2017年河南省洛阳市高考数学三模试卷(理科)

合集下载

2017年高考理科数学全国卷2(含答案解析)

2017年高考理科数学全国卷2(含答案解析)

绝密★启用前2017年普通高等学校招生全国统一考试理科数学本试卷共23题,共150分,共6页。

考试结束后,将本试卷和答题卡一并交回。

注意事项:1.答卷前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。

2.选择题必须使用2B 铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。

3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。

4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。

5.保持卡面清洁,不要折叠、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的.1.3i 1i +=+ ( )A .12i +B .12i -C .2i +D .2i -2.设集合{}1,2,4A =,{}240B x x x m =-+=.若{}1AB =,则B =( )A .{}1,3-B .{}1,0C .{}1,3D .{}1,53.我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯( )A .1盏B .3盏C .5盏D .9盏4.如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为( )A .90πB .63πC .42πD .36π5.设x ,y 满足约束条件2330,2330,30.x y x y y +-⎧⎪-+⎨⎪+⎩≤≥≥则2z x y =+的最小值是( )A .15-B .9-C .1D .9 6.安排3名志愿者完成4项工作,每人至少完成1项,每项工作由1人完成,则不同的安排方式共有( )A .12种B .18种C .24种D .36种7.甲、乙、丙、丁四位同学一起去向老师询问成语竞赛的成绩.老师说:你们四人中有2位优秀,2位良好,我现在给甲看乙、丙的成绩,给乙看丙的成绩,给丁看甲的成绩.看后甲对大家说:我还是不知道我的成绩.根据以上信息,则( )A .乙可以知道四人的成绩B .丁可以知道四人的成绩C .乙、丁可以知道对方的成绩D .乙、丁可以知道自己的成绩8.执行右面的程序框图,如果输入的1a =-,则输出的S =( )A .2B .3C .4D .59.若双曲线2222:1x y C a b-=(0a >,0b >)的一条渐近线被圆22(2)4x y -+=所截得的弦长为2,则C 的离心率为 ( )A .2B .3C .2D .23310.已知直三棱柱111ABC A B C -中,120ABC ∠=︒,2AB =,11BC CC ==,则异面直线1AB 与1BC 所成角的余弦值为( )A .32B .155C .105D .3311.若2x =-是函数21()(1)e x f x x ax -=+-的极值点,则()f x 的极小值为 ( ) A .1-B .32e --C .35e -D .112.已知ABC △是边长为2的等边三角形,P 为平面ABC 内一点,则()PA PB PC ⋅+的-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------姓名________________ 准考证号_____________最小是( ) A .2-B .32-C . 43-D .1-二、填空题:本题共4小题,每小题5分,共20分.13.一批产品的二等品率为0.02,从这批产品中每次随机取一件,有放回地抽取100次,X 表示抽到的二等品件数,则DX = .14.函数23()sin 4f x x x =+-([0,])2x π∈的最大值是 . 15.等差数列{}n a 的前n 项和为n S ,33a =,410S =,则11nk kS ==∑. 16.已知F 是抛物线2:8C y x =的焦点,M 是C 上一点,FM 的延长线交y 轴于点N .若M 为FN 的中点,则FN = .三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答. (一)必考题:共60分. 17.(12分)ABC △的内角A ,B ,C 的对边分别为a ,b ,c 已知2sin()8sin 2B AC +=. (1)求cos B ;(2)若6a c +=,ABC △的面积为2,求b .18.(12分)海水养殖场进行某水产品的新、旧网箱养殖方法的产量对比,收获时各随机抽取了100个网箱,测量各箱水产品的产量(单位:kg ).其频率分布直方图如下:(1)设两种养殖方法的箱产量相互独立,记A 表示事件:“旧养殖法的箱产量低于50 kg ,新养殖法的箱产量不低于50 kg ”,估计A 的概率;(2)填写下面列联表,并根据列联表判断是否有99%的把握认为箱产量与养殖方法(3)根据箱产量的频率分布直方图,求新养殖法箱产量的中位数的估计值(精确到0.01).附:22()()()()()n ad bc K a b c d a c b d -=++++19.(12分)如图,四棱锥P ABCD -中,侧面PAD 为等边三角形且垂直于底面ABCD ,12AB BC AD ==,o90BAD ABC ∠=∠=,E 是PD 的中点.(1)证明:直线CE ∥平面PAB ;(2)点M 在棱PC 上,且直线BM 与底面ABCD 所成角为o 45,求二面角M AB D --的余弦值.20.(12分)设O 为坐标原点,动点M 在椭圆22:12xC y +=上,过M 作x 轴的垂线,垂足为N ,点P 满足2NP NM =. (1)求点P 的轨迹方程;(2)设点Q 在直线3x =-上,且1OP PQ ⋅=.证明:过点P 且垂直于OQ 的直线l 过C 的左焦点F .21.(12分)已知函数2()ln f ax a x x x x =--,且()0f x ≥. (1)求a ;(2)证明:()f x 存在唯一的极大值点0x ,且220e ()2f x --<<.(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分.22.[选修4―4:坐标系与参数方程](10分)在直角坐标系xOy 中,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,曲线1C 的极坐标方程为cos 4ρθ=.(1)M 为曲线1C 上的动点,点P 在线段OM 上,且满足||||16OM OP ⋅=,求点P 的轨迹2C 的直角坐标方程;(2)设点A 的极坐标为(2,)3π,点B 在曲线2C 上,求OAB △面积的最大值.23.[选修4—5:不等式选讲](10分)已知0a >,0b >,332a b +=.证明:(1)55()()4a b a b ++≥;(2)2a b +≤.姓名________________ 准考证号_____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------2017年普通高等学校招生全国统一考试理科数学答案解析一、选择题 1.【答案】D【解析】试题分析:由复数除法的运算法则有:3i (3i)(1i)2i 1i 2++-==-+,故选D . 名师点睛:复数的代数形式的运算主要有加、减、乘、除.除法实际上是分母实数化的过程.在做复数的除法时,要注意利用共轭复数的性质:若1z ,2z 互为共轭复数,则221212||||z z z z ⋅=⋅,通过分子、分母同乘以分母的共轭复数将分母实数化.【考点】复数的除法 2.【答案】C【解析】试题分析:由{1}AB =得1B ∈,即1x =是方程240x x m -+=的根,所以140m -+=,3m =,{1,3}B =,故选C .名师点睛:集合中元素的三个特性中的互异性对解题影响较大,特别是含有字母的集合,在求出字母的值后,要注意检验集合中的元素是否满足互异性.两个防范:①不要忽视元素的互异性;②保证运算的准确性. 【考点】交集运算,元素与集合的关系 3.【答案】B【解析】试题分析:设塔的顶层共有灯x 盏,则各层的灯数构成一个首项为x ,公比为2的等比数列,结合等比数列的求和公式有:7(12)38112x -=-,解得3x =,即塔的顶层共有灯3盏,故选B .名师点睛:用数列知识解相关的实际问题,关键是列出相关信息,合理建立数学模型——数列模型,判断是等差数列还是等比数列模型;求解时要明确目标,即搞清是求和、求通项、还是解递推关系问题,所求结论对应的是解方程问题、解不等式问题、还是最值问题,然后将经过数学推理与计算得出的结果放回到实际问题中,进行检验,最终得出结论.【考点】等比数列的应用,等比数列的求和公式4.【答案】B【解析】试题分析:由题意,该几何体是一个组合体,下半部分是一个底面半径为3,高为4的圆柱,其体积213436V =π⨯⨯=π,上半部分是一个底面半径为3,高为6的圆柱的一半,其体积221(36)272V =⨯π⨯⨯=π,故该组合体的体积12362763V V V =+=π+π=π.故选B .名师点睛:在由三视图还原为空间几何体的实际形状时,要从三个视图综合考虑,根据三视图的规则,空间几何体的可见轮廓线在三视图中为实线,不可见轮廓线在三视图中为虚线.在还原空间几何体实际形状时,一般是以正视图和俯视图为主,结合侧视图进行综合考虑.求解以三视图为载体的空间几何体的体积的关键是由三视图确定直观图的形状以及直观图中线面的位置关系和数量关系,利用相应体积公式求解.【考点】三视图,组合体的体积 5.【答案】A【解析】试题分析:画出不等式组表示的平面区域如下图中阴影部分所示,目标函数即:2y x z =-+,其中z 表示斜率为2k =-的直线系与可行域有交点时直线的纵截距,数形结合可得目标函数在点(6,3)B --处取得最小值,min 2(6)(3)15Z =⨯-+-=-,故选A .名师点睛:求线性目标函数(0)z ax by ab =+≠的最值,当0b >时,直线过可行域且在y 轴上截距最大时,z 值最大,在y 轴截距最小时,z 值最小;当0b <时,直线过可行域且在y 轴上截距最大时,z 值最小,在y 轴上截距最小时,z 值最大.【考点】应用线性规划求最值 6.【答案】D【解析】试题分析:由题意可得,一人完成两项工作,其余两人每人完成一项工作,据此可得,只要把工作分成三份:有24C 种方法,然后进行全排列,由乘法原理,不同的安排方式共有2343C A 36⨯=种.故选D .名师点睛:(1)解排列组合问题要遵循两个原则:①按元素(或位置)的性质进行分类;②按事情发生的过程进行分步.具体地说,解排列组合问题常以元素(或位置)为主体,即先满足特殊元素(或位置),再考虑其他元素(或位置).(2)不同元素的分配问题,往往是先分组再分配.在分组时,通常有三种类型:①不均匀分组;②均匀分组;③部分均匀分组.注意各种分组类型中,不同分组方法的求解. 【考点】排列与组合,分步乘法计数原理 7.【答案】D【解析】试题分析:由甲的说法可知乙、丙一人优秀一人良好,则甲、丁两人一人优秀一人良好,乙看到丙的成绩则知道自己的成绩,丁看到甲的成绩则知道自己的成绩,即乙、丁可以知道自己的成绩.故选D .名师点睛:合情推理主要包括归纳推理和类比推理.数学研究中,在得到一个新结论前,合情推理能帮助猜测和发现结论,在证明一个数学结论之前,合情推理常常能为证明提供思路与方向.合情推理仅是“合乎情理”的推理,它得到的结论不一定正确.而演绎推理得到的结论一定正确(前提和推理形式都正确的前提下) 【考点】合情推理 8.【答案】B【解析】试题分析:阅读程序框图,初始化数值1a =-,1K =,0S =. 循环结果执行如下:第一次:011S =-=-,1a =,2K =; 第二次:121S =-+=,1a =-,3K =; 第三次:132S =-=-,1a =,4K =;第四次:242S =-+=,1a =-,5K =; 第五次:253S =-=-,1a =,6K =; 第六次:363S =-+=,1a =-,7K =. 结束循环,输出3S =.故选B .名师点睛:识别、运行程序框图和完善程序框图的思路:①要明确程序框图的顺序结构、条件结构和循环结构;②要识别、运行程序框图,理解框图所解决的实际问题;③按照题目的要求完成解答并验证. 【考点】程序框图 9.【答案】A【解析】试题分析:由几何关系可得,双曲线22221x y a b -=(00)a b >>,的渐近线方程为0bx ay ±=,圆心(2,0)到渐近线距离为d ==则点(2,0)到直线0bx ay +=的距离为2bd c=== 即2224()3c a c -=,整理可得224c a =,双曲线的离心率2e =.故选A . 名师点睛:双曲线的离心率是双曲线最重要的几何性质,求双曲线的离心率(或离心率的取值范围),常见有两种方法:①求出a ,c ,代入公式ce a=;②只需要根据一个条件得到关于a ,b ,c 的齐次式,结合222b c a =-转化为a ,c 的齐次式,然后等式(不等式)两边分别除以a 或2a 转化为关于e 的方程(不等式),解方程(不等式)即可得e (e 的取值范围).【考点】双曲线的离心率,直线与圆的位置关系,点到直线的距离公式 10.【答案】C【解析】试题分析:如图所示,补成直四棱柱1111ABCD A B C D -,则所求角为1BC D ∠,1=2BC 60=3BD,11=C D AB易得22211=C D BD BC +,因此111cos =5BC BC D C D ∠,故选C .名师点睛:平移法是求异面直线所成角的常用方法,其基本思路是通过平移直线,把异面问题化归为共面问题来解决,具体步骤如下:①平移:平移异面直线中的一条或两条,作出异面直线所成的角; ②认定:证明作出的角就是所求异面直线所成的角; ③计算:求该角的值,常利用解三角形;④取舍:由异面直线所成的角的取值范围是π(0]2,,当所作的角为钝角时,应取它的补角作为两条异面直线所成的角.求异面直线所成的角要特别注意异面直线之间所成角的范围.【考点】异面直线所成的角,余弦定理,补形的应用 11.【答案】A 【解析】试题分析:由题可得12121()(2)e (1)e [(2)1]e x x x f x x a x ax x a x a ---'=+++-=+++-,因为(2)0f '-=,所以1a =-,21()(1)ex f x x x -=--,故21()(2)ex f x x x -'=+-,令()0f x '>,解得2x <-或1x >,所以()f x 在(,2),(1,)-∞-+∞上单调递增,在(2,1)-上单调递减,所以()f x 的极小值为11()(111)e 11f -=--=-,故选A .名师点睛:(1)可导函数()y f x =在点0x 处取得极值的充要条件是0()0f x '=,且在0x 左侧与右侧()f x '的符号不相同;(2)若()f x 在()a b ,内有极值,那么()f x 在()a b ,内绝不是单调函数,即在某区间上单调增或减的函数没有极值.【考点】函数的极值,函数的单调性 12.【答案】B【解析】试题分析:如图,以BC 为x 轴,BC 的垂直平分线DA 为y 轴,D 为坐标原点建立平面直角坐标系,则A ,(1,0)B -,(1,0)C ,设(,)P x y ,所以()PA x y =-,(1,)PB x y =---,(1,)PC x y =--,所以(2,2)PB PC x y +=--,22233()22)22(22PA PB PC x y y x y ⋅+=-=+--≥,当(0P 时,所求最小值为32-,故选B .【名师点睛】平面向量中有关最值问题的求解通常有两种思路:①“形化”,即利用平面向量的几何意义将问题转化为平面几何中的最值或范围问题,然后根据平面图形的特征直接进行判断;②“数化”,即利用平面向量的坐标运算,把问题转化为代数中的函数最值与值域、不等式的解集、方程有解等问题,然后利用函数、不等式、方程的有关知识来解决.【考点】平面向量的坐标运算,函数的最值二、填空题 13.【答案】1.96【解析】试题分析:由题意可得,抽到二等品的件数符合二项分布,即()~100,0.02X B ,由二项分布的期望公式可得(1)1000.020.98 1.96DX np p =-=⨯⨯=.【名师点睛】判断一个随机变量是否服从二项分布,要看两点:①是否为n 次独立重复试验,在每次试验中事件A 发生的概率是否均为p ;②随机变量是否为在这n 次独立重复试验中某事件发生的次数,且()()C 1n kkk n p X k p p -==-表示在独立重复试验中,事件A 恰好发生k 次的概率.【考点】二项分布的期望与方差14.【答案】1【解析】试题分析:化简三角函数的解析式,则22231()1cos cos(cos144f x x x x x x=--=-+=-+由π[0,]2x∈可得cos[0,1]x∈,当cos x=()f x取得最大值1.名师点睛:本题经三角函数式的化简将三角函数的问题转化为二次函数的问题,二次函数、二次方程与二次不等式统称“三个二次”,它们常结合在一起,有关二次函数的问题,数形结合、密切联系图象是探求解题思路的有效方法.一般从:①开口方向;②对称轴位置;③判别式;④端点函数值符号四个方面进行分析.【考点】三角变换,复合型二次函数的最值15.【答案】21nn+【解析】试题分析:设等差数列的首项为1a,公差为d,由题意有113,4102432,adda+⨯=+=⎧⎪⎨⎪⎩解得11,1,da=⎧⎨=⎩数列的前n项和1(1)(1)(1)11222nn n n n nSnn da n--+++⨯==⨯=,裂项可得12112()(1)1kS k k k k==-++,所以1111111122[(1)()()]2(1)223111nk knS n n n n==-+-++-=-=+++∑.名师点睛:等差数列的通项公式及前n项和公式,共涉及五个量1a,n a,d,n,n S,知其中三个就能求另外两个,体现了用方程的思想解决问题.数列的通项公式和前n项和公式在解题中起到变量代换作用,而1a和d是等差数列的两个基本量,用它们表示已知和未知是常用得方法.使用裂项法求和时,要注意正、负项相消时消去了哪些项,保留了哪些项,切不可漏写未被消去的项,未被消去的项有前后对称的特点.【考点】等差数列前n项和公式,裂项求和.16.【答案】6【解析】试题分析:如图所示,不妨设点M位于第一象限,设抛物线的准线与x轴交于点F',作MB l⊥与点B,NA l⊥与点A,由抛物线的解析式可得准线方程为2x=-,则2AN=,4FF'=在直角梯形ANFF'中,中位线32AN FFBM'+==,由抛物线的定义有:3MF MB==,结合题意,有3MN MF==,故336FN FM NM=+=+=.【考点】抛物线的定义,梯形中位线在解析几何中的应用.【名师点睛】抛物线的定义是解决抛物线问题的基础,它能将两种距离(抛物线上的点到焦点的距离、抛物线上的点到准线的距离)进行等量转化.如果问题中涉及抛物线的焦点和准线,又能与距离联系起来,那么用抛物线定义就能解决问题.因此,涉及抛物线的焦半径、焦点弦问题,可以优先考虑利用抛物线的定义转化为点到准线的距离,这样就可以使问题简单化.三、解答题17.【答案】(1)15cos17B=;(2)2b=.【解析】试题分析:(1)利用三角形内角和定理可知A B C+=,再利用诱导公式化简sin()A C+,利用降幂公式化简21cossin22B B-=,结合22sin cos1B B+=即可求出cos B;(2)利用(1)中结论15cos17B=,结合三角形面积公式可求出ac的值,根据6a c+=,进而利用余弦定理可求出b的值.试题解析:(1)由题设及πA B C ++=,可得2sin 8sin 2BB =,故sin 4(1cos B B =-. 上式两边平方,整理得217cos 32cos 150B B -+=,解得cos 1B =(舍去),15cos 17B =.(2)由15cos 17B =得8sin 17B =,故14=sin 217ABC S ac B ac =△.又=2ABC S △,则172ac =.由余弦定理及6a c +=得:222217152cos ()2(1cos )362(1)4217b ac ac B a c ac B =+-=+-+=-⨯⨯+=,所以2b =.【考点】余弦定理,三角形面积公式【名师点睛】解三角形问题是高考的高频考点,命题大多放在解答题的第一题,主要利用三角形的内角和定理,正余弦定理、三角形面积公式等知识进行求解.解题时要灵活利用三角形的边角关系进行“边转角”“角转边”,另外要注意a c +,ac ,22a c +三者之间的关系,这样的题目小而活,备受命题者的青睐. 18.【答案】(1)0.4092;(2)有99%的把握认为箱产量与养殖方法有关; (3)52.35 kg .【解析】试题分析:(1)利用相互独立事件概率公式即可求得事件A 的概率估计值; (2)写出列联表计算的2K 观测值,即可确定有99%的把握认为箱产量与养殖方法有关; (3)结合频率分布直方图估计中位数为52.35 kg .试题解析:(1)记B 表示事件“旧养殖法的箱产量低于50 kg ”,C 表示事件“新养殖法的箱产量不低于50 kg ”,由题意知()()()()P A P BC P B P C ==,旧养殖法的箱产量低于50 kg 的频率为0.0120.0140.0240.0340.0()4050.62⨯++++=, 故()P B 的估计值为0.62.新养殖法的箱产量不低于50 kg 的频率为0.0680.0460.0100.00850.6)6(+++=⨯, 故()P C 的估计值为0.66.因此,事件A 的概率估计值为0.620.660.4092⨯=. (2)根据箱产量的频率分布直方图得列联表:2K 的观测值22200(62663438)15.70510010096104K ⨯⨯-⨯=⨯⨯⨯≈. 由于15.705 6.635>,故有99%的把握认为箱产量与养殖方法有关.(3)因为新养殖法的箱产量频率分布直方图中,箱产量低于50 kg 的直方图面积为0.0040.0200.04450(.)340.5++⨯=<,箱产量低于55 kg 的直方图面积为0.0040.0200.0440.0685(0.680.)5+++⨯=>, 故新养殖法箱产量的中位数的估计值为0.50.345052.38(kg)0.068-+≈.名师点睛:(1)利用独立性检验,能够帮助我们对日常生活中的实际问题作出合理的推断和预测.独立性检验就是考察两个分类变量是否有关系,并能较为准确地给出这种判断的可信度,随机变量的观测值值越大,说明“两个变量有关系”的可能性越大. (2)利用频率分布直方图求众数、中位数和平均数时,应注意三点:①最高的小长方形底边中点的横坐标即众数;②中位数左边和右边的小长方形的面积和是相等的;③平均数是频率分布直方图的“重心”,等于频率分布直方图中每个小长方形的面积乘以小长方形底边中点的横坐标之和.【考点】独立事件概率公式,独立性检验原理,频率分布直方图估计中位数 19.【答案】(1)证明:取PA 的中点F ,连结EF ,BF . 因为E 是PD 的中点,所以EF AD ∥,1=2EF AD ,由=90BAD ABC =∠∠得BC AD ∥, 又1=2BC AD ,所以EF BC ∥,四边形BCEF 是平行四边形,CE BF ∥. 又BF ⊂平面PAD ,BCE ∉平面PAB ,故CE ∥平面PAB .(2)由已知得BA AD ⊥,以A 为坐标原点,AB 的方向为x 轴正方向,||AB 为单位长,建立如图所示的空间直角坐标系A xyz -,则(0,0,0)A ,(1,0,0)B ,(1,1,0)C,P,(1,0,PC ,(1,0,0)AB , 设(,,)M x y z ,则(1,,)BM x y z =-,(,1,PM x y z =-,因为BM 与底面ABCD 所成的角为45°,而=(0,0,1)n 是底面ABCD 的法向量, 所以cos ,sin 45BM 〈〉=n2=,即222(1)0x y z -+-=.① 又M 在棱PC 上,设PM PC λ=,则x λ=,1y =,z =.②由①②解得,11,x y z ⎧=+⎪⎪⎪=⎨⎪⎪=⎪⎩(舍去),11,x y z ⎧=⎪⎪⎪=⎨⎪⎪=⎪⎩所以(1M -,从而(1AM =. 设000(,,)x y z =m 是平面ABM 的法向量,则0,0,AM AB ⎧⋅=⎪⎨⋅=⎪⎩m m即0000(220,0,x y x ⎧++=⎪⎨=⎪⎩所以可取(0,m .于是cos ,||||⋅〈〉==m n m n m n ,因此二面角M AB D --. 【解析】试题分析:(1)取PA 的中点F ,连结EF ,BF ,由题意证得CE BF ∥,利用线面平行的判断定理即可证得结论;(2)建立空间直角坐标系,求得半平面的法向量:(0,m ,(0,0,1)n ,然后利用空间向量的相关结论可求得二面角M AB D --. 名师点睛:(1)求解本题要注意两点:①两平面的法向量的夹角不一定是所求的二面角,②利用方程思想进行向量运算,要认真细心、准确计算.(2)设m ,n 分别为平面α,β的法向量,则二面角θ与,〈〉m n 互补或相等,故有|cos ,|||o |s |c θ⋅〈〉==m nm n m n .求解时一定要注意结合实际图形判断所求角是锐角还是钝角.【考点】判定线面平行,面面角的向量求法20.【答案】(1)设(,)P x y =,00(,)M x y ,则0(,0)N x ,0(,)NP x x y -,0(0,)NM y .由2NP NM =得0x x =,0y y . 因为00(,)M x y 在C 上,所以22122x y +=.因此点P 的轨迹方程为222x y +=.(2)由题意知(1,0)F =-.设(3,)Q t =-,(,)P m n =,则,(3,)OQ t =-,(1,)PF m n =---,33OQ PF m tn ⋅=+-,(,)OP m n =,(3,)PQ m t n =---.由1OP PQ ⋅=得2231m m tn n --+-=,又由(1)知222m n +=,故330m tn +-=.所以0OQ PF ⋅=,即OQ PF ⊥.又过点P 存在唯一直线垂直于OQ ,所以过点P 且垂直于OQ 的直线l 过C 的左焦点F .【解析】试题分析:(1)设出点P 、M 的坐标,利用2NP NM =得到点P 与点M 坐标之间的关系即可求得轨迹方程为222xy +=;(2)利用1OP PQ ⋅=可得坐标之间的关系:2231m m tn n --+-=,结合(1)中的结论整理可得0OQ PF ⋅=,即OQ PF ⊥,据此即可得出结论. 名师点睛:求轨迹方程的常用方法:(1)直接法:直接利用条件建立x ,y 之间的关系(,)0F x y ==. (2)待定系数法:已知所求曲线的类型,求曲线方程.(3)定义法:先根据条件得出动点的轨迹是某种已知曲线,再由曲线的定义直接写出动点的轨迹方程.(4)代入(相关点)法:动点(,)P x y =依赖于另一动点00(,)Q x y 的变化而运动,常利用代入法求动点(,)P x y =的轨迹方程. 【考点】轨迹方程的求解,直线过定点问题 21.【答案】(1)()f x 的定义域为(0,)+∞.设()ln g x ax a x =--,则()()f x xg x =,()0f x ≥等价于()0g x ≥. 因为(1)=0g ,()0g x ≥,故(1)=0g ',而1()g x a x'=-,(1)1g a '=-,得1a -. 若1a -,则1()1g x x'=-.当01x <<时,()0g x '<,()g x 单调递咸; 当1x >时,()0g x '>,()g x 单调递增.所以1x =是()g x 的极小值点,故()(1)0g x g =≥. 综上,1a =.(2)由(1)知2()ln f x x x x x =--,()22ln f x x x '=--.设()22ln h x x x =--,则1()2'x h x=-.当1(0,)2x ∈ 时,()0h'x <;当1(,)2x ∈+∞时,()0h'x >,所以()h x 在1(0,)2上单调递减,在1(,)2+∞上单调递增.又2(e )0h ->,1()02h <,(1)0h =,所以()h x 在1(0,)2有唯一零点0x ,在1[,)2+∞有唯一零点1,且当0(0,)x x ∈时,()0h x >;当0(,1)x x ∈时,()0h x <,当(1,)x ∈+∞时,()0h x >. 因为()()f 'x h x =,所以0x x =是()f x 的唯一极大值点. 由0()0f 'x =得00ln 2(1)x x =-,故000()(1)f x x x =-. 由0(0,1)x ∈得01()4f x <. 因为0x x =是()f x 在(0,1)的最大值点,由1(1)e 0,-∈,1(e )0f '-≠得120()(e )e f x f -->=. 所以220e ()2f x --<<.【解析】试题分析:(1)根据题意结合导函数与原函数的关系可求得1a =,注意验证结果的正确性;(2)结合(1)的结论构造函数()22ln h x x x =--,结合()h x 的单调性和()f x 的解析式即可证得题中的不等式成立.名师点睛:导数是研究函数的单调性、极值(最值)最有效的工具,而函数是高中数学中重要的知识点,所以在历届高考中,对导数的应用的考查都非常突出.导数专题在高考中的命题方向及命题角度:从高考来看,对导数的应用的考查主要从以下几个角度进行:(1)考查导数的几何意义,往往与解析几何、微积分相联系;(2)利用导数求函数的单调区间,判断单调性;已知单调性求参数;(3)利用导数求函数的最值(极值),解决生活中的优化问题;(4)考查数形结合思想的应用. 【考点】利用导数研究函数的单调性,利用导数研究函数的极值 22.【答案】(1)()()22240x y x -+=≠ (2)2【解析】试题分析:(1)设出P 的极坐标,然后利用题意得出极坐标方程,最后转化为直角坐标方程;(2)利用(1)中的结论,设出点的极坐标,然后结合面积公式得到面积的三角函数,结合三角函数的性质可得OAB △面积的最大值.理科数学试卷 第21页(共22页) 理科数学试卷 第22页(共22页) 试题解析:(1)设P 的极坐标为()()0ρθρ,>,M 的极坐标为11()()0ρθρ,>. 由题设知OP ρ=,14cos OM ρθ==. 由16OM OP ⋅=得2C 的极坐标方程为0)4cos (ρθρ=>,因此2C 的直角坐标方程为22(240)()x y x -+=≠.(2)设点B 的极坐标为()(0)B B ραρ,>,由题设知2OA =,4cos B ρα=,于是OAB △的面积1ππsin 4cos sin 2sin 22233B S OA AOB ρααα⎛⎫⎛⎫=⋅⋅∠=⋅-=-+ ⎪ ⎪⎝⎭⎝⎭ 当π12α=-时,S取得最大值2+OAB △面积的最大值为2.名师点睛:本题考查了极坐标方程的求法及应用。

