第三章 信号分析

合集下载

第3章 信号的采样与重构(1-2)

第3章 信号的采样与重构(1-2)
第三章 信号的采样与重构

虽然自然界中存在离散时间信号,但是最 常见的还是连续时间信号。

采样

连续时间信号的处理分析往往经由对之采 样后的离散时间序列处理完成的。

计算机

利用离散处理后的结果往往需要在连续域 表达出来,便于接收和理解

重构
本章要解决的问题




采样后信号是否包含了连续信号的所有信息? 如何无失真恢复原始信号? 时域采样导致了信号频域发生了何种变化? 采样的信号是否包含冗余信息?是否可以进行 速率的变化? 离散处理如何用于实际连续信号的处理应用? 如何提高信号处理的性能?



xc (nT ) (t nT )e
j ( T ) n
j t
dt
X ( j) | T X s ( j) X ( j) X s ( j) | / T
1 2k X ( j ) X c ( j j ) | / T T n T 1 ( 2k ) Xc( j ) T n T
跟踪滤波器
xn (t )
采样
xn (n)
f 0n

2n 1 B 2
f S 2B

当需要对某一个中心频率的带通信号进行采样时,就 先把跟踪滤波器调到与之对应的中心频率上,滤出所 感兴趣的带通信号,然后再进行采样,以防止信号混 叠,亦称之为抗混叠滤波器。 如果滤波器理想的话,采用同一采样速率就能实现对 全频域信号进行数字化,然后用软件方法进行解调分 析,这正是软件无线电的根本出发点。
( n
0
)
1 Xs() Xc() * S () 2 1 Xc() * ( n 0 ) T 1 T

信号分析与处理第3章习题答案[山东大学]

信号分析与处理第3章习题答案[山东大学]

j 2 n
j 2 n
n
j 2 = X (e )
1
j 3-3 已知 X(e ) =
| ω | < ω0
0
j 求 X(e ) 的傅里叶反变换
ω0≤ | ω | ≤π
1 解:x(n) = 2
= =
X (e


j
)e jn d
1 2
e

0
0
jn
d
1 0 e jn | 0 2jn
n 0
3
3
nk ne j 2N
2
∴ X (0) cos
n 0 3
ne j 0 1 0 1 0 0
2
X (1) cos
n 0 3
n ne j 2 1 0 1 0 2
2
X (2) cos
n 0
ne j n 1 0 1 0 0
n 0 3
j n 2

1 (2 j ) 1 3 j 2 j
X (2) x(n)e j n 1 (2) (1) (3) 5
n 0 3
X (3) x(n)e
n 0
j
3 n 2
1 2 j 1 (3 j ) 2 j
n
x(2n)e

m 2n
m
x(m)e


jm

2
jm jm 1 2 2 m取整数 [ x(m)e (1) m x(m)e ] 2 m jm j 1 1 2 2 m x ( m ) e x ( m ) ( e ) = + 2 m 2 m

数字信号第三章 离散傅里叶变换

数字信号第三章  离散傅里叶变换

第三章离散傅里叶变换DFT: Discrete Fourier Transform第三章学习目标z理解傅里叶变换的几种形式z掌握离散傅里叶变换(DFT)及性质,圆周移位、共轭对称性,掌握圆周卷积、线性卷积及两者之间的关系z掌握频域抽样理论z掌握DFT的应用引言DFT要解决两个问题:一是频谱的离散化;二是算法的快速计算(FFT)。

这两个问题都是为了使计算机能够实时处理信号。

Fourier变换的几种可能形式时间函数频率函数连续时间、连续频率—傅里叶变换连续时间、离散频率—傅里叶级数离散时间、连续频率—序列的傅里叶变换可以得出一般的规律:一个域的离散对应另一个域的周期延拓;一个域的连续必定对应另一个域的非周期。

