脂肪酸

脂肪酸
脂肪酸

脂肪酸

具有长碳氢链和一个羧基末端的有机化合物的总称,和甘油结合生成脂肪,故名;是动物、植物和微生物脂质的基本组成成分。在生物组织和细胞中游离形式的脂肪酸仅存痕量。从各种生物体中已分离出100多种脂肪酸。有些是碳氢链不含双键的饱和脂肪酸,如棕榈酸、硬脂酸等;有些是含有一个或多个双键的不饱和脂肪酸,如油酸、亚油酸等。也有少数脂肪酸含有炔键(-C呏C-)、支链、环化基团或含氧基团。不同脂肪酸之间的区别主要在于碳氢链长度、双键数目、位置和构型,以及其他取代基团的数目和位置。

命名法及缩写符号脂肪酸的名称有俗名和化学系统名称。俗名是根据其原料来源命名,化学系统名称是根据构成脂肪酸的母体化合物(烃类)命名,其缩写符号是先写出脂肪酸的碳原子数目,然后在冒号(:)后写出双键数目,最后在右上角标出双键的几何构型和位置。例如:16:0是具有16个碳原子的饱和脂肪酸。表1和表2列出某些天然存在于生物体内的饱和脂肪酸和不饱和脂肪酸。

结构高等动植物的脂肪酸都是偶数碳原子酸。碳链长度在C12至C28之间,最常见的是C16和C18酸。C12以下的饱和脂肪酸主要存在于哺乳动物乳脂中。高等植物和生活在低温条件下的动物脂质中不饱和脂肪酸含量高于饱和脂肪酸。高等动植物的单烯酸双键位置一般在9~10碳原子之间。多烯酸分子中两个双键之间往往由一个甲烯基隔开,故称为非共轭烯酸(CH3.CH=CH-C啹-CH=CH.COOH)。只有极少数植物脂肪酸含有共轭双键(.CH=CH-CH=CH.),称为共轭烯酸(例如α-桐酸)。高等动植物的不饱和脂肪酸中的双键几乎都是顺式构型,只有极少数有反式双键(例如α-桐酸的△11和△13双键是反式构型)。细菌脂肪酸有20多种,碳链长度在C12~C18之间,绝大多数为饱和脂肪酸和单烯酸的各类异构体;此外还有含甲基的支链酸,羟基脂肪酸,含环丙基的脂肪酸等。列出某些天然存在的饱和脂肪酸。

哺乳动物能在体内全程合成长链饱和脂肪酸,再经去饱和合成油酸;但不能合成亚油酸;而只能从食物中的植物脂质摄取亚油酸。再从亚油酸合成γ-亚麻酸和花生四烯酸。这三种不饱和脂肪酸是维持哺乳动物(包括人类幼儿)正常生长所必需的,故称为“必需脂肪酸”。

理化性质构象饱和脂肪酸和不饱和脂肪酸具有不同的构象。饱和脂肪酸的最稳定的构象是完全伸展的直链形式。不饱和脂肪酸的顺式双键使碳链产生约-30°的弯曲,而反式构型则近似饱和脂肪酸的伸展型(见图)。

熔点脂肪酸的碳链越长熔点越高。不饱和脂肪酸的熔点比同等链长

的饱和脂肪酸的熔点低。脂肪酸的熔点影响酰基脂质的物理特性,动物脂肪如牛油含饱和脂肪酸较多,熔点较高;植物油大豆油)含大量不饱和脂肪酸,故熔点较低。

溶解性质C10以上的长链脂肪酸不溶于水;C2~C8的短链脂肪酸容易与水混合。碳氢链中的甲烯基(-C啹-)不能解离,为非极性的,使得长链脂肪酸在水中溶解度极低。脂肪酸都能溶解于非极性有机溶剂。

羧基的化学反应特性羧基赋予脂肪酸以酸性。脂肪酸与亚硫酰氯(SOCL2)反应生成酰基氯;与碱(氢氧化钠)反应生成脂肪酸盐,即肥皂;与醇类反应的产物为酯;与氨共热产生脂

肪酸的酰胺化合物。脂肪酸甲酯和酰胺都可用于检测脂肪酸的特性。脂肪酸在水中不能完全解离成为离子,是弱酸。

碳氢链的化学反应特性主要在双键部分。卤素(氯、溴、碘)和卤化物与不饱和脂肪酸反应生成卤代脂肪酸,称为加成反应。有适宜的催化剂存在时(如:氧化铂,披钯木炭)能把氢添加到不饱和脂肪酸的双键上使其转变成为饱和脂肪酸,此反应通常称为加氢反应。在活细胞内,脂质的不饱和脂肪酸双键也会发生变化;自(身)氧化作用是个非酶促过程,油脂在空气中缓慢自发地酸败,是由于不饱和脂肪酸分子吸收氧形成过氧化物,再分解成为有臭味的醛或酮。哺乳动物缺乏维生素E则导致脂质内多不饱和脂肪酸的自氧化。生物膜磷脂分子内的多不饱和脂肪酸的自身氧化反应产生劣质的磷脂产物对生物膜有损害作用。另一类型的氧化反应是由脂(肪)氧合酶催化的,称为脂(肪)氧化作用,在不饱和脂肪酸的双键处加氧。豆科植物种子和动物的脂肪组织都有此酶。

工业常用的脂肪酸捕收剂分类

书山有路勤为径,学海无涯苦作舟 工业常用的脂肪酸捕收剂分类 受到限制,目前尚不能大量在工业上使用。(2)氧化石蜡皂。石蜡是含C15 ~ C40 的饱和烃类的混合物,经氧化皂化制得氧化石蜡皂,其成分可大致分为三部分:羧酸。其中饱和的羧酸占80%,羧基酸约占5%~10%。饱和酸烃链的长度,随原料和氧化深度而定。一般原料蜡熔点较低时烃链较短,带支链较多;原料蜡熔点较高时,烃链较长,主要是直链烃。羧酸是起捕收作用的主要成分。未被氧化的高级烷烃或煤油。它们对羧酸起稀释作用,使其在矿浆中易于分散,同时起辅助捕收剂的作用。不皂化的氧化产物。主要是一些极性物质如醇、酮和醛等,它们有起泡作用。氧化石蜡皂的主要缺点是,温度较低时,浮选效果不好,常温下使用时,需要进行乳化。但因石蜡原料易解决,价格也较低,是目前能大量工业应用的一种捕收剂。在氧化铁矿浮选时,常将氧化石蜡皂和粗塔尔油混合使用。粗塔尔油起泡性强,两者混用,取长补短,取得了较好的效果。氧化石蜡皂主要用于浮选氧化铁矿、磷酸盐矿、萤石及一些稀有金属矿石。(3) 塔尔油及塔尔油皂。塔尔油是脂肪酸和树脂酸的混合物,此外还含有一定数量非酸类的中性物。属此类药剂的有粗硫酸盐皂、粗制和精制塔尔油。以木材为原料的碱法造纸过程中,得到一种纸浆废液,经静置分层,将下层黑液分出,上层皂状物称为粗硫酸盐皂,将其进一步净化制成粗制塔尔油,再精制得精制塔尔油。粗制塔尔油为暗黑色液体,经皂化后得到的皂液有水溶性,其成分随原材料的不同而变化。塔尔油中所含脂肪酸以不饱和的油酸、亚油酸和亚麻酸为主。在粗制塔尔油中,起捕收作用的有效成分较粗硫酸盐皂高,而且成分稳定,因而浮选效果好。但由于其中含有相当量的树脂酸,故起泡能力强,用量大时,泡沫过多,造成浮选操作困难指标下降。生产实践中常将它和氧化石蜡皂混用。精制塔尔油是将粗制塔尔

