八下第5讲:分式方程
2022年人教版八年级下册数学培优训练——《分式》全章复习与巩固(基础)知识讲解

《分式》全章复习与巩固(基础)【学习目标】1. 理解分式的概念,能求出使分式有意义、分式无意义、分式值为0的条件.2.了解分式的基本性质,掌握分式的约分和通分法则.3.掌握分式的四则运算.4.结合分析和解决实际问题,讨论可以化为一元一次方程的分式方程,掌握这种方程的解法,体会解方程中的化归思想.【知识网络】【要点梳理】要点一、分式的有关概念及性质1.分式一般地,如果A、B表示两个整式,并且B中含有字母,那么式子AB叫做分式.其中A叫做分子,B叫做分母.要点诠释:分式中的分母表示除数,由于除数不能为0,所以分式的分母不能为0,即当B≠0时,分式AB才有意义.2.分式的基本性质(M为不等于0的整式).3.最简分式分子与分母没有公因式的分式叫做最简分式.如果分子分母有公因式,要进行约分化简. 要点二、分式的运算1.约分利用分式的基本性质,把一个分式的分子和分母的公因式约去,不改变分式的值,这样的分式变形叫做分式的约分.2.通分利用分式的基本性质,使分子和分母同乘适当的整式,不改变分式的值,把异分母的分式化为同分母的分式,这样的分式变形叫做分式的通分.3.基本运算法则分式的运算法则与分数的运算法则类似,具体运算法则如下:(1)加减运算 a b a b c c c ±±= ;同分母的分式相加减,分母不变,把分子相加减. ;异分母的分式相加减,先通分,变为同分母的分式,再加减.(2)乘法运算 a c ac b d bd⋅=,其中a b c d 、、、是整式,0bd ≠. 两个分式相乘,把分子相乘的积作为积的分子,把分母相乘的积作为积的分母.(3)除法运算 a c a d ad b d b c bc÷=⋅=,其中a b c d 、、、是整式,0bcd ≠. 两个分式相除,把除式的分子和分母颠倒位置后,与被除式相乘.(4)乘方运算分式的乘方,把分子、分母分别乘方.4.分式的混合运算顺序先算乘方,再算乘除,最后加减,有括号先算括号里面的.要点三、分式方程1.分式方程的概念分母中含有未知数的方程叫做分式方程.2.分式方程的解法解分式方程的关键是去分母,即方程两边都乘以最简公分母将分式方程转化为整式方程.3.分式方程的增根问题增根的产生:分式方程本身隐含着分母不为0的条件,当把分式方程转化为整式方程后,方程中未知数允许取值的范围扩大了,如果转化后的整式方程的根恰好使原方程中分母的值为0,那么就会出现不适合原方程的根---增根.要点诠释:因为解分式方程可能出现增根,所以解分式方程必须验根.验根的方法是将所得的根带入到最简公分母中,看它是否为0,如果为0,即为增根,不为0,就是原方程的解.要点四、分式方程的应用列分式方程解应用题与列一元一次方程解应用题类似,但要稍复杂一些.解题时应抓住“找等量关系、恰当设未知数、确定主要等量关系、用含未知数的分式或整式表示未知量”等关键环节,从而正确列出方程,并进行求解.【典型例题】类型一、分式及其基本性质1、在ma y x xy x x x x 1,3,3,)1(,21,12+++π中,分式的个数是( ) A.2 B.3 C.4 D.5【答案】C ;【解析】()21131x x a x x x y m+++,,,是分式. 【总结升华】判断分式的依据是看分母中是否含有字母,如果含有字母则是分式,如果不含有字母则不是分式.2、当x 为何值时,分式293x x -+的值为0? 【思路点拨】先求出使分子为0的字母的值,再检验这个值是否使分母的值等于0,当它使分母的值不等于0时,这个值就是要求的字母的值.【答案与解析】解: 要使分式的值为0,必须满足分子等于0且分母不等于0.由题意,得290,30.x x ⎧-=⎨+≠⎩解得3x =. ∴ 当3x =时,分式293x x -+的值为0. 【总结升华】分式的值为0的条件是:分子为0,且分母不为0,即只有在分式有意义的前提下,才能考虑分式值的情况. 举一反三:【变式】(1)若分式的值等于零,则x =_______;(2)当x ________时,分式没有意义.【答案】(1)由24x -=0,得2x =±. 当x =2时x -2=0,所以x =-2;(2)当10x -=,即x =1时,分式没有意义. 