线段的比例与长度计算

合集下载

线段成比例的定义

线段成比例的定义

线段成比例的定义线段成比例的定义在数学中,线段成比例是一个重要的概念,其具有广泛的应用。

本文将介绍线段成比例的定义,性质以及使用方法。

一、线段成比例的定义两个线段a,b和两个正实数m、n,若放在同一直线上,使得$\frac {a}{b}=\frac{m}{n}$,那么线段a和线段b就成比例关系,且m和n为这个比例关系的比例因子。

也可以表示成$\frac {a}{b}:\frac {m}{n}$或$\frac {a}{m}=\frac {b}{n}$。

例如,若线段AB=4、BC=3,且CD=6,则线段AB、BC、CD成比例,其中AB与BC的比例因子为4:3,BC与CD的比例因子为3:6。

二、线段成比例的性质1.线段成比例必须在同一直线上。

2.对于线段成比例中的比例因子m、n,它们必须是正实数。

3.如果线段AB、BC、CD成比例,那么线段AC和线段BD的比例与线段AB、BC、CD的比例相同,即$\frac {AC}{BD}=\frac {AB}{BC}=\frac {BC}{CD}$。

4.如果线段AB、BC、CD成比例,那么线段AC和线段BD的比例因子为$\frac {AB}{BC}*\frac {CD}{BC}=\frac {AD}{BC}$。

三、线段成比例的使用方法1.判断是否成比例:通常先判断三个线段是否都在同一直线上,如果在同一直线上,再判断比例因子是否为正实数,如果都满足,则三个线段成比例。

2.求比例因子:如果知道三个线段成比例,可以通过求得其中两个线段的比例关系来求出第三个线段的长度。

3.求比例部分长度:可以利用线段成比例的性质来求解,即$\frac {AC}{BD}=\frac {AB}{BC}=\frac{BC}{CD}$。

四、线段成比例的应用线段成比例的应用非常广泛,包括测量和求解各种几何问题等。

1.测量:在线段成比例的情况下,可以通过已知线段的长度来计算未知线段的长度。

2.几何问题:在线段成比例的情况下,可以求解各种几何问题,比如求解直角三角形的斜边长、求解两个垂直平分线的交点等。

线段长度定理汇总

线段长度定理汇总

线段长度定理汇总
线段长度定理是几何学中常用的定理之一,它用于计算线段的长度。

下面是一些常见的线段长度定理的汇总:
1. 两点之间的距离公式
两点之间的距离可以使用以下公式计算:
$d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$
其中,$(x_1, y_1)$ 和 $(x_2, y_2)$ 分别为两点的坐标,$d$ 为两点之间的距离。

2. 直角三角形斜边长度定理
对于一个直角三角形,斜边的长度可以根据两个直角边的长度计算。

根据勾股定理,斜边的长度如下:
$c = \sqrt{a^2 + b^2}$
其中,$a$ 和 $b$ 分别为直角三角形的直角边的长度,$c$ 为
斜边的长度。

3. 平行四边形对角线长度定理
对于一个平行四边形,两条对角线互相等长。

因此,可以根据
平行四边形的边长和角度来计算对角线的长度,具体计算公式可以
根据具体情况而定。

4. 相似三角形线段长度比定理
如果两个三角形相似,那么它们对应的边的长度之比是相等的。

因此,可以使用相似三角形的定理来计算线段的长度比例。

5. 弧长与半径之间的关系
对于一个圆,弧长与半径之间的关系可以使用以下公式计算:
$L = 2\pi r$
其中,$L$ 为弧长,$r$ 为半径。

这些是一些常见的线段长度定理,它们可用于求解几何问题中的线段长度。

根据具体情况,我们可以选择适当的定理来计算线段的长度。

平行线分线段成比例定理

平行线分线段成比例定理
17 2
5
17
2 1
)
)
(3) S△AGE=( 2
4
课堂小结
作业 4
已知AD // ED // BC,AD=15,BC=21,2AE = EB,求EF的长
A D E
H
F
解法(一)
作AG // CD交EF于H AD // EF // BC AD=15, BC=21
B
G
C
AD = HF = GC =15 ,BG = 6 EH AE = BG AB 2AE = EB
A
3k 3m 2m
E
D
2k
G
4m 2a
F
a
B
C
应用1—求线段长度(比值)
如图,△ABC中,D是AB上的点,E是AC上的点,延长ED与射线 CB交于点F.若AE∶EC=1∶2,AD∶BD=3∶2. 求:FB∶FC的值.
A
3k 3m
E
6m
H
2m
D
2k
F
a
B
3a
C
应用1—求线段长度(比值)
如图,△ABC中,D是AB上的点,E是AC上的点,延长ED与射线 CB交于点F.若AE∶EC=1∶2,AD∶BD=3∶2. 求:FB∶FC的值.
A
y
D
x
x
E C
B
5
应用4 — 建立函数关系式
2. 已知:如图,BC = 4, AC = 2 3 ∠C=60°,P为BC上 一点,DP//AB,设BP = x,S△APD= y.
(1)求y关于x的函数关系式; (2)若S△APD =
2 S△APB,求:BP的长. 3
A
D
H
B

