汽车ECU通讯新平台——FlexRay(V2.1)协议规范

汽车ECU通讯新平台——FlexRay(V2.1)协议规范

原作者:纪光霁,万茂松

一、车载网络概述

汽车电子化程度与日俱增,应用在车上的ECU模块数量也随之增加,从而使线束也增加。汽车电子系统的成本已经超过总成本的20%,并且还将继续增加。由于汽车生产商对制造成本的严格控制,加上对车身质量的控制,减少线束已经成为一个必须要解决的问题。另一方面,以网络通讯为基础的线控技术(X-by-wire)将在汽车上普遍应用。因此,车载网络时代终将来临。

车载网络种类有很多种,应用较多的有LIN,CAN、FlexRay、TIP/C、SAEJ1850、TFCAN、ASRB、MOST等。美国汽车工程师协会(SAE)根据速率将汽车网络划分为A、B、C3类。

A类总线标准包括TTP/A(Time Triggered Protocol/A)和LIN(Local Interconnect Net-work),其传输速率较低。①TTP/A协议最初由维也纳工业大学制定,为时间触发类型的网络协议,主要应用于集成了智能变换器的实时现场总线。②LIN是在1999年由欧洲汽车制造商Audi、BMW、DaimlerChrysler、Volvo、Volkswagen、VCT公司以及Motorola公司组成的LIN协会共同努力下推出的用于汽车分布式电控系统的开放式的低成本串行通讯标准,从2003年开始得到使用。

B类标准主要包括J1850、VAN,低速CAN。①1994年SAE正式将J1850作为B类网络标准协议。最早,SAEJ1850被用在美国Ford,GM以及Chrysler公司的汽车中。现在,J1850协议作为诊断和数据共享被广泛应用在汽车产品中。②VAN标准是ISO1994年6月推出的,它基于ISO11519-3,主要为法国汽车公司所用。但目前就动力与传动系统而言,甚至在法国也集中应用CAN总线。③CAN是德国BOSCH公司从20世纪80年代初为解决现代汽车中众多的控制与测试仪器之间的数据交换而开发的一种串行数据

通讯协议。低速CAN具有许多容错功能,一般用在车身电子控制中,而高速CAN则大多用在汽车底盘和发动机的电子控制中。

C类总线标准主要包括TTP/C,FlexRay和高速CAN(ISO11898-2)。都用于与汽车安全相关以及实时性要求比较高的地方。如动力系统,其传输速率比较高,通常在

125kb/s到10Mb/s之间,必须支持实时的周期性的参数传输。①TTP/C协议由维也纳工业大学研发,基于TDMA(Time Division Multiple Access)分时多址的访问方式。②FlexRay是BMW、Daimler Chrysler、Motorola和Philips等公司制定的功能强大的网络通讯协议。基于TDMA的确定性访问方式,具有容错功能及确定的通讯消息传输时间,同时支持事件触发与时间触发通讯,具备高速率通讯能力。③欧洲的汽车制造商基本上采用的都是高速CAN总线标准ISO11898。总线传输速率通常在125kb/s~1Mb/s之间。然而,作为一种事件驱动型总线,CAN无法为下一代线控系统提供所需的容错功能或带宽,因为X-by-wire系统实时性和可靠性要求都很高,必须采用时间触发的通讯协议,如TTP/C或F1exRay等。

二、FlexRay协议

FlexRay是由FlexRay共同体(FlexRayConsortium)制定的协议。该共同体为一企业合作组织,成立于2000年。到2005年,FlexRay共同体的7个,核心成员是:BMWGROUP、BOSCH、DaimlerChrysler、GM、Motorola/Freescale、PHILIPS和VWAG。除此之外,它还有超过93个协作和发展成员。从2002年发布的V0.4.3协议规范到2005年的V2.1协议规范,共发布多达7个版本。

F1exRay网络是一种高传输速率(每通道10Mb/s)的时间触发型网络。采用分时多址方式对总线进行访问,具有确定性和容错功能。非常适合于下一代汽车线控系统或分布式控制系统的通讯要求。

(一)拓扑结构(Topology)

共有3种网络拓扑结构,即:总线型(Bus)、星型(Star)和混合型(Hybrid)。

而每一种类型都有单通道(SingleChannel)和双通道(DualChannel)之分。在星型结构中,还存在联级方式。总线型如图1所示,单、双通道联级星型如图2、图3所示,单、双通道混合型结构如图4、图5所示。

(二)节点(Node)的内部逻辑结构

主要由电源供给系统(Power Supply),总线驱动器(Bus Driver,简称BD)、总线监控逻辑(Bus Guardian,简称BG)、固化有FlexRay通讯协议的通讯控制器(CommunicationController,简称CC)及主机(Host)5个部分组成,如图6所示。其中BD和BG的个数对应于通道数,而BG是用于避免通道定时错误的一个独立部分,与通讯控制器和微处理器相连。总线监控逻辑必须独立于其他的通讯控制器。节点的两个通讯过程如下。

a.发送数据主机(Host)将有效的数据送给通讯控制器(CC),在通讯控制器中进行编码,形成数据位流(bitstream),通过总线驱动器(BD)发送到相应的通道上。

b.接收数据在某一时刻,由总线驱动器访问总线,将数据位流送到通讯控制器进行解码,将有效数据部分由通讯控制器送给主机Host。

(三)FlexRay网络通讯协议

FlexRay网络通讯协议主要体现在4个核心机制上:编码与解码(encoding and decoding)、媒体接入控制(Media Access Control)、数据帧与特征符处理(frame and symbol processing)和时钟同步(clock synchronization)。除此之外,控制器主机接口(controller Hostinter face,简称CHI)为实现这些机制提供数据传输服务。