类型二、分式运算3、计算:2222132(1)441x x x x x x x -++÷-⋅++-. 【答案与解析】解:222222132(1)(1)1(2)(1)(1)441(2)(1)1x x x x x x x x x x x x x x -+++-++÷-⋅=⋅⋅++-+-- 22(1)(2)(1)x x x +=-+-. 【总结升华】本题有两处易错:一是不按运算顺序运算,把2(1)x -和2321x x x ++-先约分;二是将(1)x -和(1)x -约分后的结果错认为是1.因此正确掌握运算顺序与符号法则是解题的关键.举一反三:【变式】(2020•滨州)化简:÷(﹣)【答案】解:原式=÷=• =﹣. 类型三、分式方程的解法4、(2020•呼伦贝尔)解方程:.【思路点拨】观察可得最简公分母是(x ﹣1)(x +1),方程两边乘最简公分母,可以把分式方程转化为整式方程求解.【答案与解析】解:方程的两边同乘(x ﹣1)(x +1),得3x +3﹣x ﹣3=0,解得x=0.检验:把x=0代入(x ﹣1)(x +1)=﹣1≠0.∴原方程的解为:x=0.【总结升华】本题考查了分式方程的解法,注:(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.(2)解分式方程一定注意要验根.举一反三:【变式】()1231244x x x -=---, 【答案】解: 方程两边同乘以()24x -,得()()12422332x x x =---=-∴ 检验:当32x =-时,最简公分母()240x -≠, ∴32x =-是原方程的解.类型四、分式方程的应用5、(2020•东莞二模)某市为治理污水,需要铺设一条全长为600米的污水排放管道,为了尽量减少施工对城市交通所造成的影响,实际施工时,每天的工效比原计划增加20%,结果提前5天完成这一任务,原计划每天铺设多少米管道?【思路点拨】先设原计划每天铺设x 米管道,则实际施工时,每天的铺设管道(1+20%)x 米,由题意可得等量关系:原计划的工作时间﹣实际的工作时间=5,然后列出方程可求出结果,最后检验并作答.【答案与解析】解:设原计划每天铺设x 米管道,由题意得: ﹣=5,解得:x=20,经检验:x=20是原方程的解.答:原计划每天铺设20米管道.【总结升华】本题主要考查分式方程的应用,解题的关键是熟练掌握列分式方程解应用题的一般步骤:设、列、解、验、答.必须严格按照这5步进行,规范解题步骤,另外还要注意完整性:如设和答叙述要完整,要写出单位等.举一反三:【变式】小明家、王老师家、学校在同一条路上,并且小明上学要路过王老师家,小明到王老师家的路程为3 km ,王老师家到学校的路程为0.5 km ,由于小明的父母战斗在抗震救灾第一线,为了使他能按时到校、王老师每天骑自行车接小明上学.已知王老师骑自行车的速度是他步行速度的3倍,每天比平时步行上班多用了20 min ,王老师步行的速度和骑自行车的速度各是多少?【答案】解:设王老师步行的速度为x km/h ,则他骑自行车的速度为3x km/h . 根据题意得:230.50.520360x x ⨯+=+. 解得:5x =.经检验5x =是原方程的根且符合题意.当5x =时,315x =.答:王老师步行的速度为5km/h ,他骑自行车的速度为15km/h .。
八年级数学下册《分式》教学反思

八年级数学下册《分式》教学反思八年级数学下册《分式》教学反思1《分式》一章检测结果出来了,学生成绩很不理想。
学生们很多不该错的题做错了。
是什么原因致使错误频出呢?我辗转反侧。
一是分式的运算错的较多。
分式加减法主要是当分子是多项式时,如果不把分子这个整体用括号括上,容易出现符号和结果的错误。
所以我们在教学分式加减法时,应教育学生分子部分不能省略括号。
其次,分式概念运算应按照先乘方、再乘除,最后进行加减运算的顺序进行计算,有括号先做括号里面的。
二是分式方程也是错误重灾区。
(一)是增根定义模糊,对此,我对增根的概念进行深入浅出的阐述,⑴增根是分式方程的去分母后化成的整式方程的根,但不是原方程的根;⑵增根能使最简公分母等于0;(二)是解分式方程的步骤不规范,大多数同学缺少“检验”这一重要步骤,不能从解整式方程的模式中跳出来;(三)是列分式方程错误百出。
