +∈-∞-[4,)+∞,所以45t t++Î(,1][9,)-∞+∞.结合图象可得01a <<或9a >.41.116-()【解析】由定义运算“*”可知 22(21)(21)(1),211()(1)(21)(1),211x x x x x f x x x x x x ⎧------=⎨----->-⎩…=222,0,0x x x x x x ⎧-⎨-+>⎩…,如图可知满足题意的m 的范围是104m <<,不妨设123x x x <<,当0x >时,2x x -+=m ,即20x x m -+=∴231x x +=;∴2232310()24x x x x +<<= 当0x …时,由212,(0)4x x x -=<,得14x -= 10x <<1230x x x << 42.(0,1)【解析】当2x <时,2()3(1)0f x x '=-≥,说明函数在(,2)-∞上单调递增,函数的值域是(,1)-∞,又函数在[2,)+∞上单调递减,函数的值域是(0,1],因此要使方程()f x k =有两个不同实根,则01k <<.43.(,2ln 22]-∞-【解析】由原函数有零点,可将问题转化为方程20xe x a -+=有解问题,即方程2x a x e =-有解.令函数()2x g x x e =-,则()2x g x e '=-,令()0g x '=,得ln 2x =,所以()g x 在(,ln 2)-∞上是增函数,在(ln 2,)+∞上是减函数,所以()g x 的最大值为(ln 2)2ln 22g =-,所以(,2ln 22]a ∈-∞-.。
十年真题(2010-2019)高考数学(文)分类汇编专题03函数概念与基本初等函数 (新课标Ⅰ卷)(原卷版)

专题03函数概念与基本初等函数历年考题细目表历年高考真题汇编1.【2019年新课标1文科03】已知a=log20.2,b=20.2,c=0.20.3,则()A.a<b<c B.a<c<b C.c<a<b D.b<c<a2.【2018年新课标1文科12】设函数f(),则满足f(+1)<f(2)的的取值范围是()A.(﹣∞,﹣1] B.(0,+∞)C.(﹣1,0)D.(﹣∞,0)3.【2016年新课标1文科08】若a>b>0,0<c<1,则()A.log a c<log b c B.log c a<log c bC.a c<b c D.c a>c b4.【2015年新课标1文科10】已知函数f(),且f(a)=﹣3,则f(6﹣a)=()A.B.C.D.5.【2015年新课标1文科12】设函数y=f()的图象与y=2+a的图象关于y=﹣对称,且f(﹣2)+f(﹣4)=1,则a=()A.﹣1 B.1 C.2 D.46.【2014年新课标1文科05】设函数f(),g()的定义域都为R,且f()是奇函数,g()是偶函数,则下列结论正确的是()A.f()•g()是偶函数B.|f()|•g()是奇函数C.f()•|g()|是奇函数D.|f()•g()|是奇函数7.【2013年新课标1文科12】已知函数f(),若|f()|≥a,则a的取值范围是()A.(﹣∞,0] B.(﹣∞,1] C.[﹣2,1] D.[﹣2,0]8.【2012年新课标1文科11】当0<时,4<log a,则a的取值范围是()A.(0,)B.(,1)C.(1,)D.(,2)9.【2011年新课标1文科10】在下列区间中,函数f()=e+4﹣3的零点所在的区间为()A.(,)B.(,0)C.(0,)D.(,)10.【2011年新课标1文科12】已知函数y=f()的周期为2,当∈[﹣1,1]时f()=2,那么函数y=f()的图象与函数y=|lg|的图象的交点共有()A.10个B.9个C.8个D.1个11.【2011年新课标1文科03】下列函数中,既是偶函数又在(0,+∞)上单调递增的函数是()A.y=23B.y=||+1 C.y=﹣2+4 D.y=2﹣||12.【2010年新课标1文科06】如图,质点P在半径为2的圆周上逆时针运动,其初始位置为P0(,),角速度为1,那么点P到轴距离d关于时间t的函数图象大致为()A.B.C.D.13.【2010年新课标1文科09】设偶函数f ()满足f ()=2﹣4(≥0),则{|f (﹣2)>0}=( ) A .{|<﹣2或>4}B .{|<0或>4}C .{|<0或>6}D .{|<﹣2或>2}14.【2010年新课标1文科12】已知函数,若a ,b ,c 互不相等,且f (a )=f(b )=f (c ),则abc 的取值范围是( ) A .(1,10)B .(5,6)C .(10,12)D .(20,24)15.【2018年新课标1文科13】已知函数f ()=log 2(2+a ),若f (3)=1,则a = . 16.【2014年新课标1文科15】设函数f (),则使得f ()≤2成立的的取值范围是 .17.【2012年新课标1文科16】设函数f ()的最大值为M ,最小值为m ,则M +m = .考题分析与复习建议本专题考查的知识点为:函数,函数的单调性与最值,函数的奇偶性与周期性,幂函数与二次函数,指数函数,对数函数,分段函数,函数的图象,函数与方程等.历年考题主要以选择填空题型出现,重点考查的知识点为:函数的单调性与最值,函数的奇偶性与周期性,指数函数,对数函数,分段函数,函数的图象,函数与方程等.