河南省洛阳市2017-2018学年高三数学四模试卷(理科) Word版含解析

河南省洛阳市2017-2018学年高三数学四模试卷(理科) Word版含解析

2017-2018学年河南省洛阳市高考数学四模试卷(理科)一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合A={x|x2﹣2x﹣3≤0},B={x|log2(x2﹣x)>1}则A∩B=()A.(2,3)B.(2,3]C.(﹣3,﹣2)D.[﹣3,﹣2)2.“存在x∈Z使x2+2x+m≤0”的否定是()A.存在x∈Z使x2+2x+m>0 B.不存在x∈Z使x2+2x+m>0C.对任意x∈Z使x2+2x+m≤0 D.对任意x∈Z使x2+2x+m>03.复数在复平面内对应的点在第三象限是a≥0的()A.充分不必要条件B.必要不充分条件C.充要条件 D.既不充分也不必要条件4.设x,y满足条件,若目标函数z=ax+by(a>0,b>0)的最大值为12,则的最小值为()A.B.C.D.45.已知函数f(x)=sinx﹣cosx且f′(x)=2f(x),f′(x)是f(x)的导函数,则sin2x=()A.B.﹣C.D.﹣6.如图是用模拟方法估计圆周率π值的程序框图,P表示估计结果,则图中空白框内应填入()A.P=B.P=C.P=D.P=7.在(1+x)(2+x)5的展开式中,x3的系数为()A.75 B.100 C.120 D.1308.距某码头400公里的正东方向有一个台风中心,正以每小时20公里的速度向西北方向移动,据经验,台风中心距码头300公里时,将对码头产生影响,则这个台风对码头产生影响的时间为()A.8小时B.9小时C.10小时D.12小时9.一个几何体的三视图如图所示,其中正视图是正三角形,则几何体的外接球的表面积为()A. B.C.D.10.双曲线与抛物线y2=2px(p>0)相交于A,B两点,公共弦AB恰好过它们的公共焦点F,则双曲线C的离心率为()A.B.C. D.11.在如图所示的正方形中随机投掷10000个点,则落入阴影部分(曲线C为正态分布N (0,1)的密度曲线)的点的个数的估计值为()A.2386 B.2718 C.3413 D.477212.对于函数f(x),若∀a,b,c∈R,f(a),f(b),f(c)为某一三角形的三边长,则称f(x)为“可构造三角形函数”,已知函数f(x)=是“可构造三角形函数”,则实数t的取值范围是()A.[0,+∞)B.[0,1]C.[1,2]D.二、填空题(本大题共4小题,每小题5分,共20分)13.已知f(x)=3x2+2x+1,若f(x)dx=2f(a),则a=.14.在直角三角形ABC中,点D是斜边AB的中点,点P为线段CD的中点,则=.15.抛物线y=x2,若过点(0,m)且长度为2的弦恰有两条,则m的取值范围是.16.在△ABC中,三个内角A,B,C的对边分别为a,b,c,已知a=2,b=c,△ABC 面积的最大值是.三、解答题:本大题共6个小题,共70分,解答题应写出文字说明、证明过程或演算步骤17.数列{a n}满足a1=1,(n∈N+).(1)证明:数列是等差数列;(2)求数列{a n}的通项公式a n;(3)设b n=n(n+1)a n,求数列{b n}的前n项和S n.18.“中国式过马路”存在很大的交通安全隐患.某调查机构为了解路人对“中国式过马路”的30名路人进行了问卷调查,得到了如下列联表:已知在这30人中随机抽取1人抽到反感“中国式过马路”的路人的概率是.(1)请将上面的2×2列联表补充完整(在答题卡上直接填写结果,不需要写求解过程),并据此资料分析反感“中国式过马路”与性别是否有关?(2)若从这30人中的女性路人中随机抽取2人参加一活动,记反感“中国式过马路”的人数为X,求X的分布列和数学期望.参考数据和公式:2×2列联表K2公式:K2=,K2的临界值表:.如图,四棱锥﹣中,底面为菱形,且,∠(I)求证:PB⊥AD;(II)若PB=,求二面角A﹣PD﹣C的余弦值.20.分别过椭圆E:+=1(a>b>0)左右焦点F1,F2的动直线l1,l2交于P点,与椭圆E分别交于A、B与C、D不同四点,直线OA、OB、OC、OD的斜率分别为k1、k2、k3、k4,且满足k1+k2=k3+k4,已知当l1与x轴重合时,|AB|=2,|CD|=.(1)求椭圆E的方程;(2)设点E1,E2的坐标分别为(﹣1,0),(1,0),证明|PE1|+|PE2|为定值.21.已知函数f(x)=﹣lnx+ax2+(1﹣a)x+2.(Ⅰ)当0<x<1时,试比较f(1+x)与f(1﹣x)的大小;(Ⅱ)若斜率为k的直线与y=f(x)的图象交于不同两点A(x1,y1),B(x2,y2),线段AB的中点的横坐标为x0,证明:f′(x0)>k.请考生在22、23、24三题中任选一题作答,如果多做,则按所做的第一题记分,作答时,用2B铅笔在答题卡上把所选题目对应的标号涂黑[选修4-1:几何证明选讲]22.如图,圆O的直径AB=10,P是AB延长线上一点,BP=2,割线PCD交圆O于点C,D,过点P作AP的垂线,交直线AC于点E,交直线AD于点F.(Ⅰ)当∠PEC=60°时,求∠PDF的度数;(Ⅱ)求PE•PF的值.[选修4-4:坐标系与参数方程]23.选修4﹣4:坐标系与参数方程在平面直角坐标系中,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,已知曲线C 的极坐标方程为ρsin2θ=2acosθ(a>0),过点P(﹣2,﹣4)的直线l的参数方程为(t为参数),直线l与曲线C相交于A,B两点.(Ⅰ)写出曲线C的直角坐标方程和直线l的普通方程;(Ⅱ)若|PA|•|PB|=|AB|2,求a的值.[选修4-5:不等式选讲]24.已知不等式|2x+2|﹣|x﹣1|>a.(1)当a=0时,求不等式的解集(2)若不等式在区间[﹣4,2]内无解.求实数a的取值范围.2016年河南省洛阳市高考数学四模试卷(理科)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合A={x|x2﹣2x﹣3≤0},B={x|log2(x2﹣x)>1}则A∩B=()A.(2,3)B.(2,3]C.(﹣3,﹣2)D.[﹣3,﹣2)【考点】交集及其运算.【分析】求出A,B中x的范围确定出A,B,再求出两集合的交集即可.【解答】解:由A中不等式变形得:(x﹣3)(x+1)≤0,解得:﹣1≤x≤3,即A=[﹣1,3],由log2(x2﹣x)>1,得到x2﹣x﹣2>0,即x<﹣1或x>2,∴B=(﹣∞,﹣1)∩(2,+∞),由B中则A∩B=(2,3],故选:B.2.“存在x∈Z使x2+2x+m≤0”的否定是()A.存在x∈Z使x2+2x+m>0 B.不存在x∈Z使x2+2x+m>0C.对任意x∈Z使x2+2x+m≤0 D.对任意x∈Z使x2+2x+m>0【考点】的否定.【分析】根据“存在x∈Z使x2+2x+m≤0”是特称,其否定是全称,将“存在”改为“任意的”,“≤“改为“>”可得答案.【解答】解:∵“存在x∈Z使x2+2x+m≤0”是特称∴否定为:对任意x∈Z使x2+2x+m>0故选D.3.复数在复平面内对应的点在第三象限是a≥0的()A.充分不必要条件B.必要不充分条件C.充要条件 D.既不充分也不必要条件【考点】复数的代数表示法及其几何意义.【分析】利用除法的运算法则:复数=﹣a﹣3i,由于在复平面内对应的点在第三象限,可得﹣a<0,即可判断出.【解答】解:∵复数==﹣a﹣3i,在复平面内对应的点在第三象限,∴﹣a<0,解得a>0.∴复数在复平面内对应的点在第三象限是a≥0的充分不必要条件.故选:A.4.设x,y满足条件,若目标函数z=ax+by(a>0,b>0)的最大值为12,则的最小值为()A.B.C.D.4【考点】基本不等式在最值问题中的应用;简单线性规划的应用;基本不等式.【分析】先根据条件画出可行域,设z=ax+by,再利用几何意义求最值,将最大值转化为y 轴上的截距,只需求出直线z=ax+by,过可行域内的点(4,6)时取得最大值,从而得到一个关于a,b的等式,最后利用基本不等式求最小值即可.【解答】解:不等式表示的平面区域如图所示阴影部分,当直线ax+by=z(a>0,b>0)过直线x﹣y+2=0与直线3x﹣y﹣6=0的交点(4,6)时,目标函数z=ax+by(a>0,b>0)取得最大12,∴4a+6b=12,即2a+3b=6,∴=()×=(12+)≥4当且仅当时,的最小值为4故选D.5.已知函数f(x)=sinx﹣cosx且f′(x)=2f(x),f′(x)是f(x)的导函数,则sin2x=()A.B.﹣C.D.﹣【考点】二倍角的正弦.【分析】利用函数f(x)=sinx﹣cosx且f′(x)=2f(x),可得cosx+sinx=2sinx﹣2cosx,从而可得tanx=3,再利用二倍角公式,弦化切,即可得出结论.【解答】解:∵函数f(x)=sinx﹣cosx且f′(x)=2f(x),∴cosx+sinx=2sinx﹣2cosx,∴sinx=3cosx,∴tanx=3,∴sin2x=2sinxcosx===.故选C.6.如图是用模拟方法估计圆周率π值的程序框图,P表示估计结果,则图中空白框内应填入()A.P=B.P=C.P=D.P=【考点】程序框图.【分析】由题意以及框图的作用,直接推断空白框内应填入的表达式.【解答】解:由题意以及程序框图可知,用模拟方法估计圆周率π的程序框图,M是圆周内的点的次数,当i大于1000时,圆周内的点的次数为4M,总试验次数为1000,所以要求的概率,所以空白框内应填入的表达式是P=.故选:D.7.在(1+x)(2+x)5的展开式中,x3的系数为()A.75 B.100 C.120 D.130【考点】二项式系数的性质.【分析】求出(2+x)5的展开式中含有x3的项和含有x2的项,与第一个式子作积得答案.【解答】解:二项式(2+x)5的通项.其中含有x3的项为,含有x2的项为,∴在(1+x)(2+x)5的展开式中,x3的系数为1×40+1×80=120.故选:C.8.距某码头400公里的正东方向有一个台风中心,正以每小时20公里的速度向西北方向移动,据经验,台风中心距码头300公里时,将对码头产生影响,则这个台风对码头产生影响的时间为()A.8小时B.9小时C.10小时D.12小时【考点】直线与圆的位置关系.【分析】由已知得AO=OD=400,OA⊥OD,OB=OC=300,∠OAB=45°,由余弦定理求出AB=CD=200,由此能求出这个台风对码头产生影响的时间.【解答】解:如图,由已知得AO=OD=400,OA⊥OD,OB=OC=300,∠OAB=45°,设CD=AB=x,则90000=160000+x2﹣800x×,解得AB=CD=200,∴BC=﹣2=200,由题意当台风中心位于BC线段上时,将对码头O产生影响,∵台风中心正以每小时20公里的速度向西北方向移动,∴这个台风对码头产生影响的时间为:小时.故选:C.9.一个几何体的三视图如图所示,其中正视图是正三角形,则几何体的外接球的表面积为()A. B.C.D.【考点】由三视图求面积、体积.【分析】几何体是三棱锥,根据三视图知最里面的面与底面垂直,高为2,结合直观图判定外接球的球心在SO上,利用球心到A、S的距离相等求得半径,代入球的表面积公式计算.【解答】解:由三视图知:几何体是三棱锥,且最里面的面与底面垂直,高为2,如图:其中OA=OB=OC=2,SO⊥平面ABC,且SO=2,其外接球的球心在SO上,设球心为M,OM=x,则=2﹣x⇒x=,∴外接球的半径R=,∴几何体的外接球的表面积S=4π×=π.故选:D.10.双曲线与抛物线y2=2px(p>0)相交于A,B两点,公共弦AB恰好过它们的公共焦点F,则双曲线C的离心率为()A.B.C. D.【考点】双曲线的简单性质.【分析】利用条件可得A()在双曲线上,=c,从而可得(c,2c)在双曲线上,代入化简,即可得到结论.【解答】解:∵双曲线与抛物线y2=2px(p>0)相交于A,B两点,公共弦AB恰好过它们的公共焦点F,∴A()在双曲线上,=c∴(c,2c)在双曲线上,∴∴c4﹣6a2c2+a4=0∴e4﹣6e2+1=0∴∵e>1∴e=故选B.11.在如图所示的正方形中随机投掷10000个点,则落入阴影部分(曲线C为正态分布N (0,1)的密度曲线)的点的个数的估计值为()A.2386 B.2718 C.3413 D.4772【考点】正态分布曲线的特点及曲线所表示的意义.【分析】求出P(0<X≤1)=×0.6826=0.3413,即可得出结论.【解答】解:由题意P(0<X≤1)=×0.6826=0.3413,∴落入阴影部分点的个数的估计值为10000×0.3413=3413,故选:C.12.对于函数f(x),若∀a,b,c∈R,f(a),f(b),f(c)为某一三角形的三边长,则称f(x)为“可构造三角形函数”,已知函数f(x)=是“可构造三角形函数”,则实数t的取值范围是()A.[0,+∞)B.[0,1]C.[1,2]D.【考点】指数函数的图象与性质.【分析】因对任意实数a、b、c,都存在以f(a)、f(b)、f(c)为三边长的三角形,则f (a)+f(b)>f(c)恒成立,将f(x)解析式用分离常数法变形,由均值不等式可得分母的取值范围,整个式子的取值范围由t﹣1的符号决定,故分为三类讨论,根据函数的单调性求出函数的值域,然后讨论k转化为f(a)+f(b)的最小值与f(c)的最大值的不等式,进而求出实数t的取值范围.【解答】解:由题意可得f(a)+f(b)>f(c)对于∀a,b,c∈R都恒成立,由于f(x)==1+,①当t﹣1=0,f(x)=1,此时,f(a),f(b),f(c)都为1,构成一个等边三角形的三边长,满足条件.②当t﹣1>0,f(x)在R上是减函数,1<f(a)<1+t﹣1=t,同理1<f(b)<t,1<f(c)<t,由f(a)+f(b)>f(c),可得2≥t,解得1<t≤2.③当t﹣1<0,f(x)在R上是增函数,t<f(a)<1,同理t<f(b)<1,t<f(c)<1,由f(a)+f(b)>f(c),可得2t≥1,解得1>t≥.综上可得,≤t≤2,故实数t的取值范围是[,2],故选D.二、填空题(本大题共4小题,每小题5分,共20分)13.已知f(x)=3x2+2x+1,若f(x)dx=2f(a),则a=﹣1或.【考点】定积分.【分析】先求出f(x)在[﹣1,1]上的定积分,再建立等量关系,求出参数a即可.【解答】解:∫﹣11f(x)dx=∫﹣11(3x2+2x+1)dx=(x3+x2+x)|﹣11=4=2f(a),f(a)=3a2+2a+1=2,解得a=﹣1或.故答案为﹣1或14.在直角三角形ABC 中,点D 是斜边AB 的中点,点P 为线段CD 的中点,则= 10 .【考点】向量在几何中的应用.【分析】建立坐标系,利用坐标法,确定A ,B ,D ,P 的坐标,求出相应的距离,即可得到结论.【解答】解:建立如图所示的平面直角坐标系,设|CA|=a ,|CB|=b ,则A (a ,0),B (0,b )∵点D 是斜边AB 的中点,∴,∵点P 为线段CD 的中点,∴P∴===∴|PA|2+|PB|2==10()=10|PC|2∴=10.故答案为:1015.抛物线y=x 2,若过点(0,m )且长度为2的弦恰有两条,则m 的取值范围是 (﹣∞,1) .【考点】抛物线的简单性质.【分析】由题意可得弦所在直线的斜率存在,设为k ,可得直线方程为y=kx+m ,(k ≠0),代入抛物线的方程,运用韦达定理和判别式大于0,弦长公式,运用换元法,以及函数的单调性和抛物线的对称性,即可得到所求范围.【解答】解:由题意可得弦所在直线的斜率存在,设为k , 可得直线方程为y=kx+m ,(k ≠0),代入抛物线的方程,可得x 2﹣kx ﹣m=0, 即有△=k 2+4m >0,设弦的端点的横坐标分别为x 1,x 2, 可得x 1+x 2=k ,x 1x 2=﹣m ,即有弦长为|x1﹣x2|=•=2,化为4m=﹣k2,令t=1+k2(t>1),即有f(t)=﹣t+1递减,则f(t)<4,即有4m<4,解得m<1.检验由抛物线关于y轴对称,成立.故答案为:(﹣∞,1).16.在△ABC中,三个内角A,B,C的对边分别为a,b,c,已知a=2,b=c,△ABC面积的最大值是2.【考点】正弦定理.【分析】利用余弦定理计算cosA,得出sinA,代入面积公式得出S△ABC关于c的函数,利用基本不等式得出面积的最大值.【解答】解:由余弦定理得:cosA==,∴sinA==.∴S△ABC==.∵﹣c4+24c2﹣16=﹣(c2﹣12)2+128≤128,∴S△ABC≤=2.故答案为:2.三、解答题:本大题共6个小题,共70分,解答题应写出文字说明、证明过程或演算步骤17.数列{a n}满足a1=1,(n∈N+).(1)证明:数列是等差数列;(2)求数列{a n}的通项公式a n;(3)设b n=n(n+1)a n,求数列{b n}的前n项和S n.【考点】数列递推式;数列的求和.【分析】(I)由已知中(n∈N+),我们易变形得:,即,进而根据等差数列的定义,即可得到结论;(II)由(I)的结论,我们可以先求出数列的通项公式,进一步得到数列{a n}的通项公式a n;(Ⅲ)由(II)中数列{a n}的通项公式,及b n=n(n+1)a n,我们易得到数列{b n}的通项公式,由于其通项公式由一个等差数列与一个等比数列相乘得到,故利用错位相消法,即可求出数列{b n}的前n项和S n.【解答】解:(Ⅰ)证明:由已知可得,即,即∴数列是公差为1的等差数列(Ⅱ)由(Ⅰ)知,∴(Ⅲ)由(Ⅱ)知b n=n•2nS n=1•2+2•22+3•23++n•2n2S n=1•22+2•23+…+(n﹣1)•2n+n•2n+1相减得:=2n+1﹣2﹣n•2n+1∴S n=(n﹣1)•2n+1+218.“中国式过马路”存在很大的交通安全隐患.某调查机构为了解路人对“中国式过马路”的名路人进行了问卷调查,得到了如下列联表:已知在这30人中随机抽取1人抽到反感“中国式过马路”的路人的概率是.(1)请将上面的2×2列联表补充完整(在答题卡上直接填写结果,不需要写求解过程),并据此资料分析反感“中国式过马路”与性别是否有关?(2)若从这30人中的女性路人中随机抽取2人参加一活动,记反感“中国式过马路”的人数为X,求X的分布列和数学期望.参考数据和公式:2×2列联表K2公式:K2=,K2的临界值表:【分析】(1)根据在全部30人中随机抽取1人抽到中国式过马路的概率,做出中国式过马路的人数,进而做出男生的人数,填好表格.再根据所给的公式,代入数据求出临界值,把求得的结果同临界值表进行比较,看出有多大的把握说明反感“中国式过马路”与性别是否有关.(2)反感“中国式过马路”的人数为X的可能取值为0,1,2,通过列举得到事件数,分别计算出它们的概率,最后利用列出分布列,求出期望即可.设H0:反感“中国式过马路”与性别与否无关由已知数据得:K2=≈1.158<3.841,所以,没有充足的理由认为反感“中国式过马路”与性别有关.…(2)X的可能取值为0,1,2.P(X=0)==,P(X=1)==,P(X=2)==…X的数学期望为:EX=0×+1×+2×=.…19.如图,四棱锥P﹣ABCD中,底面ABCD为菱形,且PA=PD=DA=2,∠BAD=60°(I)求证:PB⊥AD;(II)若PB=,求二面角A﹣PD﹣C的余弦值.【考点】二面角的平面角及求法;直线与平面垂直的性质.【分析】(Ⅰ)证明:取AD的中点E,连接PE,BE,BD.证明AD⊥平面PBE,然后证明PB⊥AD;(Ⅱ)以点E为坐标原点,分别以EA,EB,EP所在直线为x,y,z轴,建立如图所示空间直角坐标系,求出平面APD的一个法向量为=(0,1,0),平面PDC的一个法向量为,利用向量的数量积求解二面角A﹣PD﹣C的余弦值.【解答】(Ⅰ)证明:取AD的中点E,连接PE,BE,BD.∵PA=PD=DA,四边形ABCD为菱形,且∠BAD=60°,∴△PAD和△ABD为两个全等的等边三角形,则PE⊥AD,BE⊥AD,∴AD⊥平面PBE,…又PB⊂平面PBE,∴PB⊥AD;…(Ⅱ)解:在△PBE中,由已知得,PE=BE=,PB=,则PB2=PE2+BE2,∴∠PEB=90°,即PE⊥BE,又PE⊥AD,∴PE⊥平面ABCD;以点E为坐标原点,分别以EA,EB,EP所在直线为x,y,z轴,建立如图所示空间直角坐标系,则E(0,0,0),C(﹣2,,0),D(﹣1,0,0),P(0,0,),则=(1,0,),=(﹣1,,0),由题意可设平面APD的一个法向量为=(0,1,0);…设平面PDC的一个法向量为=(x,y,z),由得:,令y=1,则x=,z=﹣1,∴=(,1,﹣1);则•=1,∴cos<>===,…由题意知二面角A﹣PD﹣C的平面角为钝角,所以,二面角A﹣PD﹣C的余弦值为﹣…20.分别过椭圆E:+=1(a>b>0)左右焦点F1,F2的动直线l1,l2交于P点,与椭圆E分别交于A、B与C、D不同四点,直线OA、OB、OC、OD的斜率分别为k1、k2、k3、k4,且满足k1+k2=k3+k4,已知当l1与x轴重合时,|AB|=2,|CD|=.(1)求椭圆E的方程;(2)设点E1,E2的坐标分别为(﹣1,0),(1,0),证明|PE1|+|PE2|为定值.【考点】直线与圆锥曲线的综合问题;椭圆的标准方程.【分析】(1)当l1与x轴重合时,可得k1+k2=k3+k4=0,可得l2垂直于x轴,可得|AB|,|CD|的长,解方程可得a,b,进而得到椭圆方程;(2)当直线l1或l2斜率不存在时,P点坐标为(﹣1,0)或(1,0).当直线l1、l2斜率存在时,设斜率分别为m1,m2.可得l1的方程为y=m1(x+1),l2的方程为y=m2(x﹣1).设A(x1,y1),B(x2,y2),C(x3,y3),D(x4,y4),与椭圆方程联立即可得出根与系数的关系,再利用斜率计算公式和已知即可得出m1与m2的关系,进而得出答案.【解答】解:(1)当l1与x轴重合时,k1+k2=k3+k4=0,即k3=﹣k4,即有l2垂直于x轴,可得|AB|=2a=2,|CD|==,解得a=,b=,可得椭圆的方程为+=1;(2)证明:当直线l1或l2斜率不存在时,P点坐标为(﹣1,0)或(1,0).当直线l1、l2斜率存在时,设斜率分别为m1,m2.∴l1的方程为y=m1(x+1),l2的方程为y=m2(x﹣1).设A(x1,y1),B(x2,y2),C(x3,y3),D(x4,y4),联立,得到(2+3m12)x2+6 m12x+3m12﹣6=0,∴x1+x2=﹣,x1x2=.同理x3+x4=,x3x4=.(*)∵k1===m1+,k2=m1+,k3=m2﹣,k4=m2﹣.又满足k1+k2=k3+k4.∴2m1+m1•=2m2﹣m2•,把(*)代入上式化为:2m1+m1•=2m2﹣m2•.(m1≠m2).化为m1m2=﹣2.设点P(x,y),则•=﹣2,(x≠±1)化为+x2=1.由当直线l1或l2斜率不存在时,P点坐标为(﹣1,0)或(1,0)也满足,∴点P在椭圆上,则存在点E1,E2的坐标分别为(﹣1,0),(1,0),|PE1|+|PE2|=2为定值.21.已知函数f(x)=﹣lnx+ax2+(1﹣a)x+2.(Ⅰ)当0<x<1时,试比较f(1+x)与f(1﹣x)的大小;(Ⅱ)若斜率为k的直线与y=f(x)的图象交于不同两点A(x1,y1),B(x2,y2),线段AB的中点的横坐标为x0,证明:f′(x0)>k.【考点】利用导数研究函数的单调性.【分析】(1)利用作差法得出f(1+x)﹣f(1﹣x)=ln(1﹣x)﹣ln(1+x)+2x,构造函数令g(x)=ln(1﹣x)﹣ln(1+x)+2x,通过求导,判断函数单调性,得出结论.(2)求出k和f'(x0),利用分析法得出只需证<ln,构造函数h(t)=+lnt,利用导数判断单调性证得2<+lnt.【解答】解:(1)f(1+x)﹣f(1﹣x)=ln(1﹣x)﹣ln(1+x)+2x令g(x)=ln(1﹣x)﹣ln(1+x)+2x,∴g′(x)=∵0<x<1,g′(x)<0,g(x)单调递减∴g(x)<g(0)=0.∴f(1+x)<f(1﹣x);(2)不妨设x2>x1k==﹣+a(x2+x1)+1﹣af'(x0)=﹣+ax0+1﹣a=﹣+a(x1+x2)+1﹣a要证f′(x0)>k只需证<即证<ln令t=t>1∴<lnt即2<+lnt令h(t)=+lnt∴h'(t)=>0,h(t)递增∴h(t)>h(1)=2∴2<+lnt成立故f′(x0)>k.请考生在22、23、24三题中任选一题作答,如果多做,则按所做的第一题记分,作答时,用2B铅笔在答题卡上把所选题目对应的标号涂黑[选修4-1:几何证明选讲]22.如图,圆O的直径AB=10,P是AB延长线上一点,BP=2,割线PCD交圆O于点C,D,过点P作AP的垂线,交直线AC于点E,交直线AD于点F.(Ⅰ)当∠PEC=60°时,求∠PDF的度数;(Ⅱ)求PE•PF的值.【考点】与圆有关的比例线段.【分析】(Ⅰ)连结BC,依题意知,∠CAB+∠CBA=∠EAP+∠PEC,继而可得∠CBA=∠PEC,又∠PEC=60°,于是可得∠PDF=∠CBA=∠PEC=60°;(Ⅱ)解法1:由(Ⅰ)知∠PDF=∠PEC,利用D、C、E、F四点共圆PE•PF=PC•PD,及割线定理可得PC•PD=PB•PA=24,于是可得答案;解法2:由∠PEC=∠PDF,∠EPC=∠DPF可得△PEC~△PDF,从而可得PE•PF=PC•PD,再结合PC、PA都是圆O的割线,得到PC•PD=PB•PA=24,从而可求得PE•PF的值.【解答】解:(Ⅰ)连结BC,∵AB是圆O的直径,∴则∠ACB=90°,﹣﹣﹣﹣﹣又∠APF=90°,∠CAB+∠CBA=∠EAP+∠PEC﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣∴∠CBA=∠PEC,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣∵∠PEC=60°∴∠PDF=∠CBA=∠PEC=60°;﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(Ⅱ)解法1:由(Ⅰ)知∠PDF=∠PEC,∴D、C、E、F四点共圆,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣∴PE•PF=PC•PD,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣∵PC、PA都是圆O的割线,∴PC•PD=PB•PA=24,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣∴PE•PF=24.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣解法2:∵∠PEC=∠PDF,∠EPC=∠DPF,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣∴△PEC~△PDF﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣∴即PE•PF=PC•PD,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣∵PC、PA都是圆O的割线,∴PC•PD=PB•PA=24﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣∴PE•PF=24.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣[选修4-4:坐标系与参数方程]23.选修4﹣4:坐标系与参数方程在平面直角坐标系中,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,已知曲线C 的极坐标方程为ρsin2θ=2acosθ(a>0),过点P(﹣2,﹣4)的直线l的参数方程为(t为参数),直线l与曲线C相交于A,B两点.(Ⅰ)写出曲线C的直角坐标方程和直线l的普通方程;(Ⅱ)若|PA|•|PB|=|AB|2,求a的值.【考点】直线的参数方程;简单曲线的极坐标方程.【分析】(Ⅰ)利用极坐标与直角坐标的互化公式即可把曲线C的极坐标方程化为直角坐标方程,利用消去参数t即可得到直线l的直角坐标方程;(Ⅱ)将直线L的参数方程,代入曲线C的方程,利用参数的几何意义即可得出|PA|•|PB|,从而建立关于a的方程,求解即可.【解答】解:(I)由ρsin2θ=2acosθ(a>0)得ρ2sin2θ=2aρcosθ(a>0)∴曲线C的直角坐标方程为y2=2ax(a>0)…直线l的普通方程为y=x﹣2…(II)将直线l的参数方程代入曲线C的直角坐标方程y2=2ax中,得t2﹣2(4+a)t+8(4+a)=0设A、B两点对应的参数分别为t1、t2则有t1+t2=2(4+a),t1t2=8(4+a)…∵|PA|⋅|PB|=|AB|2∴|t1t2|=(t1﹣t2)2,即(t1+t2)2=5t1t2…∴[2(4+a)]2=40(4+a)化简得,a2+3a﹣4=0解之得:a=1或a=﹣4(舍去)∴a的值为1…[选修4-5:不等式选讲]24.已知不等式|2x+2|﹣|x﹣1|>a.(1)当a=0时,求不等式的解集(2)若不等式在区间[﹣4,2]内无解.求实数a的取值范围.【考点】绝对值不等式的解法.【分析】(1)把要解的不等式等价转化为与之等价的三个不等式组,求出每个不等式组的解集,再取并集,即得所求.(2)求得f(x)=|2x+2|﹣|x﹣1|=在区间[﹣4,2]内的值域,结合|2x+2|﹣|x﹣1|>a无解,求得a的范围.【解答】解:(1)当a=0时,不等式即|2x+2|﹣|x﹣1|>0,可得①,或②,或③.解①求得x<﹣3,解②求得﹣<x<1,解③求得x≥1.综上可得,原不等式的解集为{x|x<﹣3,或x>﹣}.(2)当x∈[﹣4,2],f(x)=|2x+2|﹣|x﹣1|=的值域为[﹣2,3],而不等式|2x+2|﹣|x﹣1|>a无解,故有a≤3.2016年7月25日。