针对上述问题,我从基础知识和题型入手,用类比的方法讲解,与列整式方程一样,先分析题意,准确找出应用题中数量问题的相等关系,恰当地设出未知数,列出方程;不同之处是,所列方程是分式方程,最后进行检验,既要检验是否为所列分式方程的解,又要检验是否符合题意。
《分式》一章在教学上应多用类比的方法,与分数进行类比教学,使学生明确分式与分数、分式与整式等方面的区别与联系,体会分式的模型思想,进一步发展符号感,一定能取到事半功倍之效。
八年级数学下册《分式》教学反思2通过分数与分式的比较,培养学生良好的类比联想的思维习惯和反思方法;通过分数与分式的类比,向学生渗透矛盾转化的辩证唯物主义观点,并培养学生严谨的科学态度。
本节课对分式经过引入,掌握,熟练,提高的过程,既学习了知识,又获得了知识,又获得了思维能力的提高。
但本节课的不足之处是,符号规律的讲解不充分,学生掌握的不够扎实,在合适的机会里需要强化练习。
八年级数学下册《分式》教学反思3上一周刚刚讲完分式的运算这部分知识,感受很深。
分式方程的解法与技巧、知识精讲

分式方程的解法与技巧【典型例题】1. 局部通分法(分组分解法):例1. 解方程:x x x x x x x x -----=-----34456778分析:该方程的特点是等号两边各是两个分式,相邻两个分式的分子与分子,分母与分母及每个分式的分子与分母都顺序相差1,象这类通常采取局部通分法。
解:方程两边分别通分并化简,得:145178()()()()x x x x --=--去分母得:()()()()x x x x --=--4578解之得:x =6 经检验:x =6是原分式方程的根。
点拨:此题如果用常规法,将出现四次项且比较繁,而采用局部通分法,就有明显的优越性。
但有的时候采用这种方法前需要考虑适当移项,组合后再进行局部通分。
变式:解方程32411423---=---x x x x 分析:要整个方程一起通分,计算量大又易出错。
观察方程中分母的特点可联想分组通分求解。
解:方程两边分别通分,相减得)3)(4(5)1)(2(5---=---x x xx x x当05≠-x 时,)3)(4()1)(2(--=--x x x x ,解得251=x 当05=-x 时,解得52=x 经检验,251=x 52=x 都是原方程的解 2.换元法:例2. 解方程:7643165469222x x x x x x ----+=--+分析:此方程中各分式的分母都是含未知数x 的二次三项式,且前两项完全相同,故可考虑用换元法求解。
令或或或k x x k x x k x x =--=-+=-+222646569 k x x =-26均可。
解:设,则原方程可化为:k x x =-+265793144k k k --=-+ 去分母化简得:20147111602k k --=∴()()k k -+=1220930∴,k k ==-129320当时,k x x =--=126702()()x x -+=710解之得:,x x 1217=-=当时,k x x =--+=-932065932022012019302x x -+=解此方程此方程无解。
北师大版八年级下册数学知识点必看

北师大版八年级下册数学知识点必看求学的三个条件是:多观察、多吃苦、多研究。
每一门科目都有自己的学习方法,但其实都是万变不离其中的,也是要记、要背、要讲练的。
下面是小编给大家整理的一些北师大版八年级下册数学知识点的学习资料,希望对大家有所帮助。
北师大版初二数学下册知识点归纳第一章分式1分式及其基本性质分式的分子和分母同时乘以(或除以)一个不等于零的整式,分式的只不变2分式的运算(1)分式的乘除乘法法则:分式乘以分式,用分子的积作为积的分子,分母的积作为积的分母除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘。
(2)分式的加减加减法法则:同分母分式相加减,分母不变,把分子相加减;异分母分式相加减,先通分,变为同分母的分式,再加减3整数指数幂的加减乘除法4分式方程及其解法第二章反比例函数1反比例函数的表达式、图像、性质图像:双曲线表达式:y=k/x(k不为0)性质:两支的增减性相同;2反比例函数在实际问题中的应用第三章勾股定理1勾股定理:直角三角形的两个直角边的平方和等于斜边的平方2勾股定理的逆定理:如果一个三角形中,有两个边的平方和等于第三条边的平方,那么这个三角形是直角三角形。
