完整版实验讲义 活度系数电极充放电

完整版实验讲义 活度系数电极充放电
完整版实验讲义 活度系数电极充放电

活度系数的测定

实验五电解质溶液活度系数的测定

一、实验目的

1、掌握用电动势法测定电解质溶液平均离子活度系数的基本原理和方法。

、通过实验加深对活度、活度系数、平均活度、平均活度系数等概念的理解。2二、基本原理

活度系数是用于表示真实溶液与理想溶液中任一组分浓度的偏差而引入的一个校正因子,它与活度a、质量摩尔浓度m之间的关系为:

(1)

在理想溶液中各电解质的活度系数为1,在稀溶液中活度系数近似为1。对于电解质溶液,由于溶液是电中性的,所以单个离子的活度和活度系数是不可测量、

,它与平均活度无法得到的。通过实验只能测量离子的平均活度系数、平

均质量摩尔浓度之间的关系为:

(2)

平均活度和平均活度系数测量方法主要有:气液相色谱法、动力学法、稀溶液依数性法、电动势法等。本实验采用电动势法测定ZnCl溶液的平均活度系数。2其原理如下:

ZnCl 溶液构成如下单液化学电池:用2

该电池反应为:

(3) 其电动势为:

(4)

(5)

根据:

(6)

(7)

得:

,称为电池的标准电动势。式中:

值,再E m为已知值时,在一定温度下,只要测得可见,当电解质的浓度

。,即可求得由标准电极电势表的数据求得

值还可以根据实验结果用外推法得到,其具体方法如下:

),可得:将代入式(7

(8)

-和离子强度的定义:休克尔公式:将德拜),可得:代入到式(8

(9)

时得到。因而,只要图外推至可见,可由

值,溶液构成前述单液化学电池的相应电动势E由实验测出用不同浓度的ZnCl2

,纵坐标上m=0作图,得到一条曲线,再将此曲线外推至

所得的截距即为。三、仪器及试剂

型电化学工作站(天津兰力科化学电子公司),恒温装置LK2005A 仪器和支,250 ml10 ml移液管各15 ml100 ml一套,标准电池,容量瓶6只,和电极,细砂纸。只,Ag/AgCl1 400 ml 烧杯各

A.R(试剂ZnCl),锌片。2 1

四、操作步骤

1、溶液的配制:

-3的ZnCl 溶液1.0 mol.dm 250ml。用此标准用二次蒸馏水准确配制浓度为2-3标准溶0.2 mol.dm、0.1 和、ZnCl 溶液配制0.005、0.01、0.020.05浓度的2液各100 ml。

1、控制恒温浴温度为25.0±0.2 ℃。

3、将锌电极用细砂纸打磨至光亮,用乙醇、丙酮等除去电极表面的油,再用稀酸浸泡片刻以除去表面的氧化物,取出用蒸馏水冲洗干净,备用。

4、电动势的测定:将配制的ZnCl 标准溶液,按由稀到浓的次序分别装入2电解池恒温。将锌电极和Ag/AgCl电极分别插入装有ZnCl 溶液的电池管中,2用电化学工作站中的开路电位-时间曲线法分别测定各种在ZnCl 浓度时电2池的电动势。

5、实验结束后,将电池、电极等洗净备用。

五、结果与讨论

1、将实验数据及计算结果填入表1。

表1不同浓度ZnCl时测得的电池电动势2实验温度:大气压:

为横坐标作图,并用外推法求出。、以为纵坐标,1

通过查表计算出的理论值,并求其相对误差。2、3、应用式(9)计算上列不同浓度ZnCl 溶液的平均离子活度系数,然后再计2

的活度,并填入上表中。算相应溶液的平均离子活度和ZnCl2

六、注意事项

1、测量电动势时注意电池的正、负极不能接错。

2

2、锌电极要仔细打磨、处理干净方可使用,否则会影响实验结果。

3、Ag/AgCl电极要避光保存,若表面的AgCl层脱落,须重新电镀后再使用。

4、在配置ZnCl溶液时,若出现浑浊可加入少量的稀硫酸溶解。2七、思考题1、为何可用电动势法测定ZnCl溶液的平均离子活度系数 2

-,对测定的E 值有何影响Cl2、配制溶液所用蒸馏水中若含有

0的理论值与实验值出现误E ?分析3、影响本实验测定结果的主要因素有哪些差的原因。

电极充放电曲线

实验六铅蓄电池及其电极充放电曲线的测定

一、实验目的

1、测定铅蓄电池在常温下电池的充放电曲线。

2、掌握在电池放电情况下测定单电极电势的方法。

3、分析铅蓄电池单电极放电曲线,了解正负极电势下降的特点,进而讨论引起铅蓄电池失效的原因。

二、基本原理

1、铅蓄电池的工作原理

铅蓄电池是一种二次电池,其负极为海绵状铅,正极为二氧化铅,隔板为微孔塑料板或橡胶板,电解液为稀硫酸,其电池结构为

Pb|HSO(溶液)|PbO 2 42当电池充放电时,正、负极分别发生下列电化学过程:

负极:?2Pb?Pb?2e正极:?2?OH4?Pb2PbO?HO?2e?22总的电池反应

为:??2OH?2Pb4?H?PbPbO?O22RT????24电池电动势为:?2??OH ln?EE?Pb F2 3 由式(1)可以看出电池电动势随充电时HSO浓度的增加而升高,放电42时随HSO浓度变稀而降低。42铅蓄电池实际充、放电过程中两极间的

电势差值常和上式算出的不一致,这主要是因为电极反应过程中有极化现象存在,这种极化来自电极表面电荷的积累、浓度的变化以及电极或溶液内阻等多方面因素。在低温时,这种极化现象表现得尤为显著。

2、电池的充、放电曲线

在给定充电或放电条件下(恒流或恒阻),所测得的电池充电(或放电)电压随充电时间(或放电时间)的变化称为电池的充电(或放电)曲线。若所测得的充电(或放电)曲线是单电极电势相对于某一参比电极变化,则称此种曲线为单电极的充电(或放电)曲线。

三、仪器与试剂

仪器LK2005A电化学工作站(天津兰力科化学电子公司)1台;2A.h铅蓄电池塑料外壳1只;容量为1A.h正极板1块;容量为1A.h负极板1块;

蓄电池用塑料隔板1块;Hg-HgSO参比电极两只42-3)SO 溶液(4.5mol.dm试剂H42四、实验步骤

1)、将蓄电池的正、负极板装入矩形塑料电池槽,中间插入电池隔板,随后注入-3 HSO溶液,至淹没极板为止。 4.5 mol.dm422)、接好电池充放电曲线的测试线路,选择恒电流测试。