平行线分线段成比例定理

平行线分线段成比例定理

平行线分线段成比例定理平行线分线段成比例定理:两条直线被一组平行线所截,截得的对应线段的长度成比例。

推论:平行于三角形一边的直线,截其他两边(或两边延长线)所得的对应线段成比例。

定理定义三条平行线截两条直线,所得对应线段成比例。

这一定理被称为"平行线分线段成比例定理"。

如图,因为AD∥BE∥CF,所以AB:BC=DE:EF;AB:AC=DE:DF;BC:AC=EF:DF。

也可以说AB:DE=BC:EF;AB:DE=AC:DF;BC:EF=AC:DF。

上述图样只是平行线分线段的一种特殊情况。

事实上,直线AC和直线DF可以在平行线之间相交,同样有定理成立。

定理证明设三条平行线与直线1交于A、B、C三点,与直线2交于D、E、F三点。

连结AE、BD、BF、CE根据平行线的性质可得S△ABE=S△DBE,S△BCE=S△BEF∴S△ABE/S△CBE=S△DBE/S△BFE根据不同底等高三角形面积比等于底的比可得:AB/BC=DE/EF由更比性质、等比性质得:AB/DE=BC/EF=(AB+BC)/(DE+EF)=AC/DF定理推论过一点的一线束被平行线截得的对应线段成比例。

平行于三角形一边的直线截其它两边(或两边的延长线)所得对应线段成比例。

平行于三角形一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形的三边对应成比例。

•平行线分线段成比例定理:三条平行线截两条直线,所得对应线段成比例。

推广:过一点的一线束被平行线截得的对应线段成比例。

定理推论:①平行于三角形一边的直线截其它两边(或两边的延长线)所得对应线段成比例。

②平行于三角形一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形的三边对应成比例。

•证明思路:该定理是用举例的方法引入的,没有给出证明,严格的证明要用到我们还未学到的知识,通过举例证明,让同学们承认这个定理就可以了,重要的是要求同学们正确地使用它(用相似三角形可以证明它,在这里要用到平移和设三条平行线与直线1交于A、B、C三点,与直线2交于D、E、F三点法1:过A作平行线的垂线交另两条平行线于M、N,过D作平行线的垂线交另两条平行线于P、Q,则四边形AMPD、ANQD均为矩形。