河南省洛阳市2017-2018学年高考数学三模试卷(文科) Word版含解析

河南省洛阳市2017-2018学年高考数学三模试卷(文科) Word版含解析

河南省洛阳市2017-2018学年高考数学三模试卷(文科)一、选择题(本题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.复数z满足(1+i)z=3+i,则复数z在复平面内所对应的点的坐标是( )A.(1,﹣2)B.(﹣2,1)C.(﹣1,2)D.(2,﹣1)2.设集合A={x|x2﹣6x+8<0},B={x|2<2x<8},则A∪B=( )A.{x|2<x<3} B.{x|1<x<3} C.{x|1<x<4} D.{x|3<x<4}3.下列函数中,在其定义域内,既是奇函数又是减函数的是( )A.f(x)=﹣x3B.f(x)=C.f(x)=﹣tanx D.f(x)=4.“等式sin(α+γ)=sin2β成立”是“α、β、γ成等差数列”的( )A.必要而不充分条件B.充分而不必要条件C.充分必要条件D.既不充分又不必要条件5.设F1、F2分别是椭圆+=1的左、焦点,P为椭圆上一点,M是F1P的中点,|OM|=3,则P点到椭圆左焦点的距离为( )A.2 B.3 C.4 D.56.执行如图所示的程序框,输出的T=( )A.17 B.29 C.44 D.527.为了得到函数y=cos2x的图象,可以把函数y=sin(2x+)的图象上所有的点( )A.向右平移个单位B.向右平移个单位C.向左平移个单位D.向左平移个单位8.已知m、n是两条不同的直线,α、β、γ是三个不同的平面,则下列正确的是( ) A.若α⊥γ,α⊥β,则γ∥βB.若m∥n,m⊂α,n⊂β,则α∥βC.若m∥n,m∥a,则n∥αD.若m∥n,m⊥α,n⊥β,则α∥β9.在△ABC中,点D在线段BC的延长线上,且=,点O在线段CD上(点O与点C,D不重合),若=x+y,则x的取值范围是( )A.(﹣1,0)B.(0,)C.(0,1)D.(﹣,0)10.已知正项等比数列{a n}满足a7=a6+2a5,若a m,a n满足=8a1,则+的最小值为( )A.2 B.4 C.6 D.811.一个几何体的侧视图是边长为2的正三角形,正视图与俯视图的尺寸如图所示,则此几何体的体积为( )A.12+2+3πB.12+3πC.π+2D.+212.已知中心在坐标原点的椭圆与双曲线有公共焦点,且左、右焦点分别为F1、F2,这两条曲线在第一象限的交点为P,△PF1F2是以PF1为底边的等腰三角形,若|PF1|=10,设椭圆与双曲线的离心率分别为e1,e2,则e1+e2的取值范围是( )A.(,+∞)B.(,+∞)C.(,+∞)D.(,+∞)二、填空题:本大题共4小题,每小题5分,共20分.13.则f(f(2))的值为__________.14.已知变量x,y满足条件,若z=y﹣x的最小值为﹣3,则z=y﹣x的最大值为__________.15.在区间[﹣π,π]内随机取两个数分别记为m,n,则使得函数f(x)=x3+mx2﹣(n2﹣π)x+1有极值点的概率为__________.16.对于函数f(x)=te x﹣x,若存在实数a,b(a<b),使得f(x)≤0的解集为[a,b],则实数t的取值范围是__________.三、解答题:本大题共5小题,共70分,解答应写出文字说明、证明过程或演算步骤.17.在△ABC中,角A、B、C的对边分别是a、b、c,点(a,b)在直线x(sinA﹣sinB)+ysinB=csinC上.(1)求C的大小;(2)若c=7,求△ABC的周长的取值范围.18.某篮球队甲、乙两名队员在本赛季已结束的8场比赛中得分统计的茎叶图如下:(Ⅰ)比较这两名队员在比赛中得分的均值和方差的大小:(Ⅱ)从乙比赛得分在20分以下的6场比赛中随机抽取2场进行失误分析,求抽到恰好有1场得分不足10分的概率.19.如图1,等腰梯形ABCD中,AD∥BC,AD=BC,AB=AD,∠ABC=60°,E是BC的中点,如图2,将△ABE沿AE折起,使面BAE⊥面AECD,连接BC,BD,P是棱BC上的中点.(1)求证:AE⊥BD;(2)若AB=2,求三棱锥B﹣AEP的体积.20.如图,已知椭圆Γ:=1(a>b>0)的离心率e=,短轴右端点为A,M(1,0)为线段OA的中点.(Ⅰ)求椭圆Γ的方程;(Ⅱ)过点M任作一条直线与椭圆Γ相交于两点P,Q,试问在x轴上是否存在定点N,使得∠PNM=∠QNM,若存在,求出点N的坐标;若不存在,说明理由.21.设函数f(x)=lnx,h(x)=f(x)+mf′(x).(1)求函数h(x)单调区间;(2)当m=e(e为自然对数的底数)时,若h(n)﹣h(x)<对∀x>0恒成立,求实数n 的取值范围.四、请考生在22、23、24三题中任选一题作答,如果多做,则按所做的第一题记分.[选修4-1:几何证明选讲]22.如图,已知AD是△ABC的对角∠EAC的平分线,交BC的延长线于点D,延长DA 交△ABC的外接圆于点F,连结FB,FC.(1)求证:FB=FC;(2)若FA=2,AD=6,求FB的长.四、请考生在22、23、24三题中任选一题作答,如果多做,则按所做的第一题记分.[选修4-4:坐标系与参数方程]23.已知直线l的参数方程为(t为参数),以坐标原点为极点,x轴正半轴为极轴,建立极坐标系,曲线C的极坐标方程是ρ=.(1)写出直线l的极坐标方程与曲线C的普通方程;(2)若点P是曲线C上的动点,求P到直线l的距离的最小值,并求出P点的坐标.四、请考生在22、23、24三题中任选一题作答,如果多做,则按所做的第一题记分.[选修4-5:不等式选讲]24.已知f(x)=|x+l|+|x﹣2|,g(x)=|x+1|﹣|x﹣a|+a(a∈R).(Ⅰ)解不等式f(x)≤5;(Ⅱ)若不等式f(x)≥g(x)恒成立,求a的取值范围.河南省洛阳市2015届高考数学三模试卷(文科)一、选择题(本题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.复数z满足(1+i)z=3+i,则复数z在复平面内所对应的点的坐标是( )A.(1,﹣2)B.(﹣2,1)C.(﹣1,2)D.(2,﹣1)考点:复数代数形式的乘除运算.专题:数系的扩充和复数.分析:把已知的等式变形,然后利用复数代数形式的乘除运算化简得答案.解答:解:由(1+i)z=3+i,得,∴复数z在复平面内所对应的点的坐标是(2,﹣1).故选:D.点评:本题考查了复数代数形式的乘除运算,考查了复数的基本概念,是基础题.2.设集合A={x|x2﹣6x+8<0},B={x|2<2x<8},则A∪B=( )A.{x|2<x<3} B.{x|1<x<3} C.{x|1<x<4} D.{x|3<x<4}考点:并集及其运算.专题:集合.分析:把集合A,B分别解出来,根据并集的概念求解即可.解答:解:(Ⅰ)∵A={x|x2﹣6x+8<0}={x|2<x<4},B={x|2<2x<8}={x|1<x<3},∴A∪B={x|1<x<4},故选:C.点评:本题考查一元二次不等式的解法,集合间运算,属于基础题.3.下列函数中,在其定义域内,既是奇函数又是减函数的是( )A.f(x)=﹣x3B.f(x)=C.f(x)=﹣tanx D.f(x)=考点:函数单调性的判断与证明;函数奇偶性的判断.专题:函数的性质及应用.分析:根据函数的奇偶性的定义,单调性的定义判断:①f(x)=﹣x3是奇函数又是减函数;②f(x)=,定义域(﹣∞,0]不是奇函数;③f(x)=﹣tanx在定义域上不是减函数;④f(x)=在定义域上不是减函数;即可判断f(x)=﹣x3是奇函数又是减函数,从而可得答案.解答:解:①∵f(x)=﹣x3,定义域为(﹣∞,+∞),∴f(﹣x)=﹣f(x),x1<x2,则﹣x13,∴f(x)=﹣x3是奇函数又是减函数,②∵f(x)=,定义域(﹣∞,0]∴f(x)=不是奇函数,③f(x)=﹣tanx在定义域上不是减函数,④f(x)=在定义域上不是减函数,故选;A点评:本题考查了常见函数的单调性,奇偶性,注意定义域,单调区间的定义,属于中档题.4.“等式sin(α+γ)=sin2β成立”是“α、β、γ成等差数列”的( )A.必要而不充分条件 B.充分而不必要条件C.充分必要条件D.既不充分又不必要条件考点:必要条件、充分条件与充要条件的判断.分析:由正弦函数的图象及周期性:当sinα=sinβ时,α=β+2kπ或α+β=π+2kπ,k∈Z,而不是α=β.解答:解:若等式sin(α+γ)=sin2β成立,则α+γ=kπ+(﹣1)k•2β,此时α、β、γ不一定成等差数列,若α、β、γ成等差数列,则2β=α+γ,等式sin(α+γ)=sin2β成立,所以“等式sin(α+γ)=sin2β成立”是“α、β、γ成等差数列”的.必要而不充分条件.故选A.点评:本题考查充要条件的判断和三角函数的有关知识,属基本题.5.设F1、F2分别是椭圆+=1的左、焦点,P为椭圆上一点,M是F1P的中点,|OM|=3,则P点到椭圆左焦点的距离为( )A.2 B.3 C.4 D.5考点:椭圆的简单性质.专题:圆锥曲线的定义、性质与方程.分析:由题意知,OM是三角形PF1F2的中位线,由|OM|=3,可得|PF2|=6,再由椭圆的定义求出|PF1|的值.解答:解:如图,则OM是三角形PF1F2的中位线,∵|OM|=3,∴|PF2|=6,又|PF1|+|PF2|=2a=10,∴|PF1|=4,故选:C.点评:本题考查椭圆的定义,以及椭圆的简单性质的应用,判断OM是三角形PF1F2的中位线是解题的关键,是中档题.6.执行如图所示的程序框,输出的T=( )A.17 B.29 C.44 D.52考点:程序框图.专题:图表型;算法和程序框图.分析:模拟执行程序框图,依次写出每次循环得到的S,n,T的值,当S=12,T=29时满足条件T>2S,退出循环,输出T的值为29.解答:解:模拟执行程序框图,可得S=3,n=1,T=2不满足条件T>2S,S=6,n=2,T=8不满足条件T>2S,S=9,n=3,T=17不满足条件T>2S,S=12,n=4,T=29满足条件T>2S,退出循环,输出T的值为29.故选:B.点评:本题主要考查了循环结构的程序框图,依次写出每次循环得到的S,n,T的值是解题的关键,属于基础题.7.为了得到函数y=cos2x的图象,可以把函数y=sin(2x+)的图象上所有的点( )A.向右平移个单位B.向右平移个单位C.向左平移个单位D.向左平移个单位考点:函数y=Asin(ωx+φ)的图象变换.专题:三角函数的图像与性质.分析:由条件利用诱导公式、函数y=Asin(ωx+φ)的图象变换规律,得出结论.解答:解:把函数y=sin(2x+)的图象上所有的点向左平移个单位,可得函数y=sin[2(x+)+]=sin(2x+)=cos2x的图象,故选:C.点评:本题主要考查诱导公式的应用,函数y=Asin(ωx+φ)的图象变换规律,统一这两个三角函数的名称,是解题的关键,属于基础题.8.已知m、n是两条不同的直线,α、β、γ是三个不同的平面,则下列正确的是( ) A.若α⊥γ,α⊥β,则γ∥βB.若m∥n,m⊂α,n⊂β,则α∥βC.若m∥n,m∥a,则n∥α D.若m∥n,m⊥α,n⊥β,则α∥β考点:空间中直线与平面之间的位置关系.分析:用具体事物比如教室作为长方体,再根据面面平行的判定定理及线面平行的性质定理判断.解答:解:A不正确,比如教室的一角三个面相互垂直;B不正确,由面面平行的判定定理知m与n必须是相交直线;C不正确,由线面平行的性质定理知可能n⊂α;D正确,由m∥n,m⊥a得n⊥α,因n⊥β,得α∥β故选D.点评:本题考查了线面平行的性质定理和面面平行的判定定理,利用具体的事物可培养立体感.9.在△ABC中,点D在线段BC的延长线上,且=,点O在线段CD上(点O与点C,D不重合),若=x+y,则x的取值范围是( )A.(﹣1,0)B.(0,)C.(0,1)D.(﹣,0)考点:向量数乘的运算及其几何意义.专题:平面向量及应用.分析:由已知O,B,C三点共线,所以得到x+y=1,又由=,点O在线段CD上(点O与点C,D不重合),利用共面向量基本定理即可得出解答:解:由已知O,B,C三点共线,所以得到x+y=1,所以=x+y=x+(1﹣x)=x()+=x+,点D在线段BC的延长线上,且=,点O在线段CD上(点O与点C,D不重合),所以x的取值范围为﹣1<x<0;故选:A.点评:本题考查了向量的三角形法则、共线向量定理、共面向量基本定理,考查了推理能力,属于基础题.10.已知正项等比数列{a n}满足a7=a6+2a5,若a m,a n满足=8a1,则+的最小值为( )A.2 B.4 C.6 D.8考点:基本不等式.专题:不等式的解法及应用.分析:由等比数列的性质易得m+n=8,可得+=(+)(m+n)=(10++),由基本不等式求最值可得.解答:解:∵正项等比数列{a n}满足a7=a6+2a5,∴q2a5=qa5+2a5,即q2﹣q﹣2=0,解得公比q=2,或q=﹣1(舍去)又∵a m,a n满足=8a1,∴a m a n=64a12,∴q m+n﹣2a12=64a12,∴q m+n﹣2=64,∴m+n﹣2=6,即m+n=8,∴+=(+)(m+n)=(10++)≥(10+2)=2当且仅当=即m=2且n=6时取等号,故选:A.点评:本题考查基本不等式求最值,涉及等比数列的通项公式,属基础题.11.一个几何体的侧视图是边长为2的正三角形,正视图与俯视图的尺寸如图所示,则此几何体的体积为( )A.12+2+3πB.12+3πC.π+2D.+2考点:棱柱、棱锥、棱台的体积.专题:空间位置关系与距离.分析:由三视图得到圆几何体,然后由圆锥和三棱锥体积公式得答案.解答:解:由几何体的三视图可得原几何体如图,则几何体为两个半圆锥及中间一个平放的三棱柱的组合体,∵左视图EAD为边长为2的正三角形,∴圆锥的高EP=,∴两个半圆锥的体积和为;中间三棱柱的体积为.∴几何体的体积为.故选:D.点评:本题考查空间几何体的三视图,关键是由三视图得到原几何体,考查了学生的空间想象能力和思维能力,是中档题.12.已知中心在坐标原点的椭圆与双曲线有公共焦点,且左、右焦点分别为F1、F2,这两条曲线在第一象限的交点为P,△PF1F2是以PF1为底边的等腰三角形,若|PF1|=10,设椭圆与双曲线的离心率分别为e1,e2,则e1+e2的取值范围是( )A.(,+∞)B.(,+∞)C.(,+∞)D.(,+∞)考点:椭圆的简单性质;双曲线的简单性质.专题:圆锥曲线的定义、性质与方程.分析:设椭圆和双曲线的半焦距为c,|PF1|=m,|PF2|=n,(m>n),由条件可得m=10,n=2c,再由椭圆和双曲线的定义可得a1=5+c,a2=5﹣c,(c<5),运用三角形的三边关系求得c的范围,再由离心率公式,计算即可得到所求范围.解答:解:设椭圆和双曲线的半焦距为c,|PF1|=m,|PF2|=n,(m>n),由于△PF1F2是以PF1为底边的等腰三角形.若|PF1|=10,即有m=10,n=2c,由椭圆的定义可得m+n=2a1,由双曲线的定义可得m﹣n=2a2,即有a1=5+c,a2=5﹣c,(c<5),再由三角形的两边之和大于第三边,可得2c+2c>10,可得c>,即有<c<5.由离心率公式可得e1+e2=+=+==,∵f(x)=在(,5)上是减函数,∴0=<<=,∴=<<+∞,故选:B.点评:本题考查椭圆和双曲线的定义和性质,考查离心率的求法,考查三角形的三边关系,考查运算能力,属于中档题.二、填空题:本大题共4小题,每小题5分,共20分.13.则f(f(2))的值为2.考点:分段函数的解析式求法及其图象的作法;函数的值.专题:计算题.分析:本题是一个分段函数,且是一个复合函数求值型的,故求解本题应先求内层的f(2),再以之作为外层的函数值求复合函数的函数值,求解过程中应注意自变量的范围选择相应的解析式求值.解答:解:由题意,自变量为2,故内层函数f(2)=log3(22﹣1)=1<2,故有f(1)=2×e1﹣1=2,即f(f(2))=f(1)=2×e1﹣1=2,故答案为 2点评:本题的考点分段函数,考查复合函数求值,由于对应法则是分段型的,故求解时应根据自变量的范围选择合适的解析式,此是分段函数求值的特点.14.已知变量x,y满足条件,若z=y﹣x的最小值为﹣3,则z=y﹣x的最大值为.考点:简单线性规划.专题:不等式的解法及应用.分析:作出不等式对应的平面区域,利用线性规划的知识,先求出m的值,然后通过平移即可求z的最大值.解答:解:作出不等式组对应的平面区域如图:(阴影部分).由z=y﹣x得y=x+z,平移直线y=x+z,由图象可知当直线y=x+z经过点C时,直线y=x+z的截距最小,此时z最小,为﹣3,即z=y﹣x=﹣3,由,解得,即C(2,﹣1),C也在直线x+y=m上,∴m=2﹣1=1,即直线方程为x+y=1,当直线y=x+z经过点B时,直线y=x+z的截距最大,此时z最大,由,解得,即B(,),此时z=y﹣x=﹣=,故答案为:.点评:本题主要考查线性规划的应用,利用图象平行求得目标函数的最大值和最小值,利用数形结合是解决线性规划问题中的基本方法.15.在区间[﹣π,π]内随机取两个数分别记为m,n,则使得函数f(x)=x3+mx2﹣(n2﹣π)x+1有极值点的概率为.考点:几何概型.专题:概率与统计.分析:根据f(x)有极值,得到f'(x)=0有两个不同的根,求出a、b的关系式,利用几何概型的概率公式即可的得到结论解答:解:在区间[﹣π,π]内随机取两个数分别记为m,n,则使得函数f(x)=x3+mx2﹣(n2﹣π)x+1有极值点则f′(x)=x2+2mx﹣(n2﹣π)=0有两个不同的根,即判别式△=4m2+4(n2﹣π)>0,即m2+n2>π对应区域的面积为4π2﹣π2.如图∴由几何概型的概率公式可得对应的概率P=.故答案为:.点评:本题主要考查几何概型的概率的计算,利用函数取得极值的条件求出对应a的取值范围是解决本题的关键16.对于函数f(x)=te x﹣x,若存在实数a,b(a<b),使得f(x)≤0的解集为[a,b],则实数t的取值范围是(0,).考点:利用导数研究函数的单调性.专题:导数的综合应用.分析:转化te x≤x,为t的不等式,求出表达式的最大值,以及单调区间,即可得到t的取值范围.解答:解:te x≤x(e是自然对数的底数),转化为t≤,令y=,则y′=,令y′=0,可得x=1,当x>1时,y′<0,函数y递减;当x<1时,y′>0,函数y递增.则当x=1时函数y取得最大值,由于存在实数a、b,使得f(x)≤0的解集为[a,b],则由右边函数y=的图象可得t的取值范围为(0,).故答案为(0,).点评:本题考查函数的导数的最值的应用,考查转化思想与计算能力.属于中档题.三、解答题:本大题共5小题,共70分,解答应写出文字说明、证明过程或演算步骤.17.在△ABC中,角A、B、C的对边分别是a、b、c,点(a,b)在直线x(sinA﹣sinB)+ysinB=csinC上.(1)求C的大小;(2)若c=7,求△ABC的周长的取值范围.考点:余弦定理;正弦定理.专题:解三角形.分析:(1)把点(a,b)代入直线方程,利用正弦定理进行化简后求出cosC的值,由内角的范围即可求出C;(2)利用余弦定理和基本不等式化简,求出a+b的范围,再由三边的关系求出△ABC周长的取值范围.解答:解:(1)由题意得,点(a,b)在直线x(sinA﹣sinB)+ysinB=csinC上,∴a(sinA﹣sinB)+bsinB=csinC,根据正弦定理得,a(a﹣b)+b2=c2,整理得,ab=a2+b2﹣c2,则cosC=,由0<C<π得,C=;(2)由(1)和余弦定理得,c2=a2+b2﹣2abcosC=a2+b2﹣ab则49=(a+b)2﹣3ab≥,∴(a+b)2≤4×49,则a+b≤14(当且仅当a=b时等号成立),∵a+b>7,c=7,∴△ABC的周长的取值范围是(14,21].点评:本题考查了正弦、余弦定理,三角形三边关系,以及基本不等式的综合应用,属于中档题.18.某篮球队甲、乙两名队员在本赛季已结束的8场比赛中得分统计的茎叶图如下:(Ⅰ)比较这两名队员在比赛中得分的均值和方差的大小:(Ⅱ)从乙比赛得分在20分以下的6场比赛中随机抽取2场进行失误分析,求抽到恰好有1场得分不足10分的概率.考点:等可能事件的概率;茎叶图.专题:计算题.分析:(Ⅰ)根据茎叶图的数据,由平均数、方差的计算公式,可得甲、乙两人得分的平均数与方差;(Ⅱ)根据题意,可得乙在6场比赛中的得分,用数组(x,y)表示抽出2场比赛的得分情况,列举(x,y)的全部情况,分析可得其中恰好有1场得分在10以下的情况数目,由等可能事件的概率公式,计算可得答案.解答:解:(Ⅰ)根据题意,甲=(7+9+11+13+13+16+23+28)=15,\overline{x}乙=(7+8+10+15+17+19+21+23)=15,s2甲=[(﹣8)2+(﹣6)2+(﹣4)2+(﹣2)2+(﹣2)2+12+82+132]=44.75,s2乙=[(﹣8)2+(﹣7)2+(﹣5)2+02+22+42+62+82]=32.25.甲、乙两名队员的得分均值相等,甲的方差较大;(Ⅱ)根据题意,乙在6场比赛中的得分为:7,8,10,15,17,19;从中随机抽取2场,用(x,y)表示这2场比赛的得分情况,有(7,8),(7,10),(7,15),(7,17),(7,19),(8,10),(8,15),(8,17),(8,19),(10,15),(10,17),(10,19),(15,17),(15,19),(17,19),共15种情况,其中恰好有1场得分在10以下的情况有:(7,10),(7,15),(7,17),(7,19),(8,10),(8,15),(8,17),(8,19),共8种,所求概率P=.点评:本题考查等可能事件的概率,涉及列举法的运用,注意列举时,按一定的顺序,做到不重不漏.19.如图1,等腰梯形ABCD中,AD∥BC,AD=BC,AB=AD,∠ABC=60°,E是BC的中点,如图2,将△ABE沿AE折起,使面BAE⊥面AECD,连接BC,BD,P是棱BC上的中点.(1)求证:AE⊥BD;(2)若AB=2,求三棱锥B﹣AEP的体积.考点:棱柱、棱锥、棱台的体积;空间中直线与直线之间的位置关系.专题:综合题;空间位置关系与距离.分析:(1)连接BD,取AE中点M,连接BM,DM,根据等边三角形可知BM⊥AE,DM⊥AE,BM∩DM=M,BM,DM⊂平面BDM,满足线面垂直的判定定理则AE⊥平面BDM,而BD⊂平面BDM,得到AE⊥BD.(2)利用V B﹣AEP=V P﹣AEB=V C﹣AEB,即可求出三棱锥B﹣AEP的体积.解答:(1)证明:设AE中点为M,连接BM,∵在等腰梯形ABCD中,AD∥BC,AB=AD,∠ABC=60°,E是BC的中点,∴△ABE与△ADE都是等边三角形.∴BM⊥AE,DM⊥AE.∵BM∩DM=M,BM、DM⊂平面BDM,∴AE⊥平面BDM.∵BD⊂平面BDM,∴AE⊥BD;(2)∵面BAE⊥面AECD,面BAE∩面AECD=AE,DM⊥AE,∴DM⊥面AECD,∵AB=2,∴AE=2,∴BM=DM=,∴V B﹣AEP=V P﹣AEB=V C﹣AEB==.点评:本题考查线面垂直,考查三棱锥B﹣AEP的体积,解题的关键是掌握线面垂直,三棱锥体积的计算方法,属于中档题.20.如图,已知椭圆Γ:=1(a>b>0)的离心率e=,短轴右端点为A,M(1,0)为线段OA的中点.(Ⅰ)求椭圆Γ的方程;(Ⅱ)过点M任作一条直线与椭圆Γ相交于两点P,Q,试问在x轴上是否存在定点N,使得∠PNM=∠QNM,若存在,求出点N的坐标;若不存在,说明理由.考点:直线与圆锥曲线的综合问题.专题:综合题;圆锥曲线的定义、性质与方程.分析:(Ⅰ)根据离心率,短轴右端点为A,M(1,0)为线段OA的中点,求出几何量,即可求椭圆Γ的方程;(Ⅱ)分类讨论,设PQ的方程为:y=k(x﹣1),代入椭圆方程化简,若∠PNM=∠QNM,则k PN+k QN=0,即可得出结论.解答:解:(Ⅰ)由已知,b=2,又,即,解得,所以椭圆方程为.…(Ⅱ)假设存在点N(x0,0)满足题设条件.当PQ⊥x轴时,由椭圆的对称性可知恒有∠PNM=∠QNM,即x0∈R;…当PQ与x轴不垂直时,设PQ的方程为:y=k(x﹣1),代入椭圆方程化简得:(k2+2)x2﹣2k2x+k2﹣8=0设P(x1,y1),Q(x2,y2),则则==…若∠PNM=∠QNM,则k PN+k QN=0即=0,整理得4k(x0﹣4)=0因为k∈R,所以x0=4综上在x轴上存在定点N(4,0),使得∠PNM=∠QNM…点评:本题考查椭圆的几何性质与标准方程,考查直线与椭圆的位置关系,考查韦达定理的运用,考查学生的计算能力,属于中档题.21.设函数f(x)=lnx,h(x)=f(x)+mf′(x).(1)求函数h(x)单调区间;(2)当m=e(e为自然对数的底数)时,若h(n)﹣h(x)<对∀x>0恒成立,求实数n 的取值范围.考点:利用导数研究函数的单调性;利用导数求闭区间上函数的最值.专题:导数的综合应用.分析:(1)由题意先求函数h(x)的定义域,再求导h′(x),从而讨论导数的正负以确定函数的单调性;(2)由h(n)﹣h(x)<转化为,即成立,利用导数求出在(0,e)上的最小值即可.解答:解:(1),h(x)=,定义域为(0,+∞)=当m≤0时,在(0,+∞)上h′(x)>0,此时h(x)在(0,+∞)单调递增,当m>0时,在(0,m)上h′(x)<0,此时h(x)在(0,m)单调递减,在(m,+∞)上h′(x)>0,h(x)在(m,+∞)上单调递增,综上:当m≤0时,h(x)在(0,+∞)单调递增,当m>0时,h(x)在(0,m)单调递减,在(m,+∞)上单调递增;(2)当m=e时,,不等式为即只需由(1)知,在(0,e)上单调递减,在(e,+∞)上单调递增,∴当x=m时,g min(x)=g(e)=2故lnn<2,可得0<n<e2∴n的取值范围为(0,e2).点评:本题考查了,利用导数求函数的单调区间,运用了等价转换等数学思想,是一道导数的综合题,难度中等.四、请考生在22、23、24三题中任选一题作答,如果多做,则按所做的第一题记分.[选修4-1:几何证明选讲]22.如图,已知AD是△ABC的对角∠EAC的平分线,交BC的延长线于点D,延长DA 交△ABC的外接圆于点F,连结FB,FC.(1)求证:FB=FC;(2)若FA=2,AD=6,求FB的长.考点:与圆有关的比例线段.专题:选作题;推理和证明.分析:(1)欲证FB=FC,可证∠FBC=∠FCB.由A、C、B、F四点共圆可知∠FBC=∠CAD,又同弧所对的圆周角相等,则∠FCB=∠FAB,而∠FAB=∠EAD,则∠FCB=∠EAD,AD是△ABC外角∠EAC的平分线,得∠CAD=∠EAD,故∠FBC=∠FCB;(2)由(1)知,求FB的长,即可以转化为求FC的长,联系已知条件:告诉FA与AD的长度,即可证△FAC∽△FCD.解答:(1)证明:∵A、C、B、F四点共圆∴∠FBC=∠DAC又∵AD平分∠EAC∴∠EAD=∠DAC又∵∠FCB=∠FAB(同弧所对的圆周角相等),∠FAB=∠EAD∴∠FBC=∠FCB∴FB=FC;(2)解:∵∠BAC=∠BFC,∠FAB=∠FCB=∠FBC∴∠FCD=∠BFC+∠FBC=∠BAC+∠FAB=∠FAC∵∠AFC=∠CFD,∴△FAC∽△FCD∴FA:FC=FC:FD∴FB2=FC2=FA•FD=16,∴FB=4.点评:本题主要考查了圆周角定理及相似三角形的判定.在圆中,经常利用同弧或者等弧所对的圆周角相等来实现角度的等量转化.还要善于将已知条件与所要求的问题集中到两个三角形中,运用三角形相似来解决问题.四、请考生在22、23、24三题中任选一题作答,如果多做,则按所做的第一题记分.[选修4-4:坐标系与参数方程]23.已知直线l的参数方程为(t为参数),以坐标原点为极点,x轴正半轴为极轴,建立极坐标系,曲线C的极坐标方程是ρ=.(1)写出直线l的极坐标方程与曲线C的普通方程;(2)若点P是曲线C上的动点,求P到直线l的距离的最小值,并求出P点的坐标.考点:参数方程化成普通方程;简单曲线的极坐标方程.专题:坐标系和参数方程.分析:本题(1)可以先消参数,求出直线l的普通方程,再利用公式将曲线C的极坐标方程化成平面直角坐标方程,(2)利用点到直线的距离公式,求出P到直线l的距离的最小值,再根据函数取最值的情况求出P点的坐标,得到本题结论.解答:解:(1)∵,∴x﹣y=1.∴直线的极坐标方程为:ρcosθ﹣ρsinθ=1.即,即.∵,∴,∴ρcos2θ=sinθ,∴(ρcosθ)2=ρsinθ即曲线C的普通方程为y=x2.(2)设P(x0,y0),,∴P到直线的距离:.∴当时,,∴此时,∴当P点为时,P到直线的距离最小,最小值为.点评:本题考查了参数方程化为普通方程、极坐标方程化为平面直角坐标方程、点到直线的距离公式,本题难度不大,属于基础题.四、请考生在22、23、24三题中任选一题作答,如果多做,则按所做的第一题记分.[选修4-5:不等式选讲]24.已知f(x)=|x+l|+|x﹣2|,g(x)=|x+1|﹣|x﹣a|+a(a∈R).(Ⅰ)解不等式f(x)≤5;(Ⅱ)若不等式f(x)≥g(x)恒成立,求a的取值范围.考点:绝对值不等式的解法.专题:不等式的解法及应用.分析:(Ⅰ)f(x)=|x+l|+|x﹣2|表示数轴上的x对应点到﹣1和2对应点的距离之和,而﹣2 对应点到﹣1和2对应点的距离之和正好等于5,3对应点到﹣1和2对应点的距离之和正好等于5,从而得到不等式f(x)≤5的解集.(Ⅱ)由题意可得|x﹣2|+|x﹣a|≥a 恒成立,而|x﹣2|+|x﹣a|的最小值为|2﹣a|=|a﹣2|,故有|a ﹣2|≥a,由此求得a的范围.解答:解:(Ⅰ)f(x)=|x+l|+|x﹣2|表示数轴上的x对应点到﹣1和2对应点的距离之和,而﹣2 对应点到﹣1和2对应点的距离之和正好等于5,3对应点到﹣1和2对应点的距离之和正好等于5,故不等式f(x)≤5的解集为[﹣2,3].(Ⅱ)若不等式f(x)≥g(x)恒成立,即|x﹣2|+|x﹣a|≥a 恒成立.而|x﹣2|+|x﹣a|的最小值为|2﹣a|=|a﹣2|,∴|a﹣2|≥a,∴(2﹣a)2≥a2,解得a≤1,故a的范围(﹣∞,1].点评:本题主要考查绝对值不等式的解法,体现了等价转化数学思想,属于中档题.。