3)、调节电化学工作站的给定电流值,将充电电流调节至0.5A,即可记录出电

池的恒电流曲线,当充电电压出现突变时;可观察到氢气和氧气大量析出,这标志着充电已到终点。此时电压约为2.7V或略高些。关掉充电电流。

4)、选择恒电位技术中的‘电位-时间曲线'记下电池开路时的初始电压值后,停止。

5)、调节电化学工作站的给定电流值,将放电电流调到0.8A,此时,可记录到

电池的放电曲线,当电池的放电电压降到1.50V左右时停止记录,关掉放电电流。6)、重复步骤1第3),4)点的操作,从而分别测得放电时正、负极相对Hg-HgSO42参比电极的单电极电势曲线。

五、数据处理

1、记录仪记录下来的电池在常温及低温下的充、放电曲线及单电极电势曲线,分别标出各曲线相应的充电和放电时间。

2、比较常温及低温下电池在过充是的逸气情况及放电时的性能变化。

3、根据得到的数据,讨论铅蓄电池室温条件下电池失效的原因。

4

两个图的结果不难看出:对于本实验所选用的3-M-2型薄型极板引起电池性能下降原因主要在负极而不是在正极,充电过程中过早逸出大量的气体主要来自负极氢气。从而可以初步判断,引起此电池过早失效的原因是负极活性物质匹配不足。

上述结果表明:电池单电极放电性能的测试为蓄电池容量的合理设计及失效原因的分析提供了一种最基本最简单而又适用的实验手段。由此可见,本实验对生产实际中改进铅蓄电池的设计和提高铅蓄电池的性能具有重要的实际意义。同时,本实验的原理及测试技术也可推广使用于其他二次电池,例如:镍镉电池和银锌电池的充放电曲线的测量。此外,本实验对于培养学生合理使用参比电极,正确测量实际体系的电极电势及分析解决实际问题的能力也十分必要。

六、思考题

本实验在测量单电极电势变化时,选用了Hg-HgSO电极作为参比电极。42能否使用标准氢电极、甘汞电极、汞-氧化汞电极、银-氯化银电极或其他类型的参比电极?

5

电势-PH曲线实验报告

基 础 化 学 实 验 实验十二电势-pH曲线的测定 姓名:赵永强 指导教师:吴振玉

一、目的要求 1.掌握电极电势、电池电动势及pH 的测定原理和方法。 2. 了解电势-pH 图的意义及应用。 3. 测定Fe 3+/Fe 2+-EDTA 溶液在不同pH 条件下的电极电势,绘制电势-pH 曲线。 二、实验原理 很多氧化还原反应不仅与溶液中离子的浓度有关,而且与溶液的pH 值有关,即电极电势与浓度和酸度成函数关系。如果指定溶液的浓度,则电极电势只与溶液的pH 值有关。在改变溶液的pH 值时测定溶液的电极电势,然后以电极电势对pH 作图,这样就可得到等温、等浓度的电势-pH 曲线。 对于Fe 3+/Fe 2+-EDTA 配合体系在不 同的pH 值范围内,其络合产物不同,以Y 4-代表EDTA 酸根离子。我们将在三个不同pH 值的区间来讨论其电极电势的变化。 ①高pH 时电极反应为 Fe(OH)Y 2-+e FeY 2-+OH - 根据能斯特(Nernst)方程,其电极电势为: (标准) Φ=Φ-- 2--2Fe(OH)Y OH FeY ln a a a F RT ? 稀溶液中水的活度积K W 可看作水的离子积,又根据pH 定义,则上式可写成 (标准) Φ=Φ-b 1-F RT m m F RT 303.2ln -2-2Fe(OH)Y FeY -) ()(pH 其中1b =) )(()(ln 22--?Y OH Fe Kw FeY F RT γγ。 在EDTA 过量时,生成的络合物的浓度可近似看作为配制溶液时铁离子的浓度。即 m FeY 2- ≈m Fe 2+ 。在m Fe 2+ / m Fe 3+ 不变时,Φ与pH 呈线性关系。如图中的 cd 段。 ②在特定的PH 范围内,Fe 2+和Fe 3+能与EDTA 生成稳定的络合物FeY 2-和FeY -,其电极反应为 FeY - +e FeY 2- 其电极电势为 (标准) Φ=Φ-- 2FeY FeY ln a a F RT - 式中,(标准)Φ为标准电极电势;a 为活度,a =γ·m (γ为活度系数;m 为质量摩尔浓度)。

《传热学》实验 球体法测粒状材料的导热系数

《传热学》实验球体法测粒状材料的导热系数 一、实验目的和要求 1、巩固稳定导热的基本理论,学习用圆球法测定疏散物质的导热系数的实验方法 和测试技能。 2、实际测定被试材料的导热系数λ。 m 3 、绘制出材料的导热系数λ与温度t的关系曲线。 m 二、实验原理 圆球法测定物质的导热系数,就是应用沿球壁半径方向三向度稳定导热的基本原理来进行对颗粒状及粉末状材料导热系数的实验测定。 导热系数是一个表征物质导热能力大小的物理量,对于不同物质,导热系数是不相同的,对于同一种物质,导热系数会随着物质的温度、压力、物质的结构和重 度等有关因素而变异。各种不同物质导热系数都是用实验方法来测定的;几何形状 不同的物质可采用不同的实验方法,圆球法是用来疏散物质导热系数的实验方法之 一。 圆球法是在两个同心圆球所组成的夹层中放入颗粒状或粉末状材料,内球为热球,直径为d表面温度为t,外球(球壳)为冷球,直径为d壁面温度为t。根DDvd 据稳态导热的付立叶定律,通过夹层试材的导热量为: ,tt12 [w] ,,111(,)2,,ddm12

在实验过程中,测定出Φ、t 和t,就可以根据上式计算出材料的导热系数:12 ,(d,d)21, [w/m ?] ,m,2dd(t,t)1212 改变加热量Φ就可以改变避面温度t 和t,也就可以测出不同的温度下试材的12导热系数,这样就可以在t 和t坐标中测出一条t 和t的关系曲线,根据这条曲1212线即可求出λ=f(t)的关系式。 三、实验装置及测量仪表 球体法实验装置的系统图如图4-1所示,整个测试系统包括:圆球本体装置、交流调压器、交流稳压电源、0.5级瓦特表、UJ33a型电位差计和热电偶转换开关盒等。 圆球本体的示意图如图4-2所示,它由铜质热球球体、冷球球壳、保温球盒和泡沫塑料保温套等组成。热球球体由塑料支架架设在整个圆球本体的中央,球体内 ;冷球球壳由两个半球球壳合成,球壳内空,为恒温水套,通以恒温水槽的D 部埋设加热元件,通电后是球体加热,球体表面设有热电偶1,用以测量热球表面循环水流,球壳内壁面设有热电偶2,用以测量冷球壳壁温度t;热球和冷球球壳2温度t 之间的夹层中,可放入疏散颗粒体或粉末体试材料,热球发出的热量将全部通过被 试验材料传导的冷球球壳,并由球壳中的循环水带走。冷球球壳外围的保温球壳也 是通过恒温水槽的循环水流,保温球壳之外还设有泡沫塑料保温套。保温球壳和泡 沫保温套的作用是用以提高测试的精度。