线段的比与比例线段的概念

线段的比与比例线段的概念

线段的比与比例线段的概念、比例的性质和黄金分割 Ⅰ梳理知识比与比例、比例的基本性质、合比性质、等比性质、两线段的比、成比例线段、平行线分线段成比例、截三角形两边或其延长线的直线平行于第三边的判定、黄金分割1.线段的比的定义在同一单位长度下,两条线段的比叫做这两条线段的比.2.比例线段的定义在四条线段中,如果其中两条线段的等于另外两条线段的,那么这四条线段叫做成比例线段,简称.在a :b =c :d 中,a 、d 叫做比例的,b 、c 叫做比例的,称d 为a 、b 、c 的.3.比例的性质(1)比例的基本性质:如果a ∶b =c ∶d ,那么.特别地,若a ∶b =b ∶c ,即,则b 叫a ,c 的比例中项.(2)合(分)比性质:若dc b a =,则. (3)等比性质:若nm f e d c b a ==== ,且,则. 4.黄金分割(1)黄金分割的意义:如图,点C 把线段AB 分成两条线段AC 和BC ,如果,那么称线段AB 被点C 黄金分割.其中点C 叫做线段AB 的,AC 与AB 的比叫做.(2)黄金分割的作法【例题讲解】例1.(1)已知1,5,5三个数,如果再添一个数,使之能与已知的三个数成比例,则这个数应该是.(2)在比例尺为1:n 的某市地图上,规划出一块长5cm ×2cm 的矩形工业区,则该工业区的实际面积是平方米.例2.(1)已知x ∶y ∶z =3∶4∶5,①求zy x +的值;②若x +y +z =6,求x 、y 、z. (2)已知a 、b 、c 、d 是非零实数,且k c b a d d a b c d c a b d c b a =++=++=++=++,求k 的值.(3)若a 、b 、c 是非零实数,并满足a c b a b c b a c c b a ++-=+-=-+,且abc a c c b b a x ))()((+++=,求x 的值.例3.(1)已知线段AB =a ,在线段AB 上有一点C ,若AC =a 253-,则点C 是线段AB 的黄金分割点吗?为什么?【同步测试】一、选择题1.已知一矩形的长a =1.35m ,宽b =60cm ,则a ∶b 的值为( )(A)9∶400 (B)9∶40 (C)9∶4 (D)90∶42.下列线段能成比例线段的是( ) (A)1cm,2cm,3cm,4cm (B)1cm,2cm,2cm,2cm (C)2cm,5cm,3cm,1cm (D)2cm,5cm,3cm,4cm3.如果线段a =4,b =16,c =8,那么a 、b 、c 的第四比例项d 为( )(A)8 (B)16 (C)24 (D)324.已知32=b a ,则bb a +的值为( ) (A)23(B)34(C)35(D)53 5.已知x ∶y ∶z =1∶2∶3,且2x +y -3z =-15,则x 的值为( )(A)-2 (B)2 (C)3 (D)-36.在比例尺为1∶38000的南京交通游览图上,玄武湖隧道长约为7cm ,它的实际长度约为( )(A)0.226km (B)2.66km (C)26.6km (D)266km7.某班同学要测量学校升国旗的旗杆高度,在同一时刻,量得某一同学的身高是1.5米,影长是1米,旗杆的影长是8米,则旗杆的高度是( )(A)12米(B)11米(C)10米(D)9米8.已知点C 是AB 的黄金分割点(AC >BC),若AB =4cm ,则AC 的长为( ) (A)(2 5 -2)cm(B)(6-2 5 )cm (C)( 5 -1)cm (D)(3- 5 )cm9.若D 、E 分别是ΔABC 的边AB 、AC 上的点,且AD AB =AE AC,那么下列各式中正确的是( ) (A)AD DB =DE BC (B)AB AD =AE AC (C)DB EC =AB AC (D)AD DB =AE AC10.若ba c a cbc b a k 222-=-=-=,且a +b +c ≠0,则k 的值为( ) (A)-1 (B)21(C)1 (D)-12 二、填空题11.在x ∶6= (5 +x)∶2 中的x =;2∶3 = ( 5-x)∶x 中的x =.12.若9810z y x ==, 则______=+++zy z y x . 13.若a ∶3 =b ∶4 =c ∶5 , 且a +b -c =6, 则a =,b =,c =.14.已知x ∶y ∶z = 3∶4∶5 , 且x +y +z =12, 那么x =,y =,z =.15.若43===f e d c b a , 则______=++++fd be c a . 16.已知x ∶4 =y ∶5 =z ∶6 , 则①x ∶y ∶z =, ② (x +y)∶(y +z)=.17.若322=-y y x , 则_____=yx . 18.图纸上画出的某个零件的长是32 mm ,如果比例尺是 1∶20,这个零件的实际长是.19.如图,已知 AB ∶DB = AC ∶EC ,AD =15 cm , AB =40 cm , AC =28 cm , 则 AE =;20.已知,线段a =2 cm ,)32(-=c cm ,则线段a 、c 的比例中项b 是.三、解答题21.已知0753≠==z y x ,求下列各式的值:(1)y z y x +-(2)z y x z y x +-++35432. 22.已知0≠-=-=-z a c y c b x b a ,求x +y +z 的值. 23.若ΔABC 的三内角之比为1∶2∶3,求ΔABC 的三边之比.24.已知a 、b 、c 为ΔABC 的三边,且a +b +c =60cm ,a ∶b ∶c =3∶4∶5,求ΔABC 的面积.25.已知线段AB =10cm ,C 、D 是AB 上的两个黄金分割点,求线段CD 的长.四、挑战中考1、若k ca b c b a b a c =+=+=+=k ,则k 的值为( ) A .12 B .1 C .-1 D .12或-1 2、如图,△ABC 中,AG DE AH BC =,且DE =12,BC =15,GH =4,求AH .3、 以长为2的定线段AB 为边作正方形ABCD ,取 AB 的中点P ,连结PD ,在BA 的延长线上取点F,使PF=PD,以AF为边作正方形AMEF,点M在AD上(1)求AM、MD的长;(2)你能说明点M是线段AD的黄金分割点吗?。

