随机事件的独立性

第3讲随机事件的独立性伯努利概型

教学目的:使学生掌握随机事件独立性的概念和伯努利概型。

教学重点:随机事件独立性的概念和伯努利概型中有关概率的计算。

教学难点:学生对随机事件独立性概念的理解

教学时数:2学时

教学过程:

第一章随机事件及其概率

§1.5 随机事件的独立性

对于任意两个事件A、B,若0

(B

A

|

P有定义,此时可能有两种情

P,则)

(>

B

)

况)

(A

|

)

P

P=。前者说明事件B的发生对事件A发生的概率有

(

A

B

(

P≠和)

)

(A

|

A

B

P

影响,只有当)

P

A

P=时才认为这种影响不存在,这时自然认为事件A不依赖B

(

)

|

(A

于事件B,即A、B是彼此独立的。这时有

A

B

P

A

AB

=

P=

P

P

B

P

(

(

)

(B

)

)

(

)

)

(

|

由此引出关于事件独立性的问题。

定义1对任意两个随机事件A与B,若

A

P

P=

P

AB

)

(

(B

)

)

(

则称事件A与B是相互独立的(简称为独立的)。

由定义1不难证明下面的定理。

定理1若事件A与B相互独立,则下列各对事件

A 与

B , A 与B , A 与B

也相互独立。

证 这里只证明事件A 与B 相互独立,其它类似。因为

B A AB A +=

从而

)()()(B A P AB P A P +=

由此得

)

()()](1)[()

()()()

()()(B P A P B P A P B P A P A P AB P A P B A p =-=-=-=

所以事件A 与B 相互独立。

例1 设事件A 、B 相互独立,3.0)(,4.0)(==B P A P ,求)(B A P ?。

解 )()()()(B A P B P A P B A P -+=?

))(1))((1()()()()()(A P B P A P B P A P B P A P --+=-+=

82.06.07.04.0=?+=

对于三个或更多个事件,我们给出下面的定义。

定义2 设有n 个事件n A A A ,,,21 (3≥n ),若对其中任意两个事件i A 与)1(n j i A j ≤<≤有

)()()(j i j i A P A P A A P =

则称这n 个事件是两两相互独立的。

定义3 设有n 个事件n A A A ,,,21 (3≥n ),若对其中任意k 个事件)2(,,,21n k A A A k i i i ≤≤ 有

)()()()(2121k k i i i i i i A P A P A P A A A P =

则称这n 个事件是相互独立的。

由上述定义可知,若n 个事件n A A A ,,,21 相互独立,则n 个事件一定是两两相互独立;反之,却不一定成立。

例如,从四张分别写有三位数字{001},{010},{100},{111}的卡片中任取一张,设事件i A 表示“取出的卡片上第i 位数字是0”)3,2,1(=i ,则易知

2

1)(=

i A P , 3,2,1=i 41)(=j i A A P , 31≤<≤j i 于是有

)()()(j i j i A P A P A A P =, 31≤<≤j i

由此可见,事件321,,A A A 两两独立。但是,这三个事件却不是相互独立的,因为

)()()(0)(321321A P A P A P A A A P ≠=

由定义3可以得到相互独立事件的概率乘法公式。

定理2 设n 个事件n A A A ,,,21 相互独立,则有

)()()()(2121n n A P A P A P A A A P =

例2 设有甲、乙、丙三人打靶,每人各独立射击一次,击中率分别为0.8,0.6,0.5,求靶子被击中的概率。

解 设A 表示“甲射击击中靶子”,B 表示“乙射击击中靶子”,C 表示“丙射击击中靶子”,则所求概率为

)(1)(C B A P C B A P P ??-=??=

)()()(1)(1C P B P A P C B A P -=??-=

96.05.04.02.01=??-=

例3 系统可靠性问题。一个元件能正常工作的概率称为这个元件的可靠性,一个系统能正常工作的概率称为这个系统的可靠性。设一个系统由四个元件按图示方式组成,各个元件能否正常工作是相互独立的,且每个元件的可靠性都等于)10(<

L R

解 设事件i A 表示“第i 个元件能正常工作”)4,3,2,1(=i ,事件A 表示“系统L —R 能正常工作”,则有

))((4321A A A A A ??=

注意到

)()(4321A A A A A ???=

)()(4321A A A A ?=

则有

)]()[()(4321A A A A P A P ?=

)()()(43214321A A A A P A A P A A P -+=

)()()()()()()()(43214321A P A P A P A P A P A P A P A P -+=

42)1()1(2p p ---=

于是得

42)1()1(21)(p p A P -+--=

2222)2(])1(1[p p p -=--=

§1.6 伯努利概型

事件的独立性

概率与统计课程教案 授课题目(教学章、节或主题):第一章第四节事件的独立性 教学目的、要求(分掌握、熟悉、了解三个层次): 理解事件独立性的概念,掌握应用事件独立性进行概率计算的方法 教学重点及难点: 应用事件独立性进行概率计算 课时安排:2课时 授课方式:讲授 教学基本内容: 一、事件的独立性(Independence of events) 设A,B是两个事件,一般而言) P A A P≠,这表示事件B的发生对事件A的 | ( ) (B 发生的概率有影响,只有当) P A P=时才可以认为B的发生与否对A的发生毫无影 A ( (B ) | 响,这是就称两事件是独立的。这时,由条件概率可知, B P P P A B A B = P P= AB P P A = ( ( ) ( (B ) ) ) ) ( ) ( ( | ) 由此,我们引出下面的定义。 定义若两事件A,B满足) P A P=,则称A,B相互独立(Mutual P AB ) ( ( ) (B independence)。 定理若四对事件} B A A {B B , A中有一对是相互独立的,则另外三 A B }, }, { , { , , }, { 对也是相互独立的. 在实际问题中,我们一般不用定义来判断两事件A,B是否相互独立,而是相反,从试验的具体条件以及试验的具体本质分析去判断它们有无关联,是否独立?如果独立,就可以用定义中的公式来计算积事件的概率了。 例1两门高射炮彼此独立的射击一架敌机,设甲炮击中敌机的概率为0.9,乙炮击中敌机的概率为0.8,求敌机被击中的概率? 解设A={甲炮击中敌机},B={乙炮击中敌机},那么{敌机被击中}=B A ;因为A与B相互独立,所以,有 =+-=+-= ()()()()()()()() P A B P A P B P AB P A P B P A P B 9.0= - + 8.0 ? 98 .0 8.0 9.0 Note:事件的独立性与互斥是两码事,互斥性表示两个事件不能同时发生,而独立性则表示他们彼此不影响。 定义设C ,是三个事件,如果满足: B A,