脂肪酸测试

脂肪酸检测--科标检测 通过实验结果,发现在大部分含油脂丰富的食物中,有一半左右的热量是由脂肪和油类提供的。天然的脂肪和油类通常是由一种以上的脂肪酸与甘油形成的各种酯的混合物。脂肪是人体的三大供能营养素之一,对人体有许多重要的生理作用。脂肪的成分中大于90%是脂肪酸,而脂肪酸可分为饱和脂肪酸、单不饱和脂肪酸和多不饱和脂肪酸,其中多不饱和脂肪酸中n-6系和n-3系含有人体的必需脂肪酸,也就是人体无法合成而必须从食物中获取的脂肪酸。所以对食品中脂肪酸的检测十分必要。 在众多脂肪酸检测方法中,GC-MS联用技术发展较早,成熟度较高,其优势在于:微量或痕量分析,灵敏度高,检出限低,分离度好,分辨率高,重复性佳,保留时间稳定;且由于已有成熟的商品化标准谱图数据库,可对未知化合物进行快速检索和鉴定,是一种较为理想的脂肪酸分析技术。 科标化工分析检测中心可依照ISO、ASTM、DIN、GB、HB等标准完成食品、饲料、药品、纺织品、农业、高分子材料、生物产品、建筑材料以及其他产品理化性能、力学性能、电气性能等测试。中心通过了中国国家认证认可监督管理委员会(CMA)实验室认证认可,能出具权威的第三方检测报告。此外,本中心分析能力较强,能对橡胶、塑料、油墨、涂料、各类助剂、胶黏剂、未知物等进行成分分析和鉴定,能对市场上新的产品进行配方分析,为顾客产品研发生产排忧解难。 脂肪酸检测(气相色谱质谱联用法) 一、实验原理 科标中心参照国标及各种文献将脂肪酸衍生化成脂肪酸甲酯,使用十九酸内标,用正己烷提取后稀释后用气相色谱质谱联用仪,外标法结合内标法定量分析。 二、仪器和试剂 Thermo Trace1310气相色谱质谱联用仪,HH-4数显恒温水浴锅;盐酸、甲醇、氯仿为分析纯试剂,正己烷为色谱纯试剂。 三、试验方法 1、样品提取 称取适量样品,加入4mL的甲醇/CH2Cl2(1:3)混合溶液,摇匀;恒温在30℃以下超声抽提10min。取出离心管,放于离心机中离心(1800rpm,10min),收集上清液,重复3次;将萃取液在柔和氮气流下吹干。

我国脂肪酸生产及应用情况

我国脂肪酸生产及应用情况您好,欢迎来到阿里巴巴 商人博客 产品产品公司生意经批发直达求购信息资讯论坛商友 我国脂肪酸生产及应用情况(2011/01/04 16:20)我国脂肪酸生产及应用情况 1脂肪酸的来源 脂肪酸主要是从天然油脂、石蜡氧化或从松木造纸废液中回收妥尔油经精馏制得。石蜡氧化制脂肪酸可以得到天然油脂中不具有的单碳数脂肪。 随着世界各国对生态环境和环境保护的重视,对天然林的保护和禁伐,使得妥尔油资源产量、质量逐年下降。 目前从天然动植物油脂经水解、精馏生产的脂肪酸占脂肪酸总量的4/5以上,是世界脂肪酸的主要来源。 2脂肪酸的分类 一类是饱和脂肪酸,主要应用于乳液聚合和作为橡胶添加剂;在塑料工业中用作稳定剂、增塑剂和润滑剂;其酯类用于食品工业作乳化剂;其含氮衍生物是优良的表面活性剂,广泛应用于纺织、交通、日用化工和塑料等行业。这类脂肪酸主要包括椰油酸、肉豆蔻酸、棕榈酸、硬脂酸等。 另一类是不饱和脂肪酸(包括妥尔油酸),主要用于制取矿石浮选剂、油田化学品和生产涂料用的二聚酸、三聚酸。如油酸、亚油酸、芥酸等。 3脂肪酸原料情况

东南亚地区拥有丰富的棕榈油和椰子油。棕榈仁油和椰子油是提供生产 C8-14脂肪酸的原料,它们主要用于生产表面活性剂。棕榈油是提供生产C16- 18脂肪酸的原料,主要用于生产硬脂酸及盐和酯类、阳离子表面活性剂和塑料 加工助剂等。 我国脂肪酸的生产目前以棕榈油、棉籽油、棉籽油脚和菜籽油为主要原料,所得产品主要为硬脂酸、不饱和酸(以油酸为主)和芥酸等。棕榈油中不饱和酸 含量为42%,棉籽油为64%。菜籽油主要含C16-22脂肪酸,其中芥酸含量很高。 4脂肪酸的品种和用途 油脂中的脂肪酸是脂肪酸同系物的混合物,其组成随油种而变化。混合脂 肪酸经过分离提纯后可以得到各种组成比较单一的脂肪酸,一般有纯度95%、98%和99%如辛酸、癸酸、癸二酸、月桂酸、肉豆寇酸、棕榈酸、硬脂酸、油酸、亚油酸、亚麻油酸、山嵛酸、芥酸等产品。 脂肪酸是重要的有机化工和精细化工的原料,以脂肪酸为原料生产的下游 衍生物,广泛应用于纺织印染、食品、医药、日用化工、石油化工、橡塑加工、采矿、交通运输、铸造、金属加工、油墨、涂料和颜料等各种行业。 5脂肪酸目前应用市场 大约50%左右的脂肪酸用于制皂及直接使用,其中硬脂酸大量用于作橡胶 加工; 大约20%用于生产含氮衍生物,主要是脂肪胺和脂肪酰胺; 约10%用于制成脂肪酸酯类; 其余用于合成油墨、油漆用树脂、二聚酸,以及塑料加工用的润滑剂和稳 定剂、重金属盐等。 6脂肪酸生产工艺

二聚酸综述

二聚酸综述 概述 商品二聚酸,是指以天然油脂的亚油酸为主要组分的直链的不饱和脂肪酸或不饱和脂肪酸酯在白土催化作用下,通过Diels-Alder 环加成反应等自身缩聚的二聚体。它是多种异构体的混合物,其中主要成分是二聚体、少量的三聚体或多聚体以及微量未反应的单体。二聚酸是一种重要的油脂化学品,在涂料、表面活性剂、润滑剂、印刷油墨、热熔胶等工业得到广泛应用。 二聚酸的研究最早始于上世纪20年代。随后美国在1948年以亚麻仁脂肪酸、大豆油脂肪酸为原料实现了二聚酸的工业化生产。美国70年代二聚酸的生产盛极一时,到目前仍保持着稳定上升的势头。如1974年产量为1.6万吨以上,1977年产量为1.8万吨,1979年上升至2万吨。同期日本二聚酸的产量约为美国的三分之一。那时世界二聚酸生产厂家主要集中在美国,有Generai Mill(通用磨坊)公司、Emery、Humko sheffield(埃默里,阿米莎谢菲尔德)化学公司、rizona(亚力桑那)化学公司、Henkel(汉高)公司、union camp(有利凯玛)公司等。随后,英、德等国也相继开展研究与生产。我国于70年代后期开始对二聚酸进行生产开发,最早是在天津市合成材料研究所作为环氧树脂固化剂进行研究,并在天津延安化工厂投入生产。1980年,上海市轻工业研究所与浙江省黄岩化工厂签订了转让二聚酸油墨用聚酰胺树脂和鞋用聚酰胺热熔胶两种产品协议。1982年,浙江省粮科所在海宁斜桥油厂以米糠油为原科生产二聚酸甲酯油墨聚酰胺树脂和