2019年河南省洛阳市高考数学三模试卷(理科)

2019年河南省洛阳市高考数学三模试卷(理科)

2019年河南省洛阳市高考数学三模试卷(理科)一、选择埋:本大題共12小题,每小题5分,共60分,在每小題给出的四个选项中,只有一项是符合题目要求的.1.(5分)若复数z满足(3﹣4i)z=|4+3i|,则的虚部为()A.B.C.D.2.(5分)设全集U=R,A={x|x2﹣2x<0},B={x|ln(1﹣x)<0},则A∩(∁U B)=()A.{x|x≤1}B.{x|x≥1)C.{x|1≤x<2}D.{x|0<x≤1} 3.(5分)已知某地区中小学生人数和近视情况分别如图1和图2所示.为了了解该地区中小学生的近视形成原因,用分层抽样的方法抽取2%的学生进行调查,则样本容量和抽取的高中生近视人数分别为()A.200,20B.100,20C.200,10D.100,104.(5分)在等比数列{a n}中,a1a3=a4=4,则a6=()A.6B.±8C.﹣8D.85.(5分)已知,点C(﹣1,0),D(4,5),则向量在方向上的投影为()A.B.C.D.6.(5分)某几何体的三视图如图所示,其中俯视图为扇形,则该几何体的体积为()A.4πB.2πC.D.7.(5分)执行如图的框图,若输入的N是7,则输出p的值是()A.720B.120C.5040D.14408.(5分)欧阳修《卖油翁》中写到:(翁)乃取一葫芦置于地,以钱覆其口,徐以杓酌油沥之,自钱孔入,而钱不湿.可见“行行出状元”,卖油翁的技艺让人叹为观止.若铜钱是直径为3cm的圆,中间有边长为1cm的正方形孔,若你随机向铜钱上滴一滴油,则油(油滴的大小忽略不计)正好落入孔中的概率是()A.B.C.D.9.(5分)已知抛物线y2=4x的焦点为F,过焦点F的直线交抛物线于A、B两点,O为坐标原点,若|AB|=6,则△AOB的面积为()A.B.C.D.410.(5分)若m,n,p∈(0,1),且log3m=log5n=lgp,则()A.B.C.D.11.(5分)函数的图象与函数g(x)的图象关于直线对称,则关于函数y=g(x)以下说法正确的是()A.最大值为1,图象关于直线对称B.在(0,)上单调递减,为奇函数C.在()上单调递增,为偶函数D.周期为π,图象关于点(,0)对称12.(5分)已知函数f(x)=(kx﹣2)e x﹣x(x>0),若f(x)<0)的解集为(s,t),且(s,t)中恰有两个整数,则实数k的取值范围为()A.B.C.D.二、填空题:本大题共4个小题,每小题5分,共20分.13.(5分)若,则n的展开式中,含x2项的系数为.14.(5分)甲、乙、丙三位同学,其中一位是班长,一位是团支书,一位是学习委员,已知丙比、学习委员的年龄大,甲与团支书的年龄不同,团支书比乙的年龄小,据此推断班长是.15.(5分)若数列{a n}满足a1=1,且对于任意的n∈N*都有a n+1=a n+n+1,则=.16.(5分)如图所示,在棱长为6的正方体ABCD﹣A1B1C1D1中,点E,F分别是棱C1D1,B1C1的中点,过A,E,F三点作该正方体的截面,则截面的周长为.三、解答题:本大题共6个小题,共70分,解答应写出必要的文字说明、证明过程或演算步骤.17.(12分)在△ABC中,已知内角A、B、C所对的边分别为a、b、c,向量,,且∥,B为锐角.(1)求角B的大小;(2)设b=2,求△ABC的面积S△ABC的最大值.18.(12分)如图,四棱锥P﹣ABCD中,底面ABCD为菱形,P A⊥底面ABCD,,P A=2,E是PC上的一点,PE=2EC.(Ⅰ)证明:PC⊥平面BED;(Ⅱ)设二面角A﹣PB﹣C为90°,求PD与平面PBC所成角的大小.19.(12分)某商场营销人员进行某商品M市场营销调查发现,每回馈消费者一定的点数,该商品每天的销量就会发生一定的变化,经过试点统计得到以如表:(1)经分析发现,可用线性回归模型拟合当地该商品销量y(百件)与返还点数t之间的相关关系.请用最小二乘法求y关于t的线性回归方程y=bt+a,并预测若返回6个点时该商品每天销量;(2)若节日期间营销部对商品进行新一轮调整.已知某地拟购买该商品的消费群体十分庞大,经营销调研机构对其中的200名消费者的返点数额的心理预期值进行了一个抽样调查,得到如下一份频数表:(i)求这200位拟购买该商品的消费者对返点点数的心理预期值X的样本平均数及中位数的估计值(同一区间的预期值可用该区间的中点值代替;估计值精确到0.1);(ii)将对返点点数的心理预期值在[1,3)和[11,13]的消费者分别定义为“欲望紧缩型”消费者和“欲望膨胀型”消费者,现采用分层抽样的方法从位于这两个区间的30名消费者中随机抽取6名,再从这6人中随机抽取3名进行跟踪调查,设抽出的3人中“欲望膨胀型”消费者的人数为随机变量X,求X的分布列及数学期望.参考公式及数据:①,;②.20.(12分)在平面直角坐标系xoy中,椭圆E:(a>0,b>0)经过点A(,),且点F(0,﹣1)为其一个焦点.(Ⅰ)求椭圆E的方程;(Ⅱ)设椭圆E与y轴的两个交点为A1,A2,不在y轴上的动点P在直线y=b2上运动,直线P A1,P A2分别与椭圆E交于点M,N,证明:直线MN通过一个定点,且△FMN的周长为定值.21.(12分)已知函数f(x)=lnx﹣kx,其中k∈R为常数.(1)讨论函数f(x)的单调性;(2)若f(x)有两个相异零点x1,x2(x1<x2),求证:lnx2>2﹣lnx1.选考部分:请考生在22、23南题中任选一题作答,如果多做,则按所做的第一题记分.作答时,用2B铅笔在答题卡上把所选题目对应的题号后的方框涂黑.[选修4一4:坐标系与参数方程]22.(10分)已知极点与坐标原点O重合,极轴与x轴非负半轴重合,M是曲线C:ρ=2sinθ上任一点,点P满足.设点P的轨迹为曲线Q.(1)求曲线Q的平面直角坐标方程;(2)已知曲线Q向上平移1个单位后得到曲线N,设曲线N与直线为参数)相交于A,B两点,求|OA|+|OB|.[选修4-5:不等式选讲].23.已知函数f(x)=|x﹣5|.(1)解不等式:f(x)+f(x+2)≤3;(2)若a<0,求证:f(ax)﹣f(5a)≥af(x).。

2020年河南省洛阳市高考数学三模试卷(理科)(含答案解析)

2020年河南省洛阳市高考数学三模试卷(理科)(含答案解析)

2020年河南省洛阳市高考数学三模试卷(理科)一、选择题(本大题共12小题,共60.0分)1.设集合,集合,则集合A. B. C. R D.2.已知直线:,直线:,若,则A. B. C. D.3.已知复数z满足,则的最小值为A. 2B. 1C.D.4.已知m,n为两条不同直线,,为两个不同平面,则下列结论正确的为A. ,,则B. ,,,,则C. ,,,则D. ,,,则5.已知是偶函数,且在上单调递增,则函数可以是A. B.C. D.6.已知圆C:与直线相切,则圆C与直线相交所得弦长为A. 1B.C. 2D.7.已知函数的导函数为,则下列结论中错误的是A. 函数与有相同的值域和周期B. 函数的零点都是函数的极值点C. 把函数的图象向左平移个单位,就可以得到函数的图象D. 函数和在区间上都是增函数8.若某单位员工每月网购消费金额单位:元近似地服从正态分布,现从该单位任选10名员工,记其中每月网购消费金额恰在500元至2000元之间的人数为,则的数学期望为参考数据:若随机变量X服从正态分布,则,,.A. B. C. D.9.的展开式中系数为A. 180B. 90C. 20D. 1010.已知锐角三角形的内角A,B,C的对边分别为a,b,且,则的取值范围为A. B. C. D.11.设双曲线E:的左,右焦点分别为,,离心率为e,P在双曲线E的右支上,且,Q为线段,与双曲线E左支的交点,若,则A. B. C. D.12.已知函数,若关于x的方程恰好有6个不相等的实根,则实数m的取值范围是A. B. 0 0,C. D. ,0 0,二、填空题(本大题共4小题,共20.0分)13.已知向量,满足:,,,则向量,的夹角为______.14.已知非负实数x,y满足,则的最大值是______.15.已知直线l经过抛物线C:的焦点F,l与C交于A,B两点,其中点A在第四象限,若,则直线l的斜率为______.16.如图,在三棱锥中,,,,E,F分别是AB,CD的中点.若用一个与直线EF垂直的平面去截该三棱锥.与棱AC,AD,BD,BC分别交于M,N,P,Q四点,则四边形MNPQ面积的最大值为______.三、解答题(本大题共7小题,共82.0分)17.已知数列的首项,其前n项和为,且满足.求证:数列是等比数列;令,求数列的前n项和.18.如图.长方体的底面ABCD为正方形,,,E为棱上一点,,F为棱上任意一点C.求证:;求二面角的余弦值.19.已知平面内动点P与点,连线的斜率之积为.求动点P的轨迹E的方程;过点的直线与曲线E交于P,Q两点,直线AP,AQ与直线分别交于M,N两点.求证:以MN为直径的圆恒过定点.20.某地为鼓励群众参与“全民读书活动”,增加参与读书的趣味性.主办方设计这样一个小游戏:参与者抛掷一枚质地均匀的骰子正方体,六个面上分别标注1,2,3,4,5,6六个数字若朝上的点数为偶数.则继续抛掷一次.若朝上的点数为奇数,则停止游戏,照这样的规则进行,最多允许抛掷3次.每位参与者只能参加一次游戏.求游戏结束时朝上点数之和为5的概率;参与者可以选择两种方案:方案一:游戏结束时,若朝上的点数之和为偶数,奖励3本不同的畅销书;若朝上的点数之和为奇数,奖励1本畅销书.方案二:游戏结束时,最后一次朝上的点数为偶数,奖励5本不同的畅销书,否则,无奖励.试分析哪一种方案能使游戏参与者获得更多畅销书奖励?并说明判断的理由.21.设函数,.若对任意,恒成立,求a的取值集合;设,点,点,直线的斜率为,求证:22.在平面直角坐标系中,曲线C的参数方程为为参数,以坐标原点O为极点,以x轴正半轴为极轴建立极坐标系,直线l的极坐标方程为.求曲线C的普通方程和直线l的直角坐标方程;已知点,点B为曲线C上的动点,求线段AB的中点M到直线l的距离的最大值.并求此时点B的坐标.23.已知a,b,c是正实数,且.求的最小值;求证:.-------- 答案与解析 --------1.答案:A解析:【分析】本题考查了描述法、区间的定义,分式不等式的解法,交集的运算,属于基础题.可以求出集合A,B,然后进行交集的运算即可.【解答】解:,或,,.故选:A.2.答案:B解析:解:直线:,直线:,若,则,即,所以,所以.故选:B.根据两直线垂直求出与的关系,计算的值,再求的值.本题考查了直线垂直关系应用问题,也考查了三角函数求值问题,是基础题.3.答案:B解析:解:满足的复数z,在以原点为圆心,以1为半径的圆上,表示复数z在复平面内对应的点Z到点的距离,如图所示:由,利用点圆的位置关系,的最小值为,故选:B.满足的复数z,在以原点为圆心,以1为半径的圆上,表示复数z在复平面内对应的点Z到点的距离,再利用数形结合法即可求出结果.本题主要考查了复数的几何意义,以及点与圆的位置关系,是中档题.4.答案:D解析:解:对于A,若,,则或,故A错误;对于B,若,,,,则或与相交,只有加上条件m与n相交时,才有结论,故B错误;对于C,若,,,则或与相交,故C错误;对于D,若,,则,又,则,故D正确.故选:D.由空间中直线与直线、直线与平面的位置关系,逐一核对四个选项得答案.本题考查空间中直线与直线、直线与平面、平面与平面位置关系的判定及其应用,考查空间想象能力与思维能力,是中档题.5.答案:B解析:解:根据题意,依次分析选项:对于A,,其定义域为R,有,是偶函数,其导数,在区间上,,为减函数,不符合题意;对于B,,其定义域为R,有,是偶函数,其导数,在区间上,,为增函数,符合题意;对于C,,其定义域为R,有,是偶函数,有,但,在上不是增函数,不符合题意;对于D,,其定义域为R,有,是偶函数,有,,在上不是增函数,不符合题意;故选:B.根据题意,依次分析选项中函数的奇偶性与在区间上的单调性,综合即可得答案.本题考查函数的奇偶性与单调性的判断,注意函数奇偶性与单调性的判断方法,属于基础题.6.答案:D解析:解:根据题意,圆C:的半径,圆C:与直线相切,则圆心C到直线的距离为2,直线与平行,两条平行直线的距离,又由圆C与直线相交,则圆心C到直线的距离,则圆C与直线相交所得弦长为;故选:D.根据题意,分析圆C的半径,由直线与圆的位置关系可得圆心C到直线的距离,由平行线间的公式计算直线与之间的距离,分析可得圆心C到直线的距离,由直线与圆的位置关系分析可得答案.本题考查直线与圆的位置关系,涉及平行线间的距离以及弦长的计算,属于基础题.7.答案:D解析:解:函数,,对于A,,,两函数的值域相同,都是,周期也相同;A正确;对于B,若是函数的零点,则,;解得,;,,也是函数的极值点,B正确;对于C,把函数的图象向左平移个单位,得,C正确;对于D,时,,是单调增函数,,是单调递减函数,D错误.故选:D.求出函数的导函数,再分别判断、的值域、极值点和零点,图象平移和单调性问题.本题考查了三角函数的图象与性质的应用问题,也考查了导数的应用问题,是中档题.8.答案:C解析:解:,,,,而随机变量,.故选:C.先根据已知数据,求出和,然后利用正态分布曲线的特点得,而随机变量,最后由二项分布的数学期望求解即可.本题考查正态分布曲线的特点与应用、二项分布的数学期望,考查学生对数据的分析与处理能力,属于基础题.9.答案:A解析:解:展开式的通项公式为;令,解得;令,解得r不存在;故的展开式中系数为:.故选:A.求出展开式的含与项的系数,再计算的展开式中的系数.本题主要考查二项式定理的应用,二项展开式的通项公式,求展开式中某项的系数,属于基础题.10.答案:C解析:解:因为,由正弦定理可得,,因为,故,因为A为锐角,故A,由题意可得,,解可得,,则.故选:C.由已知结合正弦定理进行化简可求sin A,进而可求A,结合锐角三角的条件可求B的范围,然后结合和差角公式及辅助角公式进行化简后结合正弦函数的性质即可求解.本题主要考查了正弦定理在求解三角形中的应用,还考查了和差角公式在三角化简求值中的应用,属于中档试题.11.答案:A解析:解:因为,,所以,,不妨设,则,,根据双曲线定义:,,由得,由,得,又因为,即有,所以,在中,,即,代入得,整理得,则,故选:A.设,根据条件得,,结合双曲线性质,,进行整理可得,再由勾股定理,得到即可.本题考查双曲线的简单性质,考查直线与双曲线的位置关系的应用,考查计算能力,是中档题.12.答案:C解析:解:当时,,则,令得:,当时,,单调递减;当时,,单调递增,且,,当时,,则,显然,当时,,单调递增;当时,,单调递减,且,故函数的大致图象如图所示:,令,则关于x的方程化为关于t的方程,,方程有两个不相等的实根,设为,,由韦达定理得:,,不妨设,,关于x的方程恰好有6个不相等的实根,由函数的图象可知:,,设,则,解得:,故选:C.利用导数得到函数的单调性和极值,画出函数的大致图象,令,则,由可知方程有两个不相等的实根,设为,,由函数的图象可知:,,设,再利用二次函数的图象和性质列出不等式组即可求出实数m的取值范围.本题主要考查了函数的零点与方程的根的关系,以及利用导数研究函数的单调性和极值,考查了二次函数的图象和性质,是中档题.13.答案:解析:解:,所以,又,,所以,所以,设向量,的夹角为,则,又,所以.故答案为:.根据平面向量的数量积,求出向量、夹角的余弦值,再求夹角大小.本题考查了平面向量的数量积应用问题,也考查了夹角大小计算问题,是基础题.14.答案:解析:解:的几何意义是可行域内的点与连线的斜率,作出不等式组对应的平面区域如图:则由图象知PA的斜率最大,由,解得则PA的斜率,k的最大值为,故答案为:.作出不等式组对应的平面区域,利用的几何意义进行求解即可.本题主要考查线性规划的应用,利用直线斜率的公式结合数形结合是解决本题的关键.15.答案:解析:解:的焦点,设直线l的方程为,联立,可得,设A,B的纵坐标分别为,,则,,又,可得,即,由可得,,,,解得,则直线l的斜率为,故答案为:.求得抛物线的焦点和准线方程,设直线l的方程为,联立直线方程和抛物线的方程,运用韦达定理,再由向量共线的坐标表示,可得,的关系,消去,,可得m的值,进而得到所求直线的斜率.本题考查抛物线的方程和性质,考查直线方程和抛物线方程联立,运用韦达定理,以及向量共线的坐标表示,考查方程思想和运算能力,属于中档题.16.答案:解析:解:把三棱锥放置在长方体中,如图,,F分别是AB,CD的中点,且平面,可知,,则四边形MNPQ为平行四边形,再由平行线截线段成比例,可得.由已知可求得作侧面两条对角线所成锐角为,则..当且仅当时上式等号成立.四边形MNPQ面积的最大值为.故答案为:.把三棱锥放置在长方体中,由已知可得四边形MNPQ为平行四边形,再由平行线截线段成比例,可得求出PN与PQ所成角,代入三角形面积公式,再由基本不等式求最值.本题考查空间中直线与直线、直线与平面位置关系的应用,考查“分割补形法”,训练了利用基本不等式求最值,是中档题.17.答案:解:证明:,当时,,由一得,,,,,即,.又,,,则也适合,数列是以为首项,公比为2的等比数列;解:由知,.,,由得:,.解析:先由,两式相减得,进而证明结论;由可得,,再利用错位相减法求出即可.本题主要考查等比数列的定义、通项公式及错位相减法求和,属于基础题.18.答案:解:证明:,,在长方体中,,,,即,在长方体中,平面,平面,,又,平面,又无论点F位置如何,平面,;如图所示,分别以DA,DC,为x,y,z轴建立空间直角坐标系,则,0,,,,0,,,设平面的法向量为y,,,即,令,则,,可得平面的一个法向量为,由可知,平面,所以平面的一个法向量,,即二面角的余弦值.解析:先根据勾股定理可得,结合长方体的性质可得,进而可证平面,再由线面垂直的性质得证;建立空间直角坐标系,求出平面及平面的一个法向量,再利用向量的夹角公式即可得解.本题主要考查线面垂直的判定定理及性质定理的运用,考查利用空间向量求解二面角问题,考查运算求解能力,逻辑推理能力,属于中档题.19.答案:解:设点P的坐标为y,则由,得,整理得,即动点P的轨迹E的方程为;证明:当PQ的斜率存在时,设PQ的方程为,与曲线E的方程联立,消去y得.设,,则.直线AP的方程为,令,得,即,同理.,..线段MN中点的纵坐标为.故以MN为直径的圆的方程为:.令得:,解得或.此时以MN为直径的圆过点和.当轴时,.则以MN为直径的圆的方程为,也过点D,E.以MN为直径的圆恒过点和.解析:设点P的坐标为y,则由可得关于x,y的关系式,得到动点P的轨迹E的方程;当PQ的斜率存在时,设PQ的方程为,与曲线E的方程联立,得到关于x的一元二次方程,写出根与系数的关系,再写出直线APD方程,求得M,N的坐标,结合根与系数的关系得到,求出线段MN中点的坐标,可得以MN为直径的圆的方程,求出以MN为直径的圆过点和验证当轴时成立,可得以MN为直径的圆恒过点和.本题考查轨迹方程的求法,考查直线与椭圆位置关系的应用,考查计算能力,是中档题.20.答案:解:设事件A:只抛掷 1次就结束游戏且朝上点数之和为5,事件B:抛掷2次就结束游戏且朝上点数之和为5,事件C:掷3次结束游戏且朝上点数之和为5,事件A,B,C彼此互斥.则,,游戏结束时朝上点数之和为5,即事件,其概率为.方案一:设获得奖励畅销书的本数为X,,,则X的分布列为:X31P.方案二:设获得奖励畅销书的本数为Y,,则Y的分布列为:Y50P,,选择方案一能使游戏参与者获得更多畅销书奖励.解析:设事件A:只抛掷 1次就结束游戏且朝上点数之和为5,事件B:抛掷2次就结束游戏且朝上点数之和为5,事件C:掷3次结束游戏且朝上点数之和为5,事件A,B,C彼此互斥.然后求解概率即可.方案一:设获得奖励畅销书的本数为X,求出概率得到分布列,然后求解期望.通过比较,,推出选择方案一能使游戏参与者获得更多畅销书奖励.本题考查古典概型概率的求法,离散型随机变量的分布列以及期望的求法,考查计算能力,是中档题.21.答案:解:令,,,分若时,当时,,不符合题意分若,得,得,在上递增,在上递减分分令,在上递减,在上递增,分,,故a的取值集合为分由题意知,点,点,分由知,当时,,分,分而,分解析:令,求出函数的导数,通过讨论a的范围,求出函数的单调区间,求出函数的最大值,得到a的取值即可;求出,结合,得到,不等式放缩证明即可.本题考查了函数的单调性,最值问题,考查导数的应用以及不等式的证明,转化思想,分类讨论思想,是一道综合题.22.答案:解:曲线C的参数方程为为参数,可得两边平方相加得:,即曲线C的普通方程为:.由可得即直线l的直角坐标方程为.,设点,则点,点M到直线l的距离.当时,的最大值为.即点M到直线l的距离的最大值为,此时点的坐标为解析:直接利用转换关系,把参数方程极坐标方程和直角坐标方程之间进行转换.利用点到直线的距离公式的应用和三角函数关系式的恒等变换及正弦型函数的性质的应用求出结果.本题考查的知识要点:参数方程极坐标方程和直角坐标方程之间的转换,点到直线的距离公式的应用,三角函数关系式的恒等变换,正弦型函数的性质的应用,主要考查学生的运算能力和转换能力及思维能力,属于基础性题.23.答案:解:,b,c是正实数,且.所以,当且仅当,即,时等号成立,的最小值为.由柯西不等式可得,即,当且仅当,即,时等号成立,成立.解析:根据a,b,c是正实数,且,可得,然后利用基本不等式求出的最小值即可;由柯西不等式可得,再结合,即可证明成立.本题考查了利用综合法证明不等式,基本不等式和柯西不等式,考查了转化思想,属中档题.。