北师大版高中数学选修条件概率与独立事件一教案

2.3条件概率 教学目标: 知识与技能:通过对具体情景的分析,了解条件概率的定义。 过程与方法:掌握一些简单的条件概率的计算。 情感、态度与价值观:通过对实例的分析,会进行简单的应用。 教学重点:条件概率定义的理解. 教学难点:概率计算公式的应用. 授课类型:新授课 . 课时安排:1课时. 教具:多媒体、实物投影仪. 教学设想:引导学生形成“自主学习”与“合作学习”等良好的学习方式。 教学过程: 一、复习引入: 探究: 三张奖券中只有一张能中奖,现分别由三名同学无放回地抽取,问最后一名同学抽到中奖奖券的概率是否比前两名同学小. 若抽到中奖奖券用“Y ”表示,没有抽到用“Y”,表示,那么三名同学的抽奖结果共有三种可能:Y Y Y,Y Y Y和Y Y Y.用B 表示事件“最后一名同学抽到中奖奖券”, 则B 仅包含一个基本事件Y Y Y.由古典概型计算公式可知,最后一名同学抽到中奖奖券的概率为1 () 3 P B=. 思考:如果已经知道第一名同学没有抽到中奖奖券,那么最后一名同学抽到奖券的概率又是多少? 因为已知第一名同学没有抽到中奖奖券,所以可能出现的基本事件只有Y Y Y和Y Y Y.而“最后一名同学抽到中奖奖券”包含的基本事件仍是Y Y Y.由古典概型计算公式可知.最后一 名同学抽到中奖奖券的概率为1 2 ,不妨记为P(B|A ) ,其中A表示事件“第一名同学没有抽 到中奖奖券”. 已知第一名同学的抽奖结果为什么会影响最后一名同学抽到中奖奖券的概率呢? 在这个问题中,知道第一名同学没有抽到中奖奖券,等价于知道事件A 一定会发生,导致可能出现的基本事件必然在事件A 中,从而影响事件B 发生的概率,使得P ( B|A )≠P ( B ) . 思考:对于上面的事件A和事件B,P ( B|A)与它们的概率有什么关系呢? 用Ω表示三名同学可能抽取的结果全体,则它由三个基本事件组成,即Ω={Y Y Y, Y Y Y,Y Y Y}.既然已知事件A必然发生,那么只需在A={Y Y Y, Y Y Y}的范围内考虑问题,

事件的独立性

§ 1.5 事件的独立性 一、两个事件的独立性 在条件概率中,一般情况下,P(B|A)P(B)P(A|B)P(A)≠≠, 但在特殊的条件下,就不同了,请看下例: 例1.5.1 袋中有5球,3新2旧,从中任取一球,有返回的取两次, 令A=第一次取新球,B=第二次取新球。 因为是有返回抽取,所以 3P(B|A)P(B)5 = = 显然也有 3P(A|B)P(A)5== 两个事件独立的直观定义: 设A 、B 两个事件,一个事件发生与否对另一个事件的发生及其发生的概率不产生影响,则称A 、B 这两个事件是相互独立的。 这是中文描述性定义。下面推出数学定义: 事件A ,B 互不影响P(B|A)P(B)?=,P(A |B)P(A)= P(A)P(B |A)P(AB)P(A)P(B)P(B)P(A |B)??==??或 11A B P(AB)P(A)P(B) A B =定义.5.:设有事件、,若则称事件、相互独立。 由定义可证明,必然事件、不可能事件与任何事件都是独立的。 在现实世界中,随机现象独立的情况是大量存在的,如返回抽样、重复试验、彼此无关的工作…..。 若要证明两个事件独立,必须依据定义证明。 而在实际问题中,判断两个事件独立,大多根据实际情况和经验,看是否相互影响,要注意的是我们不能只停留在感觉上。 定理1.5.1 A B A B A B A B 若,相互独立,则与;与;与都相互独立。 证明:A B 以与为例, P (A B )P (A B )=-P (A A B )=-P (A )P (A B =- P (A ) P (A )P (=- P (A )[1P (B )]P (A )P (B )=-= 由定义可知 A B 与相互独立。

事件的相互独立性教案定稿

2.2.2 事件的相互独立性 一、教学目标 知识与技能:理解两个事件相互独立的概念。 过程与方法:能进行一些与事件独立有关的概率的计算。 情感、态度与价值观:通过对实例的分析,会进行简单的应用。 二、教学重难点 教学重点:独立事件同时发生的概率。 教学难点:有关独立事件发生的概率计算。 三、教学过程 复习引入: 1. 事件的定义: 随机事件:在一定条件下可能发生也可能不发生的事件; 必然事件:在一定条件下必然发生的事件; 不可能事件:在一定条件下不可能发生的事件。 2.随机事件的概率:一般地,在大量重复进行同一试验时,事件A发生的频率m n 总是接近某个常数,在它附近摆动,这时就把这个常数叫做事件A的概率,记作() P A. 3.概率的确定方法:通过进行大量的重复试验,用这个事件发生的频率近似地作为它的概率;