1.编码与解码(encoding and decoding)

编码的过程实际上就是对要发送的数据进行相应处理的过程,如加上各种校验位、ID符等。解码的过程就是对接收到的数据帧进行“解包”的过程。编码与解码主要发生在通讯控制器与总线驱动器之间的通讯,如图7所示。

其中RxD为接收信号,TxD为发送信号,TxEN为通讯控制器请求数据信号。信息的二进制表示采用“不归零”码。对于双通道的节点,每个通道上的编码与解码的过程是同时完成的。编码与解码的过程主要由3个过程组成:主编码与解码过程(CODEC)、位过滤(bitstrobing)过程和唤醒模式解码过程(WUPDEC)。以主编码与解码过程(CODEC)为主要过程。

1)帧编码

传输起始序列(transmission start sequence,简称TSS),为一段时间的低电平,用于初始化传输节点与网络的对接。

帧起始序列(frame start sequence,简称FSS),为一小段时间的高电平,紧跟在传输起始序列(TSS)之后。

字节起始序列(byte start sequence,简称BSS),由一段高电平和一段低电平组成,位于FSS之后。给接收方节点提供定时信息。

帧结束序列(frame end sequence,简称FES),由一段低电平和一段高电平组成,位于有效数据位之后。如果是在动态时序部分接入网络,则还要在FES后附加上DTS——动态尾部序列(Dynamic trailing sequence)。

将这些序列与有效数据位(从最大位MSB到最小位LSB)“组装”起来就是编码过程,最终形成能够在网络传播的数据位流。此外,低电平的最小持续时间为一个gdBit。图8与图9分别为静态和动态部分的帧编码。

2)特征符编码

F1exRay,协议有3种特征符:冲突避免特征符(collision avoidance symbol,简称CAS)、媒体接入测试特征符(Media access test symbol,简称MTS)和唤醒特征符(wake up symbol,简称WUS)。对CAS和MTS采用完全相同的方式进行编码,对唤醒特征符(WUS)采用另一种模式编码。

节点对传输冲突避免特征符(CAS)和媒体接入测试特征符(MTS)的编码,是跟随在传输起始序列(TSS)之后的一段时间长为cdCAS(为某一具体数值)的低电平,如图10所示。

节点对唤醒特征符(WUS)的编码并没有采用辅助信号TSS,随TxEN的边沿触发同步于TxD信号进行传输一个唤醒特征符(WUS),如图11所示。

帧与特征符解码的过程就是编码的逆过程。这里不再赘述。

2.数据帧格式(FormatofFrame)

一个数据帧由帧头(HeaderSegment)、有效数据(PayloadSegment)和帧尾(TrailerSegment)多个部分组成。FlexRay数据帧格式如图12所示。

1)帧头部分

共由5个字节(40个位)组成。包括保留位(Reserved bit,1位)、数据指示位(Pay load Preamble indicator,1位)、空帧指示位(Null frame indicator,1位)、同步帧指示位(Sync frame indicator,1位)、启动帧指示位(Start up frame indicator,1位)、ID(11位)、有效数据长度(7位)、头部循环校验CRC(11位)和循环计数(6位)。

2)有效数据部分

可由0-254个字节或0-127个字组成。在图12中分别以Data0、Data1…Data253表示。在帧的CRC校验中,有效数据部分的前6个字节设为海明距离(Hamming Distance)。当数据超过248字节时,海明距离为4个字节。

在动态时序部分,有效数据部分的头两个字节通常用作消息识别域(messageIDfield)。消息识别(又叫消息ID)标明应.用数据的物理内容,仅仅用于在动态时序传输的数据帧,长度为16位。在传输节点中,消息ID是由主机将其作为应用数据而写入的,通讯控制器(CC)并不能够对消息ID进行识别。在接收节点中,对一个帧的存储依靠于利用消息ID而进行过滤处理的结果,如图13所示。

在静态时序部分,有效数据部分的头13个字节(DataO-Data12)通常用作网络管理向量(networkmanagementvector,简称NM)。在同一个簇内,所有的节点应具有相同长度的网络管理向量,仅仅用于在静态时序传输的数据帧,长度为8位,如图14所示。

3)帧尾部分

只含有单个的数据域,即一个24位的CRC。FlexRay的CRC计算是遵循一定的运算法则。包括帧头CRC计算和数据帧CRC计算。

3.媒体接入控制(Media Access Control)

在媒体接入控制中,一个重要的概念就是通讯周期(communicationcycle)。在一个通讯周期内,FlexRay提供两种媒体接入时序的选择:一种是静态的分时多址接入时序(TDMA);一种是动态的基于最小时间片(mini-slotting)时序。