2017年河南省郑州市高考数学三模试卷(文科)(解析版)

2017年河南省郑州市高考数学三模试卷(文科)(解析版)

2017年省市高考数学三模试卷(文科)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若集合A={x|x﹣x2>0},B={x|(x+1)(m﹣x)>0},则“m>1”是“A∩B ≠∅”的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件2.为了解600名学生的视力情况,采用系统抽样的方法,从中抽取容量为20的样本,则需要分成几个小组进行抽取()A.20 B.30 C.40 D.503.已知z=m﹣1+(m+2)i在复平面对应的点在第二象限,则实数m的取值围是()A.(﹣1,2)B.(﹣2,1)C.(1,+∞)D.(﹣∞,﹣2)4.中国有个名句“运筹帷幄之中,决胜千里之外”.其中的“筹”原意是指《子算经》中记载的算筹,古代是用算筹来进行计算,算筹是将几寸长的小竹棍摆在平面上进行运算,算筹的摆放形式有纵横两种形式,如下表:表示一个多位数时,像阿拉伯计数一样,把各个数位的数码从左到右排列,但各位数码的筹式需要纵横相间,个位,百位,万位数用纵式表示,十位,千位,十万位用横式表示,以此类推,例如6613用算筹表示就是:,则5288用算筹式可表示为()A.B.C.D.5.已知,则的值等于()A.B.C.D.6.已知f'(x)=2x+m,且f(0)=0,函数f(x)的图象在点A(1,f(1))处的切线的斜率为3,数列的前n项和为Sn ,则S2017的值为()A.B.C.D.7.如图是某个几何体的三视图,则这个几何体体积是()A.B.C.D.8.已知等比数列{an },且a6+a8=4,则a8(a4+2a6+a8)的值为()A.2 B.4 C.8 D.169.若实数a、b、c>0,且(a+c)•(a+b)=6﹣2,则2a+b+c的最小值为()A.﹣1 B. +1 C.2+2 D.2﹣210.椭圆+=1的左焦点为F,直线x=a与椭圆相交于点M、N,当△FMN的周长最大时,△FMN的面积是()A. B.C.D.11.四面体A﹣BCD中,AB=CD=10,AC=BD=2,AD=BC=2,则四面体A﹣BCD 外接球的表面积为()A.50πB.100πC.200πD.300π12.已知函数f(x)=,且f=()A.﹣2014 B.﹣2015 C.﹣2016 D.﹣2017二、填空题(每题5分,满分20分,将答案填在答题纸上)13.设变量x,y满足约束条件:,则目标函数z=x+2y的最小值为.14.已知向量,,若向量,的夹角为30°,则实数m= .15.在△ABC中,角A,B,C所对的边分别是a,b,c,已知b=a,A=2B,则cosA= .16.在△ABC中,∠A=,O为平面一点.且||,M为劣弧上一动点,且.则p+q的取值围为.三、解答题(本大题共7小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.已知数列{an }是等差数列,首项a1=2,且a3是a2与a4+1的等比中项.(1)求数列{an}的通项公式;(2)设bn =,求数列{bn}的前n项和Sn.18.2012年3月2日,国家环保部发布了新修订的《环境空气质量标准》,其中规定:居民区的PM2.5的年平均浓度不得超过35微克/立方米.某城市环保部门在2013年1月1日到 2013年4月30日这120天对某居民区的PM2.5平均浓度的监测数据统计如下:组别PM2.5浓度(微克/立方米)频数(天)第一组(0,35]32第二组(35,75]64第三组(75,115]16第四组115以上8(Ⅰ)在这120天中抽取30天的数据做进一步分析,每一组应抽取多少天?(Ⅱ)在(I)中所抽取的样本PM2.5的平均浓度超过75(微克/立方米)的若干天中,随机抽取2天,求恰好有一天平均浓度超过115(微克/立方米)的概率.19.如图,在直三棱柱ABC﹣A1B1C1中,底面△ABC是等腰直角三角形,且斜边AB=,侧棱AA1=2,点D为AB的中点,点E在线段AA1上,AE=λAA1(λ为实数).(1)求证:不论λ取何值时,恒有CD⊥B1E;(2)当λ=时,求多面体C1B﹣ECD的体积.20.已知点P是圆F1:(x﹣1)2+y2=8上任意一点,点F2与点F1关于原点对称,线段PF2的垂直平分线分别与PF1,PF2交于M,N两点.(1)求点M的轨迹C的方程;(2)过点的动直线l与点M的轨迹C交于A,B两点,在y轴上是否存在定点Q,使以AB为直径的圆恒过这个点?若存在,求出点Q的坐标;若不存在,请说明理由.21.已知函数h(x)=(x﹣a)e x+a.(1)若x∈[﹣1,1],求函数h(x)的最小值;(2)当a=3时,若对∀x1∈[﹣1,1],∃x2∈[1,2],使得h(x1)≥x22﹣2bx2﹣ae+e+成立,求b的围.22.以直角坐标系的原点O为极点,x轴正半轴为极轴,并在两种坐标系中取相同的长度单位,已知直线l的参数方程为,(t为参数,0<θ<π),曲线C的极坐标方程为ρsin2θ﹣2cosθ=0.(1)求曲线C的直角坐标方程;(2)设直线l与曲线C相交于A,B两点,当θ变化时,求|AB|的最小值.23.已知函数f(x)=|x﹣5|﹣|x﹣2|.(1)若∃x∈R,使得f(x)≤m成立,求m的围;(2)求不等式x2﹣8x+15+f(x)≤0的解集.2017年省市高考数学三模试卷(文科)参考答案与试题解析一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若集合A={x|x﹣x2>0},B={x|(x+1)(m﹣x)>0},则“m>1”是“A∩B ≠∅”的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件【考点】2L:必要条件、充分条件与充要条件的判断.【分析】集合A={x|x﹣x2>0}=(0,1).对于B:(x+1)(m﹣x)>0,化为:(x+1)(x﹣m)<0,对m与﹣1的大小关系分类讨论,再利用集合的运算性质即可判断出结论.【解答】解:集合A={x|x﹣x2>0}=(0,1),对于B:(x+1)(m﹣x)>0,化为:(x+1)(x﹣m)<0,m=﹣1时,x∈∅.m>﹣1,解得﹣1<x<m,即B=(﹣1,m).m<﹣1时,解得m<x<﹣1,即B=(m,﹣1).∴“m>1”⇒“A∩B≠∅”,反之不成立,例如取m=.∴“m>1”是“A∩B≠∅”的充分而不必要条件.故选:A.2.为了解600名学生的视力情况,采用系统抽样的方法,从中抽取容量为20的样本,则需要分成几个小组进行抽取()A.20 B.30 C.40 D.50【考点】B4:系统抽样方法.【分析】根据系统抽样的特征,求出分段间隔即可.【解答】解:根据系统抽样的特征,得;从600名学生中抽取20个学生,分段间隔为=30.故选:B.3.已知z=m﹣1+(m+2)i在复平面对应的点在第二象限,则实数m的取值围是()A.(﹣1,2)B.(﹣2,1)C.(1,+∞)D.(﹣∞,﹣2)【考点】A4:复数的代数表示法及其几何意义.【分析】利用复数的几何意义、不等式的解法即可得出.【解答】解:z=m﹣1+(m+2)i在复平面对应的点在第二象限,∴m﹣1<0,m+2>0,解得﹣2<m<1.则实数m的取值围是(﹣2,1).故选:B4.中国有个名句“运筹帷幄之中,决胜千里之外”.其中的“筹”原意是指《子算经》中记载的算筹,古代是用算筹来进行计算,算筹是将几寸长的小竹棍摆在平面上进行运算,算筹的摆放形式有纵横两种形式,如下表:表示一个多位数时,像阿拉伯计数一样,把各个数位的数码从左到右排列,但各位数码的筹式需要纵横相间,个位,百位,万位数用纵式表示,十位,千位,十万位用横式表示,以此类推,例如6613用算筹表示就是:,则5288用算筹式可表示为()A.B.C.D.【考点】F1:归纳推理.【分析】根据新定义直接判断即可.【解答】解:由题意各位数码的筹式需要纵横相间,个位,百位,万位数用纵式表示,十位,千位,十万位用横式表示,则5288 用算筹可表示为11,故选:C5.已知,则的值等于()A. B.C.D.【考点】GQ:两角和与差的正弦函数;GP:两角和与差的余弦函数.【分析】由已知利用诱导公式即可计算得解.【解答】解:∵,可得:cos(﹣α)=﹣,∴sin[﹣(﹣α)]=sin(+α)=﹣.故选:D.6.已知f'(x)=2x+m,且f(0)=0,函数f(x)的图象在点A(1,f(1))处的切线的斜率为3,数列的前n项和为Sn ,则S2017的值为()A.B.C.D.【考点】6H:利用导数研究曲线上某点切线方程.【分析】由题意可设f(x)=x2+mx+c,运用导数的几何意义,由条件可得m,c 的值,求出==﹣,再由数列的求和方法:裂项相消求和,计算即可得到所求和.【解答】解:f'(x)=2x+m,可设f(x)=x2+mx+c,由f(0)=0,可得c=0.可得函数f(x)的图象在点A(1,f(1))处的切线的斜率为2+m=3,解得m=1,即f(x)=x2+x,则==﹣,数列的前n 项和为S n ,则S 2017=1﹣+﹣+…+﹣=1﹣=.故选:A .7.如图是某个几何体的三视图,则这个几何体体积是( )A .B .C .D .【考点】L!:由三视图求面积、体积.【分析】由三视图可知:该几何体由一个半圆柱与三棱柱组成的几何体. 【解答】解:由三视图可知:该几何体由一个半圆柱与三棱柱组成的几何体. 这个几何体体积V=+×()2×2=2+.故选:A .8.已知等比数列{a n },且a 6+a 8=4,则a 8(a 4+2a 6+a 8)的值为( ) A .2B .4C .8D .16【考点】8G :等比数列的性质.【分析】将式子“a 8(a 4+2a 6+a 8)”展开,由等比数列的性质:若m ,n ,p ,q ∈N*,且m+n=p+q ,则有a m a n =a p a q 可得,a 8(a 4+2a 6+a 8)=(a 6+a 8)2,将条件代入得到答案.【解答】解:由题意知:a 8(a 4+2a 6+a 8)=a 8a 4+2a 8a 6+a 82, ∵a 6+a 8=4,∴a8a4+2a8a6+a82=(a6+a8)2=16.故选D.9.若实数a、b、c>0,且(a+c)•(a+b)=6﹣2,则2a+b+c的最小值为()A.﹣1 B. +1 C.2+2 D.2﹣2【考点】7F:基本不等式.【分析】根据题意,将2a+b+c变形可得2a+b+c=(a+c)+(a+b),由基本不等式分析可得2a+b+c=(a+c)+(a+b)≥2=2,计算可得答案.【解答】解:根据题意,2a+b+c=(a+c)+(a+b),又由a、b、c>0,则(a+c)>0,(a+b)>0,则2a+b+c=(a+c)+(a+b)≥2=2=2(﹣1)=2﹣2,即2a+b+c的最小值为2﹣2,故选:D.10.椭圆+=1的左焦点为F,直线x=a与椭圆相交于点M、N,当△FMN的周长最大时,△FMN的面积是()A. B.C.D.【考点】K4:椭圆的简单性质.【分析】设右焦点为F′,连接MF′,NF′,由于|MF′|+|NF′|≥|MN|,可得当直线x=a过右焦点时,△FMN的周长最大.c==1.把c=1代入椭圆标准方程可得: =1,解得y,即可得出此时△FMN的面积S.【解答】解:设右焦点为F′,连接MF′,NF′,∵|MF′|+|NF′|≥|MN|,∴当直线x=a过右焦点时,△FMN的周长最大.由椭圆的定义可得:△FMN的周长的最大值=4a=4.c==1.把c=1代入椭圆标准方程可得: =1,解得y=±.∴此时△FMN的面积S==.故选:C.11.四面体A﹣BCD中,AB=CD=10,AC=BD=2,AD=BC=2,则四面体A﹣BCD 外接球的表面积为()A.50πB.100πC.200πD.300π【考点】LE:棱柱、棱锥、棱台的侧面积和表面积.【分析】由题意可采用割补法,考虑到四面体ABCD的四个面为全等的三角形,所以可在其每个面补上一个以10,2,2为三边的三角形作为底面,且以分别为x,y,z,长、两两垂直的侧棱的三棱锥,从而可得到一个长、宽、高分别为x,y,z的长方体,由此能求出球的半径,进而求出球的表面积.【解答】解:由题意可采用割补法,考虑到四面体ABCD的四个面为全等的三角形,所以可在其每个面补上一个以10,2,2为三边的三角形作为底面,且以分别为x,y,z,长、两两垂直的侧棱的三棱锥,从而可得到一个长、宽、高分别为x,y,z的长方体,并且x2+y2=100,x2+z2=136,y2+z2=164,设球半径为R,则有(2R)2=x2+y2+z2=200,∴4R2=200,∴球的表面积为S=4πR2=200π.故选C.12.已知函数f(x)=,且f=()A.﹣2014 B.﹣2015 C.﹣2016 D.﹣2017【考点】3T:函数的值.【分析】推导出函数f(x)=1++,令h(x)=,则h(x)是奇函数,由此能求出结果.【解答】解:∵函数f(x)=,=1++=1++,令h(x)=,则h(﹣x)=﹣+=﹣h(x),即h(x)是奇函数,∵f=2016,∴h=1+h(﹣2017)=1﹣h13.设变量x,y满足约束条件:,则目标函数z=x+2y的最小值为4 .【考点】7C:简单线性规划.【分析】由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,联立方程组求得最优解的坐标,代入目标函数得答案.【解答】解:由约束条件作出可行域如图,联立,解得A(2,1),化目标函数z=x+2y为y=﹣,由图可知,当直线y=﹣过点A时,直线在y轴上的截距最小,z有最小值为4.故答案为:4.14.已知向量,,若向量,的夹角为30°,则实数m= .【考点】9S:数量积表示两个向量的夹角.【分析】利用两个向量的数量积的定义,两个向量的数量积公式,求得m的值.【解答】解:∵,,向量,的夹角为30°,∴=m+3=•2•cos30°,求得,故答案为:.15.在△ABC中,角A,B,C所对的边分别是a,b,c,已知b=a,A=2B,则cosA= .【考点】HP:正弦定理.【分析】由已知及正弦定理,二倍角的正弦函数公式化简可得cosB=,进而利用二倍角的余弦函数公式即可计算得解.【解答】解:∵A=2B,∴sinA=sin2B=2sinBcosB,∵b=a,∴由正弦定理可得: ===2cosB,∴cosB=,∴cosA=cos2B=2cos2B﹣1=.故答案为:.16.在△ABC中,∠A=,O为平面一点.且||,M为劣弧上一动点,且.则p+q的取值围为[1,2] .【考点】9H:平面向量的基本定理及其意义.【分析】根据题意画出图形,结合图形,设外接圆的半径为r,对=p+q两边平方,建立p、q的解析式,利用基本不等式求出p+q的取值围.【解答】解:如图所示,△ABC中,∠A=,∴∠BOC=;设|=r,则O为△ABC外接圆圆心;∵=p+q,∴==r2,即p2r2+q2r2+2pqr2cos=r2,∴p2+q2﹣pq=1,∴(p+q)2=3pq+1;又M 为劣弧AC 上一动点, ∴0≤p ≤1,0≤q ≤1, ∴p+q ≥2, ∴pq ≤=,∴1≤(p+q )2≤(p+q )2+1, 解得1≤(p+q )2≤4, ∴1≤p+q ≤2;即p+q 的取值围是[1,2]. 故答案为:[1,2].三、解答题(本大题共7小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.已知数列{a n }是等差数列,首项a 1=2,且a 3是a 2与a 4+1的等比中项. (1)求数列{a n }的通项公式; (2)设b n =,求数列{b n }的前n 项和S n .【考点】8E :数列的求和;8H :数列递推式.【分析】(1)设等差数列的公差为d ,首项a 1=2,且a 3是a 2与a 4+1的等比中项即可求出公差d ,再写出通项公式即可,(2)化简b n 根据式子的特点进行裂项,再代入数列{b n }的前n 项和S n ,利用裂项相消法求出S n .【解答】解:(1)设等差数列{a n }的公差为d ,由a 1=2,且a 3是a 2与a 4+1的等比中项.∴(2+2d )2=(3+3d )(2+d ), 解得d=2,∴a n =a 1+(n ﹣1)d=2+2(n ﹣1)=2n , (2)b n ====(﹣),∴S n =(﹣+﹣+﹣+…+﹣+﹣)=(+﹣﹣)=﹣18.2012年3月2日,国家环保部发布了新修订的《环境空气质量标准》,其中规定:居民区的PM2.5的年平均浓度不得超过35微克/立方米.某城市环保部门在2013年1月1日到 2013年4月30日这120天对某居民区的PM2.5平均浓度的监测数据统计如下:组别PM2.5浓度(微克/立方米)频数(天)第一组(0,35]32第二组(35,75]64第三组(75,115]16第四组115以上8(Ⅰ)在这120天中抽取30天的数据做进一步分析,每一组应抽取多少天?(Ⅱ)在(I)中所抽取的样本PM2.5的平均浓度超过75(微克/立方米)的若干天中,随机抽取2天,求恰好有一天平均浓度超过115(微克/立方米)的概率.【考点】CB:古典概型及其概率计算公式;B3:分层抽样方法.【分析】(Ⅰ)由这120天中的数据中,各个数据之间存在差异,故应采取分层抽样,计算出抽样比k后,可得每一组应抽取多少天;(Ⅱ)设PM2.5的平均浓度在(75,115]的4天记为A,B,C,D,PM2.5的平均浓度在115以上的两天记为1,2,列举出从6天任取2天的所有情况和满足恰有一天平均浓度超过115(微克/立方米)的情况数,代入古典概型概率计算公式,可得答案.【解答】解:(Ⅰ)这120天中抽取30天,应采取分层抽样,抽样比k==,第一组抽取32×=8天;第二组抽取64×=16天;第三组抽取16×=4天;第四组抽取8×=2天(Ⅱ)设PM2.5的平均浓度在(75,115]的4天记为A,B,C,D,PM2.5的平均浓度在115以上的两天记为1,2.所以6天任取2天的情况有:AB,AC,AD,A1,A2,BC,BD,B1,B2,CD,C1,C2,D1,D2,12,共15种记“恰好有一天平均浓度超过115(微克/立方米)”为事件A,其中符合条件的有:A1,A2,B1,B2,C1,C2,D1,D2,共8种所以,所求事件A的概率P=19.如图,在直三棱柱ABC﹣A1B1C1中,底面△ABC是等腰直角三角形,且斜边AB=,侧棱AA1=2,点D为AB的中点,点E在线段AA1上,AE=λAA1(λ为实数).(1)求证:不论λ取何值时,恒有CD⊥B1E;(2)当λ=时,求多面体C1B﹣ECD的体积.【考点】LF:棱柱、棱锥、棱台的体积;LX:直线与平面垂直的性质.【分析】(1)由已知可得CD⊥AB.再由AA1⊥平面ABC,得AA1⊥CD.利用线面垂直的判定可得CD⊥平面ABB1A1.进一步得到CD⊥B1E;(2)当λ=时,.再由△ABC是等腰直角三角形,且斜边,得AC=BC=1.然后利用结合等积法得答案.【解答】(1)证明:∵△ABC是等腰直角三角形,点D为AB的中点,∴CD⊥AB.∵AA1⊥平面ABC,CD⊂平面ABC,∴AA1⊥CD.又∵AA1⊂平面ABB1A1,AB⊂平面ABB1A1,AA1∩AB=A,∴CD⊥平面ABB1A1.∵点E在线段AA1上,∴B1E⊂平面ABB1A1,∴CD⊥B1E;(2)解:当λ=时,.∵△ABC是等腰直角三角形,且斜边,∴AC=BC=1.∴,,∴.20.已知点P是圆F1:(x﹣1)2+y2=8上任意一点,点F2与点F1关于原点对称,线段PF2的垂直平分线分别与PF1,PF2交于M,N两点.(1)求点M的轨迹C的方程;(2)过点的动直线l与点M的轨迹C交于A,B两点,在y轴上是否存在定点Q,使以AB为直径的圆恒过这个点?若存在,求出点Q的坐标;若不存在,请说明理由.【考点】KS:圆锥曲线的存在性问题;J3:轨迹方程;KL:直线与椭圆的位置关系.【分析】(1)判断轨迹方程是椭圆,然后求解即可.(2)直线l的方程可设为,设A(x1,y1),B(x2,y2),联立直线与椭圆方程,通过韦达定理,假设在y轴上是否存在定点Q(0,m),使以AB为直径的圆恒过这个点,利用,求得m=﹣1.推出结果即可.【解答】解:(1)由题意得,∴点M的轨迹C为以F1,F2为焦点的椭圆∵,∴点M的轨迹C的方程为.(2)直线l的方程可设为,设A(x1,y1),B(x2,y2),联立可得9(1+2k2)x2+12kx﹣16=0.由求根公式化简整理得,假设在y轴上是否存在定点Q(0,m),使以AB为直径的圆恒过这个点,则即.∵,===.∴求得m=﹣1.因此,在y轴上存在定点Q(0,﹣1),使以AB为直径的圆恒过这个点.21.已知函数h(x)=(x﹣a)e x+a.(1)若x∈[﹣1,1],求函数h(x)的最小值;(2)当a=3时,若对∀x1∈[﹣1,1],∃x2∈[1,2],使得h(x1)≥x22﹣2bx2﹣ae+e+成立,求b的围.【考点】6E:利用导数求闭区间上函数的最值;6K:导数在最大值、最小值问题中的应用.【分析】(1)求出极值点x=a﹣1.通过当a≤0时,当0<a<2时,当a≥2时,利用函数的单调性求解函数的最小值.(2)令,“对∀x1∈[﹣1,1],∃x2∈[1,2],使得成立”等价于“f(x)在[1,2]上的最小值不大于h(x)在[﹣1,1]上的最小值”.推出h(x)min ≥f(x)min.通过①当b≤1时,②当1<b<2时,③当b≥2时,分别利用极值与最值求解b的取值围.【解答】解:(1)h'(x)=(x﹣a+1)e x,令h'(x)=0得x=a﹣1.当a﹣1≤﹣1即a≤0时,在[﹣1,1]上h'(x)≥0,函数h(x)=(x﹣a)e x+a 递增,h(x)的最小值为.当﹣1<a﹣1<1即0<a<2时,在x∈[﹣1,a﹣1]上h'(x)≤0,h(x)为减函数,在x∈[a﹣1,1]上h'(x)≥0,h(x)为增函数.∴h(x)的最小值为h(a﹣1)=﹣e a﹣1+a.当a﹣1≥1即a≥2时,在[﹣1,1]上h'(x)≤0,h(x)递减,h(x)的最小值为h(1)=(1﹣a)e+a.综上所述,当a≤0时h(x)的最小值为,当a≥2时h(x)的最小值为(1﹣a)e+a,当0<a<2时,h(x)最小值为﹣e a﹣1+a.(2)令,由题可知“对∀x1∈[﹣1,1],∃x2∈[1,2],使得成立”等价于“f(x)在[1,2]上的最小值不大于h(x)在[﹣1,1]上的最小值”.即h(x)min ≥f(x)min.由(1)可知,当a=3时,h(x)min=h(1)=(1﹣a)e+a=﹣2e+3.当a=3时,,x∈[1,2],①当b≤1时,,由得,与b≤1矛盾,舍去.②当1<b<2时,,由得,与1<b<2矛盾,舍去.③当b≥2时,,由得.综上,b的取值围是.22.以直角坐标系的原点O为极点,x轴正半轴为极轴,并在两种坐标系中取相同的长度单位,已知直线l的参数方程为,(t为参数,0<θ<π),曲线C的极坐标方程为ρsin2θ﹣2cosθ=0.(1)求曲线C的直角坐标方程;(2)设直线l与曲线C相交于A,B两点,当θ变化时,求|AB|的最小值.【考点】QH:参数方程化成普通方程;Q4:简单曲线的极坐标方程.【分析】(1)利用极坐标与直角坐标的转化方法,求曲线C的直角坐标方程;(2)将直线l的参数方程代入y2=2x,得t2sin2θ﹣2tcosθ﹣1=0,利用参数的几何意义,求|AB|的最小值.【解答】解:(1)由ρsin2θ﹣2cosθ=0,得ρ2sin2θ=2ρcosθ.∴曲线C的直角坐标方程为y2=2x;(2)将直线l的参数方程代入y2=2x,得t2sin2θ﹣2tcosθ﹣1=0.设A,B两点对应的参数分别为t1,t2,则,,==.当时,|AB|的最小值为2.23.已知函数f(x)=|x﹣5|﹣|x﹣2|.(1)若∃x∈R,使得f(x)≤m成立,求m的围;(2)求不等式x2﹣8x+15+f(x)≤0的解集.【考点】R5:绝对值不等式的解法.【分析】(1)通过讨论x的围,求出f(x)的分段函数的形式,求出m的围即可;(2)通过讨论x的围,求出不等式的解集即可.【解答】解:(1),当2<x<5时,﹣3<7﹣2x<3,所以﹣3≤f(x)≤3,∴m≥﹣3;(2)不等式x2﹣8x+15+f(x)≤0,即﹣f(x)≥x2﹣8x+15由(1)可知,当x≤2时,﹣f(x)≥x2﹣8x+15的解集为空集;当2<x<5时,﹣f(x)≥x2﹣8x+15,即x2﹣10x+22≤0,∴;当x≥5时,﹣f(x)≥x2﹣8x+15,即x2﹣8x+12≤0,∴5≤x≤6;综上,原不等式的解集为.2017年5月23日。