聚酰胺固化剂获得成功。随后,国内一些科研单位和生产厂家参照美国劳特公司二聚酸聚合技术,逐渐摸索出比较合理的工艺路线。特别是本世纪初,二聚酸生产得到快速发展,工艺与装备技术日趋完善。目前国内福建,江西,浙江,江苏,安徽,湖北,河北,四川,山东省等已有10多家油化厂生产二聚酸及其衍生物,产品技术指标和产量逐年提高,应用领域不断扩大。但还是存在规模小、品种少、质量不够稳定等问题,急待进一步提高。工业上用于制备二聚酸的原料,几乎都是十八碳不饱和脂肪酸,如妥尔油脂肪酸、棉油酸、大豆油酸、葵花籽油脂肪酸、低芥酸菜油脂肪酸等。由于原料来源广阔,化学反应性活泼,性能稳定性好,加上本身结构上的特性,使二聚酸成为一种极为有用的化工中间体。二聚酸及其衍生物可以制备聚酰胺树脂、涂料、润滑剂、燃料油添加剂、腐蚀抑制剂等多种重要的精细化工产品。我国近年来植物油脂精炼能力大幅提升,特别是大豆油生产精炼副产品酸化油,产量较大,这为二聚酸的生产提供丰富的原料来源,随着二聚酸应用市场扩大,二聚酸生产的发展前途是广阔的。 2.结构与性能 2.1.结构由于不饱和脂肪酸的聚合是一个复杂的化学反应,参加反应的不饱和脂肪酸分子,可以不同的方式互相结合,因此产生很多的异构体,如双键的顺、反几何异构体,分子“头头”或“头尾”相接造成的组分异构体,线型的或成环的结构异构体等等

我国脂肪酸的生产及主要产品用途

我国脂肪酸的生产及主要产品用途我国脂肪酸的生产及主要产品用途 1 概况: 石油作为有机化工的重要原料,在石油化工行业发展中起着巨大作用,但它终究会枯竭(据专家估计世界石油储量还可开采、应用50年左右)。为了克服石油危机的冲击,保护人类赖以生存的地球生态环境,天然油脂这种可再生资源越来越得到世界各国重视,以天然油脂分离生产的脂肪酸为原料制得的化学制品,因给人高度的安全感而受到消费者的欢迎,油脂化工必将成为石油化工的后起之秀而将其替代。 脂肪酸的来源有动物油、植物油、妥尔油及石蜡氧化生产的合成脂肪酸。油脂中的脂肪酸是脂肪酸同系物的混合物,其组成随油种而变化。混合脂肪酸经过分离提纯后可以得到各种组成比较单一的脂肪酸,如:辛酸、癸酸、月桂酸、肉豆寇酸、棕榈酸、硬脂酸、亚油酸、芥酸等产品。 脂肪酸是油脂化工的基础原料,以天然脂肪酸为原料衍生的下游产品,广泛用于纺织、食品、医药、日用化工、石油化工、橡塑、采矿、交通运输、铸造、金属加工、油墨、涂料等各种行业。 2 天然脂肪酸情况 2.1 天然脂肪酸

脂肪酸主要是从天然油脂经水解、精馏;石蜡氧化或从松木造纸废液中回收妥尔油经精馏等三种方法制得。从石蜡氧化生产脂肪酸,主要是生产天然油脂中不具有的单碳数脂肪酸。随着世界各国对生态环境和环境保护的重视,对天然林的保护和禁伐,使得妥尔油资源产量、质量逐年下降。目前从天然油脂经水解、精馏生产的脂肪酸占脂肪酸总量的4/5以上,利用天然动植物油脂及精炼副产品分离提纯的脂肪酸,是世界脂肪酸的主要来源。 2.2 原料资源情况: 在原料资源分布上,东南亚地区拥有“植物油生产王国”的称号,是世界油脂重要的输出地区,有丰富的棕榈油和椰子油。棕榈仁油和椰子油是提供生产C8-14脂肪酸的原料,C8-14主要用于生产表面 活性剂。棕榈油是提供生产C16-18脂肪酸的原料。C16-18主要用 于生产硬脂酸及酯类、脂肪酸盐、阳离子表面活性剂和合成树脂等。 欧洲是从橄榄油、菜籽油、棉籽油、大豆油、妥尔油和动物脂为原料制得C16-22脂肪酸。美国则从大豆油、妥尔油、动物脂、棉籽油、菜籽油和海甘蓝为原料制得C16-22脂肪酸,其中海甘蓝已成为比高芥酸菜籽油芥酸含量更高、性能更好的一种生产芥酸的原料。 我国是天然动植物油脂资源相对匮乏的国家。油脂消费按国际标准推荐量:24Kg/(人、年),世界人均消费量18.6Kg/(人、年),新加坡、我国香港和台湾15Kg/(人、年)。我国食用油消费按国内贸易局 统计:1993年我国人均消费量6.87Kg/(人、年),1998年达8.47Kg/(人、

脂肪酸与人体健康

脂肪酸与人体健康 脂肪酸是具有长碳氢链和一个羧基末端的有机化合物的总称。自然界约有40多种脂肪酸,但能被人体吸收利用的却只有偶数碳原子的脂肪酸,人体所含的脂肪酸一般为14-24个碳原子,只有视网膜例外,含有多达36个碳原子的脂肪酸。 对人体健康有重要影响的脂肪酸 1 单不饱和脂肪酸(MUFA) (MUFA)的碳链中只含有一个不饱和双键,MUFA 可降低血浆总胆固醇(TC)和低密度脂蛋白(LDL)的水平,但甘油三酯(TG)水平不升高,高密度脂蛋白(HDL)水平有所升高。MUFA 在降低冠心病的危险性方面具有十分重要的意义。它主要是对凝血功能,血压,血脂等方面进行调节从而影响着冠心病的发生。 MUFA 对凝血功能的影响 首先是对内皮细胞功能的影响,内皮细胞通过释放舒血管和缩血管物质来调节血管的紧张度,内皮细胞分泌的多种代谢产物与血液凝固、血纤蛋白溶解、黏附等有关。MUFA 可通过影响动脉壁中不同物质对动脉粥样硬化的过程发挥作用。 其次是对凝血功能的影响,血栓形成是冠心病的临床症状之一,而血小板聚集、血液凝固和血纤蛋白溶解共同影响着血栓的形成。MUFA 可减少胶原诱导的血小板聚集而影响凝血过程。 MUFA对血纤蛋白溶解也有影响。在血栓形成过程中,血纤蛋白溶解有重要作用,是通过组织型纤溶解酶原激活剂和抑制剂之间的平衡调节实现的。实验研究结果显示,摄入富含MUFA膳食导致抑制剂血浆浓度降低,提示血纤蛋白溶解活性升高。还有实验表明富含MUFA 的地中海膳食具有防止血栓形成的作用。 MUFA 对血压的影响 MUFA 具有降低血压的作用,收缩压和舒张压均可下降3%~9%。MUFA 能降低冠心病发病的危险性达27%,为高血压的预防提供了一条营养途径。 MUFA 对血脂的影响 LDL 的氧化修饰是动脉粥样硬化的初始原因,当LDL 颗粒中MUFA 含量较高时,其LDL 的氧化敏感性则降低。Baroni等对高胆固醇血症患者的研究中表明:MUFA 含量多的LDL 则不易被氧化修饰。有人认为橄榄油的抗LDL 氧化作用可能与其中含有多酚类化合物有关。有人对花生油的研究证实:富含