黄金分割知识总结

黄金分割知识总结

黄金分割知识总结
黄金分割是一个数学术语,它是指将一个线段分成两部分,使得其中一部分与原线段的比例等于另一部分与这部分的比例。

这个比例被认为是最美的比例之一,因此在艺术、建筑、设计等领域中得到了广泛的应用。

黄金分割的数学表达式为:较长线段是较短线段与原线段的比例中项。

在黄金分割中,较长线段和较短线段的长度可以通过以下公式计算:
较长线段= (√5 + 1) / 2 * 原线段
较短线段= 原线段- 较长线段
黄金分割在数学中有很多有趣的性质和应用。

它与斐波那契数列有着密切的联系,因为斐波那契数列中的任何一个数字都可以表示为前两个数字之和。

斐波那契数列在自然界中也有很多奇妙的应用,例如植物的花瓣排列和动物的生长周期等。

此外,黄金分割还被广泛应用于艺术、建筑和设计等领域。

例如,在建筑中,黄金分割被用来确定窗户、门和建筑物线条的位置和大小,以使建筑物看起来更加协调和美观。

在绘画和摄影中,黄金分割也被用来确定构图和画面布局的最佳位置。

总之,黄金分割是一个非常有趣和有用的数学概念,它不仅在数学中有广泛的应用,还在艺术、建筑和设计等领域中发挥着重要的作用。

(完整版)计算线段长度的方法技巧

(完整版)计算线段长度的方法技巧

计算线段长度的方法技巧耿京娟线段是基本的几何图形,是三角形、四边形的构成元素。

初一同学对于线段的计算感到有点摸不着头绪。

这是介绍几个计算方法,供同学们参考。

1. 利用几何的直观性,寻找所求量与已知量的关系例1. 如图1所示,点C分线段AB为5:7,点D分线段AB为5:11,若CD=10cm,求AB。

图1分析:观察图形可知,DC=AC-AD,根据已知的比例关系,AC、AD均可用所求量AB表示,这样通过已知量DC,即可求出AB。

解:因为点C分线段AB为5:7,点D分线段AB为5:11所以又又因为CD=10cm,所以AB=96cm2. 利用线段中点性质,进行线段长度变换例2. 如图2,已知线段AB=80cm,M为AB的中点,P在MB上,N为PB的中点,且NB=14cm,求PA的长。

图2分析:从图形可以看出,线段AP等于线段AM与MP的和,也等于线段AB与PB的差,所以,欲求线段PA的长,只要能求出线段AM与MP的长或者求出线段PB的长即可。

解:因为N是PB的中点,NB=14所以PB=2NB=2×14=28又因为AP=AB-PB,AB=80所以AP=80-28=52(cm)说明:在几何计算中,要结合图形中已知线段和所求线段的位置关系求解,要做到步步有根据。

3. 根据图形及已知条件,利用解方程的方法求解例3. 如图3,一条直线上顺次有A、B、C、D四点,且C为AD的中点,,求BC是AB的多少倍?图3分析:题中已给出线段BC、AB、AD的一个方程,又C为AD的中点,即,观察图形可知,,可得到BC、AB、AD又一个方程,从而可用AD分别表示AB、BC。

解:因为C为AD的中点,所以因为,即又由<1>、<2>可得:即BC=3AB例4. 如图4,C、D、E将线段AB分成2:3:4:5四部分,M、P、Q、N分别是AC、CD、DE、EB的中点,且MN=21,求PQ的长。

图4分析:根据比例关系及中点性质,若设AC=2x,则AB上每一条短线段都可以用x的代数式表示。

黄金分割线段公式(二)

黄金分割线段公式(二)

黄金分割线段公式(二)黄金分割线段公式在数学和美学领域中,黄金分割线段公式是一种重要的比例关系。

这个公式是由著名的古希腊数学家欧几里得首次提出,被广泛应用于绘画、设计和建筑等领域。

黄金分割线段公式可以用于美学上的比例构图,使得作品更加平衡和谐。

下面是关于黄金分割线段公式的相关公式和解释。

1. 黄金分割比例黄金分割比例,也被称为黄金比例或黄金分割比,是指将一段物体分成两部分,使得整体与较大部分之间的比例等于较大部分与较小部分之间的比例。

公式表示如下:a /b = (a+b) / a = φ其中,a 代表较大部分,b 代表较小部分,φ 表示黄金分割比例,约等于。

例如,一根长度为 100 厘米的木棒,我们可以按照黄金分割比例将其分为厘米和厘米两部分。

2. 黄金分割线段黄金分割线段是一条将一段线段分成黄金分割比例的线。

根据黄金分割比例的定义,我们可以得到以下公式:(a + b) / a = a / b通过移项和化简,我们可以得到黄金分割线段的公式:a^2 = a * b + b^2这个公式可以用来计算黄金分割线段的长度。