河南省洛阳市高考数学三模试卷 理(含解析)

2015年河南省洛阳市高考数学三模试卷(理科)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合A={x|x2﹣6x+8<0},B={x|2<2x<8},则A∩B=()A. {x|1<x<4} B. {x|1<x<3} C. {x|2<x<3} D. {x|3<x<4}2.若复数z满足(1+i)z=3+i,则复数z的共轭复数在复平面内所对应的点的坐标是() A.(﹣2,﹣1) B.(2,﹣1) C.(﹣2,1) D.(2,1)3.已知0<m<1,设a=log m(m2+1),b=log m(m+1),c=log m(2m),则a,b,c的大小关系是()A. c>a>b B. a>c>b C. a>b>c D. b>a>c4.已知F1、F2是椭圆的两个焦点,满足•=0的点M总在椭圆内部,则椭圆离心率的取值范围是()A.(0,1) B.(0,] C.(0,) D. [,1)5.如果执行如图所示的程序框图,输入x=6,则输出的y值为()A. 2 B. 0 C.﹣1 D.6.已知异面直线a,b均与平面α相交,下列命题:①存在直线m⊂α,使得m⊥a或m⊥b;②存在直线m⊂α,使得m⊥a且m⊥b;③存在直线m⊂α,使得m与a和b所成的角相等.其中不正确的命题个数为()A. 0 B. 1 C. 2 D. 37.设函数f(x)=2+,若f(x)在[﹣n,n]上的值域为[a,b],其中a,b,m,n∈R,且n>0,则a+b=()A. 0 B. 2 C. 4 D. 2m8.已知等差数列{a n}的前三项为a﹣1,4,2a,记前n项和为S n,设b n=,则b3+b7+b11+…+b4n﹣1等于()A. n2+n B. 2n2+2n C. n2﹣n D. 2n2﹣2n9.正△ABC边长为1,P为其内部(不含边界)的任意点,设=x+y(x,y∈R),则在平面直角坐标系内点(x,y)对应区域的面积为()A. 1 B. C. D.10.设三位数n=(即n=100a+10b+c,其中a,b,c∈N*),若以a,b,c为三条边的长可以构成一个等腰(含等边)三角形,则这样的三位数n有()A. 45个 B. 81个 C. 165个 D. 216个11.一个几何体的侧视图是边长为2的正三角形,正视图与俯视图的尺寸如图所示,则此几何体的表面积为()A. 12+2+3π B. 12+3π C.+2 D.π+212.已知f(x)定义在R上的函数,f′(x)是f(x)的导函数,若f(x)>1﹣f′(x),且f(0)=2,则不等式e x f(x)>e x+1(其中e为自然对数的底数)的解集为()A.(0,+∞) B.(﹣∞,0)∪(1,+∞) C.(﹣1,+∞) D.(﹣∞,﹣1)∪(0,+∞)二、填空题:本大题共4小题,每小题5分,共20分.13.设等比数列{a n}的各项均为正数,且a5a6+a4a7=18,则log3a1+log3a2+…+log3a10= .14.若二项式(1﹣ax)5的展开式中x3的系数为﹣80,则展开式中各项系数之和为.15.已知a,b都是负实数,则的最小值是.16.已知中心在坐标原点的椭圆与双曲线有公共焦点,且左、右焦点分别为F1、F2,这两条曲线在第一象限的交点为P,△PF1F2是以PF1为底边的等腰三角形,若|PF1|=10,椭圆与双曲线的离心率分别为e1、e2,则e1+e2的取值范围是.三、解答题:本大题共5小题,共70分,解答应写出文字说明、证明过程或演算步骤.17.在锐角△ABC中,=(1)求角A;(2)若a=,求bc的取值范围.18.学校重视高三学生对数学选修课程的学习,在选修系列4中开设了4﹣1,4﹣2,4﹣3,4﹣4,4﹣5共5个专题课程,要求每个学生必须且只能选修其中1门课程,设A、B、C、D 是高三某班的4名学生.(1)求恰有2个专题没有被这4名学生选择的概率;(2)设这4名学生中选择4﹣4专题的人数为ξ,求ξ的分布列及数学期望E(ξ).19.如图所示的几何体中,四边形ABCD与DBFE均为菱形,∠DAB=∠DBF=60°,且FA=FC.AC 与BD相交于O.(1)求证:FO⊥平面ABCD;(2)求二面角E﹣FA﹣B的余弦值.20.在平面直角坐标系xOy中,已知抛物线x2=2py(p>0)的准线方程为y=﹣,过点M(4,0)作抛物线的切线MA,切点为A(异于点O),直线l过点M与抛物线交于两点P、Q,与直线OA交于点N.(1)求抛物线的方程;(2)试问的值是否为定值?若是,求出定值;若不是,说明理由.21.已知函数f(x)=mx﹣1﹣lnx.(1)若f(x)≥0对∀x∈(0,+∞)恒成立,求实数m的取值范围;(2)求证:对∀n∈N*,<e均成立(其中e为自然对数的底数,e≈2.71828).请考生在第22、23、24三题中任选一题做答,如果多做,则按所做的第一题记分.选修4-1:几何证明选讲22.如图,已知AD是△ABC的对角∠EAC的平分线,交BC的延长线于点D,延长DA交△ABC 的外接圆于点F,连结FB,FC.(1)求证:FB=FC;(2)若FA=2,AD=6,求FB的长.选修4-4:坐标系与参数方程23.已知直线l的参数方程为(t为参数),以坐标原点为极点,x轴正半轴为极轴,建立极坐标系,曲线C的极坐标方程是ρ=.(1)写出直线l的极坐标方程与曲线C的普通方程;(2)若点 P是曲线C上的动点,求 P到直线l的距离的最小值,并求出 P点的坐标.选修4-5:不等式选讲24.已知f(x)=|x+l|+|x﹣2|,g(x)=|x+1|﹣|x﹣a|+a(a∈R).(Ⅰ)解不等式f(x)≤5;(Ⅱ)若不等式f(x)≥g(x)恒成立,求a的取值范围.2015年河南省洛阳市高考数学三模试卷(理科)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合A={x|x2﹣6x+8<0},B={x|2<2x<8},则A∩B=()A. {x|1<x<4} B. {x|1<x<3} C. {x|2<x<3} D. {x|3<x<4}考点:交集及其运算.专题:集合.分析:求出集合的等价条件,利用集合的基本运算进行求解即可.解答:解:A={x|x2﹣6x+8<0}={x|2<x<4},B={x|2<2x<8}={x|1<x<3},则A∩B={x|2<x<3},故选:C.点评:本题主要考查集合的基本运算,求出集合的等价条件是解决本题的关键.2.若复数z满足(1+i)z=3+i,则复数z的共轭复数在复平面内所对应的点的坐标是() A.(﹣2,﹣1) B.(2,﹣1) C.(﹣2,1) D.(2,1)考点:复数代数形式的乘除运算.专题:数系的扩充和复数.分析:利用复数的运算法则、共轭复数的定义、几何意义即可得出.解答:解:∵(1+i)z=3+i,∴z====2﹣i,∴则复数z的共轭复数=2+i在复平面内所对应的点的坐标是(2,1).故选:D.点评:本题考查了复数的运算法则、共轭复数的定义、几何意义,属于基础题.3.已知0<m<1,设a=log m(m2+1),b=log m(m+1),c=log m(2m),则a,b,c的大小关系是()A. c>a>b B. a>c>b C. a>b>c D. b>a>c考点:对数值大小的比较.专题:函数的性质及应用.分析: 0<m<1,可得m+1>m2+1>2m,再利用对数函数的单调性即可得出.解答:解:∵0<m<1,∴m+1>m2+1>2m,又a=log m(m2+1),b=log m(m+1),c=log m(2m),∴c>a>b.故选:A.点评:本题考查了不等式的性质、数的大小比较、对数函数的单调性,考查了推理能力与计算能力,属于基础题.4.已知F1、F2是椭圆的两个焦点,满足•=0的点M总在椭圆内部,则椭圆离心率的取值范围是()A.(0,1) B.(0,] C.(0,) D. [,1)考点:椭圆的应用.专题:计算题.分析:由•=0知M点的轨迹是以原点O为圆心,半焦距c为半径的圆.又M点总在椭圆内部,∴c<b,c2<b2=a2﹣c2.由此能够推导出椭圆离心率的取值范围.解答:解:设椭圆的半长轴、半短轴、半焦距分别为a,b,c,∵•=0,∴M点的轨迹是以原点O为圆心,半焦距c为半径的圆.又M点总在椭圆内部,∴该圆内含于椭圆,即c<b,c2<b2=a2﹣c2.∴e2=<,∴0<e<.故选:C.点评:本题考查椭圆的基本知识和基础内容,解题时要注意公式的选取,认真解答.5.如果执行如图所示的程序框图,输入x=6,则输出的y值为()A. 2 B. 0 C.﹣1 D.考点:程序框图.专题:算法和程序框图.分析:执行程序框图,依次写出每次循环得到的x,y的值,当x=﹣1,y=﹣时,满足条件|y﹣x|<1,退出循环,输出y的值为﹣.解答:解:执行程序框图,可得x=6y=2不满足条件|y﹣x|<1,x=2,y=0不满足条件|y﹣x|<1,x=0,y=﹣1不满足条件|y﹣x|<1,x=﹣1,y=﹣满足条件|y﹣x|<1,退出循环,输出y的值为﹣.故选:D.点评:本题主要考察了程序框图和算法,根据赋值语句正确得到每次循环x,y的值是解题的关键,属于基础题.6.已知异面直线a,b均与平面α相交,下列命题:①存在直线m⊂α,使得m⊥a或m⊥b;②存在直线m⊂α,使得m⊥a且m⊥b;③存在直线m⊂α,使得m与a和b所成的角相等.其中不正确的命题个数为()A. 0 B. 1 C. 2 D. 3考点:命题的真假判断与应用.专题:空间位置关系与距离.分析:根据空间线线关系,线面关系,线线夹角,线线垂直的几何特征,逐一分析四个答案的真假,可得答案.解答:解:根据空间线线垂直的几何特征可得:必存在直线m⊂α,使得m⊥a,也必存在直线m⊂α,使得m⊥b,故①正确;若异面直线a,b的公垂线段与平面α平行或在平面α内,则存在直线m⊂α,使得m⊥a且m⊥b,否则这样的m不存在,故②错误;若异面直线a,b中有一条与平面α垂直,则平面α内另一条直线的垂线与两条直线均垂直;若异面直线a,b与平面α均不垂直,则它们在平面α上射影的角平分线与异面直线a,b 夹角相等,故③正确.故①③都正确,故不正确的命题个数为1,故选:B点评:本题考查的知识点空间线线关系,线面关系,线线夹角,线线垂直的几何特征,难度不大,属于基础题.7.设函数f(x)=2+,若f(x)在[﹣n,n]上的值域为[a,b],其中a,b,m,n∈R,且n>0,则a+b=()A. 0 B. 2 C. 4 D. 2m考点:函数的值域.专题:计算题;函数的性质及应用.分析:由于f(x)=2+mx+,令g(x)=mx+,根据奇函数的对称性即可求解.解答:解:f(x)=2+=2+=2+mx+,令g(x)=mx+,则g(﹣x)=﹣mx﹣=﹣g(x),即g(x)为奇函数,∴g(x)在[﹣n,n]上的最大值与最小值之和为0,∵f(x)=g(x)+2,∴a+b=4.故选C点评:本题主要考查了奇函数在对称区间上最值互为相反数即最值之和为0的性质的应用,其中构造函数g(x)是求解本题的关键8.已知等差数列{a n}的前三项为a﹣1,4,2a,记前n项和为S n,设b n=,则b3+b7+b11+…+b4n﹣1等于()A. n2+n B. 2n2+2n C. n2﹣n D. 2n2﹣2n考点:等差数列的前n项和.专题:等差数列与等比数列.分析:由已知列式求得a,得到等差数列的三项和公差,求出其前n项和,代入b n=,再由等差数列的前n项和求b3+b7+b11+…+b4n﹣1的值.解答:解:由a﹣1,4,2a为等差数列的前三项,得a﹣1+2a=8,解得a=3.∴等差数列{a n}的首项为2,公差为2,∴.则b n==,∴b3=4,b3+b7+b11+…+b4n﹣1=4n+=2n2+2n.故选:B.点评:本题考查等差数列的通项公式,考查等差数列的前n项和,是基础的计算题.9.正△ABC边长为1,P为其内部(不含边界)的任意点,设=x+y(x,y∈R),则在平面直角坐标系内点(x,y)对应区域的面积为()A. 1 B. C. D.考点:平面向量的基本定理及其意义.专题:平面向量及应用.分析:通过已知的向量关系以及三角形与P的位置,确定x,y的关系,得到可行域.解答:解:因为三角形ABC内一点,且=x+y(x,y∈R),当p点在BC上时,x+y=1,因为P在三角形ABC内.∴0≤x+y<1所以0≤x≤1,0≤y≤1,对应的区域如图,则面积为.故选C点评:本题以向量为载体,考查线性规划的简单应用,抽象出约束条件是解题的关键.10.设三位数n=(即n=100a+10b+c,其中a,b,c∈N*),若以a,b,c为三条边的长可以构成一个等腰(含等边)三角形,则这样的三位数n有()A. 45个 B. 81个 C. 165个 D. 216个考点:计数原理的应用.专题:应用题;排列组合.分析:先考虑等边三角形情况,则a=b=c=1,2,3,4,5,6,7,8,9,此时n有9个,再考虑等腰三角形情况,若a,b是腰,则a=b,列举出所有的情况,注意去掉不能构成三角形的结果,交换腰和底的位置,求和得到结果.解答:解:由题意知以a、b、c为三条边的长可以构成一个等腰(含等边)三角形,先考虑等边三角形情况则a=b=c=1,2,3,4,5,6,7,8,9,此时n有9个再考虑等腰三角形情况,若a,b是腰,则a=b当a=b=1时,c<a+b=2,则c=1,与等边三角形情况重复;当a=b=2时,c<4,则c=1,3(c=2的情况等边三角形已经讨论了),此时n有2个;当a=b=3时,c<6,则c=1,2,4,5,此时n有4个;当a=b=4时,c<8,则c=1,2,3,5,6,7,有6个;当a=b=5时,c<10,有c=1,2,3,4,6,7,8,9,有8个;由加法原理知n有2+4+6+8+8+8+8+8=52个同理,若a,c是腰时,c也有52个,b,c是腰时也有52个所以n共有9+3×52=165个故选C.点评:本题考查排列组合的实际应用,本题解题的关键是根据所给的条件不重不漏的列举出所有的结果,注意数字要首先能够构成三角形,即满足两边之和大于第三边,本题是一个易错题.11.一个几何体的侧视图是边长为2的正三角形,正视图与俯视图的尺寸如图所示,则此几何体的表面积为()A. 12+2+3π B. 12+3π C.+2 D.π+2考点:由三视图求面积、体积.专题:计算题;空间位置关系与距离.分析:由三视图可知,此几何体为组合体,左右两侧为半圆锥,中间为三棱柱,从而求面积.解答:解:由三视图可知,此几何体为组合体,左右两侧为半圆锥,中间为三棱柱,左右两侧的半圆锥可合为一个圆锥,其表面积为π×12+×2×2π=3π;中间的三棱柱三个侧面在表面,其面积为3×2×2=12;故此几何体的表面积为3π+12;故选B.点评:本题考查了学生的空间想象力与计算能力,属于基础题.12.已知f(x)定义在R上的函数,f′(x)是f(x)的导函数,若f(x)>1﹣f′(x),且f(0)=2,则不等式e x f(x)>e x+1(其中e为自然对数的底数)的解集为()A.(0,+∞) B.(﹣∞,0)∪(1,+∞) C.(﹣1,+∞) D.(﹣∞,﹣1)∪(0,+∞)考点:利用导数研究函数的单调性.专题:导数的综合应用.分析:构造函数g(x)=e x f(x)﹣e x,(x∈R),研究g(x)的单调性,结合原函数的性质和函数值,即可求解解答:解:设g(x)=e x f(x)﹣e x,(x∈R),则g′(x)=e x f(x)+e x f′(x)﹣e x=e x[f(x)+f′(x)﹣1],∵f(x)>1﹣f′(x),∴f(x)+f′(x)﹣1>0,∴g′(x)>0,∴y=g(x)在定义域上单调递增,∵e x f(x)>e x+1,∴g(x)>1,又∵g(0)=e0f(0)﹣e0=1,∴g(x)>g(0),∴x>0,∴不等式的解集为(0,+∞)故选:A点评:本题考查函数单调性与奇偶性的结合,结合已知条件构造函数,然后用导数判断函数的单调性是解题的关键,属于中档题.二、填空题:本大题共4小题,每小题5分,共20分.13.设等比数列{a n}的各项均为正数,且a5a6+a4a7=18,则log3a1+log3a2+…+log3a10= 10 .考点:等比数列的性质.专题:等差数列与等比数列.分析:由题意可得a4a7=a5a6,解之可得a5a6,由对数的运算可得log3a1+log3a2+…+log3a10=log3(a1a2…a10)=log3(a5a6)5,代入计算可得.解答:解:由题意可得a5a6+a4a7=2a5a6=18,解得a5a6=9,∴log3a1+log3a2+...+log3a10=log3(a1a2 (10)=log3(a5a6)5=log395=log3310=10故答案为:10点评:本题考查等比数列的性质和通项公式,涉及对数的运算,属中档题.14.若二项式(1﹣ax)5的展开式中x3的系数为﹣80,则展开式中各项系数之和为﹣1 .考点:二项式系数的性质.专题:二项式定理.分析:由展开式中x3的系数为﹣80求得a的值,在二项式中取x=1即可求得展开式中各项系数之和.解答:解:由,令r=3,得,即a=2.∴二项式(1﹣ax)5的展开式中各项系数之和为(1﹣2×1)5=﹣1.故答案为:﹣1.点评:本题考查二项式系数的性质,考查二项展开式的通项,训练了二项式系数的求法,是基础题.15.已知a,b都是负实数,则的最小值是.考点:函数的最值及其几何意义;基本不等式.专题:计算题.分析:把所给的式子直接通分相加,把分子整理出含有分母的形式,做到分子常数化,分子和分母同除以分母,把原式的分母变化成具有基本不等式的形式,求出最小值.解答:解:直接通分相加得==1﹣=1﹣因为a,b都是负实数,所以,都为正实数那么上式中分式中的分母可以利用基本不等式求出最小值最小值为2分母有最小值,即有最大值那么1﹣可得最小值最小值:2 ﹣2故答案为:.点评:本题考查函数的最值及其几何意义,本题解题的关键是整理出原式含有基本不等式的形式,可以应用基本不等式求最值.16.已知中心在坐标原点的椭圆与双曲线有公共焦点,且左、右焦点分别为F1、F2,这两条曲线在第一象限的交点为P,△PF1F2是以PF1为底边的等腰三角形,若|PF1|=10,椭圆与双曲线的离心率分别为e1、e2,则e1+e2的取值范围是.考点:椭圆的简单性质;双曲线的简单性质.专题:圆锥曲线中的最值与范围问题.分析:如图所示,设椭圆与双曲线的标准方程分别为:,.(a1,a2,b1,b2>0,a1>b1).根据△PF1F2是以PF1为底边的等腰三角形,|PF1|=10,可得10+2c=2a1,10﹣2c=2a2,可得,于是e1+e2=e2+=f(e2),e2>1.利用导数研究其单调性即可得出.解答:解:如图所示,设椭圆与双曲线的标准方程分别为:,.(a1,a2,b1,b2>0,a1>b1)∵△PF1F2是以PF1为底边的等腰三角形,|PF1|=10,∴10+2c=2a1,10﹣2c=2a2,相减可得:2c=a1﹣a2,∴,∴,∴e1+e2=e2+=f(e2),e2>1.∴f′(e2)=1+=1+>0,∴函数f(e2)在e2>1时单调递增,∴f(e2)>f(1)=1+=.∴e1+e2的取值范围是.故答案为:.点评:本题考查了椭圆与双曲线的标准方程及其性质、离心率计算公式、利用导数研究函数的单调性极值,考查了推理能力与计算能力,属于难题.三、解答题:本大题共5小题,共70分,解答应写出文字说明、证明过程或演算步骤.17.在锐角△ABC中,=(1)求角A;(2)若a=,求bc的取值范围.考点:正弦定理;余弦定理.专题:计算题;三角函数的求值;解三角形.分析:(1)由余弦定理可得:a2+c2﹣b2=2accosB,代入已知整理可得sin2A=1,从而可求A的值.(2)由(1)及正弦定理可得bc=,根据已知求得角的范围,即可求得bc的取值范围.解答:解:(1)由余弦定理可得:a2+c2﹣b2=2accosB,,∴sin2A=1且,(2),又,∴b=2sinB,c=2sinC,bc=2sin(135°﹣C)•2sinC=,,∴.点评:本题主要考查了正弦定理、余弦定理在解三角形中的应用,属于中档题.18.学校重视高三学生对数学选修课程的学习,在选修系列4中开设了4﹣1,4﹣2,4﹣3,4﹣4,4﹣5共5个专题课程,要求每个学生必须且只能选修其中1门课程,设A、B、C、D 是高三某班的4名学生.(1)求恰有2个专题没有被这4名学生选择的概率;(2)设这4名学生中选择4﹣4专题的人数为ξ,求ξ的分布列及数学期望E(ξ).考点:离散型随机变量的期望与方差;离散型随机变量及其分布列.专题:应用题;概率与统计.分析:(1)每个学生必须且只需选修1门专题课程,每一人都有种选择,总共有54,恰有2门专题课程没有被这3名学生选择的概率,则有C52C42A33,从而求解;(2)某一专题课程被这3名学生选择的人数为ξ,则ξ=0,1,2,3,4,分别算出P(ξ=0),P(ξ=1),P(ξ=2),P(ξ=3),P(ξ=4),再利用期望公式求解.解答:解:(1)根据每个学生必须且只需选修1门专题课程,每一人都有种选择,总共有54,恰有2门专题课程没有被这3名学生选择的概率,则有C52C42A33,∴恰有2门专题课程这4名学生都没选择的概率:P2==(2)设A专题课程被这4名学生选择的人数为ξ,则ξ=0,1,2,3,4P(ξ=0)==,P(ξ=1)==,P(ξ=2)==,P(ξ=3)==,P(ξ=4)==分布列如下:ξ 0 1 2 3 4P∴Eξ=0×+1×+2×+3×+4×=.点评:本小题主要考查古典概型及其概率计算,考查取有限个值的离散型随机变量及其分布列和均值的概念,通过设置密切贴近现实生活的情境,考查概率思想的应用意识和创新意识.19.如图所示的几何体中,四边形ABCD与DBFE均为菱形,∠DAB=∠DBF=60°,且FA=FC.AC 与BD相交于O.(1)求证:FO⊥平面ABCD;(2)求二面角E﹣FA﹣B的余弦值.考点:二面角的平面角及求法;直线与平面垂直的判定.专题:空间角.分析:(1)根据线面垂直的性质定理即可证明FO⊥平面ABCD.(2)建立空间坐标系,利用向量法即可求二面角E﹣FA﹣B的余弦值;解答:证明:(1)∵四边形ABCD是菱形,∠DAB=∠DBF=60°,且FA=FC.AC与BD相交于O.∴△DBF是等边三角形,∵FA=FC,O为AC中点,∴FO⊥AC,∵O为BD中点,∴FO⊥BD,∴FO⊥平面ABCD.(2)∵OA,OB,OF两两垂直,建立如图所示的空间直角坐标系O﹣xyz,设AB=2,∵四边形ABCD是菱形,∠DAB=60°,∴BD=2,∴OB=OD=1,OA=OF=,∴O(0,0,0),A(,0,0),B(0,1,0),F(0,0,),E(0,﹣2,),∴=(﹣,0,),=(﹣,1,0),=(0,2,0),设=(x,y,z)为平面AFE的法向量,则,即,令z=1,得=(1,,1),同理可得平面AFE的一个法向量为,则cos<>===,∵二面角E﹣FA﹣B是钝二面角,∴二面角E﹣FA﹣B的余弦值为﹣.点评:本题主要考查空间直线和平面垂直的判定以及二面角的求解,建立坐标系利用向量法是解决空间角的常用方法.20.在平面直角坐标系xOy中,已知抛物线x2=2py(p>0)的准线方程为y=﹣,过点M(4,0)作抛物线的切线MA,切点为A(异于点O),直线l过点M与抛物线交于两点P、Q,与直线OA交于点N.(1)求抛物线的方程;(2)试问的值是否为定值?若是,求出定值;若不是,说明理由.考点:直线与圆锥曲线的综合问题;抛物线的标准方程.专题:综合题;圆锥曲线的定义、性质与方程.分析:(1)由抛物线的准线方程可得p,进而得到抛物线方程;(2)求出函数的导数,求出切线的斜率,以及切线方程,联立切线方程和抛物线方程求得切点A,进而直线OA的方程,设出直线PQ的方程,联立抛物线方程运用韦达定理,求出N 的纵坐标,代入所求式子化简即可得到定值2.解答:解:(1)由题设知,﹣=﹣,即p=1,所以抛物线的方程为x2=2y;(2)因为函数的导函数为y′=x,设A(x0,y0),则直线MA的方程为y﹣y0=x0(x﹣x0),点M(4,0)在直线MA上,所以0﹣y0=x0(4﹣x0),联立直线与抛物线方程,解得A(8,32),所以直线OA的方程为y=4x.设直线PQ方程为x=my+4,P(x1,y1),Q(x2,y2)联立直线与抛物线方程,得m2y2+(8m﹣2)y+16=0,所以y1+y2=﹣,y1y2=.由,得y N=.所以==•=2为定值.点评:本题考查抛物线的方程和性质,考查直线方程和抛物线方程联立,运用韦达定理,以及导数的运用:求切线方程,考查运算能力,属于中档题.21.已知函数f(x)=mx﹣1﹣lnx.(1)若f(x)≥0对∀x∈(0,+∞)恒成立,求实数m的取值范围;(2)求证:对∀n∈N*,<e均成立(其中e为自然对数的底数,e≈2.71828).考点:导数在最大值、最小值问题中的应用.专题:综合题;导数的综合应用.分析:(1)f(x)≥0等价于m≥对∀x∈(0,+∞)恒成立,求出右边的最大值,即可求实数m的取值范围;(2)先证明(1+k)ln(1+k)﹣klnk<1+ln(1+k),代入,利用累加法,即可证明结论.解答:(1)解:f(x)≥0等价于m≥对∀x∈(0,+∞)恒成立,令g(x)=,则g′(x)=﹣,x∈(0,1),g′(x)>0,函数单调递增,x∈(1,+∞),g′(x)<0,函数单调递减,∴g(x)max=g(1)=1,∴m≥1;(2)证明:由(1)知lnx≤x﹣1对∀x∈(0,+∞)恒成立,当且仅当x=1时取等号,∴ln(1+)<,∴kln(1+k)﹣klnk<1,∴(1+k)ln(1+k)﹣klnk<1+ln(1+k),∴2ln2﹣ln1<1+ln2,3ln3﹣2ln2<1+ln3,…(1+n)ln(1+n)﹣nlnn<1+ln(1+n),累加得(1+n)ln(1+n)<n+(ln2+ln3+…+lnn)+ln(1+n)∴nln(1+n)<n+ln(n!),∴ln(1+n)<1+ln(n!),∴ln(1+n)﹣ln<1,∴ln<1,∴<e.点评:本题是一道导数的综合题,利用导数求函数的单调区间,这里要对参数进行讨论,解决恒成立问题,构造函数证明不等式,这些都是导数中常考的题型,初学者要多做些这方面的习题.属于中档题.请考生在第22、23、24三题中任选一题做答,如果多做,则按所做的第一题记分.选修4-1:几何证明选讲22.如图,已知AD是△ABC的对角∠EAC的平分线,交BC的延长线于点D,延长DA交△ABC 的外接圆于点F,连结FB,FC.(1)求证:FB=FC;(2)若FA=2,AD=6,求FB的长.考点:与圆有关的比例线段.专题:选作题;推理和证明.分析:(1)欲证FB=FC,可证∠FBC=∠FCB.由A、C、B、F四点共圆可知∠FBC=∠CAD,又同弧所对的圆周角相等,则∠FCB=∠FAB,而∠FAB=∠EAD,则∠FCB=∠EAD,AD是△ABC 外角∠EAC的平分线,得∠CAD=∠EAD,故∠FBC=∠FCB;(2)由(1)知,求FB的长,即可以转化为求FC的长,联系已知条件:告诉FA与AD的长度,即可证△FAC∽△FCD.解答:(1)证明:∵A、C、B、F四点共圆∴∠FBC=∠DAC又∵AD平分∠EAC∴∠EAD=∠DAC又∵∠FCB=∠FAB(同弧所对的圆周角相等),∠FAB=∠EAD∴∠FBC=∠FCB∴FB=FC;(2)解:∵∠BAC=∠BFC,∠FAB=∠FCB=∠FBC∴∠FCD=∠BFC+∠FBC=∠BAC+∠FAB=∠FAC∵∠AFC=∠CFD,∴△FAC∽△FCD∴FA:FC=FC:FD∴FB2=FC2=FA•FD=16,∴FB=4.点评:本题主要考查了圆周角定理及相似三角形的判定.在圆中,经常利用同弧或者等弧所对的圆周角相等来实现角度的等量转化.还要善于将已知条件与所要求的问题集中到两个三角形中,运用三角形相似来解决问题.选修4-4:坐标系与参数方程23.已知直线l的参数方程为(t为参数),以坐标原点为极点,x轴正半轴为极轴,建立极坐标系,曲线C的极坐标方程是ρ=.(1)写出直线l的极坐标方程与曲线C的普通方程;(2)若点 P是曲线C上的动点,求 P到直线l的距离的最小值,并求出 P点的坐标.考点:参数方程化成普通方程;简单曲线的极坐标方程.专题:坐标系和参数方程.分析:本题(1)可以先消参数,求出直线l的普通方程,再利用公式将曲线C的极坐标方程化成平面直角坐标方程,(2)利用点到直线的距离公式,求出P到直线l的距离的最小值,再根据函数取最值的情况求出P点的坐标,得到本题结论.解答:解:(1)∵,∴x﹣y=1.∴直线的极坐标方程为:ρcosθ﹣ρsinθ=1.即,即.∵,∴,∴ρcos2θ=sinθ,∴(ρcosθ)2=ρsinθ即曲线C的普通方程为y=x2.(2)设P(x0,y0),,∴P到直线的距离:.∴当时,,∴此时,∴当P点为时,P到直线的距离最小,最小值为.点评:本题考查了参数方程化为普通方程、极坐标方程化为平面直角坐标方程、点到直线的距离公式,本题难度不大,属于基础题.选修4-5:不等式选讲24.已知f(x)=|x+l|+|x﹣2|,g(x)=|x+1|﹣|x﹣a|+a(a∈R).(Ⅰ)解不等式f(x)≤5;(Ⅱ)若不等式f(x)≥g(x)恒成立,求a的取值范围.考点:绝对值不等式的解法.专题:不等式的解法及应用.分析:(Ⅰ)f(x)=|x+l|+|x﹣2|表示数轴上的x对应点到﹣1和2对应点的距离之和,而﹣2 对应点到﹣1和2对应点的距离之和正好等于5,3对应点到﹣1和2对应点的距离之和正好等于5,从而得到不等式f(x)≤5的解集.(Ⅱ)由题意可得|x﹣2|+|x﹣a|≥a 恒成立,而|x﹣2|+|x﹣a|的最小值为|2﹣a|=|a﹣2|,故有|a﹣2|≥a,由此求得a的范围.解答:解:(Ⅰ)f(x)=|x+l|+|x﹣2|表示数轴上的x对应点到﹣1和2对应点的距离之和,而﹣2 对应点到﹣1和2对应点的距离之和正好等于5,3对应点到﹣1和2对应点的距离之和正好等于5,故不等式f(x)≤5的解集为[﹣2,3].(Ⅱ)若不等式f(x)≥g(x)恒成立,即|x﹣2|+|x﹣a|≥a 恒成立.而|x﹣2|+|x﹣a|的最小值为|2﹣a|=|a﹣2|,∴|a﹣2|≥a,∴(2﹣a)2≥a2,解得a≤1,故a的范围(﹣∞,1].点评:本题主要考查绝对值不等式的解法,体现了等价转化数学思想,属于中档题.。