气相色谱法测定大豆油中脂肪酸成份

油脂中脂肪酸含量测定 ―――气相色谱法测定大豆油中脂肪酸成分一、目的与要求 油脂是食品加工中重要的原料和辅料,也是食品的重要组分和营养成分。必需脂肪酸是维持人体生理活动的必要条件,人体所必需的脂肪酸一般取自食品用油,即食用油脂。气相色谱法测定油脂脂肪酸组分是现在最常用的方法,也是一些相关标准(如:GB/T17377)规定应用的检测方法。 甲酯化是分析动植物油脂脂肪酸成分的常用的前处理方法,也是常用的标准方法(GB/T 17376-1998)。 本实验要求了解气相色谱法测食用油脂肪酸组成的原理,掌握样品的前处理方法,学习食用油脂中脂肪酸组分的色谱分析技术。 二、原理 本实验甲酯化方法采用国标--GB/T 17376-1998,甘油酯皂化后,释出的脂肪酸在三氟化硼存在下进行酯化,萃取得到脂肪酸甲酯用于气象色谱分析。 样品中的脂肪酸(甘油酯)经过适当的前处理(甲酯化)后,进样,样品在汽化室被汽化,在一定的温度下,汽化的样品随载气通过色谱柱,由于样品中组分与固定相间相互用的强弱不同而被逐一分离,分离后的组分,到达检测器(detceter)时经检测口的相应处理(如FID的火焰离子化),产生可检测的信号。根据色谱峰的保留时间定性,归一法确定不同脂肪酸的百分含量。 三、仪器与试剂 (一)仪器--------------北京普瑞分析仪器有限公司 1.气相色谱仪:GC---7800主机,配氢火焰离子化检测器(FID)。 2.恒温水浴锅 3.移液管 4.胶头滴管 5.小圆底烧瓶 6.冷凝管 7. 样品瓶

(二)试剂:.石油醚、乙醚、氢氧化钾、甲醇均为AR级。 四、实验步骤 (一)样品预处理 酯化测定: 取0.2g油样于10ml容量瓶中,家5.0ml 4:3石油醚—乙醚,使其溶解,在加4.0ml 0.5mol/L氢氧化钾—甲醇溶液,振摇1分钟,放置8min后加水1.0ml,静止20min使之分层,取上层液注入色谱仪,保留时间定性,面积归一化法定量。 测定: (1)气相色谱条件 ①色谱柱:石英弹性毛细管柱,0.32mm(内径)×30m,内膜厚度0.5um。 ②程序升温:150℃保持3min,5℃/min升温至220℃,保持10min;进样口温度250℃;检测器温度300℃。 ③气体流速:氮气:40mL/min,氢气:40mL/min,空气:450mL/min,分流比30﹕1。 ④柱前压:25kpa (2)色谱分析 自动进样,吸取0.4-1μL试样液注入气相色谱仪,记录色谱峰的保留时间和峰高。利用标准图谱确定每个色谱峰的性质(定性),利用软件自带的自动积分方法计算各脂肪酸组分的百分含量。 五、鉴别 1.测定常见植物油主要脂肪酸的构成比并查阅有关资料,经统计学处理,不同的植物油主要脂肪酸的组成大部分有相同之处,但是主要脂肪酸的含量是不相同的。根据脂肪酸组成与含量,即可鉴别油品种类。 2.气相色谱法测定脂肪酸,通常用硫酸—甲醇法,和AOAC-IUPAC 标准法,我们采用了氢氧化钾-甲醇法,经试验3种方法测定结果差异无显著性。

聚甘油脂肪酸酯

聚甘油脂肪酸酯 1产品介绍 1.1聚甘油脂肪酸酯的工艺流程 甘油→ 硬脂酸→ ↓ ↓ ↓ 1.2聚甘油脂肪酸酯的制得 聚甘油脂肪酸酯是由亲水的聚甘油基团和亲油的脂肪酸基团结合而成的酯类产品。聚甘油脂肪酸酯是一组系列产品的总称,根据聚合度、脂肪酸的种类及聚甘油的酯化度的不同组合,可以制成亲油性到亲水性,从液体、半固体到固体的各种产品。所用的脂肪酸可以是硬脂酸、棕榈酸、油酸、月桂酸等脂肪酸。 4物化性能 聚甘油脂肪酸酯为浅黄色至浅棕黄色液体或固体,无味,在水中分散或溶解,可溶于乙醇及热的油

脂中。兼有亲水和亲油的双重特性,具有较宽的乳化功能,其HLB值为1~16,耐酸、耐碱,特别是在PH3~5的酸性环境中,具有很好的乳化性及稳定性。本身安全、无毒。 5作用 乳化作用、分散作用、抗老化作用、结晶调整剂、粘度调节剂等作用。 5.1乳化作用 聚甘油脂肪酸酯可用作水包油型(O/W)、油包水型(W/O)乳液的乳化剂。 ①O/W型乳化剂:亲水型聚甘油脂肪酸酯在中性范围内的乳化性能与高HLB值的蔗糖脂肪酸酯大约相同或略差。当PH值在3.5左右时,聚甘油脂肪酸酯的乳化稳定性比蔗糖脂肪酸酯更好。亲水型聚甘油脂肪酸酯单独使用或与蔗糖脂肪酸酯、山梨醇酐单硬脂酸酯、单甘酯等一起使用时,可以改善O/W 型乳液的稳定性、起泡性和保形性等。 ②W/O型乳化剂:亲油型聚甘油脂肪酸酯与其它W/O型乳化剂一样,对油相较多的体系具有很好的乳化能力。 5.2分散作用 聚甘油脂肪酸酯的表面活性较强,吸附在分散相固体小粒子上,使分散相固体微粒均匀分散且不易沉淀,改善食品的溶解性和分散性,防止结块、结团,可用于咖啡、固体复合调味料食品中。 5.3抗老化作用 聚甘油脂肪酸酯不但有改善淀粉粘度等性质,最主要的是具有防止淀粉老化的作用,因而可用于淀粉类食品的品质改良方面。具体表现:可改善面包、点心类食品的加工质量,能降低淀粉的粘性,提高耐冲击性,增加烘烤容积,使面包变得松软,并改善食品风味和咀嚼口感。 5.4粘度调节剂 巧克力是由可可脂、可可粉、奶粉、蔗糖等制成的。聚甘油脂肪酸酯可改善这些成分的分散性,形成平滑的组织结构,可使油脂与蔗糖间的摩擦力减小,从而使粘度降低、结晶稳定、防止起霜。 5.5结晶调整剂 聚甘油脂肪酸酯具有结晶化抑制作用或具有促进结晶化的效果。如在巧克力的储存过程中,由于温度变化在其表面浮现出油脂或砂糖的结晶,产生白斑或白色混浊状并失去光泽,此现象称之为“巧克力起霜”。如果在可可脂中加入0.5%聚甘油脂肪酸酯,可可脂迅速形成微细结晶,防止结晶生长,从而防止巧克力起霜。 6使用方法 将本品与可溶性粉末(如蔗糖、面粉等)直接混合均匀后,再加溶剂分散或溶解;也可将本品以适量的水或油混合、湿润,再加所需要的水或油,并加热到60~80℃,使其分散或溶解。