气液平衡-实验报告解读

化工专业实验报告 实验名称:二元气液平衡数据的测定 实验人员: 同组人 实验地点:天大化工技术实验中心 606 室 实验时间: 2015年4月20日下午14:00 年级: 2014硕;专业:工业催化;组号: 10(装置2);学号:指导教师:______赵老师________ 实验成绩:_____________________

一.实验目的 (1)测定苯-正庚烷二元体系在常压下的气液平衡数据; (2)通过实验了解平衡釜的结构,掌握气液平衡数据的测定方法和技能; (3)应用 Wilson 方程关联实验数据。 二.实验原理 气液平衡数据是化学工业发展新产品、开发新工艺、减少能耗、进行三废处理的重要基础数据之一。化工生产中的蒸馏和吸收等分离过程设备的改造与设计、挖潜与革新以及对最佳工艺条件的选择,都需要精确可靠的气液平衡数据。这是因为化工生产过程都要涉及相间的物质传递,故这种数据的重要性是显而易见的。 平衡数据实验测定方法有两类,即间接法和直接法。直接法中又有静态法、流动法和循环法等。其中循环法应用最为广泛。若要测得准确的气液平衡数据,平衡釜是关键。现已采用的平衡釜形式有多种,而且各有特点,应根据待测物系的特征,选择适当的釜型。用常规的平衡釜测定平衡数据,需样品量多,测定时间长。所以,本实验用的小型平衡釜主要特点是釜外有真空夹套保温,釜内液体和气体分别形成循环系统,可观察釜内的实验现象,且样品用量少,达到平衡速度快,因而实验时间短。 以循环法测定气液平衡数据的平衡釜类型虽多,但基本原理相同,如图 1 所示。当体系达到平衡时,两个容器的组成不随时间变化,这时从 A 和 B 两容器中取样分析,即可得到一组平衡数据。 图1 平衡法测定气液平衡原理图 当达到平衡时,除了两相的压力和温度分别相等外,每一组分的化学位也相等,即逸度相等,其热力学基本关系为:

电动势的测定及应用[实验报告]

实验报告 电动势的测定及其应用 一.实验目的 1.掌握对消法测定电动势的原理及电位差计,检流计及标准电池使用注意事项及简单原理。 2.学会制备银电极,银~氯化银电极,盐桥的方法。 3.了解可逆电池电动势的应用。 二.实验原理 原电池由正、负两极和电解质组成。电池在放电过程中,正极上发生还原反应,负极则发生氧化反应,电池反应是电池中所有反应的总和。 电池除可用作电源外,还可用它来研究构成此电池的化学反应的热力学性质,从化学热力学得知,在恒温、恒压、可逆条件下,电池反应有以下关系: △r G m =-nFE 式中△r G m 是电池反应的吉布斯自由能增量;n 为电极反应中电子得失数;F 为法拉第常数;E 为电池的电动势。从式中可知,测得电池的电动势E 后,便可求得△r G m ,进而又可求得其他热力学参数。但须注意,首先要求被测电池反应本身是可逆的,即要求电池的电极反应是可逆的,并且不存在不可逆的液接界。同时要求电池必须在可逆情况下工作,即放电和充电过程都必须在准平衡状态下进行,此时只允许有无限小的电流通过电池。因此,在用电化学方法研究化学反应的热力学性质时,所设计的电池应尽量避免出现液接界,在精确度要求不高的测量中,常用“盐桥”来减小液接界电势。 为了使电池反应在接近热力学可逆条件下进行,一般均采用电位差计测量电池的电动势。原电池电动势主要是两个电极的电极电势的代数和,如能分别测定出两个电极的电势,就可计算得到由它们组成的电池电动势。 附【实验装置】(阅读了解) UJ25型电位差计 UJ25型箱式电位差计是一种测量低电势的电位差计,其测量范围为 mV .V 1171-μ(1K 置1?档)或 mV V 17110-μ(1K 置10?档) 。使用V V 4.6~7.5外接工作电源,标准电池和 灵敏电流计均外接,其面板图如图5.8.2 所示。调节工作电流(即校准)时分别调节1p R (粗调)、2p R (中调)和3p R (细 调)三个电阻转盘,以保证迅速准确地调 节工作电流。n R 是为了适应温度不同时标准电池电动势的变化而设置的,当温度不同 图5.8.2 UJ31型电位差计面板图 + - -++- + -标准 检流计 5.7-6.4V 未知1 未知2 K 1 R P2 R P3 R P1 R n K 2 I II III 1.01×10 ×1 未知1 未知2 标准断断粗 中 细 ×1 ×0.1 ×0.001 粗细短路

液相活度系数方程总结

液相活度系数方程总结 1、Wohl 模型 Wohl 模型是一个普通模型,可以概括Margules 方程(1895年)、Van Laar 方程(1910年)以及Scatchard-Hamer 方程(1953年)。 Whol 在1946年提出将超额自由焓E G 表示为有效容积分率的函数,并展开成为Mc Laurin 级数: +++=∑∑∑∑∑∑∑∑∑∑i j k l ijkl l k j i i j k ijk k j i i j ij j i i i i E a Z Z Z Z a Z Z Z a Z Z x q RT G (1-1) 式中:i Z ——混合物中i 组分的有效容积分率:1=? = ∑∑i i i i i i i i Z x q x q Z ; i x ——i 组分的摩尔分数; i q ——i 组分的有效摩尔体积; ij a ——i-j 两组分之间的交互作用参数,称为二尾标交互作用参数; ijk a ——i-j-k 三组分之间的交互作用参数,称为三尾标交互作用参数; ijkl a ——i-j-k-l 四组分之间的交互作用参数,称为四尾标交互作用参数; 略去四分子以上集团相互作用项,将式(1-1)用于二元系统时变为: () 1222 2111222112212211332a Z Z a Z Z a Z Z x q x q RT G E ++=+ (1-2) 令: ()12212132a a q A += ()11212232a a q B += 代入上式,根据() j n p T i E i n RT nG ,,ln ? ?? ?????=γ将式(1-2)对i n 进行偏微分,经整理得: ??? ?? ????? ??-+=A q q B Z A Z 2112 2 12ln γ (1-3a ) ??? ?? ????? ??-+=B q q A Z B Z 1222122ln γ (1-3b ) 式(1-3)中包括三个参数A 、B 与12q q ,其值必须用实验值来确定。 2、Scatchard-Hamer eq . 用纯组分的摩尔体积l V 1及l V 2代替有效摩尔体积1q 及2q ,则式(1-3a )和式(1-3b )就变为:

强电解质溶液的活度与活度系数

5.3 强电解质溶液的活度和活度系数 5.3.1 电解质溶液的活度和活度系数 对于非理想溶液,其溶质的化学位可表示为: m a RT ln +=*μμ,m a m γ= m a — 活度(有效浓度) * μ — 标准状态时的化学位,即1a m =时的化学位。 m — 溶质的质量摩尔浓度 γ — 活度系数 对于强电解质溶液,由于电解质在溶剂中解离为离子,故m a m γ=关系不适用于溶质的整体,但对离子本身仍然适用,即: +++γ=m a ,---γ=m a 设某电解质 -+ννA M 在溶液中电离: --++ννν+ν→-+z z A M A M 这时:+* +++=a RT ln μμ, -* --+=a RT ln μμ 而: --++*+=+=μνμνμμa RT ln 又: * --* ++* μν+μν=μ 故: -+ν -ν +?=a a a 因为溶液是电中性的,各种离子的γ、m 无法通过实验测定,而引出“平均离子活度”的概念。 令: -+ν+ν=ν 定义:平均离子活度 ( )νν- ν+ ±-+?=1a a a 平均离子活度系数 ( ) ν ν- ν+±-+γ ?γ =γ1 平均离子浓度 ( ) ν ν- ν+ ±- +?=1m m m 又: m m ++ν=,m m --ν= 得: ① ±±±γ=m a ② ( )ν ν - ν+ν±- +ν?νγ=m a

表格1 298K 时一些1-1价型电解质溶液中TlCl 饱和溶液的±γ 5.3.2 离子强度 由下表可知,当21m m +<0.021 kg mol -?时,TlCl 的±γ只与(21m m +)有关而 与外加电解质的种类无关。1921年,路易斯(Lewis )等人在研究了大量不同离子价型电解质对活度系数的影响之后,总结出一个经验规律:在稀溶液中,电解质离子的平均活度系数±γ与溶液中总的离子浓度和电荷有关,而与离子的种类无关。总的离子浓度和电荷对±γ的影响可用公式描述: I z z A -+±-=γlg ——德拜-休克尔(Debye-H ückel )极限公式 A 是一个只与温度和溶剂性质有关的常数,对于25℃的水溶液,A=0.509kg/mol ;+z 和-z 分别为正负离子的价数;I 为离子强度,它被定义为 ∑= i i i z m I 221 i m 和i z 分别为离子i 的质量摩尔浓度和价数。上述活度系数计算公式适用于I <0.01的 稀溶液。对于离子强度更大的浓电解质溶液上述公式需要校正。 5.3.3 溶解度法测定溶液中电解质的±γ 设难溶盐-+ννA M 的饱和溶液存在着下面的平衡: ()s -+ννA M →--+++z z A M νν () () ()() ν ν ν ννγ?? ? ??===±±±-+- + m m a a a K sp

原电池电动势的测定实验报告

实验九 原电池电动势的测定及应用 一、实验目的 1.测定Cu -Zn 电池的电动势和Cu 、Zn 电极的电极电势。 2.学会几种电极的制备和处理方法。 3.掌握SDC -Ⅲ数字电位差计的测量原理和正确的使用方法。 二、实验原理 电池由正、负两极组成。电池在放电过程中,正极起还原反应,负极起氧化反应,电池内部还可以发生其它反应,电池反应是电池中所有反应的总和。 电池除可用来提供电能外,还可用它来研究构成此电池的化学反应的热力学性质。从化学热力学知道,在恒温、恒压、可逆条件下,电池反应有以下关系: G nFE ?=- (9-1) 式中G ?是电池反应的吉布斯自由能增量;n 为电极反应中得失电子的数目;F 为法拉第常数(其数值为965001C mol -?);E 为电池的电动势。所以测出该电池的电动势E 后,进而又可求出其它热力学函数。但必须注意,测定电池电动势时,首先要求电池反应本身是可逆的,可逆电池应满足如下条件: (1)电池反应可逆,亦即电池电极反应可逆; (2)电池中不允许存在任何不可逆的液接界; (3)电池必须在可逆的情况下工作,即充放电过程必须在平衡态下进行,亦即允许通过电池的电流为无限小。 因此在制备可逆电池、测定可逆电池的电动势时应符合上述条件,在精确度不高的测量中,常用正负离子迁移数比较接近的盐类构成“盐桥”来消除液接电位。

在进行电池电动势测量时,为了使电池反应在接近热力学可逆条件下进行,采用电位计测量。原电池电动势主要是两个电极的电极电势的代数和,如能测定出两个电极的电势,就可计算得到由它们组成的电池的电动势。由(9-1)式可推导出电池的电动势以及电极电势的表达式。下面以铜-锌电池为例进行分析。电池表示式为: 4142()()()()Zn s ZnSO m CuSO m Cu s |||| 符号“|”代表固相(Zn 或Cu )和液相(4ZnSO 或4CuSO )两相界面;“‖”代表连通两个液相的“盐桥”;1m 和2m 分别为4ZnSO 和4CuSO 的质量摩尔浓度。 当电池放电时, 负极起氧化反应: { }22()()2Zn Zn s Zn a e ++-+? 正极起还原反应: 22()2()Cu Cu a e Cu s ++-+? 电池总反应为: 2222()()()()Cu Zn Zn s Cu a Zn a Cu s ++++++? 电池反应的吉布斯自由能变化值为: 22ln Cu Zn Zn Cu a a G G RT a a ++?=?- (9-2) 上述式中G ?为标准态时自由能的变化值;a 为物质的活度,纯固体物质的活度等于1,即1Cu Zn a a ==。而在标态时,221Cu Zn a a ++==,则有: G G nFE ?=?=- (9-3) 式中E 为电池的标准电动势。由(9-1)至(9-1)式可得: 22ln Zn Cu a RT E E nF a + + =- (9-4) 对于任一电池,其电动势等于两个电极电势之差值,其计算式为: E ??+-=- (9-5) 对铜-锌电池而言 22,1 ln 2Cu Cu Cu RT F a ??+ + += - (9-6)