第四章四边形1平行四边形性质:对边相等;对角相等;对角线互相平分。
判定:两组对边分别相等的四边形是平行四边形;两组对角分别相等的四边形是平行四边形;对角线互相平分的四边形是平行四边形;一组对边平行而且相等的四边形是平行四边形。
推论:三角形的中位线平行第三边,并且等于第三边的一半。
2特殊的平行四边形:矩形、菱形、正方形(1)矩形性质:矩形的四个角都是直角;矩形的对角线相等;矩形具有平行四边形的所有性质判定:有一个角是直角的平行四边形是矩形;对角线相等的平行四边形是矩形;推论:直角三角形斜边的中线等于斜边的一半。
(2)菱形性质:菱形的四条边都相等;菱形的对角线互相垂直,并且每一条对角线平分一组对角;菱形具有平行四边形的一切性质判定:有一组邻边相等的平行四边形是菱形;对角线互相垂直的平行四边形是菱形;四边相等的四边形是菱形。
分式方程说课稿5篇

分式方程说课稿分式方程说课稿精选5篇(一)大家好,我今天要给大家讲解一下分式方程的概念和解题方法。
分式方程是一个含有分式的等式,它的未知数出现在分母中。
学习分式方程的目的是为了解决实际问题中涉及到分式的计算。
接下来,我将按照以下四个方面来进行讲解:第一部分,首先我们来了解一下分式方程的基本概念。
分式方程是指方程中含有一个或多个分式的等式,在这个等式中,分母中的未知数被称为该分式方程的解。
第二部分,接下来我们会讲解一下如何解决含有分式的方程。
解分式方程的关键在于寻找方程中未知数的值。
首先,我们可以通过消去分母的方法将方程转化为整式方程,然后求解整式方程得到未知数的值,最后再将此值代入分母中验证。
第三部分,我将给大家演示一些具体的例题,并详细解答每一步的思路。
通过这些例题的讲解,相信大家可以更好地理解分式方程的解题方法。
第四部分,最后我将列举一些常见的分式方程的应用场景,例如时间、速度、液体的混合等,希望大家能够在实际问题中运用所学的知识解决实际问题。
通过今天的讲解,大家应该对分式方程有了更深入的了解,掌握了解决分式方程的方法,并能够应用这些知识解决实际问题。
谢谢大家!分式方程说课稿精选5篇(二)大家好,今天我将对分式的乘除法进行讲解。
在初中数学中,我们经常会遇到分式的乘除运算,因此对于这一知识点的理解和掌握十分重要。
首先,我们先回顾一下分式的乘法。
分式的乘法遵循如下的规则:两个分式相乘,就是将分子与分子相乘,分母与分母相乘。
例如,$\\frac{a}{b} \\times \\frac{c}{d} = \\frac{a \\times c}{b \\times d}$。
这个规则非常简单,只需记住分子与分子相乘,分母与分母相乘即可。
接下来,我们再来看一下分式的除法。
分式的除法可以通过乘以被除数的倒数来实现。
具体来说,将除数的分子与被除数的分母相乘,除数的分母与被除数的分子相乘。
例如,$\\frac{a}{b} \\div \\frac{c}{d} = \\frac{a}{b} \\times \\frac{d}{c} = \\frac{a\\times d}{b \\times c}$。
初中数学_《分式》习题课教学设计学情分析教材分析课后反思

《分式》习题课复习教学案复习目标:1、能够正确进行分式的加减乘除,以及解分式方程。
2、能够解决关于增跟的问题3、能够正确解决关于代入求值的变型题 复习重难点:关于增跟的题目以及变式题 复习过程:一、基础练习:1、当x=( )时,分式 x x +-392 的值为0.2.解方程:31112=-+-x x x3.若方程 有增根,则m=_____4. 412222-÷⎪⎭⎫ ⎝⎛-++a a a a先化简,再取一个你喜欢的值代入备注:本章学习了分式的概念,基本性质,约分,通分,这些基础知识在后面的分式的加法,减法,乘法,除法,以及分式方程中都能得到应用和练习,因此,不单独复习单纯的概念,性质,约分,通分等基础知识,所以设计了四个基础练习题,来检测学生对本章基础知识的掌握情况。