必须脂肪酸的作用原来是这样

必须脂肪酸的作用原来是这样 必须脂肪酸是人体维持正常新陈代谢必不可缺的物质,但是它不能够通过自身合成,只能通过食物供给。那么必须脂肪酸对于人体的作用到底有哪些呢?大多数人对此却并不是十分了解。其实必须脂肪酸的作用是有很多的,首先它就是磷脂的重要组成部分。 ★   一、必需脂肪酸 必需脂肪酸指人体维持机体正常代谢不可缺少而自身又不 能合成、或合成速度慢无法满足机体需要,必须通过食物供给的脂肪酸。必需脂肪酸不仅能够吸引水分滋润皮肤细胞,还能防止水分流失。 是磷脂的重要组成部,维持正常视觉功能,它是机体润滑油,

每日至少要摄入2.2-4.4克。必需脂肪酸主要包括两种,一种是ω-3系列的α-亚麻酸,一种是ω-6系列的亚油酸。 必需脂肪酸的数量会影响我们成长的迟缓、生殖的障碍、使我们的肌肤受到损害以及让我们的肾脏、肝脏、神经和视觉方面的多种疾病。 ★二、必需脂肪酸的作用 功能 1.是磷脂的重要组成部分。 2.是合成前列腺素(PG)、血栓素(TXA)及白三烯(LT)等类二十烷酸的前体物质。

3.与胆固醇的代谢有关。 4.参与动物精子的形成。 5.维持正常视觉功能α—亚麻酸的衍生物DHA(二十二碳六烯酸),是维持视网膜光感受体功能所必需的脂肪酸;可以保护皮肤免受射线损伤。 ★动物缺乏 EFA缺乏,动物表现出一系列病理变化。鼠、猪、鸡、鱼、幼年反刍动物缺乏EFA。 主要的表现就是会使皮肤受到损害,出现角质鳞片,导致我们体内水分的损失,毛细血管变得脆弱,免疫力下降,生长受阻,

繁殖力下降,产奶减少,甚至死亡。幼龄、生长迅速的动物反应更敏感。 EFA缺乏的生化水平变化,各种动物都有近似的变化规律,表现出体内亚油酸系列脂肪酸比例下降,特别是一些磷脂的含量减少。ω-6系列的C20:4显著下降,ω-9系列分子内部转化增加,ω-9系列的C20:3显著积累,C20:3ω9/C20:4ω6的比值显著增加,这个比值被称为三烯酸四烯酸比。 研究表明,此比值在一定程度上可反映体内EFA满足需要的程度,故已被广泛地用作判定EFA是否缺乏的指标。比值接近0.4即反映了C18:2ω6能满足最低需要。 用猪做的实验也得到了相似的结果。因此,有人建议把0.4作为确定鼠和其它动物亚油酸最低需要的标识。细胞水平的代谢变化表明,EFA缺乏,影响磷脂代谢,造成膜结构异常,通透性改变,膜中脂蛋白质的形成和脂肪的转运受阻。

欧米伽脂肪酸营养素介绍

欧米伽3脂肪酸营养素介绍 欧米伽3脂肪酸的学名叫做Ω-3脂肪酸,属于多不饱和脂肪酸。欧米伽3家族的主要成员有亚麻酸,EPA和DHA。前者存在于亚麻油(又名胡麻油)中,后二者存在于鱼肉、鱼油、海藻中。人体不能合成ω-3 系列脂肪酸,特别是α- 亚麻酸,必需从食物中摄取。 亚麻籽油 亚麻酸的学名叫做α-亚麻酸(LNA),是欧米伽3家资的老祖母,主要存在 , 型 AA 欧米伽3可以降低坏胆固醇,提高好胆固醇。欧米伽6则是双刃剑,它会同时降低好坏胆固醇,并增加坏胆固醇的氧化。人体同时需要欧米伽3与欧米伽6,用以构造细胞膜,制造前列腺素,并且两者相互制衡。重要的是保持二者之间的动态平衡,就像阴与阳,油门与刹车的调节一样。

国外权威科技文献对欧米伽三(ω—3)的评述世界卫生组织(WHO)和联合国粮农组织(FAO)《人类营养中的脂肪酸》:大量的研究已经显示,摄入欧米伽三(ω—3)脂肪酸可有效降低冠心病的发病危险。欧米伽三(ω—3)对降低血液中甘油三酯和极低密度脂蛋白胆固醇确有实效。 美国遗传营养健康中心主任西莫普勒斯(Artemis Psimopoulos)博士《健康慢性病必需脂肪酸》:欧米伽三(ω—3)脂肪酸具有抗炎、抗血栓形成、抗心律失常、降血脂和舒张血管的特性。欧米伽三(ω—3)脂肪酸这些有益的功效已经在冠心病、高血压、Ⅱ型糖尿病和其它肾病、风湿性关节炎、溃疡性结肠炎、阶段性回肠炎、慢性阻塞性肺病等疾病的辅助治疗中显现出来。 美国哈佛大学医学院附属伯利根妇女医院《脂肪酸对控制内皮白细胞粘连研究》在非人类灵长类动物和其它动物的试验中,凡摄入欧米伽三(ω—3)的都减少了动脉血栓的形 3) : 3)