活度系数实验报告

实验三 色谱法测定无限稀释溶液的活度系数 一、实验目的 1. 用气液色谱法测定苯和环己烷在邻苯二甲酸二壬酯中的无限稀释活度系数。 2. 通过实验掌握测定原理和操作方法。熟悉流量、温度和压力等基本测量方法。 3. 了解气液色谱仪的基本构造及原理。 二、基本原理 采用气液色谱测定无限稀释溶液活度系数,样品用量少,测定速度快,仅将一般色 谱仪稍加改装,即可使用。目前,这一方法已从只能测定易挥发溶质在难挥发溶剂中的 无限稀释活度系数,扩展到可以测定在挥发性溶剂中的无限稀释活度系数。因此,该法 在溶液热力学性质研究、气液平衡数据的推算、萃取精馏溶剂评选和气体溶解度测定等 方面的应用,日益显示其重要作用。 当气液色谱为线性分配等温线、气相为理想气体、载体对溶质的吸附作用可忽略等 简化条件下,根据气体色谱分离原理和气液平衡关系,可推导出溶质i 在固定液j 上进 行色谱分离时,溶质的校正保留体积与溶质在固定液中无限稀释活度系数之间的关系式。 根据溶质的保留时间和固定液的质量,计算出保留体积,就可得到溶质在固定液中的无 限稀释活度系数。 实验所用的色谱柱固定液为邻苯二甲酸二壬酯。样品苯和环己烷进样后汽化,并与 载气2H 混合后成为气相。 当载气2H 将某一气体组分带过色 谱柱时,由于气体组分与固定液的相互 作用,经过一定时间而流出色谱柱。通 常进样浓度很小,在吸附等温线的线性 围,流出曲线呈正态分布,如右图 所示。 设样品的保留时间为r t (从进样到样品峰顶的时间),死时间为d t (从惰性气体空气 进样到其峰顶的时间),则校正保留时间为: d r r t t t -=' (1)

校正保留体积为: c r r F t V ?=' ' (2) 式中,c F ——校正到柱温、柱压下的载气平均流量,s /m 3 校正保留体积与液相体积l V 关系为: K V V l r ?=' (3) 而 g i l i c c K = (4) 式中,3m 液相体积,--l V ; 分配系数--K ; 3m /mol 样品在液相中的浓度,--l i c ; 3m /mol 样品在气相中的浓度,--g i c 。 由式(3)、(4)可得: l i g i l i V V c c '= (5) 因气相视为理想气体,则 c i g i RT p c = (6) 而当溶液为无限稀释时,则 l i l l i M x c ρ= (7) 式中,气体常数--R ; 3m /kg 纯液体的密度,--l ρ; 固定液的分子量--i M ; 的摩尔分率样品i --i x ; Pa 样品的分压,--i p ; K 柱温,--c T 。

活度系数计算

电解质溶液活度计算理论进展 【摘要】:由于溶液大多数不是理想溶液,需要用活度来代替浓度。活度系数 又是描述活度与浓度的差异程度,因此活度系数的计算对于反应过程相当的重要。近几年,随着活度系数理论模型的不断发展,活度系数的计算方法也在不断的提高、创新。本文在回顾电解质溶液热力学经典理论的基础上,对活度系数计算做了综述。 【关键词】:活度系数活度模型热力学模型活度计算 Electrolyte solution activity in recent years, progress in computational theory Abstract:Solution is not ideal because most of the solution need to replace the concentration of activity. Activity coefficient is described differences in degree of activity and concentration, so the calculation of activity coefficients for the reaction process was very important. In recent years, with the activity coefficient of the continuous development of theoretical models, the calculation of activity coefficients are also constantly improving and innovation. In this paper, recalling the classical theory of thermodynamics of electrolyte solution, based on calculations made on the activity coefficient is reviewed. Keywords: Activity coefficient, Activity Model, Thermodynamic model, Activity calculation 1、活度与活度系数 绝大多数的反应都有溶液(固溶体、冶金熔体及水溶液)参加,而这些溶液经常都不是理想溶液,在进行定量的热力学计算和分析,溶液中各组分的浓度必须代以活度。活度的概念首先由刘易斯(G.N.Lewis)于1907年提出,迅速被应用于电化学,以测定水溶液中电解质的活度系数。活度不能解决冶金熔体的结构问题。它能指出组分在真实溶液与理想溶液中热力学作用上的偏差,但不能提供造成偏差的原因。

01气液平衡实验报告

一、实验目的 1、了解和掌握用双循环汽液平衡器测定二元系统气液平衡数据的方法。 2、了解缔合系统汽—液平衡数据的关联方法,从实验测得的T-p-x-y 数据计算各组分的活度系数。 3、通过实验了解平衡釜的构造,掌握气液平衡数据的测定方法和技能。 4、掌握二元系统气液平衡相图的绘制。 二、实验原理 以循环法测定气液平衡数据的平衡釜类型虽多,但基本原理相同,如图1所示。当体系达到平衡时,两个容器的组成不随时间变化,这时从A和B两容器中取样分析,即可得到一组平衡数据。 图1、平衡法测定气液平衡原理图 当达到平衡时,除了两相的温度和压力分别相等外,每一组分化学位也相等,即逸度相等,其热力学基本关系为: L i f =V i f (1) 0i i i i i py f x ?γ= 常压下,气相可视为理想气体,再忽略压力对流体逸度的影响,0i i p f = 从而得出低压下气液平衡关系式为: i py =0i i i r p x (2) 式中,p ——体系压力(总压); 0i p ——纯组分i 在平衡温度下的饱和蒸汽压,可用Antoine 公式计算; i x 、i y ——分别为组分i 在液相和气相中的摩尔分率; i γ——组分i 的活度系数 由实验测得等压下气液平衡数据,则可用

i y = i i i py x p (3) 计算出不同组成下的活度系数。 本实验中活度系数和组成关系采用Wilson 方程关联。Wilson 方程为: ln γ1=-ln(x 1+Λ12x 2)+x 2( 212112x x Λ+Λ -121221 x x Λ+Λ) (4) ln γ2=-ln(x 2+Λ21x 1)+x 1( 121221x x Λ+Λ -2 12112 x x Λ+Λ) (5) Wilson 方程二元配偶函数Λ12和Λ21采用非线性最小二乘法,由二元气液平衡数据回归得到。 目标函数选为气相组成误差的平方和,即 F =2221211((j m j j y y y y ))计实计实-+-∑= (6) 三、实验装置和试剂 1、实验的装置:平衡釜一台、阿贝折射仪一台、超级恒温槽一台、50-100十分之一的标准温度计一支、0-50十分之一的标准温度计一支、1ml 注射器4支、5ml 注射器1支。 2 、实验的试剂:无水甲醇、异丙醇。 四、实验步骤 1、开启超级恒温槽,调温至测定折射率所需温度25℃或30℃。 2、测温套管中倒入甘油,将标准温度计插入套管中,并将其露出部分中间