()()2111+-=--x x mx x二、例题讲解例1讲解(基础练习第三题):若方程 有增根,则m=_____让学生总结增根两个作用:1、可以使最简公分母为0 2、能够使分式方程转化出来的整式方程成立 总结此类型解题步骤:1、求增根2、化简为整式方程3、将增根带入整式方程求m例1变式:关于x 的方程 无解,求a ?备注:此题是例一的变式,目的在于让学生能够正确区分无解与增跟的区别,以及根据增跟来解题!并且让学生自己总结做此类型题目的方法。
学生分析无解与增根的联系与区别,能够条理清楚的书写过程 例2:(基础练习第四题) 412222-÷⎪⎭⎫ ⎝⎛-++a a a a先化简,再取一个你喜欢的值代入变式一:化简并求值, 22211y x yx y x y x --÷⎪⎪⎭⎫ ⎝⎛++- 其中,x ,y 满足)32(22=--+-y x x234222+=-+-x x ax x ()()2111+-=--x x mx x变式二:先化简后求值, 1112421222-÷+--⨯+-a a a a a a 其中a 满足a 2-a=0备注:此二题是例二的变式,主要考察学生代入求值时,要保证分母不为0三、自我检测: 1.当1a =-时,分式211a a +-【 】.A.等于0 B.等于1 C.等于1- D.没有意义2.化简221ab ba a --+的结果是【 】. A .1a a + B .1a a - C .1b a + D .1b a - 3.解分式方程3422xx x+=--时,去分母后得【 】. A .34(2)x x -=- B .34(2)x x +=- C .3(2)(2)4x x x -+-= D .34x -= 4.当1<x<2时,化简分式xx x x -----1122= 。
分式-讲解

个性化教学辅导方案学科:数学任课教师:田文亚授课时间: 2015 年10 月18 日姓名张祉雯年级八年级课型一对一教学课题分式课堂教学内容分式知识点汇总一、分式的定义:一般地,如果A,B表示两个整数,并且B中含有字母,那么式子BA叫做分式,A为分子,B为分母。
二、与分式有关的条件①分式有意义:分母不为0(0B≠)②分式无意义:分母为0(0B=)③分式值为0:分子为0且分母不为0(⎩⎨⎧≠=BA)④分式值为正或大于0:分子分母同号(⎩⎨⎧>>BA或⎩⎨⎧<<BA)⑤分式值为负或小于0:分子分母异号(⎩⎨⎧<>BA或⎩⎨⎧><BA)⑥分式值为1:分子分母值相等(A=B)⑦分式值为-1:分子分母值互为相反数(A+B=0)三、分式的基本性质分式的分子和分母同乘(或除以)一个不等于0的整式,分式的值不变。
字母表示:CBC∙∙=ABA,CBC÷÷=ABA,其中A、B、C是整式,C≠0。
拓展:分式的符号法则:分式的分子、分母与分式本身的符号,改变其中任何两个,分式的值不变,即:BBABB--=--=--=AAA注意:在应用分式的基本性质时,要注意C≠0这个限制条件和隐含条件B≠0。
四、分式的约分1.定义:根据分式的基本性质,把一个分式的分子与分母的公因式约去,叫做分式的约分。
2.步骤:把分式分子分母因式分解,然后约去分子与分母的公因。
3.注意:①分式的分子与分母均为单项式时可直接约分,约去分子、分母系数的最大公约数,然后约去分子分母相同因式的最低次幂。
②分子分母若为多项式,先对分子分母进行因式分解,再约分。
4.最简分式的定义:一个分式的分子与分母没有公因式时,叫做最简分式。
◆约分时。
分子分母公因式的确定方法:1)系数取分子、分母系数的最大公约数作为公因式的系数.2)取各个公因式的最低次幂作为公因式的因式.3)如果分子、分母是多项式,则应先把分子、分母分解因式,然后判断公因式.五、分式的通分1.定义:把几个异分母的分式分别化成与原来的分式相等的同分母分式,叫做分式的通分。
八年级数学北师大版初二下册--第五单元5.3《分式的加减法:第二课时--通分》课件

知1-练
1
分式
2 ,a - 1 ,2 3a - 2a2 4a3
的最简公分母是(
C)
A.24a2
B.24a3
C.12a3
D.6a3
知1-练
2
分式
1 , 1 ,1 a+1 a2-2a+1 a-1
的最简公分母是
( B)
A.(a+1)2(a-1)
B.(a-1)2(a+1)
C.(a-1)2(a2-1)
D.(a-1)(a+1)
知1-练
3 下列说法错误的是( D )
A.