聚乙二醇脂肪酸酯

zhui2006@https://www.360docs.net/doc/d92844199.html, 聚乙二醇脂肪酸酯合成 —非离子型表面活性剂 【其中设计的合成路线的有关问题,比如催化剂的使用,合成条件的具体控制(温度、PH等),不同底物及浓度对反映的影响,合成之后的检测(可应用薄层色谱),分析其酯化率等问题】 下面是某药厂生产的该化合物的说明书: 【类型】非离子 【规格】品种规格代号聚乙二醇硬脂酸酯乙二醇单硬脂酸酯EGMS 乙二醇双硬脂酸酯EGDS 二乙二醇单硬脂酸酯DEGMS 二乙二醇双硬脂酸酯DEGDS 聚乙二醇400 单硬脂酸酯PEG400MS 聚乙二醇400 双硬脂酸酯PEG400DS 聚乙二醇月桂酸酯聚乙二醇200 单月桂酸酯PEG200ML 聚乙二醇200 双月桂酸酯PEG200DL 聚乙二醇400 单月桂酸酯PEG400ML 聚乙二醇400 双月桂酸酯PEG400DL 聚乙二醇油酸酯聚乙二醇400 单油酸酯PEG400MO 聚乙二醇400 双油酸酯PEG400DO 聚乙二醇600 单油酸酯PEG600MO 聚乙二醇600 双油酸酯PEG600DO 聚乙二醇4000 单油酸酯PEG4000MO 聚乙二醇6000 单油酸酯PEG6000MO PEG-264油酸酯PEG-264油酸酯【技术指标】规格外观(25℃)酸值mgKOH/g 皂化值mgKOH/g 含量(%)pH值(1%水溶液) HLB 值EGMS 微黄至乳白色固体≤ 5 170~190 ≥99% 5.0~7.0 2~4 EGDS 微黄至乳白色固体≤10 185~200 ≥99% 5.0~7.0 1.5 DEGMS 微黄至乳白色固体≤ 5 160~170 ≥99% 5.0~7.0 3.5 DEGDS 微黄至乳白色固体≤10 184~194 ≥99% 5.0~7.0 3 PEG400MS 微黄至乳白色固体≤ 5 75~95 ≥99% 5.0~7.0 10.7~11.7 PEG400DS 微黄至乳白色固体≤10 110~130 ≥99% 5.0~7.0 7.2~8.2 PEG200ML 无色至淡黄色液体≤ 5 140~155 ≥99% 5.0~7.0 9.5 PEG200DL 无色至淡黄色液体≤10 195~210 ≥99% 5.0~7.0 8 PEG400ML 无色至淡黄色液体≤ 5 90~110 ≥99% 5.0~7.0 13 PEG400DL 无色至淡黄色液体≤10 130~155 ≥99% 5.0~7.0 10.5 PEG400MO 琥珀色液体≤ 5 75~95 ≥99% 5.0~7.0 11~12 PEG400DO 琥珀色液体≤10 100~130 ≥99% 5.0~7.0 7~8 PEG600MO 琥珀色液体≤ 5 60~75 ≥99% 5.0~7.0 13~14 PEG600DO 琥珀色液体≤10 85~105 ≥99% 5.0~7.0 10~11 PEG4000MO 黄色固体≤ 5 10~15 ≥99% 5.0~7.0 18~18.5 PEG6000MO 黄色固体≤ 5 5~10 ≥99% 5.0~7.0 19 PEG-264油酸酯淡黄色或黄色液体≤ 2 117~123 ≥99% 5.0~7.0 【性能与应用】规格性能与应用EGMSEGDS 1、溶于异丙醇、甲苯、豆油、矿物油中,具有乳化、增溶、柔软、抗静电等性能。2、纺织、纤维加工、金属加工、化妆品中作乳化剂、分散剂、增溶剂、润滑剂、柔软剂、消泡剂、抗静电剂、珠光剂、制药业中作药物中间体。DEGMSDEGDS 1、不溶于水、乙醇、乙醚中,可分散于热水中。2、制药业中作增溶剂、乳化剂、分散剂、透皮促进剂;纺织业中作乳化剂、遮光剂、珠光剂;食品业中作乳化剂、香料、色素增溶剂、稳定剂、泡沫调节剂。PEG400MS 1、溶于多种有机溶剂,水中呈分散状,具有乳化、增溶、润湿、柔软性能。2、纺织业中作乳化剂、柔软剂、润滑剂;化妆品、金属加工业中作清洁剂、润滑剂、增亮剂;造纸业中,作纸用淀粉涂层增稠剂、稳定剂;水分散纸浸润剂、柔软剂;制药业中作液体药、乳液药乳化剂;亦可作油脂类乳化;

人体必需脂肪酸N3与N6(讲稿)

N-3脂肪酸与人体的健康 艾斯基摩人的启示 1982年一位丹麦生理学家到位于北极的格陵兰岛进行流行病调查时,发现那里的艾斯基摩人与西欧人相比,其心肌梗塞、血栓性疾病等心脑血管疾病的发病率很低,将格陵兰岛上的艾斯基摩人与生活在丹麦的艾斯基摩族人比较,其心脑血管疾病、皮肤病、支气管哮喘等疾病的发病率也有明显的差异。后来美国、日本及我国的流行病学调查也发现,在海岛与生活在沿海地区居民的心脑血管疾病的发病率也比内陆地区的要低。研究发现其根本的原因在于艾斯基摩人大量食用海产及鱼类有关。为什么海产食品起到这些作用呢?科学家们研究发现这是由于海产食物中富含(10%~20%)ω-3PUFA有关。其中EPA、DHA对减少和防治心脑血管疾病尤其重要,因此,有人把DHA暂名为心脑素。 人类膳食结构的重大缺陷 人类膳食的脂肪酸构成是由食物品种和数量决定的,但人类食谱中N-3脂肪酸的含量甚少。远离海洋的大陆国家,由于人们饮食习惯的不同,造成人类多不饱和脂肪酸的摄入严重不平衡,N-3脂肪酸的严重不足。 在中国,由于居民生活水平的不断提高,人们摄取脂肪总量不断增加。然而,摄入多不饱和脂肪酸,尤其是N-3脂肪酸所占的比例在不断下降,这是造成我国心脑血管疾病如高血脂、高血压、脑中风、脑萎缩、肥胖等现代文明疾病不断上升的主要原因。 人体的脂肪及脂肪酸 脂肪是人类生存的营养素之一,人类生存的营养素包括:脂肪、蛋白质、碳水化合物、矿物质、维生素、水和氧气。脂肪酸(FA)的化学结构核心是一连串的碳(C)链。为偶数,一端为羧基,另一端为甲基,其所含的碳原子为ω(Omega)碳原子。碳链结构中不含不饱和链的脂肪酸称为饱和脂肪酸(SFA),含不饱和链的脂肪酸称为不饱和脂肪酸(UFA)。只含有一个或称单个不饱和链的脂肪酸称为单不饱和脂肪酸(MUFA),含有两个以上不饱和链的脂肪酸称为多不饱和脂肪酸(PUFA)。在各自结构中的第一个不饱和链位于碳链中的末端(甲基端)倒数第三位碳原子上,称为ω-3不饱和脂肪酸(ω-3UFA),目前也称N-3不饱和脂肪酸(N-3UFA),而当结构中的第一个不饱和链位于碳链中的末端(甲基端)倒数第六位碳原子上,称为ω-6不饱和脂肪酸(ω-6UFA),目前也称N-6不饱和脂肪酸(N-6UFA)。 饱和脂肪酸(SFA):碳链中不含不饱和链。动物性脂肪酸为饱和脂肪酸,大部份植物性脂肪酸如月桂酸C12:0、兰蔻酸C14:0、棕榈酸C16:0为饱和脂肪酸; 单不饱和脂肪酸(MUFA):碳链中含有一个不饱和链。主要存在牛、羊乳,食用油中;

脂肪酸知识介绍

脂肪酸 定义及相关类型 脂肪酸(fatty acid):是指一端含有一 个羧基的长的脂肪族碳氢链。脂肪酸是最简单 的一种脂,它是许多更复杂的脂的成分。 饱和脂肪酸(saturated fatty acid):不含有—C=C—双键的脂肪酸。 不饱和脂肪酸(unsaturated fatty acid):至少含有—C=C—双键的脂肪酸。 必需脂肪酸(occential fatty acid):维持哺乳动物正常生长所必需的,而动物又不能合成的脂肪酸,如亚油酸,亚麻酸。 三脂酰苷油(triacylglycerol):又称为甘油三酯。一种含有与甘油脂化的三个脂酰基的酯。脂肪和油是三脂酰甘油的混合物。 磷脂(phospholipid):含有磷酸成分的脂。如卵磷脂,脑磷脂。 鞘脂(sphingolipid):一类含有鞘氨醇骨架的两性脂,一端连接着一个长连的脂肪酸,另一端为一个极性和醇。鞘脂包括鞘磷脂,脑磷脂以及神经节苷脂,一般存在于植物和动物细胞膜内,尤其是在中枢神经系统的组织内含量丰富。 鞘磷脂(sphingomyelin):一种由神经酰胺的C-1羟基上连接了磷酸毛里求胆碱(或磷酸乙酰胺)构成的鞘脂。鞘磷脂存在于在