物理化学-实验十四:电解质溶液活度系数的测定

实验十四电解质溶液活度系数的测定 一、实验目的 1.掌握用电动势法测定电解质溶液平均离子活度系数的基本原理和方法。 2.通过实验加深对活度、活度系数、平均活度、平均活度系数等概念的理解。 3.学会应用外推法处理实验数据。 二、基本原理 活度系数是用于表示真实溶液与理想溶液中任一组分浓度的偏差而引入的一个校正因子,它与活度a、质量摩尔浓度m之间的关系为: (1) 在理想溶液中各电解质的活度系数为1,在稀溶液中活度系数近似为1。对于电解质溶液,由于溶液是电中性的,所以单个离子的活度和活度系数是不可测量、无法得到的。通过实验 只能测量离子的平均活度系数,它与平均活度、平均质量摩尔浓度之间的关 系为: (2) 平均活度和平均活度系数测量方法主要有:气液相色谱法、动力学法、稀溶液依数性法、电动势法等。本实验采用电动势法测定ZnCl2溶液的平均活度系数。其原理如下: 用ZnCl2溶液构成如下单液化学电池: 该电池反应为: 其电动势为:(3) (4) 根据:(5) (6) (7) 得:(8) 式中:,称为电池的标准电动势。 可见,当电解质的浓度m为已知值时,在一定温度下,只要测得E 值,再由标准电极

电势表的数据求得,即可求得。 值还可以根据实验结果用外推法得到,其具体方法如下: 将代入式(8),可得: (9) 将德拜-休克尔公式:和离子强度的定义:代入到式(9),可得: (10) 可见,可由图外推至时得到。因而,只要由实验测出用不同浓度的ZnCl2溶液构成前述单液化学电池的相应电动势E值,作图,得到一条 曲线,再将此曲线外推至m=0,纵坐标上所得的截距即为。 三、仪器及试剂 仪器LK2005A型电化学工作站(天津兰力科化学电子公司),恒温装置一套,标准电池,100 ml容量瓶6只,5 ml和10 ml移液管各1支,250 ml和400 ml 烧杯各 1 只,Ag /AgCl电极,细砂纸。 试剂ZnCl2(A.R),锌片。 四、操作步骤 1.溶液的配制: 用二次蒸馏水准确配制浓度为 1.0 mol.dm-3的ZnCl2溶液250ml。用此标准浓度的ZnCl2溶液配制0.005、0.01、0.02、0.05、0.1 和0.2 mol.dm-3标准溶液各100 ml。 2.控制恒温浴温度为25.0 ± 0.2 ℃。 3。将锌电极用细砂纸打磨至光亮,用乙醇、丙酮等除去电极表面的油,再用稀酸浸泡片刻以除去表面的氧化物,取出用蒸馏水冲洗干净,备用。 4.电动势的测定:将配制的ZnCl2标准溶液,按由稀到浓的次序分别装入电解池恒温。将锌电极和Ag/AgCl电极分别插入装有ZnCl2溶液的电池管中,用电化学工作站分别测定各种在ZnCl2浓度时电池的电动势。 5.实验结束后,将电池、电极等洗净备用。

电动势的测定及其应用(实验报告)

实验报告电动势的测定及其应用 一.实验目的 1.掌握对消法测定电动势的原理及电位差计,检流计及标准电池使用注意事项及简单原理。 2.学会制备银电极,银~氯化银电极,盐桥的方法。 3.了解可逆电池电动势的应用。 二.实验原理 原电池由正、负两极和电解质组成。电池在放电过程中,正极上发生还原反应,负极则发生氧化反应,电池反应是电池中所有反应的总和。 电池除可用作电源外,还可用它来研究构成此电池的化学反应的热力学性质,从化学热力学得知,在恒温、恒压、可逆条件下,电池反应有以下关系: △r G m=-nFE 式中△r G m是电池反应的吉布斯自由能增量;n为电极反应中电子得失数;F为法拉第常数;E为电池的电动势。从式中可知,测得电池的电动势E后,便可求得△r G m,进而又可求得其他热力学参数。但须注意,首先要求被测电池反应本身是可逆的,即要求电池的电极反应是可逆的,并且不存在不可逆的液接界。同时要求电池必须在可逆情况下工作,即放电和充电过程都必须在准平衡状态下进行,此时只允许有无限小的电流通过电池。因此,在用电化学方法研究化学反应的热力学性质时,所设计的电池应尽量避免出现液接界,在精确度要求不高的测量中,常用“盐桥”来减小液接界电势。 为了使电池反应在接近热力学可逆条件下进行,一般均采用电位差计测量电池的电动势。原电池电动势主要是两个电极的电极电势的代数和,如能分别测定出两个电极的电势,就可计算得到由它们组成的电池电动势。 附【实验装置】(阅读了解) UJ25型电位差计

UJ25型箱式电位差计是一种测量低电势的电位差计,其测量范围为 mV .V 1171-μ(1K 置1?档)或 mV V 17110-μ(1K 置10?档) 。使用V V 4.6~7.5外接工作电源,标准电池和 灵敏电流计均外接,其面板图如图5.8.2所示。调节工作电流(即校准)时分别调节1p R (粗调)、2p R (中调)和3p R (细 调)三个电阻转盘,以保证迅速准确地调节工作电流。n R 是为了适应温度不同时标准电池电动势的变化而设置的,当温度不同引起标准电池电动势变化时,通过调节n R ,使工作电流保持不变。x R 被分成Ⅰ(1?)、Ⅱ(1.0?)和Ⅲ(001.0?)三个电阻转盘,并在转盘上标出对应x R 的电压值,电位差计处于补偿状态时可以从这三个转盘上直接读出未知电动势或未知电压。左下方的“粗”和“细”两个按钮,其作用是:按下“粗”铵钮,保护电阻和灵敏电流计串联,此时电流计的灵敏度降低;按下“细”按钮,保护电阻被短路,此时电流计的灵敏度提高。2K 为标准电池和未知电动势的转换开关。标准电池、灵敏电流计、工作电源和未知电动势x E 由相应的接线柱外接。 UJ25型电位差计的使用方法: (1)将2K 置到“断”,1K 置于“1?”档或“10?”档(视被测量值而定),分别接上标准电池、灵敏电流计、工作电源。被测电动势(或电压)接于“未知1”(或“未知2”)。 (2)根据温度修正公式计算标准电池的电动势)(t E n 的值,调节n R 的示值与其相等。将2K 置“标准”档,按下 “粗”按钮,调节1p R 、2p R 和3p R ,使灵敏电流计指针指零,再按下 “细”按钮,用2p R 和3p R 精确调节至灵敏电流计指针指零。此操作过程称为“校准”。 (3) 将2K 置“未知1”(或“未知2”)位置,按下“粗”按钮,调节读数转盘Ⅰ、 图5.8.2 UJ31型电位差计面板图 + - -++- + -标准 检流计 5.7-6.4V 未知1 未知2 K 1 R P2 R P3 R P1 R n K 2 I II III 1.01×10 ×1 未知1 未知2 标准断断粗 中 细 ×1 ×0.1 ×0.001 粗细短路