−jwndw e jwn 时域离散、非周期频域连续、周期z 时域周期化→频域离散化z 时域离散化→频域周期化离散连续周期性非周期性引言Fourier变换的几种可能形式时间函数频率函数连续时间、连续频率—傅里叶变换连续时间、离散频率—傅里叶级数离散时间、连续频率—序列的傅里叶变换离散时间、离散频率—周期序列的傅里叶级数由DTFT到DFS离散时间、离散频率的傅立叶级数(DFS)由上述分析可知,对DTFT,要想在频域上离散化,那么在时域上必须作周期延拓。

对长度为M的有限长序列x(n),以N为周期延拓(N≥M)。

注意:周期序列的离散傅里叶级数(DFS)只对有限长序列作周期延拓或周期序列成立。

……四种傅里叶变换形式的归纳时间函数频率函数连续和非周期非周期和连续连续和周期(T0)非周期和离散(Ω=2π/T)离散(T)和非周期周期(Ωs=2π/T)和连续离散(T)和周期(T0)周期(Ωs=2π/T)和离散(Ω=2π/T)在进行DFS 分析时,时域、频域序列都是无限长的周期序列周期序列实际上只有有限个序列值有意义长度为N 的有限长序列可以看成周期为N 的周期序列的一个周期(主值序列)借助DFS 变换对,取时域、频域的主值序列可以得到一个新的变换—DFT ,即有限长序列的离散傅里叶变换3.1 离散傅里叶变换(DFT )的定义及物理意义——有限长序列的离散频域表示x(n)的N 点DFT 是¾x(n)的z 变换在单位圆上的N 点等间隔抽样;¾x(n)的DTFT 在区间[0,2π)上的N 点等间隔抽样。

第三章1傅里叶级数

第三章1傅里叶级数

单边频谱图:cn ~ n1 信号的幅度谱
cn
c1 c2
c0
c3
0 w1 3w1
n ~ n1 信号的相位谱
各频率分量的幅度称为谱
线,连接谱线顶点的曲线
nw1
w 称为包络线。
n

0 w1 3w1
nw1
周期信号频谱图的特点: 离散性、谐波性、收敛性
w
二、指数形式的傅里叶级数
由三角形式的傅里叶级数:
2、傅里叶级数各系数之间的关系

e f (t)
F (n1) jn1t
n

f (t) a0 an cos(n1t) bn sin(n1t) n1

f (t) c0 cn cos(n1t n )
n1
e 当n 0时,Fn Fn
nw1
w
说明:频谱中出现了负频率,而负频率的出现完全 是数学运算的结果,并没有任何物理意义,只有把 负频率与相应的正频率项成对地结合起来,才是实 际的频谱函数。


f (t) Fne jn1t c0 cn cos(n1t n )
n
n1
4.周期信号的功率特性
周期信号的平均功率P:在一个周期内求平方再求积分。
一周期内仅有限个间断点; 一周期内仅有限个极值;
一周期内绝对可积,tt00 T1 f (t) dt
通常所遇到的周期性信号都能满足此条件,因此, 以后除非特殊需要,一般不再考虑这一条件。
例:求周期矩形脉冲信号的傅里叶级数
周期矩形脉冲信号
f1(t)