多数哺乳动物动物细胞的质膜内,是髓鞘的主要成分。 卵磷脂(lecithin):即磷脂酰胆碱(PC),是磷脂酰与胆碱形成的复合物。 脑磷脂(cephalin):即磷脂酰乙醇胺(PE),是磷脂酰与乙醇胺形成的复合物。 脂质体(liposome):是由包围水相空间的磷脂双层形成的囊泡(小泡)。 脂肪酸是由碳、氢、氧三种元素组成的一类化合物,是中性脂肪、磷脂和糖脂的主要成分。根据脂肪酸分子结构中碳链的长度分为短链脂肪酸(碳链中碳原子少于6 个),中链脂肪酸(碳链中碳原子6~12 个)和长链脂肪酸(碳链中碳原子超过12 个)三类。一般食物所含的脂肪酸大多是长链脂肪酸。根据碳链中碳原子间双键的数目又可将脂肪酸分为单不饱和脂肪酸(含1 个双键),多不饱和脂肪酸(含1 个以上双键)和饱和脂肪酸(不含双键)三类。富含单不饱和脂肪酸和多不饱和脂肪酸组成的脂肪在室温下呈液态,大多为植物油,如花生油、玉米油、豆油、菜子油等。以饱和脂肪酸为主组成的脂肪在室温下呈固态,多为动物脂肪,如牛油、羊油、猪油等。但也有例外,如深海鱼油虽然是动物脂肪,但它富含多不饱和脂肪酸,如20碳5烯酸(EPA)和22碳6烯酸(DHA),因而在室温下呈液态。下表是一些常用油脂的脂肪酸组成。

必须脂肪酸详解

第一章 现代文明病与脂肪酸 1、现代文明病 随着科技发展与社会进步,一些长期危害人类健康的疾病,如营养不良、恶性传染病已被逐步根除或得到有效控制,人类的寿命明显延长。然而,另一类危害人类健康的疾病,包括肥胖、高血压、高血脂、心脑血管疾病、糖尿病和癌症等现代文明病已成为致命的主要原因。 粗看起来,这些病各有成因,实际上却彼此联系,互为因果。摄入过量脂肪而消耗不足,人就会发胖。肥胖多伴有高血脂。血脂沉积在血管内膜下就是动脉粥样硬化,沉积在肝脏就引起脂肪肝。动脉硬化发生在心脏会引起心绞痛、心肌更塞;发生在脑血管就容易形成脑血栓、引起脑中风。而多发性脑血栓又是早老性痴呆的主要原因。 人类90%的糖尿病属于Ⅱ型,多见于肥胖型中老年人。糖尿病使全身代谢紊乱,以血管受损最重;血管狭窄加上肾缺血必然会引发高血压。脂肪肝极易硬化和癌变,所以肥胖者易患多种癌症。 这就是现代文明病的简单因果关系。 2、“好脂肪”和“坏脂肪” 导致现代文明病的主要原因是营养过剩、脂肪作祟。那么,什么营养过剩?脂肪如何作祟? 人是由亿万个细胞组成的有机整体。在人体需要的各种营养物质中,蛋白质不容易缺乏,几乎任何肉食都可以满足8种必需氨基酸,而且应当限制。正常的饮食维生素、微量元素一般都不缺乏,唯有脂肪易过量,而且是“好脂肪”少“坏脂肪”多。 人类可食用的脂肪是由三分子脂肪酸和一分子甘油组成。其中: 1)、饱和脂肪酸:主要存在于动物油和肉类、蛋类、奶制品中。这类脂肪酸过量,能引起人体血脂增高,引发动脉硬化等心脑血管病变。 2)、单不饱和脂肪酸(油酸、芥酸):在橄榄油、菜籽油、花生油中含量较高,对人体不产生动脉病变,即不明显升高血脂,也不明显降低血脂。 3)、多不饱和脂肪酸:可分为: ω-6系列脂肪酸:以亚油酸为主,可在 人体内转化为花生四烯酸,含量较多的食用油有花生油、玉米油、葵花油、豆油、棉籽油等。 ω-3系列脂肪酸:包括α-亚麻酸、EPA、DHA(深海鱼油的主要成分),其中,α-亚麻酸是ω-3系列脂肪酸的母体,被称为生命核心物质,主要含于亚麻油、紫苏油中。 这两种脂肪酸都是人体必需脂肪酸。 3、认识人体必需脂肪酸

工业脂肪酸的精制工艺技术

工业脂肪酸的精制工艺技术 以动植物油脂或植物油皂脚为原料,采用间歇式或连续式水解得到的粗制脂肪酸都不同程度地存在着色泽问题,很少直接使用,大都要经过活性白土、活性炭等脱色或经过蒸馏精制后才能使用。粗制脂肪酸 的大致组成如下: 溶解气体 0.02% 未分解油脂 2%~3% 水 分 0.5%~1% 高级脂肪酸 95%~98%低分子物质(醛、酮、醇、酸等) 0.5%~1.5% 杂质(不皂化物、色素游离甘油等) 0.1%~0.5% 短链脂肪酸(C8~C10) 0.5%~2.5% 蒸馏的目的是改善脂肪酸的色泽,除去粗酸中的未分解油脂、不皂化物、色素等杂质,通过蒸馏(分馏)操作从混合脂肪酸中得到高纯度的脂肪酸组分,以满足工业上的需要。脂肪酸蒸馏工艺分间歇式和连续式两种,由于间歇蒸馏工艺设备投资少、操作简单,所以被国内大多数脂肪酸生产厂家所采用。国外多采用连续蒸馏工艺。 1、脂肪酸蒸馏的基本原理

脂肪酸蒸馏的基本原理是根据脂肪酸与杂质混合物沸点的不同,控制一定的蒸馏温度,即可将低沸点杂质和高沸点杂质与脂肪酸分离,从 而达到精制的目的。 天然脂肪酸的蒸馏,可以采用间歇式和连续式的装置进行,但不管采用何种形式,首先必须考虑脂肪酸最基本的特性,如沸点、熔点等。在实际生产操作时虽然与手册中所列数据有某些差异,但可以明确哪些脂肪酸可通过分馏来取得,哪些脂肪酸不能取得。如硬脂酸和油酸,由于沸点差太小,很难通过分馏的方法达到分离的目的,因此必须采用其他的方法进行分离。熔点虽与蒸馏没有直接关系,但在分馏单体脂肪酸时通过测定馏出物的中和值和熔点,可以推测产物的纯度,或根据熔点来配制目的混合酸。此外也据此可方便地对冷却器的温度进 行调节。 影响蒸馏脂肪酸质量和得率的因素很多,除蒸馏工艺、设备形式外,与粗脂肪酸的质量及脂肪酸的成分有很大关系。如果原料中未水解完全的重馏分多,则残渣部分将以重馏分含量的1.5~1.8倍增加,因此要求水解度高,粗酸中杂质要少。对脂肪酸成分而言,脂肪酸的双键越多,对蒸馏的条件要求越高,在高温条件下,高度不饱和酸随着在塔中停留时间的延长,发生热氧化、热聚合、催化聚合及键断裂的程度越强。金属离子的存在或酸根(无机)离子存在,对上述反应的影响更为明显。因此,一般要求停留时间不超过10min,饱和脂肪酸的操作温度在260~265℃,当大部分为一个或多个双键时,塔底温