保温材料检测作业指导书

1.1目的:通过对建筑节能保温材料的密度、压缩强度、导热系数的检验及分级来判定是否符合工程设计要求。 1.2范围:适用于泡沫塑料、绝热用模塑聚苯乙烯泡沫塑料、绝热用挤塑聚苯乙烯泡沫塑料、建筑物隔热用硬质聚氨酯泡沫塑料的导热系数、密度、压缩强度以及胶粉聚苯颗粒保温浆料的导热系数、干表观密度、抗压强度进行检验及分级。 2.检测依据标准 《泡沫塑料及橡胶表观密度的测定GB/T6343-2009》 《硬质泡沫塑料压缩性能的测定GB/T8813-2008》 《绝热材料稳态热阻及有关特性的测定防护热板法GB/T10294-2008》 《绝热用模塑聚苯乙烯泡沫塑料GB/T10801.1-2002》 《绝热用模塑聚苯乙烯泡沫塑料GB/T10801.1-2002》 《胶粉聚苯颗粒外墙外保温系统JG158—2004》 《外墙外保温工程技术规程JGJ144—2004》 3.检测仪器设备要求及保养维护 3.1 所需仪器设备及其参数: 电子天平:最大称量100g,精度0.001g; 游标卡尺:0~125mm 精度0.02mm; 烘箱:灵敏度±2℃; 天平:精度0.01g; 干燥器:直径大于300mm; 钢板尺:500mm;精度1mm; 组合式无底金属试模:300×300×30mm; 玻璃板:400×400×(3~5)mm; 压缩试验机:最大试验力 10kn, 试验力测量误差±1%,位移测量误差小于±5%,试验力等速率控制精度±0.5%设定值,恒试验力、恒位移速 率控制精度±1%设定值; 导热系数测定仪:试件规格:(计量)150×150(mm)-(防护)300×300(mm),试 件厚度:~37.5mm,导热系数测定范围:0.01~1W/(m·k), 冷板温度:-3~90℃,热板温度:≤120℃,测试重复性:≤ 1%。 材料切割机:最大通过材料厚度:200mm;最大成型尺寸:(长×宽×高)600× 600×200(mm) 3.2 仪器设备的计量要求 设备应有产品合格证,检定/校准有效期内计量证书。 3.3仪器维护保养,自检要求 3.3.1电子万能试验机维护保养要求 计算机要保持干燥,防尘网需要保持清洁。电源保证接触良好。检查各连线是否完好。

实验二、气相色谱法测定无限稀释活度系数

实验二气相色谱法测定无限稀释活度系数 一、实验目的 1、掌握用气相色谱法测定无限稀释活度系数的原理和方法。 2、了解实验的气路流程和色谱仪的操作方法。 3、掌握皂膜流量计测气体流速的方法以及体积流量的校正。 二、实验内容 1、正确操作色谱仪。 2、气相色谱法测定无限稀释活度系数。 3、用皂膜流量计测定气体流速并对体积流量进行校正。 三、实验仪器设备和材料清单 1、实验试剂; 硅烷化201红色担体(60-80目),作担体。 邻苯二甲酸二壬酯(色谱纯),作固定液,是二元体系中的溶剂相。 苯(分析纯),是二元体系中的溶质相。 环己烷(分析纯),是二元体系中的溶质相。 2、实验仪器。 秒表3只,皂膜流量计一个,5μl微量进样器2个,温度计2支(精度1/10 ℃)。 上海分析仪器厂GC102M 型气相色谱仪一台。 四、实验要求 1、要求掌握气相色谱测定无限稀释活度系数的原理和方法。; 2、要求学生能适当了解一些科研过程,培养其发现问题、分析问题、解决问题的能力; 3、要求学生能独立操作每一个实验步骤,了解和掌握其相关的原理,培养学生熟练的实验操作。 五、实验部分 1、实验原理 无限稀释活度系数是推算二元及多元体系汽液平衡数据的重要参数。它通常是用汽液平衡器测出其平衡组成,然后用计算作图法外推得出。这种方法比较繁琐,而且外推的任意性很大,不易准确。本实验采用气相色谱法测定无限稀释活度系数,此方法简单方便、快速,使用样品量少,纯度要求不高。 无限稀释活度系数与调整保留值的关系:在气相色谱分离过程中,固定液起到溶剂的作用。当样品组分(溶质)进入色谱柱后,因载气(流动相)流动,样品组分在固定相和载气中反复多次分配,达到完全分离。载气流携带不同组分先后进入检测器,产生一定的信号,经色谱工作站处理得到如图1所示的“色谱图”。

温度、配合物对活度与活度系数的影响

温度、配合物对活度与活度系数的影响 一、温度对活度与活度系数的影响 通常给出的活度系数是在25℃(298K)时的值,对于其他温度下的活度系数,Meissner 提出了如下方程修正q o值 (1) 式中,△t=t-25;a和b的值对硫酸盐分别为-0.0079和-0.0029,对其他电解质为-0.005和-0.0085。此外,式(2)中的Г值必须改变以修正含有依赖温度的变量D的德拜-体克尔参数。 (2) 二、配合物对活度与活度系数的影响 (一)配合物的形成 德拜-休克尔极限定律对浓度大于10-3mol∕L的强电解质溶渣发生的偏差表明,在这些溶液中,离子间的静电引力不再在决定G ex值时占主导地位。在扩展德拜-休克尔极限定律的各种尝试中,虽然以不同的方式考虑了短程作用,但它们都假定没有因离子间的电子作用形成化学键,也没有新的物质生成。由于目前尚无方法计算这类电子间作用对G ex值的影响,只能作这种假定。对于溶液中各组分之间,不论是离子与离子之间或者离子与中性分子之间反应生成的新化合物,都无法计算其生成自由能。而这类反应对于过程化学和湿法冶金都是十分重要的,为了处理这些反应,过程化学和湿法冶金学家则从另一个角度,即将它们作为化学平衡来处理,用实验测得的平衡常数来定量描述它们。 考虑含一价阴离子L-的溶液中的一个z+价的金属离子M z+。它们间发生作用时假定L -是作为配位体,产物称为配合物。配合物分级形成,每一级都由一个平衡常数控制: 与M z+形成配合物的L-离子的最大数目n称为M z+的配位数。总的平衡常数β(称为不稳定常数)为 一般形式,累计不稳定常数 βn=K1K2K3…Kn 若配位体为不带电荷的分子,如氨,平衡亦按同样的方式处理,则每个配合物的电荷数为z+。