4.概率的性质:必然事件的概率为1,不可能事件的概率为0,随机事件的概率为0()1P A ≤≤,必然事件和不可能事件看作随机事件的两个极端情形。 5. 基本事件:一次试验连同其中可能出现的每一个结果(事件A )称为一个基本事件。 6.等可能性事件:如果一次试验中可能出现的结果有n 个,而且所有结果出现 的可能性都相等,那么每个基本事件的概率都是1 n ,这种事件叫等可能性事件。 7.等可能性事件的概率:如果一次试验中可能出现的结果有n 个,而且所有结果都是等可能的,如果事件A 包含m 个结果,那么事件A 的概率 ()m P A n =。 讲解新课: 1.相互独立事件的定义: 设A, B 为两个事件,如果 P ( AB ) = P ( A ) P ( B ) , 则称事件A 与事件B 相互独立. 事件A (或B )是否发生对事件B (或A )发生的概率没有影响,这样的两个事件叫做相互独立事件. 若A 与B 是相互独立事件,则A 与B ,A 与B ,A 与B 也相互独立. 2.相互独立事件同时发生的概率:()()()P A B P A P B ?=? 问题2中,“从这两个坛子里分别摸出1个球,它们都是白球”是一个事件,它的发生,就是事件A ,B 同时发生,记作A B ?.(简称积事件) 从甲坛子里摸出1个球,有5种等可能的结果;从乙坛子里摸出1个球,有4种等可能的结果于是从这两个坛子里分别摸出1个球,共有54?种等可能的结果。同时摸出白球的结果有32?种所以从这两个坛子里分别摸出1个球,它们

人教版高中数学高二选修2-3 第二章《事件的相互独立性》教案

2.2.2事件的相互独立性 一、复习引入: 1 事件的定义:随机事件:在一定条件下可能发生也可能不发生的事件; 必然事件:在一定条件下必然发生的事件; 不可能事件:在一定条件下不可能发生的事件 2.随机事件的概率:一般地,在大量重复进行同一试验时,事件A 发生的频率m n 总是接近某个常数,在它附近摆动,这时就把这个常数叫做事件A 的概率,记作()P A . 3.概率的确定方法:通过进行大量的重复试验,用这个事件发生的频率近似地作为它的概率; 4.概率的性质:必然事件的概率为1,不可能事件的概率为0,随机事件的概率为0()1P A ≤≤,必然事件和不可能事件看作随机事件的两个极端情形 5基本事件:一次试验连同其中可能出现的每一个结果(事件A )称为一个基本事件 6.等可能性事件:如果一次试验中可能出现的结果有n 个,而且所有结果出现的可能性都相等,那么每个基本事件的概率都是1n ,这种事件叫等可能性事件 7.等可能性事件的概率:如果一次试验中可能出现的结果有n 个,而且所有结 果都是等可能的,如果事件A 包含m 个结果,那么事件A 的概率()m P A n = 8.等可能性事件的概率公式及一般求解方法 9.事件的和的意义:对于事件A 和事件B 是可以进行加法运算的 10 互斥事件:不可能同时发生的两个事件.()()()P A B P A P B +=+ 一般地:如果事件12,, ,n A A A 中的任何两个都是互斥的,那么就说事件 12,,,n A A A 彼此互斥 11.对立事件:必然有一个发生的互斥事件.()1()1()P A A P A P A +=?=- 12.互斥事件的概率的求法:如果事件12,, ,n A A A 彼此互斥,那么 12()n P A A A +++=12()()()n P A P A P A +++ 探究: (1)甲、乙两人各掷一枚硬币,都是正面朝上的概率是多少? 事件A :甲掷一枚硬币,正面朝上;事件B :乙掷一枚硬币,正面朝上 (2)甲坛子里有3个白球,2个黑球,乙坛子里有2个白球,2个黑球,从这 两个坛子里分别摸出1个球,它们都是白球的概率是多少? 事件A :从甲坛子里摸出1个球,得到白球;事件B :从乙坛子里摸出1个球, 得到白球

05 第五节 事件的独立性

第五节 事件的独立性 分布图示 ★ 引例 ★ 两个事件的独立性 ★ 例1 ★ 关于事件独立性的判断 ★ 有限个事件的独立性 ★ 相互独立性的性质 ★ 例2 ★ 例3 ★ 例4 ★ 例5 ★ 伯努利概型 ★ 例6 ★ 例7 ★ 例8 ★ 例9 ★ 例10 ★ 内容小结 ★ 课堂练习 ★ 习题1-5 内容要点 一、两个事件的独立性 定义 若两事件A ,B 满足 )()()(B P A P AB P = (1) 则称A ,B 独立, 或称A ,B 相互独立. 注: 当0)(>A P ,0)(>B P 时, A ,B 相互独立与A ,B 互不相容不能同时成立. 但?与S 既相互独立又互不相容(自证). 定理1 设A ,B 是两事件, 且0)(>A P ,若A ,B 相互独立, 则)()|(A P B A P =. 反之亦然. 定理2 设事件A ,B 相互独立,则下列各对事件也相互独立: A 与 B ,A 与B ,A 与B . 二、有限个事件的独立性 定义 设C B A ,,为三个事件, 若满足等式 ), ()()()(), ()()(),()()(), ()()(C P B P A P ABC P C P B P BC P C P A P AC P B P A P AB P ==== 则称事件C B A ,,相互独立. 对n 个事件的独立性, 可类似写出其定义: 定义 设n A A A ,,,21 是n 个事件, 若其中任意两个事件之间均相互独立, 则称n A A A ,,,21 两两独立. 相互独立性的性质 性质1 若事件n A A A ,,,21 )2(≥n 相互独立, 则其中任意)1(n k k ≤<个事件也相互独

04事件的相互独立性(教案)