预测明年本考点题目会比较稳定,备考方向以知识点函数的单调性与最值,函数的奇偶性与周期性,指数函数,对数函数,分段函数,函数的图象,函数与方程等为重点较佳.最新高考模拟试题1.已知()21f x ax bx =-+是定义域为[a ,a +1]的偶函数,则2b a a -=( )A .0B .34C 2D .42.已知函数()y f x =的定义域为R ,)1(+x f 为偶函数,且对121x x ∀<≤,满足()()01212<--x x x f x f .若(3)1f =,则不等式()2log 1f x <的解集为( )A .1,82⎛⎫ ⎪⎝⎭B .)8,1(C .10,(8,)2⎛⎫⋃+∞ ⎪⎝⎭D .(,1)(8,)-∞⋃+∞3.函数22()log (34)f x x x =--的单调减区间为( )A .(,1)-∞-B .3(,)2-∞-C .3(,)2+∞D .(4,)+∞4.已如定义在R 上的函数()f x 的周期为6.且()[]()()11,3,02,0,3xx x f x f x x ⎧⎛⎫-+∈-⎪ ⎪=⎨⎝⎭⎪-∈⎩,则()()78f f -+=( ) A .11B .134C .7D .1145.下列函数中,既是偶函数又在(0,+∞)单调递增的函数是( ) A .3y x =B .y x 1=-C .y x 1=-D .x y 2=6.设函数2,,()=,.x e x a f x x x a x a ⎧≤⎨-+>⎩则下列结论中正确的是( )A .对任意实数a ,函数()f x 的最小值为14a -B .对任意实数a ,函数()f x 的最小值都不是14a - C .当且仅当12a ≤时,函数()f x 的最小值为14a -D .当且仅当14a ≤时,函数()f x 的最小值为14a -7.已知(2)f x +是偶函数,()f x 在(]2-∞,上单调递减,(0)0f =,则(23)0f x ->的解集是( ) A .2()(2)3-∞+∞,,U B .2(2)3, C .22()33-,D .22()()33-∞-+∞,,U 8.设函数1212,2()3log (2),2x x f x x x -⎧+≥=⎨+-<⎩,则((0))f f =( )A .5B .8C .9D .179.已知函数()ln ln()f x x a x =+-的图象关于直线1x =对称,则函数()f x 的值域为( ) A .(0,2)B .[0,)+∞C .(2]-∞D .(,0]-∞10.已知函数()f x 是R 上的偶函数,且对任意的x R ∈有(3)()f x f x +=-,当(3,0)x ∈- 时,()25f x x =-,则(8)f =( )A .11B .5C .-9D .-111.已知函数122,0()2,()()2,0x acosx x f x g x a R x a x -+≥⎧==∈⎨+<⎩,若对任意11)[x ∈+∞,,总存在2x R ∈,使12()()f x g x =,则实数a 的取值范围是( )A .1,2⎛⎫-∞ ⎪⎝⎭B .2,3⎛⎫+∞⎪⎝⎭ C .1,[1,2]2⎛⎫-∞ ⎪⎝⎭U D .371,,224⎛⎤⎡⎤ ⎥⎢⎥⎝⎦⎣⎦U12.已知函数()22(1),0log ,0x x f x x x ⎧+⎪=⎨>⎪⎩…,若方程f ()=a 有四个不同的解1,2,3,4,且1<2<3<4,则()3122341x x x x x ++的取值范围为( ) A .(﹣1,+∞)B .(﹣1,1]C .(﹣∞,1)D .[﹣1,1)13.已知定义在实数集R 上的函数()f x 的图象经过点(1,2)--,且满足()()f x f x -=,当0≤<a b 时不等式()()0f b f a b a->-恒成立,则不等式(1)20f x -+<的解集为( )A .(0,2)B .(2,0)-C .(,0)(2,)-∞+∞UD .(,2)(0,)-∞-+∞U14.已知()lg(10)lg(10)f x x x =++-,则()f x 是( ) A .偶函数,且在(0,10)是增函数 B .奇函数,且在(0,10)是增函数 C .偶函数,且在(0,10)是减函数D .奇函数,且在(0,10)是减函数15.已知()f x 与函数sin y a x =-关于点(12,0)对称,()g x 与函数xy e =关于直线y x =对称,若对任意(]10,1x ∈,存在2[,2]2x π∈使112()()g x x f x -≤成立,则实数a 的取值范围是( )A .1(,]sin1-∞ B .1[,)sin1+∞ C .1(,]cos1-∞ D .1[,)cos1+∞ 16.函数()(),f x g x 的定义域都为R ,且()f x 是奇函数,()g x 是偶函数,设()()()11h x f x g x =+++,则下列结论中正确的是( ) A .()h x 的图象关于(1,0)对称 B .()h x 的图象关于(1,0)-对称 C .()h x 的图象关于1x =对称D .()h x 的图象关于1x =-对称17.