E
[u(t

)
2
u(t
其中基波——角频率为1的分量; n次谐波——角频率为n1的分量

信号与系统第三章

信号与系统第三章
例3.1-2 描述一阶LTI系统的常系数微分方程如 式(3.1-3)所示
设 f (t) 2 a 2, b 1 则有
dy(t) 2 y(t) 2 dt
已知初始值 y(0) 4 求 t 0时系统的响应 y(t)
解:第一步,由方程可知系统的特征方程为 2 0
2 由此可得系统的齐次解为
2
处理教研室
第三章 连续信号与系统的时域分析
教学重点:
1、常微分方程的建立及其解的基本特点; 2、阶跃响应和冲激响应的概念; 3、卷积及其在系统分析中的应用。
2020/6/7
信号
3
处理教研室
应用实例:汽车点火系统
汽车点火系统主要由电源(蓄电池和发电机)、电阻、 点火开关、点火线圈、分压器等组成。
系数 a,b都是常量。系统的阶数就是其数学模型——
微分方程的阶数。
而 n 阶常系数线性微分方程的一般形式为
an
dn y(t) dt n
an1
dn1 y(t) dt n1
L
a1
dy(t) dt
a0
y (t )
bm
dm f (t) dt m
bm1
dm1 f (t) dt m1
L
b1
df (t) dt
b0
即yf’(0+) = yf’(0-) = 0,yf(0+) = yf(0-) = 0
对t>0时,有 yf”(t) + 3yf’(t) + 2yf(t) = 6
不难求得其齐次解为Cf1e-t + Cf2e-2t,其特解为常数3,
于是有
yf(t)=Cf1e-t + Cf2e-2t + 3
代入初始值求得

信号与系统_第三章连续信号的正交分解_ppt课件

信号与系统_第三章连续信号的正交分解_ppt课件
第 三 章 连 续 信 号 的 正 交 分 解
信号与系统_第 三章连续信号 的正交分解
第 三 章 连 续 信 号 的 正 交 分 解
学习内容及要求
内容:
信号的分量与分解、正交函数集的概念,信号 的傅立叶级数分解
周期信号的频谱分析 非周期信号的频谱分析,常用典型信号的傅立 叶变换,掌握傅立叶变换的技巧 傅立叶变换的性质,帕塞瓦尔定理与能量频谱
示任何的复杂信号;
找到---信号如何分解,如何将信号分解或表示为该函数集中单 元函数的组合(付里叶级数(三角付里叶级数,指数付里叶级 数)) –从信号分量组成情况讨论信号特性
周期信号频谱; 非周期信号频谱;
–信号时域特性与频域特性的关系
第 三 章 连 续 信 号 的 正 交 分 解
§3.1 引言
t 2
2 (t) min 1 2 1 t 1 2 2 f ( t ) dt 1 t1 t t 2 1
1 2
12

t2 t1
t2
t1
f1(t)f2(t)dt
t2 t1 2 2 1 2
[ f (t)dt ] f (t)dt
2 1
A n C 1V 1 C 2V 2 C rV r C nV n 并且: V V K V 2 m m m m V ,l m m 0 l V
为使近似误差矢量的模 或是模的平方最小,
Cr AV r V r V r AV r V r

t2
t1
f1(t) f2(t)dt
t2 t1

f2 (t)dt
2
§3.2 正交函数集与信号分解
第 三 章 连 续 信 号 的 正 交 分 解

语音信号处理课件__第03章时域分析

SNRdB 6.02B 4.77 20log10 (
x
xmax
)
(3-11)
3.1 语音信号的短时处理方法 脉冲编码调制
若是xmax取为4倍方差(δx)
SNRdB 6.02B 7.27
取样之位数 8 16 24
(3-12)
数字信号的信噪比 41 dB 89 dB 137 dB
3.1 语音信号的短时处理方法 脉冲编码调制
一个数字信号取样之后,变成离散时间信号,接下来就是要用数字 方式来表示这个离散时间信号上的每个取样值。 一个电位波形会有固定的电压范围,一个取样值可以是在此电压范 围内的任何电位。如果只能用固定数目的位来表示这些取样值,那 么这些二进数字就只能代表固定的几个电位值,这个转换就是量化 (quantization),而转换之后只允许存在的几个电位值就是量化阶 数(quantization level)。 执行量化转换的硬件电路,就是量化器(quantizer)。以二进数字 表示的信号就是数字信号(digital signal),而这种将信号波形转 变成二进数字的方法,就叫脉冲编码调制(pulse code modulation, PCM)。
3.1 语音信号的短时处理方法
预处理 平滑滤波器:D/A后面的低通滤波器是平滑滤 波器,对重构的语音波形的高次谐波起平滑 作用,以去除高次谐波失真。 预加重:




现象:由于语音信号的平均功率谱受声门激励和口 鼻辐射的影响,高频端大约在800 Hz以上按6dB/ 倍频程跌落,为此要在预处理中进行预加重。 目的:提升高频部分,使信号的频谱变得平坦,以 便于进行频谱分析或声道参数分析。 位置:预加重可在A/D变换前的反混叠滤波之前进行, 这样不仅能够进行预加重,而且可以压缩信号的动 态范围,有效地提高信噪比。

信号与系统第三章 连续信号的正交分解-1


V 1、 2 、 3 V n V V 即 V m V m K m (V m 不为单位矢量) V l V m 0 (l m )
则 A C 1V 1 C 2V 2 C r V r C n V n A V r A V r Cr Kr V r V r
引言
变换域分析——就是选取完备的正交函数集来最佳逼近信 号 f ( t ) ,或者说,信号 f ( t ) 用完备的正交函数集来 展开,其展开系数就是信号的变换表示。不同的变 换域的区别就在于选取不同的正交完备集。 采用变换域分析的目的:主要是简化分析。这章傅里叶变 换主要从信号分量的组成情况去考察信号的特性。 从而便于研究信号的传输和处理问题。
0
t
t2
1
t2
1
x ( t ) dt
2
满足等式
t
x ( t ) g i ( t ) dt 0
i为任意整数
则此函数集称为完备正交函数集。
这有两层意思: 1,如果x(t)在区间内与 g i ( t ) 正交,则x(t)必属 于这个正交集。 2,若x(t)与 g i ( t ) 正交,但 g i ( t )中不包含x(t), 则此集不完备。
1 2

( t ) dt f
2

t2 f
1 2
为 f 2的复共轭
(t ) f
2
( t ) dt
两个复变函数 f 1( t )和 f 2 ( t ) 在区间 ( t 1 , t 2 )内互相 正交的条件是:
t
t2 f 1( t ) f
1 2

( t ) dt
t
t2 f
1 1

随机信号分析(常建平 李海林版)课后习题答案

由于百度文库格式转换的原因,不能整理在一个word 文档里面,下面是三四章的答案。

给大家造成的不便,敬请谅解随机信号分析 第三章习题答案、随机过程 X(t)=A+cos(t+B),其中A 是均值为2,方差为1的高斯变量,B 是(0,2π)上均匀分布的随机变量,且A 和B 独立。

求(1)证明X(t)是平稳过程。

(2)X(t)是各态历经过程吗?给出理由。

(3)画出该随机过程的一个样本函数。

(1)(2)3-1 已知平稳过程()X t 的功率谱密度为232()(16)X G ωω=+,求:①该过程的平均功率?②ω取值在(4,4)-范围内的平均功率?解[][]()[]2()cos 211,cos 5cos 22X E X t E A E t B A B R t t EA τττ=++=⎡⎤⎣⎦+=+=+与相互独立()()()21521()lim2TT T E X t X t X t X t dt AT-→∞⎡⎤=<∞⇒⎣⎦==⎰是平稳过程()()[]()()4112211222222242'4(1)24()()444(0)41132(1)224414414(2)121tan 13224X X XE X t G d RFG F e R G d d d arc x x ττωωωωωππωωπωωπωπωω∞----∞∞-∞-∞∞--∞∞⎡⎤⨯⎡⎤==⋅=⋅⎢⎥+⎣⎦====+==⎛⎫+ ⎪==⎣⎦=++⎝⎭=⎰⎰⎰⎰⎰P P P P 方法一()方:时域法取值范围为法二-4,4内(频域的平均率法功)2d ω=3-7如图3.10所示,系统的输入()X t 为平稳过程,系统的输出为()()()Y t X t X t T =--。