例如,如果我们知道较大部分 a 的长度为 8 厘米,我们可以通过计算来确定较小部分 b 的长度:8^2 = 8 * b + b^264 = 9b + b^2b^2 + 9b - 64 = 0解这个二次方程可以得到 b 的值,进而确定黄金分割线段的长度。

3. 应用举例:黄金矩形黄金矩形是指长边和短边的比等于黄金分割比例的矩形。

根据黄金分割比例的定义,我们可以得到以下关系:长边 / 短边= φ黄金矩形具有很多美学特征,常常被用于画框、海报、广告和网页设计等领域。

黄金分割比例的使用可以带来视觉上的平衡和谐。

例如,一个黄金矩形的长边为 100 厘米,则其短边的长度为 100 / φ ≈ 厘米。

4. 应用举例:黄金螺旋黄金螺旋是一种特殊的螺旋曲线,其种子半径与黄金分割比例的关系可以用以下公式表示:r(n) = r0 * φ^n其中,r(n) 是第 n 个螺旋圈的半径,r0 是种子半径,φ 是黄金分割比例。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

线段的比例与长度计算
线段是初中数学中的基础概念之一,它在几何图形的构造和计算中起着重要的
作用。

在数学学习中,我们经常会遇到线段的比例和长度计算问题。

本文将以实例为基础,详细介绍线段的比例计算和长度计算的方法,帮助中学生和他们的父母更好地理解和应用这一知识点。

一、线段的比例计算
在几何图形中,线段的比例计算是指给定两个线段的长度,求它们之间的比例
关系。

下面我们通过一个例子来说明。

例1:已知线段AB的长度为6cm,线段CD的长度为12cm,求线段AB与线
段CD的比例。

解:线段AB与线段CD的比例可以表示为AB:CD。

根据已知条件可知AB:CD = 6:12。

由于6和12都可以被2整除,所以可以简化比例为1:2。

因此,线
段AB与线段CD的比例为1:2。

在实际问题中,线段的比例计算常常涉及到两个或多个线段之间的关系。

比如,在一条直线上,已知线段AB的长度为4cm,线段BC的长度为6cm,求线段AC
的长度。

这个问题可以通过线段的比例计算来解决。

解:设线段AC的长度为x cm,则根据线段的比例计算可得4:6 = x:6。


过交叉相乘得到4×6 = 6x,解得x = 4。

因此,线段AC的长度为4cm。

二、线段的长度计算
线段的长度计算是指已知线段的两个端点的坐标,求线段的长度。

下面我们通
过一个例子来说明。

例2:已知线段AB的坐标为A(2, 3),B(5, 7),求线段AB的长度。

解:根据坐标计算线段的长度需要使用到勾股定理。

设线段AB的长度为d,
则根据勾股定理可得d² = (5-2)² + (7-3)²。

计算得d² = 3² + 4² = 9 + 16 = 25,因此d = √25 = 5。

所以,线段AB的长度为5。

线段的长度计算在实际问题中也经常出现。

比如,在一个矩形中,已知矩形的
两个对角线的端点坐标分别为A(1, 2)、B(4, 6)和C(3, 1)、D(6, 5),求矩形的对角线长度。

解:根据已知坐标可得到两条对角线的长度分别为AB和CD。

根据坐标计算
线段的长度,可以使用勾股定理。

设线段AB的长度为d₁,线段CD的长度为d₂,根据勾股定理可得d₁² = (4-1)² + (6-2)² = 9 + 16 = 25,d₂² = (6-3)² + (5-1)² = 9 + 16 = 25。

因此,d₁ = d₂ = √25 = 5。

所以,矩形的对角线长度为5。

通过以上实例,我们可以看出线段的比例计算和长度计算在数学中的重要性和
实用性。

在实际问题中,我们经常需要根据已知条件计算线段的比例和长度,以求解问题或进行几何图形的构造。

因此,掌握线段的比例计算和长度计算方法对于中学生来说是非常重要的。

总结起来,线段的比例计算可以通过已知线段的长度,求解线段之间的比例关系;线段的长度计算可以通过已知线段的两个端点的坐标,应用勾股定理求解线段的长度。

通过这两种计算方法,我们可以更好地理解和应用线段的比例和长度知识,为解决实际问题提供了有效的工具和方法。

希望本文的介绍和实例能够帮助中学生和他们的父母更好地理解和掌握线段的
比例计算和长度计算方法,为数学学习和实际问题解决提供帮助。

通过不断练习和应用,相信大家能够在数学学习中取得更好的成绩和进步。

相关文档
最新文档