2. 2.2事件的相互独立性 教学目标: 知识与技能:理解两个事件相互独立的概念。 过程与方法:能进行一些与事件独立有关的概率的计算。 情感、态度与价值观:通过对实例的分析,会进行简单的应用。 教学重点:独立事件同时发生的概率 教学难点:有关独立事件发生的概率计算 授课类型:新授课 课时安排:4课时 教 具:多媒体、实物投影仪 教学过程: 一、复习引入: 1 事件的定义:随机事件:在一定条件下可能发生也可能不发生的事件; 必然事件:在一定条件下必然发生的事件; 不可能事件:在一定条件下不可能发生的事件 2.随机事件的概率:一般地,在大量重复进行同一试验时,事件A 发生的频率m n 总是接近某个常数,在它附近摆动,这时就把这个常数叫做事件A 的概率,记作()P A . 3.概率的确定方法:通过进行大量的重复试验,用这个事件发生的频率近似地作为它的概率; 4.概率的性质:必然事件的概率为1,不可能事件的概率为0,随机事件的概率为0()1P A ≤≤,必然事件和不可能事件看作随机事件的两个极端情形 5基本事件:一次试验连同其中可能出现的每一个结果(事件A )称为一个基本事件6.等可能性事件:如果一次试验中可能出现的结果有n 个,而且所有结果出现的可能性都相等,那么每个基本事件的概率都是1n ,这种事件叫等可能性事件 7.等可能性事件的概率:如果一次试验中可能出现的结果有n 个,而且所有结果都是等可能的,如果事件A 包含m 个结果,那么事件A 的概率()P A n = 8.等可能性事件的概率公式及一般求解方法 9.事件的和的意义:对于事件A 和事件B 是可以进行加法运算的 10 互斥事件:不可能同时发生的两个事件.()()()P A B P A P B +=+ 一般地:如果事件12,, ,n A A A 中的任何两个都是互斥的,那么就说事件12,,,n A A A 彼此互斥 11.对立事件:必然有一个发生的互斥事件.()1()1()P A A P A P A +=?=- 12.互斥事件的概率的求法:如果事件12,,,n A A A 彼此互斥,那么 12()n P A A A ++ +=12()()()n P A P A P A +++

事件的独立性教案

§2.2.2事件的独立性 学习目标 1.理解两个事件相互独立的概念。 学习过程 【任务一】问题分析 问题1:准备知识回顾: (1)互斥事件:不可能同时发生的两个事件,=+)(B A P 一般地:如果事件12,,,n A A A L 中的任何两个都是互斥的,那么就说事件 12,,,n A A A L 彼此互斥 (2)对立事件:必然有一个发生的互斥事件.()___()_________P A A P A +=?= (3)互斥事件的概率的求法:如果事件12,,,n A A A L 彼此互斥,那么 12()n P A A A +++L = 问题2:袋子中装有大小质地均相同的5个小球,其中3个红球,2个白球,每次取一个,无放回地取两次,求在已知第一次取到红球的条件下,第二次取到红球的概率。 问题3:上述问题中,将“无放回”改为“有放回”,问题中事件的概率会改变吗?请尝试猜想并验证你的猜想。 【任务二】概念理解 1.相互独立事件:事件A 是否发生对事件B 发生的概率没有影响,称两个事件B A ,相互独立,并把这两个事件叫做相互独立事件。 2.若两个事件B A ,相互独立,则有)()()(B P A P B A P ?=I 【任务三】典型例题分析 例1:甲、乙二射击运动员分别对一目标射击1次,甲射中的概率为0.8,乙射中的概率为0.9,求: (1)2人都射中目标的概率;

(2)2人中恰有1人射中目标的概率; (3)2人至少有1人射中目标的概率; (4)2人至多有1人射中目标的概率? 例2:某商场推出二次开奖活动,凡购买一定价值的商品可以获得一张奖券.奖券上有一个兑奖号码,可以分别参加两次抽奖方式相同的兑奖活动.如果两次兑奖活动的中奖概率都是 0 . 05 ,求两次抽奖中以下事件的概率: (1)都抽到某一指定号码; (2)恰有一次抽到某一指定号码; (3)至少有一次抽到某一指定号码. 【任务四】课后作业 1.已知某种高炮在它控制的区域内击中敌机的概率为0.2,假定有5门这种高炮控制某个区域,则敌机进入这个区域后未被击中的概率是 2.投掷一枚均匀硬币和一枚均匀骰子各一次,记“硬币正面向上”为事件A ,“骰子向上的点数是3”为事件B ,则事件A ,B 中至少有一件发生的概率是 3.两个实习生每人加工一个零件,加工为一等品的概率分别为23和34 ,两个零件是否加工为一等品相互独立,则这两个零件中恰有一个一等品的概率为 4.来成都旅游的外地游客中,若甲,乙,丙三人选择去武侯祠游览的概率均为35 ,且他们的选择互不影响,则这三人中至多有两人选择去武侯祠游览的概率为 5.从10位同学(其中6女,4男)中随机选出3位参加测验,每位女同学能通过 测验的概率均为45,每位男同学通过测验的概率均为35 ,求: (1)选出的3位同学中,至少有一位男同学的概率; (2)10位同学中的女同学甲和男同学乙同时被选中且通过测验的概率.

选修2-3教案2.2.2 事件的独立性

§2.2.2 事件的独立性 教学目标 (1)理解两个事件相互独立的概念; (2)能进行一些与事件独立有关的概率的计算. 教学重点,难点:理解事件的独立性,会求一些简单问题的概率. 教学过程 一.问题情境 1.情境:抛掷一枚质地均匀的硬币两次. 在第一次出现正面向上的条件下,第二次出现正面向上的概率是多少? 2.问题:第一次出现正面向上的条件,对第二次出现正面向上的概率是否产生影响. 二.学生活动 设B 表示事件“第一次正面向上”, A 表示事件“第二次正面向上”,由古典概型知 ()12P A = ,()12P B =,()1 4 P AB =, 所以() ()() 1 2 P AB P A B P B = = . 即()() P A P A B =,这说明事件B 的发生不影响事件A 发生的概率. 三.建构数学 1.两个事件的独立性 一般地,若事件A ,B 满足() ()P A B P A =,则称事件A ,B 独立. 当A ,B 独立时,若()0P A >,因为() ()()()P AB P A B P A P B = =, 所以 ()()()P AB P A P B =,反过来() ()() ()P AB P B A P B P A = =, 即B ,A 也独立.这说明A 与B 独立是相互的,此时事件A 和B 同时发生的概率等于事件A 发生的概率与事件B 发生的概率之积,即 ()()()P AB P A P B =.(*) 若我们认为任何事件与必然事件相独立,任何事件与不可能事件相独立,那么两个事件 A , B 相互独立的充要条件是()()()P AB P A P B =.今后我们将遵循此约定. 事实上,若B φ=,则()0P B =,同时就有()0P AB =,此时不论A 是什么事件,都有(*)式成立,亦即任何事件都与φ独立.同理任何事件也与必然事件Ω独立. 2. 个事件的独立性可以推广到(2)n n >个事件的独立性,且若事件12,,,n A A A 相互独立, 则这n 个事件同时发生的概率()()()()1212n n P A A A P A P A P A = .