活度系数测定

物理化学实验报告 姓名:吴菲 分数: 实验日期:2013.11.11 温度:19℃ 大气压:102.23Kpa NaCl 在H2O 中活度系数测定 一.实验目的 1.了解电导法测定电解质溶液活度系数的原理。 2.了解电导率仪的基本原理并熟悉使用方法。 二.实验原理 由Dehye-Hiicker 公式 lgf ±= — A ·|Z +·Z -|I 1+Ba o I (1) 和Osager-Falkenhangen 公式 λ=λ0 - (B 1·λ0+B 2)I 1+Ba o I (2) 可以推出公式 lgf ±=A ·|Z +·Z -| B 1 λ0+B 2 (λ-λ0) (3) 令a= A ·|Z +·Z -|B 1 λ0+B 2 (λ-λ0) 则: lgf ±=a ·(λ-λ0) (4) 其中:A= 1.8246×106 (εT )3/2 ; B 1 = 2.801×106|Z +·Z -|·q (εT )3/2·(1+I) B 2= 41.25(|Z +|+|Z -|) η(εT)1/2 ε—溶剂的介电常数; η—溶剂的粘度; T —热力学温度; λ—电解质无限稀释摩尔电导率; I —溶液的离子强度。

q=|Z+·Z-| |Z+|+|Z-|· L ++L - |Z-|·L ++|Z-|L - ; L+0 , L-0是正、负离子的无限稀释摩尔电导率, Z+,Z_是正负离子的电荷数。 对于实用的活度系数(电解质正、负离子的平均活度系数)γ±, 则有f±=γ±(1+0.001vmM) 所以lgγ±=lg f±-lg (1+0.001vmM ) 即lgγ±= a(λ-λ0)- lg (1+0.001vmM )(5) 其中:M—溶剂的摩尔质量(g/mol) ; v一为一个电解质分子中所含正、负离子 数目的总和,即v=v++v- m—为电解质溶液的质量摩尔浓度( mol/kg )。稀溶液中:m≈c. λ=(k液—k剂)×10-3/c 式中:k为溶液或溶剂的电导率(单位一定要用us/cm) 注:(5)式只适用于非缔合式电解质溶液且浓度在0. lmol/kg以下。 混合溶液、溶剂电导率的测定。 三.实验仪器及试剂 仪器:电导率仪,智能数字恒温控制器,玻璃恒温水浴,25ml容量瓶5个,100ml小烧杯5个,玻璃试管6支。 试剂:蒸馏水,NaCl(分析纯)。 四.实验步骤 1.配制不同浓度的NaCl溶液 用分析天平称取适量NaCl粉末于小烧杯中,取少量蒸馏水使其溶解,转移到事先已用蒸馏水润洗过的25ml容量瓶中,小烧杯用蒸馏水润洗2-3次(少量水),转移到容量瓶中,静置,定容,摇匀。 依如上方法,配制0.01—0.05mol/L NaCl溶液各25ml,依次编号1.2.3.4.5。 2.恒温水浴 设置恒温温度为25℃,6支试管中依次取约2/3 水,1-5号溶液,置入恒温水浴中,5分钟恒温后,依次测其电导率。 3.浓度由低到高依次测电导率 ①.开电导率仪电源,温度补偿钮置于25℃刻度线,置于“校正”档,调节常数校正钮, 使仪器显示电导池实际常数。 ②.把“量程”开关扳在“检查”位置,调节“校正”使电表指示满度。 ③.先将电导率仪扳在最大档,然后逐档下降,使指针能居于较中间的位置停止调档。 ④.电极用蒸馏水润洗,擦干,浸入各试管(依次:水,1.2.3.4.5)中。(注意润洗电极)

气相色谱实验报告

气相色谱实验报告 一、实验目的 1、了解气相色谱仪的基本结构及掌握分离分析的基本原理; 2、了解顶空气相色谱法; 3、了解影响分离效果的因素; 4、掌握定性、定量分析与测定的方法。 二、实验原理 气相色谱分离是利用上试样中各组分在色谱柱中的气相和固定相间的分配系数不同,当气化后的试样被载气带入色谱柱进行时,组分就在其中的两相中进行反复多次的分配,由于固定相各个组分的吸附或溶解能力不同,因此各组分在色谱柱中的运行速度就不同。经过一定的柱长后,使彼此分离,顺序离开色谱柱进入检测器。检测器将各组分的浓度或质量的变化转换成一定的电信号,经过放大后在记录仪上记录下来,即可得到各组分的色谱峰。根据保留时间和峰高或峰面积,便可进行定性和定量的分析。 (1)顶空色谱法及其原理介绍 顶空气相色谱是指对液体或固体中的挥发性成分进行气相色谱分析的一种间接测定法,它是在热力学平衡的蒸气相与被分析样品同时存在于一个密闭系统中进行的。这一方法从气相色谱仪角度讲,是一种进样系统,即“顶空进样系统”。其原理如下: ?一个容积为V、装有体积为V o浓度为C o的液体样品的密封容器, 在一定温度下达到平衡时,气相体积为Vg,液相体积为Vs,气相样品浓度为Cg,液相中样品浓度为Cs, 则:平衡常数 K=Cs/Cg 相比β=Vg/Vs V=Vs+Vg=V o+Vg 又因为是密封容器,所以 CoV o=CoVs=CsVs+CgVg= KCgVs+CgVg Co=KCg+CgVg/Vs=KCg+βCg=Cg(K+β) Cg=C o/(K+β)=K’C o 可见,在平衡状态下,气相组成与样品原组成为正比关系,根据这一关系我们可以进行定性和定量分析。 (2)顶空色谱法的优点 顶空色谱进样器可与国内外各种气相色谱仪相连接,它是将液体或固体样品中的挥发性组分直接导入气相色谱仪进行分离和检测的理想进样装置。 它采用气体进样,可专一性收集样品中的易挥发性成分,与液-液萃取和固相萃取相比既可避免在除去溶剂时引起挥发物的损失,又可降低共提物引起的噪音,具有更高灵敏度和分析速度,对分析人员和环境危害小,操作简便,是一种符合“绿色分析化学”要求的分析手段。固相萃取和液相萃取时不可避免地带入共萃取物干扰分析。顶空分析可看成是气相萃取

相关文档
最新文档