证明:输出()Y t 的功率谱密度为()2()(1cos )Y X G G T ωωω=-[][]:()[()()]{()()}{()(}2()()()()()()()()2(()[)()(()()]()())Y X X X Y X X Y Y Y X X X Y Y j T j T R E Y t Y t E X t X t T X t X t T R R R R E Y t Y t G F R T T e e G R G R G G G G ωωτττττωτωττωττττωωωω-⇒⇒=+=--+-+-=--=+=-⇔⇔∴=-+-=已知平稳过程的表达式利用定义求利用傅解系统输入输出立叶平变稳换的延时特性2()2()22()(1cos )j T j T X X X e e G G G T ωωωωωω-⎡⎤+-⎢⎥⎣⎦=-3-9 已知平稳过程()X t 和()Y t 相互独立,它们的均值至少有一个为零,功率谱密度分别为216()16X G ωω=+22()16Y G ωωω=+令新的随机过程()()()()()()Z t X t Y t V t X t Y t =+⎧⎨=-⎩ ①证明()X t 和()Y t 联合平稳; ②求()Z t 的功率谱密度()Z G ω ③求()X t 和()Y t 的互谱密度()XY G ω ④求()X t 和()Z t 的互相关函数()XZ R τ ⑤求()V t 和()Z t 的互相关函数()VZ R τ 解:()()4124(1)()()()2[()]()0[()]0()2[()]0()()(,)[()][()]0()()(2)()()()()[()()][()()][()X X X Y XY Z X t Y t R F G e E X t R E X t R eE Y t X t Y t R t t E X t E Y t X t Y t Z t X t Y t R E Z t Z t E X t Y t X t τττωτδττττττ---==∞=⇒=⎡⎤⎣⎦=-⇒=∴+=⋅+=⇒=+=+=++、都平稳=与与联合独平立稳[][]{}2214||()]()()()()()0()()()16()()()116(3)()0()0(4)()[()()]()()()()()()[()]2(5)(X YX XY Y XY Z X Y Z X Y XY XY XZ X XY X X VZ Y t R R R R R R R R G G G R G R E X t Z t E X t X t Y t R R R F G e R ττττττττττωωωωωτωτττττττωτ--++=+++=∴=++∴=+==+=→==+=+++=+==={}4||)[()()][()()][()()]()()()4X Y E V t Z t E X t Y t X t Y t R R e ττττττδτ-=+=-+++=-=+-3-11 已知可微平稳过程()X t 的自相关函数为2()2exp[]X R ττ=-,其导数为()()Y t X t '=。

第三、四章连续时间信号与系统的频域分析内容总结

X

连续时间信号与系统的频域分析总结
8 页
例15、试求信号f(t)=cos(4t+ )的频谱 。 3
解:
X

连续时间信号与系统的频域分析总结
9 页
例16、一因果LTI系统的输入和输出,由下列微分方程表示:(采用傅里叶变
换计算)。 (1)求系统的单位冲激响应 h( t ) ;
d 2 y( t ) dy( t )
X

连续时间信号与系统的频域分析内容总结
2 页
第四章是傅里叶变换在LTI系统分析中的应用。 在第三章信号频域分解、分析基础上,研究不同激励信号 通过系统的响应、信号通过系统无失真条件、理想低通滤波器 模型以及物理可实现条件、希尔伯特变换、抽样定理等主要内 容。
X

连续时间信号与系统的频域分析总结
3) (j
5)
1ห้องสมุดไป่ตู้
j
3
1
j 5
2
j
4
y z s(t ) e 3t (t ) e 5t (t ) 2e 4t (t )
X

连续时间信号与系统的频域分析总结
10 页
例17、如图所示系统,其乘法器的两个输入端分别为:f (t) sin(2t) , s(t) cos(6t)
系统的频率响应为
8
15y( t ) 2 f ( t )
dt 2
dt
(2)若 f ( t ) e4t( t ) ,求该系统的零状态响应 yzs (t) 。
解: (1)
H ( j)
2
11
j2 8 j 15 j 3 j 5
h(t) e 3t(t) e 5t(t)
(2)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档