《独立性检验》教案)

《独立性检验》教案 一、教学目标 1、知识与技能: 通过典型案例的探究,了解独立性检验的基本思想,会对两个分类变量进行独立性检验,明确独立性检验的基本步骤,并能利用独立性检验的基本思想来解决实际问题. 2、过程与方法: 通过探究“吸烟是否与患肺癌有关系”引出独立性检验的问题。通过列联表、等高条形图,使学生直观感觉到吸烟和患肺癌可能有关系.这一直觉来自于观测数据,即样本.问题是这种来自于样本的印象能够在多大程度上代表总体?这节课就是为了解决这个问题,让学生亲身体验直观感受的基础上,提高学生的数据分析能力. 3、情感态度价值观: 通过本节课的学习,加强数学与现实生活的联系。以科学的态度评价两个分类变量有关系的可能性。培养学生运用所学知识,解决实际问题的能力。对问题的自主探究,提高学生独立思考问题的能力;让学生对统计方法有更深刻的认识,体会统计方法应用的广泛性,进一步体会科学的严谨性。教学中适当地利用学生合作与交流,使学生在学习的同时,体会与他人合作的重要性。 二、教学重点 理解独立性检验的基本思想及实施步骤. 三、教学难点 1.了解独立性检验的基本思想; 2.了解随机变量K2的含义,K2的观测值很大,就认为两个分类变量是有关系的。 四、教学方法 以“问题串”的形式,层层设疑,诱思探究。用“讲授法”,循序渐进,引导学生,步步为营,螺蜁上升探究本节课的知识内容. 五、教学过程设计

环 节 互动意图创 设情景、引入新课课下预习,搜集有关分类变量有无关系的一些实例。 情境引入、提出问题:1、吸烟与患肺癌有关系吗? 2、你有多大程度把握吸烟与患肺癌有关? 组织引 导学生 课下预 习问题 背景, 初步明 确定要 解决 “吸烟 与患肺 癌”之 间的关 系问 题. 好的课 堂情景 引入, 能激发 学生求 知欲, 是新问 题能够 顺利解 决的前 提条件 之一. 初步探索、展示内涵 变量有定量变量、分类变量,定量变量—回归分析;分类变 量—独立性检验,引出课题。 问题1、我们在研究“吸烟与患肺癌的关系”时,需要关注哪一些 量呢? 列联表:分类变量的汇总统计表(频数表). 一般我们只 研究每个分类变量只取两个值,这样的列联表称为2*2列联表 . 如吸烟与患肺癌的列联表: 不患肺癌患肺癌总计 不吸烟7775 42 7817 吸烟2099 49 2148 总计9874 91 9965 问题2:由以上列联表,我们估计吸烟是否对患肺癌有影响?①在 不吸烟者中患肺癌的比例为________;②在吸烟者中患肺癌的比 例为________. 1,教师 通过举 例,引 入分类 变量这 个新概 念.引 出课题 2,组织 学生填 表讨论 问题, 初步得 到问题 的结 论. 从实际 问题出 发引入 概念, 提出问 题有利 于学生 明白我 们要学 习这节 课的必 要性。。

事件的相互独立性的教案

事件的相互独立性的教 案 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

2.2.2事件的相互独立性 一、教学目标: 1、知识与技能: ①理解事件独立性的概念 ②相互独立事件同时发生的概率公式 2、过程与方法: 通过实例探究事件独立性的过程,学会判断事件相 互独立性的方法。 3、情感态度价值观:通过本节的学习,体会数学来源于实践又服务于 实践,发现数学的应用意识。 二、教学重点:件事相互独立性的概念 三、教学难点:相互独立事件同时发生的概率公式 四,教学过程: 1、复习回顾:(1)条件概率 (2)条件概率计算公式 (3)互斥事件及和事件的概率计算公式 2、思考探究: 三张奖券只有一张可以中奖,现分别由三名同学有放回地抽取,事件A 为“第一位同学没有抽到中奖奖券”,事件B 为“最后一名同学抽到中奖奖券”。 事件A 的发生会影响事件B 发生的概率吗? 分析:事件A 的发生不会影响事件B 发生的概率。于是: 3、事件的相互独立性 设A ,B 为两个事件,如果 P(AB)=P(A)P(B),则称事件A 与事件B 相互独立。 即事件A (或B )是否发生,对事件B (或A )发生的概率没有影响,这样两个事件叫做相互独立事件。 注:①如果A 与B 相互独立,那么A 与B ,B 与A ,A 与B 都是相互独立的。(举例说明) ②推广:如果事件12,,...n A A A 相互独立,那么 1212(...)()()...()n n P A A A P A P A P A = (|)()P B A P B =()()(|)P AB P A P B A =()()() P AB P A P B ∴=