2017年高考理科数学全国II卷(含详解)

2017年高考理科数学全国II卷(含详解)2017年全国统一高考数学试卷(理科)(新课标Ⅱ)参考答案与试题解析一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)(2017•新课标Ⅱ)=()A.1+2i B.1﹣2i C.2+i D.2﹣i【解答】解:===2﹣i,故选 D.2.(5分)(2017•新课标Ⅱ)设集合A={1,2,4},B={x|x2﹣4x+m=0}.若A∩B={1},则B=()A.{1,﹣3} B.{1,0} C.{1,3} D.{1,5}【解答】解:集合A={1,2,4},B={x|x2﹣4x+m=0}.若A∩B={1},则1∈A且1∈B,可得1﹣4+m=0,解得m=3,即有B={x|x2﹣4x+3=0}={1,3}.故选:C.3.(5分)(2017•新课标Ⅱ)我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯()A.1盏B.3盏C.5盏D.9盏【解答】解:设这个塔顶层有a盏灯,∵宝塔一共有七层,每层悬挂的红灯数是上一层的2倍,∴从塔顶层依次向下每层灯数是以2为公比、a为首项的等比数列,又总共有灯381盏,∴381==127a,解得a=3,则这个塔顶层有3盏灯,故选B.4.(5分)(2017•新课标Ⅱ)如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为()A.90πB.63πC.42πD.36π【解答】解:由三视图可得,直观图为一个完整的圆柱减去一个高为6的圆柱的一半,V=π•32×10﹣•π•32×6=63π,故选:B.5.(5分)(2017•新课标Ⅱ)设x,y满足约束条件,则z=2x+y的最小值是()A.﹣15 B.﹣9 C.1 D.9【解答】解:x、y满足约束条件的可行域如图:8.(5分)(2017•新课标Ⅱ)执行如图的程序框图,如果输入的a=﹣1,则输出的S=()A.2 B.3 C.4 D.5【解答】解:执行程序框图,有S=0,k=1,a=﹣1,代入循环,第一次满足循环,S=﹣1,a=1,k=2;满足条件,第二次满足循环,S=1,a=﹣1,k=3;满足条件,第三次满足循环,S=﹣2,a=1,k=4;满足条件,第四次满足循环,S=2,a=﹣1,k=5;满足条件,第五次满足循环,S=﹣3,a=1,k=6;满足条件,第六次满足循环,S=3,a=﹣1,k=7;7≤6不成立,退出循环输出,S=3;故选:B.9.(5分)(2017•新课标Ⅱ)若双曲线C:﹣=1(a>0,b>0)的一条渐近线被圆(x﹣2)2+y2=4所截得的弦长为2,则C的离心率为()A.2 B.C.D.【解答】解:双曲线C:﹣=1(a>0,b>0)的一条渐近线不妨为:bx+ay=0,圆(x﹣2)2+y2=4的圆心(2,0),半径为:2,双曲线C:﹣=1(a>0,b>0)的一条渐近线被圆(x﹣2)2+y2=4所截得的弦长为2,可得圆心到直线的距离为:=,解得:,可得e2=4,即e=2.故选:A.10.(5分)(2017•新课标Ⅱ)已知直三棱柱ABC﹣A1B1C1中,∠ABC=120°,AB=2,BC=CC1=1,则异面直线AB1与BC1所成角的余弦值为()A. B.C.D.【解答】解:如图所示,设M、N、P分别为AB,BB1和B1C1的中点,则AB1、BC1夹角为MN和NP夹角或其补角(因异面直线所成角为(0,]),可知MN=AB1=,NP=BC1=;作BC中点Q,则△PQM为直角三角形;∵PQ=1,MQ=AC,△ABC中,由余弦定理得AC2=AB2+BC2﹣2AB•BC•cos∠ABC=4+1﹣2×2×1×(﹣)=7,∴AC=,∴MQ=;在△MQP中,MP==;在△PMN中,由余弦定理得cos∠MNP===﹣;又异面直线所成角的范围是(0,],∴AB1与BC1所成角的余弦值为.11.(5分)(2017•新课标Ⅱ)若x=﹣2是函数f(x)=(x2+ax﹣1)e x﹣1的极值点,则f(x)的极小值为()A.﹣1 B.﹣2e﹣3C.5e﹣3D.1【解答】解:函数f(x)=(x2+ax﹣1)e x﹣1,可得f′(x)=(2x+a)e x﹣1+(x2+ax﹣1)e x﹣1,x=﹣2是函数f(x)=(x2+ax﹣1)e x﹣1的极值点,可得:﹣4+a+(3﹣2a)=0.解得a=﹣1.可得f′(x)=(2x﹣1)e x﹣1+(x2﹣x﹣1)e x﹣1,=(x2+x﹣2)e x﹣1,函数的极值点为:x=﹣2,x=1,当x<﹣2或x>1时,f′(x)>0函数是增函数,x∈(﹣2,1)时,函数是减函数,x=1时,函数取得极小值:f(1)=(12﹣1﹣1)e1﹣1=﹣1.故选:A.12.(5分)(2017•新课标Ⅱ)已知△ABC是边长为2的等边三角形,P为平面ABC内一点,则•(+)的最小值是()A.﹣2 B.﹣C.﹣D.﹣1【解答】解:建立如图所示的坐标系,以BC中点为坐标原点,则A(0,),B(﹣1,0),C(1,0),设P(x,y),则=(﹣x,﹣y),=(﹣1﹣x,﹣y),=(1﹣x,﹣y),则•(+)=2x2﹣2y+2y2=2[x2+(y﹣)2﹣]∴当x=0,y=时,取得最小值2×(﹣)=﹣,故选:B三、填空题:本题共4小题,每小题5分,共20分.13.(5分)(2017•新课标Ⅱ)一批产品的二等品率为0.02,从这批产品中每次随机取一件,有放回地抽取100次,X表示抽到的二等品件数,则DX= 1.96 .【解答】解:由题意可知,该事件满足独立重复试验,是一个二项分布模型,其中,p=0.02,n=100,则DX=npq=np(1﹣p)=100×0.02×0.98=1.96.故答案为:1.96.14.(5分)(2017•新课标Ⅱ)函数f(x)=sin2x+cosx﹣(x∈[0,])的最大值是 1 .【解答】解:f(x)=sin2x+cosx﹣=1﹣cos2x+cosx﹣,令cosx=t且t∈[0,1],则f(t)=﹣t2+t+=﹣(t﹣)2+1,当t=时,f(t)max=1,即f(x)的最大值为1,故答案为:115.(5分)(2017•新课标Ⅱ)等差数列{an }的前n项和为Sn,a3=3,S4=10,则= .【解答】解:等差数列{an }的前n项和为Sn,a3=3,S4=10,S4=2(a2+a3)=10,可得a2=2,数列的首项为1,公差为1,Sn=,=,则=2[1﹣++…+]=2(1﹣)=.故答案为:.16.(5分)(2017•新课标Ⅱ)已知F是抛物线C:y2=8x的焦点,M是C上一点,FM的延长线交y轴于点N.若M为FN的中点,则|FN|= 6 .【解答】解:抛物线C:y2=8x的焦点F(2,0),M是C上一点,FM的延长线交y轴于点N.若M为FN的中点,可知M的横坐标为:1,则M的纵坐标为:,|FN|=2|FM|=2=6.故答案为:6.三、解答题:共70分.解答应写出文字说明、解答过程或演算步骤.第17~21题为必做题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.17.(12分)(2017•新课标Ⅱ)△ABC的内角A,B,C的对边分别为a,b,c,已知sin(A+C)=8sin2.(1)求cosB;(2)若a+c=6,△ABC面积为2,求b.【解答】解:(1)sin(A+C)=8sin2,∴sinB=4(1﹣cosB),∵sin2B+cos2B=1,∴16(1﹣cosB)2+cos2B=1,∴(17cosB﹣15)(cosB﹣1)=0,∴cosB=;(2)由(1)可知sinB=,∵S=ac•sinB=2,△ABC∴ac=,∴b2=a2+c2﹣2accosB=a2+c2﹣2××=a2+c2﹣15=(a+c)2﹣2ac﹣15=36﹣17﹣15=4,∴b=2.18.(12分)(2017•新课标Ⅱ)海水养殖场进行某水产品的新、旧网箱养殖方法的产量对比,收获时各随机抽取了100 个网箱,测量各箱水产品的产量(单位:kg),其频率分布直方图如图:(1)设两种养殖方法的箱产量相互独立,记A表示事件“旧养殖法的箱产量低于50kg,新养殖法的箱产量不低于50kg”,估计A的概率;(2)填写下面列联表,并根据列联表判断是否有99%的把握认为箱产量与养殖方法有关:箱产量<50kg 箱产量≥50kg旧养殖法新养殖法(3)根据箱产量的频率分布直方图,求新养殖法箱产量的中位数的估计值(精确到0.01).附:P(K2≥k)0.0500.010 0.001 K 3.841 6.635 10.828K2=.【解答】解:(1)记B表示事件“旧养殖法的箱产量低于50kg”,C表示事件“新养殖法的箱产量不低于50kg”,由P(A)=P(BC)=P(B)P(C),则旧养殖法的箱产量低于50kg:(0.012+0.014+0.024+0.034+0.040)×5=0.62,故P(B)的估计值0.62,新养殖法的箱产量不低于50kg:(0.068+0.046+0.010+0.008)×5=0.66,故P(C)的估计值为,则事件A的概率估计值为P(A)=P(B)P(C)=0.62×0.66=0.4092;∴A发生的概率为0.4092;(2)2×2列联表:箱产量<50kg箱产量≥50kg 总计旧养殖法 62 38 100新养殖法 34 66 100总计 96 104 200则K2=≈15.705,由15.705>6.635,∴有99%的把握认为箱产量与养殖方法有关;(3)由题意可知:方法一:=5×(37.5×0.004+42.5×0.020+47.5×0.044+52.5×0.068+57.5×0.046+62.5×0.010+67.5×0.008),=5×10.47,=52.35(kg).新养殖法箱产量的中位数的估计值52.35(kg)方法二:由新养殖法的箱产量频率分布直方图中,箱产量低于50kg的直方图的面积:(0.004+0.020+0.044)×5=0.034,箱产量低于55kg的直方图面积为:(0.004+0.020+0.044+0.068)×5=0.68>0.5,故新养殖法产量的中位数的估计值为:50+≈52.35(kg),新养殖法箱产量的中位数的估计值52.35(kg).19.(12分)(2017•新课标Ⅱ)如图,四棱锥P﹣ABCD中,侧面PAD为等边三角形且垂直于底面ABCD,AB=BC=AD,∠BAD=∠ABC=90°,E是PD的中点.(1)证明:直线CE∥平面PAB;(2)点M在棱PC 上,且直线BM与底面ABCD所成角为45°,求二面角M﹣AB ﹣D的余弦值.【解答】(1)证明:取PA的中点F,连接EF,BF,因为E是PD的中点,所以EF AD,AB=BC=AD,∠BAD=∠ABC=90°,∴BC∥AD,∴BCEF是平行四边形,可得CE∥BF,BF⊂平面PAB,CF⊄平面PAB,∴直线CE∥平面PAB;(2)解:四棱锥P﹣ABCD中,侧面PAD为等边三角形且垂直于底面ABCD,AB=BC=AD,∠BAD=∠ABC=90°,E是PD的中点.取AD的中点O,M在底面ABCD上的射影N在OC上,设AD=2,则AB=BC=1,OP=,∴∠PCO=60°,直线BM与底面ABCD所成角为45°,可得:BN=MN,CN=MN,BC=1,可得:1+BN2=BN2,BN=,MN=,作NQ⊥AB于Q,连接MQ,所以∠MQN就是二面角M﹣AB﹣D的平面角,MQ==,二面角M﹣AB﹣D的余弦值为:=.20.(12分)(2017•新课标Ⅱ)设O为坐标原点,动点M在椭圆C:+y2=1上,过M做x轴的垂线,垂足为N,点P满足=.(1)求点P的轨迹方程;(2)设点Q在直线x=﹣3上,且•=1.证明:过点P且垂直于OQ的直线l 过C的左焦点F.【解答】解:(1)设M(x0,y),由题意可得N(x,0),设P(x,y),由点P满足=.可得(x﹣x0,y)=(0,y),可得x﹣x0=0,y=y,即有x0=x,y=,代入椭圆方程+y2=1,可得+=1,即有点P的轨迹方程为圆x2+y2=2;(2)证明:设Q(﹣3,m),P(cosα,sinα),(0≤α<2π),•=1,可得(cosα,sinα)•(﹣3﹣cosα,m﹣sinα)=1,即为﹣3cosα﹣2cos2α+msinα﹣2sin2α=1,解得m=,即有Q(﹣3,),椭圆+y2=1的左焦点F(﹣1,0),由kOQ=﹣,kPF=,由kOQ •kPF=﹣1,可得过点P且垂直于OQ的直线l过C的左焦点F.21.(12分)(2017•新课标Ⅱ)已知函数f(x)=ax2﹣ax﹣xlnx,且f(x)≥0.(1)求a;(2)证明:f(x)存在唯一的极大值点x0,且e﹣2<f(x)<2﹣2.【解答】(1)解:因为f(x)=ax2﹣ax﹣xlnx=x(ax﹣a﹣lnx)(x>0),则f(x)≥0等价于h(x)=ax﹣a﹣lnx≥0,因为h′(x)=a﹣,且当0<x<时h′(x)<0、当x>时h′(x)>0,所以h(x)min=h(),又因为h(1)=a﹣a﹣ln1=0,所以=1,解得a=1;(2)证明:由(1)可知f(x)=x2﹣x﹣xlnx,f′(x)=2x﹣2﹣lnx,令f′(x)=0,可得2x﹣2﹣lnx=0,记t(x)=2x﹣2﹣lnx,则t′(x)=2﹣,令t′(x)=0,解得:x=,所以t(x)在区间(0,)上单调递减,在(,+∞)上单调递增,所以t(x)min=t()=ln2﹣1<0,从而t(x)=0有解,即f′(x)=0存在两根x0,x2,且不妨设f′(x)在(0,x0)上为正、在(x,x2)上为负、在(x2,+∞)上为正,所以f(x)必存在唯一极大值点x0,且2x﹣2﹣lnx=0,所以f(x0)=﹣x﹣xlnx=﹣x+2x﹣2=x﹣,由x0<可知f(x)<(x﹣)max=﹣+=;由f′()<0可知x<<,所以f(x)在(0,x0)上单调递增,在(x,)上单调递减,所以f(x)>f()=;综上所述,f(x)存在唯一的极大值点x0,且e﹣2<f(x)<2﹣2.(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,按所做的第一题计分.[选修4-4:坐标系与参数方程](22.(10分)(2017•新课标Ⅱ)在直角坐标系xOy中,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C1的极坐标方程为ρcosθ=4.(1)M为曲线C1上的动点,点P在线段OM上,且满足|OM|•|OP|=16,求点P的轨迹C2的直角坐标方程;(2)设点A的极坐标为(2,),点B在曲线C2上,求△OAB面积的最大值.【解答】解:(1)曲线C1的直角坐标方程为:x=4,设P(x,y),M(4,y0),则,∴y=,∵|OM||OP|=16,∴=16,即(x2+y2)(1+)=16,∴x4+2x2y2+y4=16x2,即(x2+y2)2=16x2,两边开方得:x2+y2=4x,整理得:(x﹣2)2+y2=4(x≠0),∴点P的轨迹C2的直角坐标方程:(x﹣2)2+y2=4(x≠0).(2)点A的直角坐标为A(1,),显然点A在曲线C2上,|OA|=2,∴曲线C2的圆心(2,0)到弦OA的距离d==,∴△AOB的最大面积S=|OA|•(2+)=2+.[选修4-5:不等式选讲]23.(2017•新课标Ⅱ)已知a>0,b>0,a3+b3=2,证明:(1)(a+b)(a5+b5)≥4;(2)a+b≤2.【解答】证明:(1)由柯西不等式得:(a+b)(a5+b5)≥(+)2=(a3+b3)2≥4,当且仅当=,即a=b=1时取等号,(2)∵a3+b3=2,∴(a+b)(a2﹣ab+b2)=2,∴(a+b)[(a+b)2﹣3ab]=2,∴(a+b)3﹣3ab(a+b)=2,∴=ab,由均值不等式可得:=ab≤()2,∴(a+b)3﹣2≤,∴(a+b)3≤2,∴a+b≤2,当且仅当a=b=1时等号成立.参与本试卷答题和审题的老师有:caoqz;双曲线;海燕;whgcn;qiss;742048;maths;sxs123;cst;zhczcb(排名不分先后)菁优网2017年6月12日。

2017年全国统一高考数学试卷(理科)(新课标ⅲ)

2017年全国统一高考数学试卷(理科)(新课标Ⅲ)一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.(5分)(2017•新课标Ⅲ)已知集合A={(x,y)|x2+y2=1},B={(x,y)|y=x},则A ∩B中元素的个数为()A.3B.2C.1D.02.(5分)(2017•新课标Ⅲ)设复数z满足(1+i)z=2i,则|z|=()A.B.C.D.23.(5分)(2017•新课标Ⅲ)某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014年1月至2016年12月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图.根据该折线图,下列结论错误的是()A.月接待游客量逐月增加B.年接待游客量逐年增加C.各年的月接待游客量高峰期大致在7,8月D.各年1月至6月的月接待游客量相对于7月至12月,波动性更小,变化比较平稳4.(5分)(2017•新课标Ⅲ)(x+y)(2x﹣y)5的展开式中的x3y3系数为()A.﹣80B.﹣40C.40D.805.(5分)(2017•新课标Ⅲ)已知双曲线C:﹣=1(a>0,b>0)的一条渐近线方程为y=x,且与椭圆+=1有公共焦点,则C的方程为()A.﹣=1B.﹣=1C.﹣=1D.﹣=16.(5分)(2017•新课标Ⅲ)设函数f(x)=cos(x+),则下列结论错误的是()A.f(x)的一个周期为﹣2πB.y=f(x)的图象关于直线x=对称C.f(x+π)的一个零点为x=D.f(x)在(,π)单调递减7.(5分)(2017•新课标Ⅲ)执行如图的程序框图,为使输出S的值小于91,则输入的正整数N的最小值为()A.5B.4C.3D.28.(5分)(2017•新课标Ⅲ)已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为()A.πB.C.D.9.(5分)(2017•新课标Ⅲ)等差数列{a n}的首项为1,公差不为0.若a2,a3,a6成等比数列,则{a n}前6项的和为()A.﹣24B.﹣3C.3D.810.(5分)(2017•新课标Ⅲ)已知椭圆C:=1(a>b>0)的左、右顶点分别为A1,A2,且以线段A1A2为直径的圆与直线bx﹣ay+2ab=0相切,则C的离心率为()A.B.C.D.11.(5分)(2017•新课标Ⅲ)已知函数f(x)=x2﹣2x+a(e x﹣1+e﹣x+1)有唯一零点,则a =()A.﹣B.C.D.112.(5分)(2017•新课标Ⅲ)在矩形ABCD中,AB=1,AD=2,动点P在以点C为圆心且与BD相切的圆上.若=λ+μ,则λ+μ的最大值为()A.3B.2C.D.2二、填空题:本题共4小题,每小题5分,共20分。