偶函数()f x 在[]0,2上递增,且()1a f =,121log 4b f ⎛⎫= ⎪⎝⎭,2log c f ⎛= ⎝⎭大小为( ) A .c a b >> B .a c b >> C .b a c >>D .a b c >>18.设函数2,1(),12x x f x x x -⎧≤⎪=⎨>⎪⎩,则满足()()2f f a f a =⎡⎤⎣⎦的a 的取值范围是( )A .(],0-∞B .[]0,2C .[)2,+∞D .(][),02,-∞⋃+∞19.设函数2()x x f x e e x -=++,则使()()21f x f x >+成立的x 的取值范围是( ) A .(,1)-∞ B .(1,)+∞C .1,13⎛⎫- ⎪⎝⎭D .1,(1,)3⎛⎫-∞-⋃+∞ ⎪⎝⎭20.已知函数()f x 的定义域为(0,)+∞,对于定义域内任意x ,[]2()log 3f f x x -=,则函数()()7g x f x x =+-的零点所在的区间为( )A .(1,2)B .(2,3)C .(3,4)D .(4,5)21.已知函数()f x 是奇函数,当0x >时,()lg f x x =,则1100f f ⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭的值为 ______22.设函数ln(2),1()24,1x x f x x x +≥-⎧=⎨--<-⎩,若()1f a =-,则a =_______.23.函数()32351f x x x x =-+-图象的对称中心为_____24.已知函数()()2log ,011,1x x f x f x x <≤⎧=⎨->⎩,则20192f ⎛⎫= ⎪⎝⎭__________.25.已知f()是定义在R 上的偶函数,且(4)(2)f x f x +=-.若当[3,0]x ∈- 时,()6x f x -=,则()919f =__________26.已知直线l 与曲线31y x x =-+有三个不同的交点()11,A x y ,()22,B x y ,()33,C x y ,且||||AB AC =,则()31iii x y =+=∑__________.27.已知实数a ,b R ∆(0,2),且满足2244242ab a b b --=--,则a +b 的值为_______. 28.设函数2,,()1,.x e x x a f x ax x a ⎧-<=⎨-≥⎩ 若1a =,则()f x 的最小值为__________; 若()f x 有最小值,则实数a 的取值范围是_______.29.在平面直角坐标系xoy 中,对于点(),A a b ,若函数()y f x =满足:[]1,1x a a ∀∈-+,都有[]1,1y b b ∈-+,就称这个函数是点A 的“限定函数”.以下函数:①12y x =,②221y x =+,③sin y x =,④()ln 2y x =+,其中是原点O 的“限定函数”的序号是______.已知点(),A a b 在函数2xy =的图象上,若函数2xy =是点A 的“限定函数”,则a 的取值范围是______.30.函数()211log 1axf x x x+=+-为奇函数,则实数a =__________.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1•文 T12)设函数
f(x)=+2-
,x
≤
0, 则满足
f(x+1)<f(2x)的
x
的取值范围是(
)
1,x > 0,
A.(-∞,-1]
B.(0,+∞)
C.(-1,0)
D.(-∞,0)
15.(2018•全国 2•理 T11 文 T12)已知 f(x)是定义域为(-∞,+∞)的奇函数,满足 f(1-x)=f(1+x),若 f(1)=2,
3
42
22.(2018•全国 3•理 T7 文 T9)函数 y=-x +x +2 的图像大致为( )
|x|
23.(2018•浙江•T5)函数 y=2 sin 2x 的图象可能是( )
24.(2018•全国 1•理 T9)已知函数 f(x)=+lenx,,xx≤>00,,g(x)=f(x)+x+a,若 g(x)存在 2 个零点,则 a 的取值范围
则 f(1)+f(2)+f(3)+…+f(50)= ( )
A.-50 B.0 C.2 D.50
16.(2018•全国 3•文 T7)下列函数中,其图像与函数 y=ln x 的图像关于直线 x=1 对称的是( )
A.y=ln(1-x) B.y=ln(2-x)
C.y=ln(1+x) D.y=ln(2+x)
!"# $
10.(2019•全国 1•T5)函数 f(x)=%&! $ 在[-π,π]的图像大致为( )
11.(2019•全国 3•理 T7)函数 y= '$ -'在[-6,6]的图像大致为( )
12.(2019•浙江•T6)在同一直角坐标系中,函数 y=(',y=loga x+ (a>0,且 a≠1)的图象可能是 ( )
A.a<c<b B.a<b<c
C.b<c<a D.c<a<b
0.2
9.(2019•天津•文 T5)已知 a=log27,b=log38,c=0.3 ,则 a,b,c 的大小关系为( )
A.c<b<a B;c<a D.c<a<b
命题点比较大小,指、对数函数的单调性.