高中数学事件的独立性

高中数学事件的独立性 一、基础过关 1.有以下3个问题: (1)掷一枚骰子一次,事件M :“出现的点数为奇数”,事件N :“出现的点数为 偶数”; (2)袋中有5红、5黄10个大小相同的小球,依次不放回地摸两球,事件M :“第1次摸到红球”,事件N :“第2次摸到红球”; (3)分别抛掷2枚相同的硬币,事件M :“第1枚为正面”,事件N :“两枚结果相同”. 这3个问题中,M ,N 是相互独立事件的有 ( ) A .3个 B .2个 C .1个 D .0个 2.投掷一枚均匀硬币和一枚均匀骰子各一次,记“硬币正面向上”为事件A ,“骰子向上的点数是3”为事件B ,则事件A ,B 中至少有一件发生的概率是 ( ) A.5 12 B.1 2 C.712 D.34 3.同时转动如图所示的两个转盘,记转盘甲得到的数为x ,转盘乙得到的数为y ,x ,y 构成数对(x ,y ),则所有数对(x ,y )中满足xy =4的概率为 ( ) A.1 16 B.18 C.3 16 D.14 4.两个实习生每人加工一个零件,加工为一等品的概率分别为23和3 4 ,两个零件是否加工为 一等品相互独立,则这两个零件中恰有一个一等品的概率为 ( ) A.12 B.512 C.14 D.1 6 5.来成都旅游的外地游客中,若甲、乙、丙三人选择去武侯祠游览的概率均为3 5,且他们的 选择互不影响,则这三人中至多有两人选择去武侯祠游览的概率为 ( ) A.36125 B.44125 C.54125 D.98125 二、能力提升 6.设两个独立事件A 和B 都不发生的概率为19 ,A 发生B 不发生的概率与B 发生A 不发生的 概率相同,则事件A 发生的概率P (A )是 ( ) A.29 B.1 18 C.13 D.23 7.某篮球队员在比赛中每次罚球的命中率相同,且在两次罚球中至多命中一次的概率为16 25 ,

事件的独立性教案

事件的相互独立性 数学与统计学学院芮丽娟2009212085 一、教学目标: 1、知识与技能: (1)了解独立性的定义(即事件A的发生对事件B的发生没有影响); (2)掌握相互独立事件的概率乘法公式P(AB)=P(A)P(B) 2、过程与方法: 通过对现实生活中不同事件问题的探究,感知应用数学解决问题的方法,体会数学知识与现实世界的联系,培养逻辑推理能力 3、情感态度与价值观: 通过数学与探究活动,体会理论来源于实践并应用于实践的辩证唯物主义观点. 二、重点与难点: 正确理解独立性的定义与互斥事件的差别,掌握并运用独立事件概率公式 三、教学设想: 1、创设情境:通过回顾上节课学习的条件概率,引入本节课独立性的定义 例:3张奖券中只有一张能中奖,现分别由3名同学无放回的抽取,事件A为“第一名同学没有抽到中奖奖券”,事件B为“最后一名同学抽到中奖奖券”。则问事件A的发生会影响事件B发生的概率吗?若条件改为有放回,这时又是什么情况? 解:显然无放回时,A的发生影响着B,即是条件概率。而当有放回地抽取奖券时,最后一名同学也是从原来的三张奖券中任抽一张,因此第一名同学抽的结果对最后一名同学的抽奖结果没有影响,即事件A的发生不会影响事件B发生的概率。于是P(B|A)=P(B),代入条件概率公式得P(AB)=P(B|A)P(A)=P(A)P(B) 2、基本概念: 独立性定义:设A,B为两个事件,如果满足P(AB)=P(A)P(B),则称事件A与事件B 相互独立。 例1:分别抛掷两枚质地均匀的硬币,设A是事件“第1枚为正面”,B是事件“第2枚为正面”,C是事件“2枚结果相同”。问:A,B,C中哪两个相互独立? 分析:理解相互独立的定义,即是一事件的发生对另一事件的发生与否没有影响,由于A事件抛掷第一枚硬币为正面,对B事件第二枚硬币为正面没有影响,故A与B独立,而

2014年人教A版选修2-3教案 2.2.2 事件的独立性

2.2.2事件的独立性 教学目标: 知识与技能:理解两个事件相互独立的概念。 过程与方法:能进行一些与事件独立有关的概率的计算。 情感、态度与价值观:通过对实例的分析,会进行简单的应用。 教学重点:独立事件同时发生的概率 教学难点:有关独立事件发生的概率计算 授课类型:新授课 课时安排:2课时 教 具:多媒体、实物投影仪 教学过程: 一、复习引入: 1 事件的定义:随机事件:在一定条件下可能发生也可能不发生的事件; 必然事件:在一定条件下必然发生的事件; 不可能事件:在一定条件下不可能发生的事件 2.随机事件的概率:一般地,在大量重复进行同一试验时,事件A 发生的频率m n 总是接近某个常数,在它附近摆动,这时就把这个常数叫做事件A 的概率,记作()P A . 3.概率的确定方法:通过进行大量的重复试验,用这个事件发生的频率近似地作为它的概率; 4.概率的性质:必然事件的概率为1,不可能事件的概率为0,随机事件的概率为0()1P A ≤≤,必然事件和不可能事件看作随机事件的两个极端情形 5基本事件:一次试验连同其中可能出现的每一个结果(事件A )称为一个基本事件6.等可能性事件:如果一次试验中可能出现的结果有n 个,而且所有结果出现的可能性都相等,那么每个基本事件的概率都是1n ,这种事件叫等可能性事件 7.等可能性事件的概率:如果一次试验中可能出现的结果有n 个,而且所有结果都是等可能的,如果事件A 包含m 个结果,那么事件A 的概率()P A n = 8.等可能性事件的概率公式及一般求解方法 9.事件的和的意义:对于事件A 和事件B 是可以进行加法运算的 10 互斥事件:不可能同时发生的两个事件.()()()P A B P A P B +=+ 一般地:如果事件12,, ,n A A A 中的任何两个都是互斥的,那么就说事件12,,,n A A A 彼此互斥 11.对立事件:必然有一个发生的互斥事件.()1()1()P A A P A P A +=?=-