2017年高考理科数学全国II卷(含详解)

2017年全国统一高考数学试卷(理科)(新课标Ⅱ)参考答案与试题解析一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)(2017•新课标Ⅱ)=()A.1+2i B.1﹣2i C.2+i D.2﹣i【解答】解:===2﹣i,故选D.2.(5分)(2017•新课标Ⅱ)设集合A={1,2,4},B={x|x2﹣4x+m=0}.若A∩B={1},则B=()A.{1,﹣3}B.{1,0}C.{1,3}D.{1,5}【解答】解:集合A={1,2,4},B={x|x2﹣4x+m=0}.若A∩B={1},则1∈A且1∈B,可得1﹣4+m=0,解得m=3,即有B={x|x2﹣4x+3=0}={1,3}.故选:C.3.(5分)(2017•新课标Ⅱ)我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯()A.1盏 B.3盏 C.5盏 D.9盏【解答】解:设这个塔顶层有a盏灯,∵宝塔一共有七层,每层悬挂的红灯数是上一层的2倍,∴从塔顶层依次向下每层灯数是以2为公比、a为首项的等比数列,又总共有灯381盏,∴381==127a,解得a=3,则这个塔顶层有3盏灯,故选B.4.(5分)(2017•新课标Ⅱ)如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为()A.90πB.63πC.42πD.36π【解答】解:由三视图可得,直观图为一个完整的圆柱减去一个高为6的圆柱的一半,V=π•32×10﹣•π•32×6=63π,故选:B.5.(5分)(2017•新课标Ⅱ)设x,y满足约束条件,则z=2x+y的最小值是()A.﹣15 B.﹣9 C.1 D.9【解答】解:x、y满足约束条件的可行域如图:z=2x+y 经过可行域的A时,目标函数取得最小值,由解得A(﹣6,﹣3),则z=2x+y 的最小值是:﹣15.故选:A.6.(5分)(2017•新课标Ⅱ)安排3名志愿者完成4项工作,每人至少完成1项,每项工作由1人完成,则不同的安排方式共有()A.12种B.18种C.24种D.36种【解答】解:4项工作分成3组,可得:=6,安排3名志愿者完成4项工作,每人至少完成1项,每项工作由1人完成,可得:6×=36种.故选:D.7.(5分)(2017•新课标Ⅱ)甲、乙、丙、丁四位同学一起去问老师询问成语竞赛的成绩.老师说:你们四人中有2位优秀,2位良好,我现在给甲看乙、丙的成绩,给乙看丙的成绩,给丁看甲的成绩.看后甲对大家说:我还是不知道我的成绩.根据以上信息,则()A.乙可以知道四人的成绩B.丁可以知道四人的成绩C.乙、丁可以知道对方的成绩D.乙、丁可以知道自己的成绩【解答】解:四人所知只有自己看到,老师所说及最后甲说话,甲不知自己的成绩→乙丙必有一优一良,(若为两优,甲会知道自己的成绩;若是两良,甲也会知道自己的成绩)→乙看到了丙的成绩,知自己的成绩→丁看到甲、丁中也为一优一良,丁知自己的成绩,故选:D.8.(5分)(2017•新课标Ⅱ)执行如图的程序框图,如果输入的a=﹣1,则输出的S=()A.2 B.3 C.4 D.5【解答】解:执行程序框图,有S=0,k=1,a=﹣1,代入循环,第一次满足循环,S=﹣1,a=1,k=2;满足条件,第二次满足循环,S=1,a=﹣1,k=3;满足条件,第三次满足循环,S=﹣2,a=1,k=4;满足条件,第四次满足循环,S=2,a=﹣1,k=5;满足条件,第五次满足循环,S=﹣3,a=1,k=6;满足条件,第六次满足循环,S=3,a=﹣1,k=7;7≤6不成立,退出循环输出,S=3;故选:B.9.(5分)(2017•新课标Ⅱ)若双曲线C:﹣=1(a>0,b>0)的一条渐近线被圆(x﹣2)2+y2=4所截得的弦长为2,则C的离心率为()A.2 B.C.D.【解答】解:双曲线C:﹣=1(a>0,b>0)的一条渐近线不妨为:bx+ay=0,圆(x﹣2)2+y2=4的圆心(2,0),半径为:2,双曲线C:﹣=1(a>0,b>0)的一条渐近线被圆(x﹣2)2+y2=4所截得的弦长为2,可得圆心到直线的距离为:=,解得:,可得e2=4,即e=2.故选:A.10.(5分)(2017•新课标Ⅱ)已知直三棱柱ABC﹣A1B1C1中,∠ABC=120°,AB=2,BC=CC1=1,则异面直线AB1与BC1所成角的余弦值为()A.B.C.D.【解答】解:如图所示,设M、N、P分别为AB,BB1和B1C1的中点,则AB1、BC1夹角为MN和NP夹角或其补角(因异面直线所成角为(0,]),可知MN=AB1=,NP=BC1=;作BC中点Q,则△PQM为直角三角形;∵PQ=1,MQ=AC,△ABC中,由余弦定理得AC2=AB2+BC2﹣2AB•BC•cos∠ABC=4+1﹣2×2×1×(﹣)=7,∴AC=,∴MQ=;在△MQP中,MP==;在△PMN中,由余弦定理得cos∠MNP===﹣;又异面直线所成角的范围是(0,],∴AB1与BC1所成角的余弦值为.11.(5分)(2017•新课标Ⅱ)若x=﹣2是函数f(x)=(x2+ax﹣1)e x﹣1的极值点,则f(x)的极小值为()A.﹣1 B.﹣2e﹣3C.5e﹣3 D.1【解答】解:函数f(x)=(x2+ax﹣1)e x﹣1,可得f′(x)=(2x+a)e x﹣1+(x2+ax﹣1)e x﹣1,x=﹣2是函数f(x)=(x2+ax﹣1)e x﹣1的极值点,可得:﹣4+a+(3﹣2a)=0.解得a=﹣1.可得f′(x)=(2x﹣1)e x﹣1+(x2﹣x﹣1)e x﹣1,=(x2+x﹣2)e x﹣1,函数的极值点为:x=﹣2,x=1,当x<﹣2或x>1时,f′(x)>0函数是增函数,x∈(﹣2,1)时,函数是减函数,x=1时,函数取得极小值:f(1)=(12﹣1﹣1)e1﹣1=﹣1.故选:A.12.(5分)(2017•新课标Ⅱ)已知△ABC是边长为2的等边三角形,P为平面ABC内一点,则•(+)的最小值是()A.﹣2 B.﹣ C.﹣ D.﹣1【解答】解:建立如图所示的坐标系,以BC中点为坐标原点,则A(0,),B(﹣1,0),C(1,0),设P(x,y),则=(﹣x,﹣y),=(﹣1﹣x,﹣y),=(1﹣x,﹣y),则•(+)=2x2﹣2y+2y2=2[x2+(y﹣)2﹣]∴当x=0,y=时,取得最小值2×(﹣)=﹣,故选:B三、填空题:本题共4小题,每小题5分,共20分.13.(5分)(2017•新课标Ⅱ)一批产品的二等品率为0.02,从这批产品中每次随机取一件,有放回地抽取100次,X表示抽到的二等品件数,则DX= 1.96.【解答】解:由题意可知,该事件满足独立重复试验,是一个二项分布模型,其中,p=0.02,n=100,则DX=npq=np(1﹣p)=100×0.02×0.98=1.96.故答案为:1.96.14.(5分)(2017•新课标Ⅱ)函数f(x)=sin2x+cosx﹣(x∈[0,])的最大值是1.【解答】解:f(x)=sin2x+cosx﹣=1﹣cos2x+cosx﹣,令cosx=t且t∈[0,1],则f(t)=﹣t2+t+=﹣(t﹣)2+1,当t=时,f(t)max=1,即f(x)的最大值为1,故答案为:115.(5分)(2017•新课标Ⅱ)等差数列{a n}的前n项和为S n,a3=3,S4=10,则=.【解答】解:等差数列{a n}的前n项和为S n,a3=3,S4=10,S4=2(a2+a3)=10,可得a2=2,数列的首项为1,公差为1,S n=,=,则=2[1﹣++…+]=2(1﹣)=.故答案为:.16.(5分)(2017•新课标Ⅱ)已知F是抛物线C:y2=8x的焦点,M是C上一点,FM的延长线交y轴于点N.若M为FN的中点,则|FN|=6.【解答】解:抛物线C:y2=8x的焦点F(2,0),M是C上一点,FM的延长线交y轴于点N.若M为FN的中点,可知M的横坐标为:1,则M的纵坐标为:,|FN|=2|FM|=2=6.故答案为:6.三、解答题:共70分.解答应写出文字说明、解答过程或演算步骤.第17~21题为必做题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.17.(12分)(2017•新课标Ⅱ)△ABC的内角A,B,C的对边分别为a,b,c,已知sin(A+C)=8sin2.(1)求cosB;(2)若a+c=6,△ABC面积为2,求b.【解答】解:(1)sin(A+C)=8sin2,∴sinB=4(1﹣cosB),∵sin2B+cos2B=1,∴16(1﹣cosB)2+cos2B=1,∴(17cosB﹣15)(cosB﹣1)=0,∴cosB=;(2)由(1)可知sinB=,∵S=ac•sinB=2,△ABC∴ac=,∴b2=a2+c2﹣2accosB=a2+c2﹣2××=a2+c2﹣15=(a+c)2﹣2ac﹣15=36﹣17﹣15=4,∴b=2.18.(12分)(2017•新课标Ⅱ)海水养殖场进行某水产品的新、旧网箱养殖方法的产量对比,收获时各随机抽取了100 个网箱,测量各箱水产品的产量(单位:kg),其频率分布直方图如图:(1)设两种养殖方法的箱产量相互独立,记A表示事件“旧养殖法的箱产量低于50kg,新养殖法的箱产量不低于50kg”,估计A的概率;(2)填写下面列联表,并根据列联表判断是否有99%的把握认为箱产量与养殖方法有关:箱产量<50kg 箱产量≥50kg旧养殖法新养殖法(3)根据箱产量的频率分布直方图,求新养殖法箱产量的中位数的估计值(精确到0.01).附:P(K2≥k)0.0500.010 0.001 K 3.841 6.635 10.828K2=.【解答】解:(1)记B表示事件“旧养殖法的箱产量低于50kg”,C表示事件“新养殖法的箱产量不低于50kg”,由P(A)=P(BC)=P(B)P(C),则旧养殖法的箱产量低于50kg:(0.012+0.014+0.024+0.034+0.040)×5=0.62,故P(B)的估计值0.62,新养殖法的箱产量不低于50kg:(0.068+0.046+0.010+0.008)×5=0.66,故P(C)的估计值为,则事件A的概率估计值为P(A)=P(B)P(C)=0.62×0.66=0.4092;∴A发生的概率为0.4092;(2)2×2列联表:箱产量<50kg箱产量≥50kg 总计旧养殖法6238100新养殖法3466100总计96104200则K2=≈15.705,由15.705>6.635,∴有99%的把握认为箱产量与养殖方法有关;(3)由题意可知:方法一:=5×(37.5×0.004+42.5×0.020+47.5×0.044+52.5×0.068+57.5×0.046+62.5×0.010+67.5×0.008),=5×10.47,=52.35(kg).新养殖法箱产量的中位数的估计值52.35(kg)方法二:由新养殖法的箱产量频率分布直方图中,箱产量低于50kg的直方图的面积:(0.004+0.020+0.044)×5=0.034,箱产量低于55kg的直方图面积为:(0.004+0.020+0.044+0.068)×5=0.68>0.5,故新养殖法产量的中位数的估计值为:50+≈52.35(kg),新养殖法箱产量的中位数的估计值52.35(kg).19.(12分)(2017•新课标Ⅱ)如图,四棱锥P﹣ABCD中,侧面PAD为等边三角形且垂直于底面ABCD,AB=BC=AD,∠BAD=∠ABC=90°,E是PD的中点.(1)证明:直线CE∥平面PAB;(2)点M在棱PC 上,且直线BM与底面ABCD所成角为45°,求二面角M﹣AB﹣D的余弦值.【解答】(1)证明:取PA的中点F,连接EF,BF,因为E是PD的中点,所以EF AD,AB=BC=AD,∠BAD=∠ABC=90°,∴BC∥AD,∴BCEF是平行四边形,可得CE∥BF,BF⊂平面PAB,CF⊄平面PAB,∴直线CE∥平面PAB;(2)解:四棱锥P﹣ABCD中,侧面PAD为等边三角形且垂直于底面ABCD,AB=BC=AD,∠BAD=∠ABC=90°,E是PD的中点.取AD的中点O,M在底面ABCD上的射影N在OC上,设AD=2,则AB=BC=1,OP=,∴∠PCO=60°,直线BM与底面ABCD所成角为45°,可得:BN=MN,CN=MN,BC=1,可得:1+BN2=BN2,BN=,MN=,作NQ⊥AB于Q,连接MQ,所以∠MQN就是二面角M﹣AB﹣D的平面角,MQ==,二面角M﹣AB﹣D的余弦值为:=.20.(12分)(2017•新课标Ⅱ)设O为坐标原点,动点M在椭圆C:+y2=1上,过M做x轴的垂线,垂足为N,点P满足=.(1)求点P的轨迹方程;(2)设点Q在直线x=﹣3上,且•=1.证明:过点P且垂直于OQ的直线l 过C的左焦点F.【解答】解:(1)设M(x0,y0),由题意可得N(x0,0),设P(x,y),由点P满足=.可得(x﹣x0,y)=(0,y0),可得x﹣x0=0,y=y0,即有x0=x,y0=,代入椭圆方程+y2=1,可得+=1,即有点P的轨迹方程为圆x2+y2=2;(2)证明:设Q(﹣3,m),P(cosα,sinα),(0≤α<2π),•=1,可得(cosα,sinα)•(﹣3﹣cosα,m﹣sinα)=1,即为﹣3cosα﹣2cos2α+msinα﹣2sin2α=1,解得m=,即有Q(﹣3,),椭圆+y2=1的左焦点F(﹣1,0),由k OQ=﹣,k PF=,由k OQ•k PF=﹣1,可得过点P且垂直于OQ的直线l过C的左焦点F.21.(12分)(2017•新课标Ⅱ)已知函数f(x)=ax2﹣ax﹣xlnx,且f(x)≥0.(1)求a;(2)证明:f(x)存在唯一的极大值点x0,且e﹣2<f(x0)<2﹣2.【解答】(1)解:因为f(x)=ax2﹣ax﹣xlnx=x(ax﹣a﹣lnx)(x>0),则f(x)≥0等价于h(x)=ax﹣a﹣lnx≥0,因为h′(x)=a﹣,且当0<x<时h′(x)<0、当x>时h′(x)>0,所以h(x)min=h(),又因为h(1)=a﹣a﹣ln1=0,所以=1,解得a=1;(2)证明:由(1)可知f(x)=x2﹣x﹣xlnx,f′(x)=2x﹣2﹣lnx,令f′(x)=0,可得2x﹣2﹣lnx=0,记t(x)=2x﹣2﹣lnx,则t′(x)=2﹣,令t′(x)=0,解得:x=,所以t(x)在区间(0,)上单调递减,在(,+∞)上单调递增,所以t(x)min=t()=ln2﹣1<0,从而t(x)=0有解,即f′(x)=0存在两根x0,x2,且不妨设f′(x)在(0,x0)上为正、在(x0,x2)上为负、在(x2,+∞)上为正,所以f(x)必存在唯一极大值点x0,且2x0﹣2﹣lnx0=0,所以f(x0)=﹣x0﹣x0lnx0=﹣x0+2x0﹣2=x0﹣,由x0<可知f(x0)<(x0﹣)max=﹣+=;由f′()<0可知x0<<,所以f(x)在(0,x0)上单调递增,在(x0,)上单调递减,所以f(x0)>f()=;综上所述,f(x)存在唯一的极大值点x0,且e﹣2<f(x0)<2﹣2.(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,按所做的第一题计分.[选修4-4:坐标系与参数方程](22.(10分)(2017•新课标Ⅱ)在直角坐标系xOy中,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C1的极坐标方程为ρcosθ=4.(1)M为曲线C1上的动点,点P在线段OM上,且满足|OM|•|OP|=16,求点P的轨迹C2的直角坐标方程;(2)设点A的极坐标为(2,),点B在曲线C2上,求△OAB面积的最大值.【解答】解:(1)曲线C1的直角坐标方程为:x=4,设P(x,y),M(4,y0),则,∴y0=,∵|OM||OP|=16,∴=16,即(x2+y2)(1+)=16,∴x4+2x2y2+y4=16x2,即(x2+y2)2=16x2,两边开方得:x2+y2=4x,整理得:(x﹣2)2+y2=4(x≠0),∴点P的轨迹C2的直角坐标方程:(x﹣2)2+y2=4(x≠0).(2)点A的直角坐标为A(1,),显然点A在曲线C2上,|OA|=2,∴曲线C2的圆心(2,0)到弦OA的距离d==,∴△AOB的最大面积S=|OA|•(2+)=2+.[选修4-5:不等式选讲]23.(2017•新课标Ⅱ)已知a>0,b>0,a3+b3=2,证明:(1)(a+b)(a5+b5)≥4;(2)a+b≤2.【解答】证明:(1)由柯西不等式得:(a+b)(a5+b5)≥(+)2=(a3+b3)2≥4,当且仅当=,即a=b=1时取等号,(2)∵a3+b3=2,∴(a+b)(a2﹣ab+b2)=2,∴(a+b)[(a+b)2﹣3ab]=2,∴(a+b)3﹣3ab(a+b)=2,∴=ab,由均值不等式可得:=ab≤()2,∴(a+b)3﹣2≤,∴(a+b)3≤2,∴a+b≤2,当且仅当a=b=1时等号成立.参与本试卷答题和审题的老师有:caoqz;双曲线;海燕;whgcn;qiss;742048;maths;sxs123;cst;zhczcb(排名不分先后)菁优网2017年6月12日。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2017年河南省洛阳市高考数学三模试卷(理科) 一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.(5分)已知复数z=()2(其中i为虚数单位),则=( )

A.1 B.﹣i C.﹣1 D.i 2.(5分)已知集合M={x|+=1},N={y|+=1},M∩N=( ) A.∅ B.{(3,0),(0,2)} C.[一2,2] D.[一3,3] 3.(5分)已知a、b∈R,则“ab=1”是“直线“ax+y﹣l=0和直线x+by﹣1=0平行”的( ) A.充分不必要条件 B.充要条件 C.必要不充分条件 D.既不充分又不必要条件 4.(5分)利用如图算法在平面直角坐标系上打印一系列点,则打印的点在圆x2+y2=25内的个数为( )

A.2 B.3 C.4 D.5 5.(5分)已知数列{an}为等差数列,且a2016+a2018=dx,则a2017的值 为( ) A. B.2π C.π2 D.π 6.(5分)祖冲之之子祖暅是我国南北朝时代伟大的科学家,他在实践的基础上提出了体积计算的原理:“幂势既同,则积不容异”.意思是,如果两个等高的几何体在同高处截得的截面面积恒等,那么这两个几何体的体积相等.此即祖暅原理.利用这个原理求球的体积时,需要构造一个满足条件的几何体,已知该几何体三视图如图所示,用一个与该几何体的下底面平行相距为h(0<h<2)的平面截该几何体,则截面面积为( )

A.4π B.πh2 C.π(2﹣h)2 D.π(4﹣h2) 7.(5分)已知随机变量Z~N(1,1),其正态分布密度曲线如图所示,若向正方形OABC中随机投掷10000个点,则落入阴影部分的点的个数的估计值为( ) 附:若Z~N(μ,ς2),则 P(μ﹣ς<Z≤μ+ς)=0.6826;P(μ﹣2ς<Z≤μ+2ς)=0.9544;P(μ﹣3ς<Z≤μ+3ς)=0.9974.

A.6038 B.6587 C.7028 D.7539 8.(5分)已知实数x,y满足若目标函数Z=ax+y的最大值为3a+9,最小值为3a﹣3,则实数a的取值范围是( ) A.{a|﹣1≤a≤1} B.{a|a≤﹣1} C.{a|a≤﹣1或a≥1} D.{a|a≥1} 9.(5分)若空间中四个不重合的平面a1,a2,a3,a4满足a1⊥a2,a2⊥a3,a3 ⊥a4,则下列结论一定正确的是( ) A.a1⊥a4 B.a1∥a4

C.a1与a4既不垂直也不平行 D.a1与a4的位置关系不确定

10.(5分)设(2﹣x)5=a0+a1x+a2x2+…+a5x5,则的值为( ) A.﹣ B.﹣ C.﹣ D.﹣ 11.(5分)已知点A是抛物线x2=4y的对称轴与准线的交点,点B为抛物线的焦点,P在抛物线上且满足|PA|=m|PB|,当m取最大值时,点P恰好在以A,B为焦点的双曲线上,则双曲线的离心率为( ) A. B.+1 C. D.﹣1

12.(5分)已知函数f(x)=,若在区间(1,∞)上存在n(n≥2)个不同的数x1,x2,x3,…,xn,使得==…成立,则n的取值集合是( ) A.{2,3,4,5} B.{2,3} C.{2,3,5} D.{2,3,4}

二、填空题:本大题共4个小题,每小题5分,共20分. 13.(5分)已知||=1,||=2,与的夹角为120°,,则与的夹角为 . 14.(5分)等比数列{an}的前n项和为Sn,Sn=b(﹣2)n﹣1﹣a,则= . 15.(5分)已知直三棱柱ABC﹣A1B1C1中,AB=3,AC=4,AB⊥AC,AA1=2,则该三棱柱内切球的表面积与外接球的表面积的和为 . 16.(5分)已知函数f(x)=,点O为坐标原点,点An(n,f(n))(n∈N*),

向量=(0,1),θn是向量与的夹角,则使得

+++…+<t恒成立的实数t的最小值为 . 三、解答题:本大题共6个小题,共70分,解答应写出必要的文字说明、证明过程或演算步骤. 17.(12分)已知函数f(x)=cosx(sinx﹣cosx)+m(m∈R),将y=f(x)的图象向左平移个单位后得到g(x)的图象,且y=g(x)在区间[,]内

的最小值为. (1)求m的值; (2)在锐角△ABC中,若g()=﹣+,求sinA+cosB的取值范围. 18.(12分)如图,在直三棱柱ABC﹣A1B1C1中,∠BAC=90°,AB=AC=AA1=2,E是BC中点. (1)求证:A1B∥平面AEC1; (2)在棱AA1上存在一点M,满足B1M⊥C1E,求平面MEC1与平面ABB1A1所成锐二面角的余弦值.

19.(12分)某市为了了解全民健身运动开展的效果,选择甲、乙两个相似的小区作对比,一年前在甲小区利用体育彩票基金建设了健身广场,一年后分别在两小区采用简单随机抽样的方法抽取20人作为样本,进行身体综合素质测试,测试得分分数的茎叶图(其中十位为茎,个们为叶)如图: (1)求甲小区和乙小区的中位数; (2)身体综合素质测试成绩在60分以上(含60)的人称为“身体综合素质良好”,否则称为“身体综合素质一般”.以样本中的频率作为概率,两小区人口都按1000人计算,填写下列2×2列联表, 甲小区(有健康广场) 乙小区(无健康广场) 合计 身体综合素质良好 身体综合素质一般 合计 并判断是否有97.5%把握认为“身体综合素质良好”与“小区是否建设健身广场”有关? P(K2>k) 0.10 0.05 0.025 0.01 0.005

k0 1.706 3.841 5.024 6.635 7.879 (附:k=)

20.(12分)已知椭圆C:+=1(a>0,b>0)的离心率为,右焦点为F,上顶点为A,且△AOF的面积为(O为坐标原点). (1)求椭圆C的方程; (2)若点M在以椭圆C的短轴为直径的圆上,且M在第一象限,过M作此圆的切线交椭圆于P,Q两点.试问△PFQ的周长是否为定值?若是,求此定值;若不是,说明理由. 21.(12分)已知函数f(x)=asinx+ln(1﹣x). (1)若a=1,求f(x)在x=0处的切线方程; (2)若f(x)在区间[0,1)上单调递减,求a的取值范围;

(3)求证:e<2,(n∈N*).

请考生在第22、23题中任选一题作答,如果多做,则按所做的第一题记分,作 答时,用2B铪笔在答题卡上把所选题目对应的题号涂黑.[选修4-4:坐标系与参数方程] 22.(10分)在平面直角坐标系中,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,已知曲线C的极坐标方程为ρsin2θ=mcosθ(m>0),过点P(﹣2,﹣4)且倾斜角为的直线l与曲线C相交于A,B两点. (1)写出曲线C的直角坐标方程和直线l的普通方程; (2)若|AP|•|BP|=|BA|2,求m的值.

[选修4-5:不等式选讲] 23.设不等式0<|x+2|﹣|1﹣x|<2的解集为M,a,b∈M (1)证明:|a+b|<; (2)比较|4ab﹣1|与2|b﹣a|的大小,并说明理由. 2017年河南省洛阳市高考数学三模试卷(理科) 参考答案与试题解析

一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.(5分)(2017•洛阳三模)已知复数z=()2(其中i为虚数单位),则=

( ) A.1 B.﹣i C.﹣1 D.i 【解答】解:z=()2==i,则=﹣i.

故选:B.

2.(5分)(2017•洛阳三模)已知集合M={x|+=1},N={y|+=1},M∩N=( ) A.∅ B.{(3,0),(0,2)} C.[一2,2] D.[一3,3]

【解答】解:集合M={x|+=1}=[﹣3,3],N={y|+=1}=R, 则M∩N=[﹣3,3], 故选:D.

3.(5分)(2017•洛阳三模)已知a、b∈R,则“ab=1”是“直线“ax+y﹣l=0和直线x+by﹣1=0平行”的( ) A.充分不必要条件 B.充要条件 C.必要不充分条件 D.既不充分又不必要条件 【解答】解:由ax+y﹣l=0和直线x+by﹣1=0平行,可得ab=1. 反之不成立,例如a=b=1时,两条直线重合. ∴ab=1”是“直线“ax+y﹣l=0和直线x+by﹣1=0平行”的必要不充分条件. 故选:C. 4.(5分)(2017•洛阳三模)利用如图算法在平面直角坐标系上打印一系列点,则打印的点在圆x2+y2=25内的个数为( )

A.2 B.3 C.4 D.5 【解答】解:由程序框图知, i=6时,打印第一个点(﹣3,6),在圆x2+y2=25外, i=5时,打印第二个点(﹣2,5),在圆x2+y2=25外, i=4时,打印第三个点(﹣1,4),在圆x2+y2=25内, i=3时,打印第四个点(0,3),在圆x2+y2=25内, i=2时,打印第五个点(1,2),在圆x2+y2=25内, i=1时,打印第六个点(2,1),在圆x2+y2=25内, ∴打印的点在圆x2+y2=25内有4个. 故选:C.

5.(5分)(2017•洛阳三模)已知数列{an}为等差数列,且a2016+a2018=dx,则a2017的值为( )

相关文档
最新文档