1与 a 3x 6x2
的最简公分母是6x2
B. 1 与 1 的最简公分母是m2-n2 m+ n m- n
C.
1 3ab
与1 3bc
的最简公分母是3abc
D.
1
a(x -
与1
y) b(y-
x) 的最简公分母是ab(x-y)(y-x)
知识点 2 通 分
知2-讲
分式
x
1 2-
, 1
xx2 -
1 x
,
x2
+
1 2x +
1
的最简公分母是
__x__(x_+__1_)_2_(x_-__1_)__.
导引:找最简公分母,需要将每一个分式的分母分解因 式,按照找最简公分母的方法求解. ∵x2-1=(x+1)(x-1),x2-x=x(x-1), x2+2x+1=(x+1) 2. ∴此三个分式的最简公分母是x (x+1)2(x-1).
中系数都取正数).
请完成《典中点》 Ⅱ 、 Ⅲ板块 对应习题!
第五章 分式与分式方程
5.3 分式的加减法
第2课时 通分
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第五讲 分式方程
【知识梳理】
1.分式方程的定义:母中含有未知数的方程叫分式方程。
2.解分式方程的基本思想方法: 整式方程分式方程去分母−−→−
3.解分式方程的一般方法和步骤:
(1)去分母,即在方程两边都乘以最简公分母,把原方程化成整式方程;
(2)解这个整式方程;
(3)验根:把整式方程的根代入最简公分母, 使最简公分母不等于零的根是原方程的根, 使最简公分
母等于零的根是原方程的增根,必须舍去.
4.列分式方程解应用题的一般步骤:
(1)审:审清题意. (2)设:设未知数.
(3)找:找出相等关系. (4)列:列出分式方程.
(5)解: 解这个分式方程.
(6)验:检验,既要验证根是否是原分式方程的根,又要检验根是否符合题意.
(7)答:写出答案.
5.分式方程的增根问题:
⑴ 增根的产生:分式方程本身隐含着分母不为0的条件,当把分式方程转化为整式方程后,方程中
未知数允许取值的范围扩大了,如果转化后的整式方程的根恰好使原方程中分母的值为0,那么就会出
现不适合原方程的根即增根;增根是由分式方程化成的整式方程的根,也是使最简公分母为0的根
⑵ 验根:解分式方程必须验根.验根的简单方法是代入最简公分母,看最简公分母是否为0.
【典例剖析】
例1:去分母法解分式方程
1、02132=-+--x x x x
2、2
163524245--+=--x x x x
变式练习:1、(2009荆州)
2223-=-+-x x x 2、2626121x x x x +=+++
★3、(2011培优班)
11114321
x x x x -=-----
★ 例2:整体换元与倒数型换元:
1、用换元法解分式方程:(1)
6151=+++x x x x (2)12221--=+--x x x x
变式练习:1、(07湖北)解方程22112()10x x x x +
-+-=时,若设1x y x +=,则原方程可化为 .
2、(09上海)用换元法解分式方程13101x x x x --+=-时,如果设1x y x
-=,将原方程化为关于y 的整式方程,那么这个整式方程是( ) A .230y y +-= B .2310y y -+=
C .2310y y -+=
D .2310y y --=
例3:分式方程的(增)根的意义
1、若关于x 的方程
7667=---x k x x 有增根,则增根为 。
2、(09 襄樊)当m= ,关于x 的分式方程
132=-+x m x 无解。
变式练习:1、(09 牡丹江)关于x 的分式方程
131=---x x a x 无解,则a=_________。
2、当m 为何值时,分式方程
()
01163=-+--+x x m x x x 有根?