事件的相互独立性教案

§2.2.2事件的相互独立性 教学目标: 知识与技能:理解两个事件相互独立的概念。 过程与方法:能进行一些与事件独立有关的概率的计算。 情感、态度与价值观:通过对实例的分析,会进行简单的应用。 教学重点:独立事件同时发生的概率 教学难点:有关独立事件发生的概率计算 授课类型:新授课 课时安排:2课时 教学过程: 一、复习引入: 1事件的定义:随机事件:在一定条件下可能发生也可能不发生的事件; 必然事件:在一定条件下必然发生的事件; 不可能事件:在一定条件下不可能发生的事件 2.随机事件的概率:一般地,在大量重复进行同一试验时,事件A发生的频率m 总是接近某个常数,在它附近摆动,这时就把这个常数叫 n 做事件A的概率,记作() P A. 3.概率的确定方法:通过进行大量的重复试验,用这个事件发生的频率近似地作为它的概率; 4.概率的性质:必然事件的概率为1,不可能事件的概率为0,随机事件的概率为0()1 ≤≤,必然事件和不可能事件看作随机事件的两 P A 个极端情形 5基本事件:一次试验连同其中可能出现的每一个结果(事件A)称

为一个基本事件 6.等可能性事件:如果一次试验中可能出现的结果有n 个,而且所有结果出现的可能性都相等,那么每个基本事件的概率都是1n ,这种事件叫等可能性事件 7.等可能性事件的概率:如果一次试验中可能出现的结果有n 个,而且所有结果都是等可能的,如果事件A 包含m 个结果,那么事件A 的概率()m P A n = 8.等可能性事件的概率公式及一般求解方法 9.事件的和的意义:对于事件A 和事件B 是可以进行加法运算的 10 互斥事件:不可能同时发生的两个事件.()()()P A B P A P B +=+ 一般地:如果事件12,,,n A A A L 中的任何两个都是互斥的,那么就 说事件12,,,n A A A L 彼此互斥 11.对立事件:必然有一个发生的互斥事件. ()1()1()P A A P A P A +=?=- 12.互斥事件的概率的求法:如果事件12,,,n A A A L 彼此互斥,那么 12()n P A A A +++L =12()()()n P A P A P A +++L 探究: (1)甲、乙两人各掷一枚硬币,都是正面朝上的概率是多少? 事件A :甲掷一枚硬币,正面朝上;事件B :乙掷一枚硬币,正面朝上 (2)甲坛子里有3个白球,2个黑球,乙坛子里有2个白球,2个黑球,从这两个坛子里分别摸出1个球,它们都是白球的概率是多少?

人教版选修第二章离散型随机变量教案事件的相互独立性

数学:人教版选修2-3第二章离散型随机变量教案(2.2.2事件的相互独立性) 2.2.2事件的相互独立性 教学目标: 知识与技能:理解两个事件相互独立的概念。 过程与方法:能进行一些与事件独立有关的概率的计算。 情感、态度与价值观:通过对实例的分析,会进行简单的应用。 教学重点:独立事件同时发生的概率 教学难点:有关独立事件发生的概率计算 授课类型:新授课 课时安排:2课时 教具:多媒体、实物投影仪 教学过程: 一、复习引入: 1 事件的定义:随机事件:在一定条件下可能发生也可能不 发生的事件; 必然事件:在一定条件下必然发生的事件; 不可能事件:在一定条件下不可能发生的事件 2.随机事件的概率:一般地,在大量重复进行同一试验时,事件发生的频率总是接近某个常数,在它附近摆动,这时就

把这个常数叫做事件的概率,记作. 3.概率的确定方法:通过进行大量的重复试验,用这个事件 发生的频率近似地作为它的概率; 4.概率的性质:必然事件的概率为,不可能事件的概率为,随机事件的概率为,必然事件和不可能事件看作随机事件的 两个极端情形 5基本事件:一次试验连同其中可能出现的每一个结果(事件)称为一个基本事件 6.等可能性事件:如果一次试验中可能出现的结果有个, 而且所有结果出现的可能性都相等,那么每个基本事件的概 率都是,这种事件叫等可能性事件 7.等可能性事件的概率:如果一次试验中可能出现的结果 有个,而且所有结果都是等可能的,如果事件包含个结果, 那么事件的概率 8.等可能性事件的概率公式及一般求解方法 9.事件的和的意义:对于事件A和事件B是可以进行加法运算的 10 互斥事件:不可能同时发生的两个事件. 一般地:如果事件中的任何两个都是互斥的,那么就说事件 彼此互斥 11.对立事件:必然有一个发生的互斥事件. 12.互斥事件的概率的求法:如果事件彼此互斥,那么=

事件的独立性与条件概率专题

1.口袋内装有100个大小相同的红球、白球和黑球,其中红球有45个,从口袋中摸出一个球,摸出白球的概率为0.23,则摸出黑球的概率为( ) A .0.31 B .0.32 C .0.33 D .0.36 2.在5道题中有3道理科题和2道文科题.如果不放回地依次抽取2道题,在第1次抽到文科题的条件下,第2次抽到理科题的概率为( ) A.12 B.35 C.34 D.310 3.打靶时甲每打10次可中靶8次,乙每打10次可中靶7次,若两人同时射击一个目标,则它们都中靶的概率是( ) A.35 B.34 C.1225 D.1425 4.已知盒中装有3个红球、2个白球、5个黑球,它们大小形状完全相同,现需一个红球,甲每次从中任取一个不放回,在他第一次拿到白球的条件下,第二次拿到红球的概率为 ( ) A.310 B.13 C.38 D.29 5.(优质试题·济南质检)优质试题年国庆节放假,甲去北京旅游的概率为13 ,乙,丙去北京旅游的概率分别为14,15 .假定三人的行动相互之间没有影响,那么这段时间内至少有1个去北

京旅游的概率为( ) A.5960 B.35 C.12 D.160 6.(优质试题·合肥月考)周老师上数学课时,给班里同学出了两道选择题,她预估计做对第一道题的概率为0.8,做对两道题的概率为0.6,则预估计做对第二道题的概率为( ) A .0.80 B .0.75 C .0.60 D .0.48 7.从应届毕业生中选拔飞行员,已知该批学生体型合格的概率为13,视力合格的概率为16 ,其他几项标准合格的概率为15 ,从中任选一名学生,则该学生三项均合格的概率为(假设三次标准互不影响)( ) A.49 B.190 C.45 D.59 8.高三毕业时,甲、乙、丙等五位同学站成一排合影留念,已知甲、乙二人相邻,则甲、丙相邻的概率是( ) A.12 B.13 C.14 D.25 二、填空题 9.某篮球队员在比赛中每次罚球的命中率相同,且在两次罚球中至多命中一次的概率为1625 ,则该队员每次罚球的命中率为________. 10.袋中有三个白球,两个黑球,现每次摸出一个球,不放回地摸取两次,则在第一次摸到黑球的条件下,第二次摸到白球的概率为________. 11.甲、乙两队进行排球决赛,现在的情形是甲队只要再赢一局就获冠军,乙队需要再赢两局才能得冠军,若两队每局获胜的概率相同,则甲队获得冠军的概率为________. 12.在一段时间内,甲去某地的概率是14,乙去此地的概率是15 ,假定两人的行动相互之间没有影响,那么在这段时间内至少有一人去此地的概率是________.