解题思路利用指、对数函数的单调性比较.
A.a>b>c B.b>a>c
C.c>b>a D.c>a>b
*
20.(2018•天津•文 T5)已知 a=log3 ,b=
,c=log ,则 a,b,c 的大小关系为(
)
A.a>b>c B.b>a>c C.c>b>a D.c>a>b
/'-/-'
21.(2018•全国 2•T3)函数 f(x)= 的图像大致为( )
13.(2019•全国 2•理 T12)设函数 f(x)的定义域为 R,满足 f(x+1)=2f(x),且当 x∈(0,1]时,f(x)=x(x-1).若
2
)
对任意 x∈(-∞,m],都有 f(x)≥- ,则 m 的取值范围是( )
A. -∞,
*
B. -∞,
C. -∞,
)
D. -∞,
14.(2018•全国
③f(x)在[-π,π]有 4 个零点 ④f(x)的最大值为 2
其中所有正确结论的编号是( )
A.①②④ B.②④
C.①④
D.①③
6.(2019•全国 3•理 T11 文 T12)设 f(x)是定义域为 R 的偶函数,且在(0,+∞)单调递减,则( )
A.f log >f(2- )>f(2- ) B.f log >f(2- )>f(2- )
2√x,0 ≤ x ≤ 1,
2.(2019•天津•文 T8)已知函数 f(x)= ,x > 1.
若关于 x 的方程 f(x)=- x+a(a∈R)恰有两个互异的实
数解,则 a 的取值范围为( )
A. ,
B. ,
C. , ∪{1} D. , ∪{1} x,x < 0,
3.(2019•浙江•T9)设 a,b∈R,函数 f(x)= x - (a + 1)x + ax,x ≥ 0.若函数 y=f(x)-ax-b 恰有 3 个零点,
十年(2010—2019)数学高考真题分类汇编
函数
x -2ax + 2a,x ≤ 1,
1.(2019•天津•理 T8)已知 a∈R,设函数 f(x)= x-alnx,x > 1.
若关于 x 的不等式 f(x)≥0 在 R 上恒成立,
则 a 的取值范围为( )
A.[0,1] B.[0,2] C.[0,e] D.[1,e]
则( )
A.a<-1,b<0 B.a<-1,b>0 C.a>-1,b<0 D.a>-1,b>0 4.(2019•北京•文 T3)下列函数中,在区间(0,+∞)上单调递增的是( )
A.y=x C.y=log x
-x
B.y=2
D.y=
5.(2019•全国 1•理 T11)关于函数 f(x)=sin|x|+|sin x|有下述四个结论: ①f(x)是偶函数 ②f(x)在区间 ,π 内单调递增
1
C.f(2- )>f(2- )>f log D.f(2- )>f(2- )>f log
0.2
0.3
7.(2019•全国 1•理 T3 文 T3)已知 a=log20.2,b=2 ,c=0.2 ,则( )
A.a<b<c B.a<c<b
C.c<a<b D.b<c<a
0.2
8.(2019•天津•理 T6)已知 a=log52,b=log0.50.2,c=0.5 ,则 a,b,c 的大小关系为( )
17.(2018•上海•T16)设 D 是函数 1 的有限实数集,f(x)是定义在 D 上的函数.若 f(x)的图像绕原点逆时针旋
,
转-后与原图像重合,则在以下各项中,f(1)的可能取值只能是( )
A.√3
√
√
B.
C.
D.0
18.(2018•全国 3•理 T12)设 a=log0.20.3,b=log20.3,则( ) A.a+b<ab<0 B.ab<a+b<0 C.a+b<0<ab D.ab<0<a+b 19.(2018•天津•理 T5)已知 a=log2e,b=ln 2,c= log ,则 a,b,c 的大小关系为( )
是( )
A.[-1,0)
B.[0,+∞)
C.[-1,+∞)
D.[1,+∞)
25.(2017•山东•理 T1)设函数 y=14-x 的定义域为 A,函数 y=ln(1-x)的定义域为 B,则 A∩B=( )
A.(1,2) B.(1,2] C.(-2,1) D.[-2,1)
√x,0 < 3 < 1, 26.(2017•山东•文 T9)设 f(x)= 2(x-1),x ≥ 1.若 f(a)=f(a+1),则 f ( =( )