【能力提升】
★例4:(10 潜优强化)已知一次函数b kx y +=的图像经过(1,3)和(-2,0)两点,则关于方程
0=--+b
x b k x k 的根是多少?
★例5:一个批发兼零售的文具店规定:凡一次购买铅笔300枝以上,(不包括300枝),可以按批发
价付款,购买300枝以下,(包括300枝)只能按零售价付款。
小明来该店购买铅笔,如果给八年级
学生每人购买1枝,那么只能按零售价付款,需用120元,如果再购买60枝,那么可以按批发价付
款,同样需要120元。
(1)这个八年级的学生总数在什么范围内?(2)若按批发价购买6枝与按零
售价购买5枝的款相同,那么这个学校八年级学生有多少人?
【名校、名书、竞赛、中考在线】
一、填空题:
1、(10天津)方程1x x -
=0的根是________
2、(09盐外)关于x 的方程
4
332=-+x a ax 的解为x=1, 则._____=a 3、(08成外)若关于x 的分式方程3
232
-=--x m x x 无解,则m 的值为__________。
4、(11培优)小明上学时的平均速度为m 千米/时,放学回家时,沿原路返回,平均速度为n 千米/
时,则小明上学和放学路上的平均速度为_____________千米/时。
5、(09临沂)某厂接到加工720件衣服的订单,预计每天做48件,正好按时完成,后因客户要求提
前5天交货,设每天应多做x 件,则x 应满足的方程为___________________________.
6、(七中)A 、B 两地相距48千米,一艘轮船从A 地顺流航行至B 地,又立即从B 地逆流返回A
地,共用去9小时,已知水流速度为4千米/时,若设该轮船在静水中的速度为x 千米/时,则可列
方程为
____________________________。
7、(09荆州)八年级(1)班学生周末乘汽车到游览区游览,游览区到学校120千米,一部分学生乘
慢车先行,出发1小时后,另一部分学生乘快车前往,结果他们同时到达,已知快车速度是慢车
的1.5倍,若设慢车的速度为x 千米/时,则可列方程为 。
★8、(实外)m 取_________________整数值时,分式
172-+m m 的值是正整数。
二、解答题:
9、(10成外)解方程()()
()812x 12x 12x 1x 1)1x(x 1=-+⋅⋅⋅+++++
三、列方程解应用题:
10、(06武汉)小明家准备装修一套新住房,若甲、乙两个装饰公司合作,需6周完成,需工钱5.2
万元;若甲公司单独做4周后,剩下的由乙公司来做,还需9周才能完成,需工钱4.8万元。
若只
选一个公司单独完成,从节约开支的角度考虑,小明家应选甲公司还是乙公司?请你说明理由。
【家庭作业】
1、(07萧山) 若关于x 的分式方程
3131+=-+x a x 在实数范围内无解,则实数=a 。
2、(09杭州)已知关于x 的方程32
2=-+x m x 的解是正数,则m 的取值范围为__ ___。
3、某农场原有水田400公顷,旱田150公顷,为了提高单位面积产量,准备把部分旱田改为水田,
改完之后,要求旱田占水田的10%,若设把x 公顷旱田改为水田,则可列方程为 。
4、(05北京) 用换元法解方程x x x x 222216110---⎛⎝ ⎫⎭⎪+=时,如果设x x y 2
21-=,那么原方程可化为( ) A. y y ++=610 B. y y 2610-+= C. y y -+=610 D. y y
-+=6102
5、解下列分式方程:
1、
1561x x x x ++=+ 2、512552x x x +=--
6、(06东营市)某自来水公司水费计算方法如下:若每户每月用水不超过5m 3,则每立方米收费1.5
元;若每户每月用水超过5m 3,则超出部分每立方米收取较高的定额费用。
1月份,张家用水量是李家用水量的
3
2,张家当月水费是17.5元,李家当月水费是27.5元,超出5m 3的部分每立方米收费多少元?。