随机事件独立性概念的引入

(下转第108页 )摘要 事件的独立性是概率论中重要的概念之一。本文分析了两个随机事件相互独立的直观解释与公式形式的定义之间的关系,指出了公式形式的定义与直观解释不完全一致的情形,并通过引入三个事件相互独立的直观解释来加强学生对三个事件相互独立的定义的理解。关键词随机事件独立性两两独立 The Way to Introduce the Concept of the Independency of Random Events //Ji Wei Abstract The independency of random events is one of the most important concepts in probability theory.The relationship betw-een the quick look interpretation and formulaic definition of the independency between two random events is discussed.Especi-ally,an example is given to show the discrepancy between the quick look interpretation and formulaic definition.Moreover,a quick look interpretation of the independency among three random events is given to make the definition more understandable. Key words random event;independence;mutual independent Author 's address College of Science,Guilin University of Technology,541004,Guilin,Guangxi,China 随机事件的独立性是概率论中重要的概念之一,它的引进极大地推动了概率论的发展,概率论前期最重要的一些结论大都是在独立性假定下获得的。独立性不仅在理论上具有重要意义,而且在实际中有着广泛的应用。要掌握好独立性的定义,首先必须深刻理解事件独立性的定义。 1两个事件独立性的定义 国内大多数概率论与数理统计教材在引入两个事件独立性定义的时候,通常是先给出描述性的直观解释:事件B 的发生与否的概率不受事件A 是否发生的影响,再将直观解释表示成数学语言。事实上,事件B 发生与否的概率不受事件A 的影响,也就意味着有 P (B )=P (B |A ),这时,由乘法公式可得P (AB )=P (A )P (B )。定义1[1-3]:对任意两个事件A 、B,若P (AB )=P (A )P (B )成立,则称事件A 与B 是相互独立的。 采用这样一种方式,不免给学生留下了疑问:为什么不采用第一种更直观的P (B)=P (B |A )来定义?由于大多数教材在定义条件概率P (B |A )时,都假定P (A )≠0,如果选取该式作为定义,就将满足P (A )=0的情况排除在外了。而由独立性的直观解释可以得到,当A 为不可能事件时,A 与任何事件独立。因此,采用P (B)=P (B |A )作为独立性的定义有一定的局限性。而定义1涵盖了“不可能事件与任何事件独立” 这一命题,并且具有良好的对称性。因此,大多数教材采用定义1作为独立性的定义。 但定义1也与独立性的直观解释有一定的出入,我们看下面的例子。 例1:Ω={全体整数},A={1,2},B={1},则P (A )=P (B )=P (AB )=0。由定义1可知,事件与事件是独立的。但在事件A 发生的情况下,事件发生的概率为0.5,而不是0;即事件B 发生的概率受到事件A 是否发生的影响。类似地,在事件B 发生的情况下,事件A 发生的概率为1,而不是0;即事件A 发生的概率也受到事件B 是否发生的影响。 幸运的是,这种不一致的情形只有在所讨论的事件中含有概率为0的事件时才会发生,而且定义1是一个公式形式的定义,给独立性的数学处理带来了极大的方便。因此,国内大多数教材都是采用该定义。但也有一些教材直接采用描述性的语言来定义两个独立性。 定义2[5]:两个事件A 与B,如果其中任何一个事件发生的概率不受另外一个事件发生与否的影响,则称事件A 与B 是相互独立的。 由于该定义没有转化为明确的数学公式,使用起来没有定义1方便,因而采用该定义的教材较少。随机事件独立性的公式形式定义与直观解释之间的差别,在一定程度上反映了数学定义来源于实践,但又不完全与实践相同的特点。将实践中产生的数学思想经过适当的加工,得到更易于数学处理的定义比直观解释更有生命力。定义与直观解释这种不一致,也是数学魅力的一种体现,可以启发学生思考是否存在一个与独立性的直观解释更吻合同时又易于数学处理的公式形式的定义。 2三个事件独立性的定义 大部分概率论教材中两个事件独立性概念的是从事件B 的发生与否不受事件A 是否发生的影响来引入独立性的概念,这种引入方式比较容易被学生接受。而三个事件独立性的定义,国内概率论的教材大多采用直接给出的方式。 定义3[1-4]:对于任意三个事件A,B,C,如果(1)P (AB )=P (A )P (B ),P (AC )=P (A )P (C ),P(BC )=P(B )P (C ); (2)P (ABC )=P (A )P (B )P (C ),则称事件A,B,C 相互独立。 采用这一种方式,读者自然会提出这样的一个问题:三个事件两两独立,能否保证它们相互独立呢?虽然教材举出反例证明了答案是否定的,依然会有许多读者疑惑:为何不采用三个事件两两独立的形式作为三个事件独立性的定义呢?为了解决这个疑惑,我们可以采用先给出三个事件独立性的描述性的直观解释:三个事件A 、B 、C 相互独立,如果其中任何一个事件发生的概率不受另外两个事件发生与否的影响,三个事件两两独立能否保证某一事件不受另外两个 中图分类号:O211 文献标识码:A 文章编号:1672-7894(2012)15-0088-02 88

相关文档
最新文档