必需脂肪酸原来是这么回事

必需脂肪酸原来是这么回事 人们的身体维持正常的新陈代谢是需要很多营养元素的,有些元素是身体本身就能合成的,而有些是必须通过外界摄取的。必需脂肪酸就是必须通过外界饮食获取的一种维持机体代谢比 不可少的物质,对于人体的健康起着至关重要的作用。 ★  一、必需脂肪酸 必需脂肪酸指人体维持机体正常代谢不可缺少而自身又不 能合成、或合成速度慢无法满足机体需要,必须通过食物供给的脂肪酸。必需脂肪酸不仅能够吸引水分滋润皮肤细胞,还能防止水分流失。 是磷脂的重要组成部,维持正常视觉功能,它是机体润滑油,每日至少要摄入2.2-4.4克。必需脂肪酸主要包括两种,一种是

ω-3系列的α-亚麻酸,一种是ω-6系列的亚油酸。 必需脂肪酸的数量会影响我们成长的迟缓、生殖的障碍、使我们的肌肤受到损害以及让我们的肾脏、肝脏、神经和视觉方面的多种疾病。 ★二、必需脂肪酸的作用 功能 1.是磷脂的重要组成部分。 2.是合成前列腺素(PG)、血栓素(TXA)及白三烯(LT)等类二十烷酸的前体物质。

3.与胆固醇的代谢有关。 4.参与动物精子的形成。 5.维持正常视觉功能α—亚麻酸的衍生物DHA(二十二碳六烯酸),是维持视网膜光感受体功能所必需的脂肪酸;可以保护皮肤免受射线损伤。 动物缺乏 EFA缺乏,动物表现出一系列病理变化。鼠、猪、鸡、鱼、幼年反刍动物缺乏EFA。 主要的表现就是会使皮肤受到损害,出现角质鳞片,导致我们体内水分的损失,毛细血管变得脆弱,免疫力下降,生长受阻,繁殖力下降,产奶减少,甚至死亡。幼龄、生长迅速的动物反应

更敏感。 EFA缺乏的生化水平变化,各种动物都有近似的变化规律,表现出体内亚油酸系列脂肪酸比例下降,特别是一些磷脂的含量减少。ω-6系列的C20:4显著下降,ω-9系列分子内部转化增加,ω-9系列的C20:3显著积累,C20:3ω9/C20:4ω6的比值显著增加,这个比值被称为三烯酸四烯酸比。 研究表明,此比值在一定程度上可反映体内EFA满足需要的程度,故已被广泛地用作判定EFA是否缺乏的指标。比值接近0.4即反映了C18:2ω6能满足最低需要。 用猪做的实验也得到了相似的结果。因此,有人建议把0.4作为确定鼠和其它动物亚油酸最低需要的标识。细胞水平的代谢变化表明,EFA缺乏,影响磷脂代谢,造成膜结构异常,通透性改变,膜中脂蛋白质的形成和脂肪的转运受阻。

关于粗脂肪酸和酸化油

关于粗脂肪酸和酸化油 一、粗脂肪酸是各种油脂精炼时产生的下脚料,是从以下工艺而得。 精炼工业油 各种油脂压榨毛油精炼油 食用油 目前通常的油脂精炼方法分:物理法和化学法。 (气提设备) 第一种气提精炼精炼分二种方法 (物理法) 粗的脂肪酸第二种方法(化学法) PFAD(棕榈油) CFAD(椰子油) 碱炼 PKFAD(棕榈仁油) 酸化 酸化油 粗脂肪酸和酸化油都是我们工厂可用原料。 二、生产甘油和生物柴油时,也会产生脂肪酸和酸化油。 甲醇 精炼油脂酯化粗甘油精甘油 脂肪酸甲酯 (生物柴油) 处理甘油时 酸化油酸化分离出的酯、皂、酸

三、也可以收购国外的地沟油和潲水油。 1、城市废水环保处理废水 地沟油 2、各种宾馆、饭店、肯德基等油煎、炸、煮、蒸食品 潲水油沉降分离退出的各种油脂 或回收的各种油脂 关于粗脂肪醇 一、国外、东南亚一带:主要生产国家和制造工厂 1、菲律宾 2、马来西亚 3、印尼 4、公司名称:沙索、三林、科宁(德国)、花王(日本) P&G(美国) 生产厂主要都设在东南亚一带 二、粗脂肪醇:别名:除臭物,醇的前馏份,头馏份醇。 从化学上讲是C6-18醇,但烷烃和杂质比较高。 来源如下: 除臭物(前馏份,含高烷烃的醇) 各种油脂甲酯化氢化蒸馏脂肪醇 醇底料 副产甘油

三、其主要指标:供参考 1、粗脂肪酸或酸化油 酸价:≥140 皂化价:≥170 水份:≤2 凝固点:≤55℃ 色泽:浅黄色或浅棕色 2、脂肪醇 1)酸价:(KOH mg /g):≤0.5-1 水份(%):≤1.5 烷烃(%):8-12 碳数分布:根据具体情况:C6-12都可以醇含量%:≥88 2)烷烃%:45左右 醇含量%:≥50 以上两种价格不一样。 四、注意事项 1、尽量提供生产厂的检验指标。 2、尽量提供样品,供双方确认。 3、生产厂每月的产量。 4、包装型式:桶装、槽罐、液袋。 5、

脂肪酸常识及饮食指导

脂肪酸常识及饮食指导 脂肪酸的命名 脂肪酸的结构通式为CH3[CH2]nCOOH,脂肪酸的命名用碳的数目、不饱和键的数目、及不饱和键的位置来表示。 1.△编号系统 (1)脂肪酸的碳原子编号定位 脂肪酸的碳原子从羧基功能团开始计数,羧基碳原子为碳原子1,依次编号为2、3、4……; (2)命名 不饱和键的位置用△表示。 如油酸(18∶1,△9顺)表示含18个碳原子,一个不饱和键,在第9~10位碳原子之间有一个顺式双键;如α-亚麻酸(18∶3,△9,12,15),表示含18个碳原子,3个不饱和键,双键位置按碳原子编号依次为9、12、15。 2. n或ω编号系统 (1)脂肪酸的碳原子编号定位 最远端的甲基碳也叫做ω-碳原子,脂肪酸的碳原子从离羧基最远的碳原子即最远端的甲基碳原子ω开始计数,按字母编号依次为ω-1、ω-2、ω-3……。 (2)命名 不饱和键的位置用ω-来表示。 如油酸(18∶1,ω-9),表示含18个碳原子,1个不饱和键,第一个双键从甲基端数起,在第9碳与第10碳之间;如亚麻酸(18∶3,ω-3),表示含18个碳原子,3个不饱和键,第一个双键从甲基端数起,在第3碳与第4碳之间。 国际上还有用n来代替ω的表示方法,即ω-6就是n-6。 大多数脂类物质的基本结构成分是脂肪酸(fatty acid)。脂肪酸的基本结构是R-COOH。 天然脂肪酸的R基多为直线烃基。脂肪酸的碳数绝大多数为双数。 脂肪酸的分类可以有几种方式: n按碳链长短:短链、中链、长链、超长链 n按有无双键:饱和、单不饱和、多不饱和 n按双键位置:ω-3、ω-6、ω-7、ω-9 天然脂肪酸中的双键构型均为顺式,两个双键之间相隔两个碳原子。 从甲基端开始的第一个碳原子称为ω碳。从ω碳开始计数,按第一个发生双键的碳原子数分类。 单不饱和脂肪酸:是指含有1个双键的脂肪酸。以前通常指的是油酸(Oleic acid),以18:l n=9表示(CH3(CH2)7CH=CH(CH2)7COOH)。现 在的研究证实,单不饱和脂肪酸的种类和来源极其丰富,肉豆蔻油酸

相关文档
最新文档