在1个通讯周期内,有4个时间等级(timing hierarchy),从最低层到最高层分别是:最小时间节拍层(microtick)、最大时间节拍层(macrotick)、仲裁网格层(arbitrationgrid)和通讯周期层。如图15所示。

在最高层即通讯周期层,由静态部分、动态部分、特征窗和网络闲置时间(NIT)4个部分组成。在静态部分采用的是TDMA方式;在特征窗的这段时间内主要传输的是特征符。

仅次于最高层就是仲裁网格层,仲裁网格层形成FlexRay的媒体接入仲裁的核心,它解决的是采用何种方式接入媒体。在动态部分,仲裁网格由若干个最小时间片(minislot)组成。

1)静态部分

在该时间段内由若干个静态时间片(staticslot)组成,每个时间片的长度都相等。不同的节点根据全局时间判断在某一时刻开始接收或发送某一特定的数据帧(flameID)。为了确定这一时刻每个节点的每一个通道上.都含有一个时间片计数器,两个计数器是同步计数的。例如有3个节点,分别为node1、node2和node3。假设静态部分开始于00:10,节点在时间上的顺序为1-2-3,那么node1将在00:10这一时刻开始在两个通道上传输flameID1;在00:20时刻node2开始在一个通道上传输flameID2;node3在00:30开始传输,即使没有数据帧。如图16所示。

2)动态部分

采用的是基于最小时间片的时序,由若干个最小时间片组成,最小时间片的长度都相等。帧的长度是可变的,而且与静态部分相比,动态部分的两个时间片计数器是独立计数的,在不传输数据帧时,计数器以minislot为周期进行加1计数,在传输数据帧时计数器不工作。两个通讯通道不必同步。一个动态时间片(Dynamicslot)包含一个或多个minislot。如图17所示。

4.时钟同步

簇内所有的节点都应有相同的“时间观”,就好像全国都遵守一个标准的全局时间——北京时间。但这并不意味着节点间具有完全严格的同步时间,只要节点间的时间差保持在允许的误差范围内即可。由上述可知FlexRay的时间等级制度:若干个最小时钟节拍构成一个最大时钟节拍,而若干个最大时钟节拍又构成通讯周期的一个单元。最小时钟节拍是由通讯控制器(CC)的外部晶振提供,对于不同的控制器,最小时钟节拍可能会不相同;在一个簇内所有同步节点的最大时钟节拍都相等。

时钟同步包含两个主要过程:最大时钟节拍产生过程(MTG)和时钟同步过程(CPS)。如图18所示。MTG控制时间片计数器初值,并对其进行修正。时钟同步过程(CPS)主要完成一个通讯周期开始的初始化,测量并存储时间偏差值,计算频率与相位的修正值。时间偏差可以分为相位(offset)和频率(rate)偏差。相位偏差是两个时钟在某一特定时间的绝对差别频率偏差是相位.偏差随着时间推移的变化,它反映了相位偏差在特定时间的变化。FlexRay同时对频率与相位进行修正。节点计算数据帧到达的实际时刻,并与理论上的预测时刻比较,得到的值就是发送节点与接收节点的时间偏差,并采取一定的算法进行修正,最终使簇内的节点上的时间实现“同步”。

5.唤醒与启动(wakeup and startup)

唤醒针对的是电源管理系统。有些节点在不工作时处于“节电”模式

(power-savingmode),当再次投入工作时就需要“唤醒”该节点;单个节点可唤醒整个组群;主机可在通讯信道上传输唤醒模式(wakeup-pattern)。节点通过收发器进行唤醒:当节点的收发器接收到唤醒特征符(wakeup-symbol)后,对主机处理器和通讯控制器进行上电。

只有将节点唤醒后,才能启动节点工作。初始化一个启动过程称为“冷启动(coldstart)”,能进行冷启动的节点数目是有限的。系统的启动由两个逻辑步骤组成:①冷启动节点启动;②其他非冷启动节点通过接收启动帧,与冷启动节点整合到一起。

三、FlexRay展望

FlexRay以其确定的网络通讯、高速的数据传输及强大的容错功能,很可能成为将来汽车上的底盘系统、动力系统及线控系统的ECU通讯新的标准,并取代高速TTCAN网络。2005年10月,Philips推出了全球第一个FlexRay系统解决方案,包括一个收发器和一个携带嵌入式FlexRay2.1版本通讯控制器且基于ARM的微控制器。2006年1月,飞利浦半导体公司推出了面向主动安全系统的FlexRay2.1系统解决方案。该解决方案包括两个主要部分:TJA1080收发器和包含一个ARM9微控制器并且完整集成FlexRay2.1版本的SJA2510通讯控制器。目前德国宝马汽车公司承认它将采用FlexRay作为主动悬架中用于节气阀控制的数据高速链路,在2006年末或2007年初基本实现生产。此外,FlexRay的评估套件也已经推出。相信在不久的将来,FlexRay必定成为新一代车载网络的“排头兵”。

纯电动汽车通信协议(V1.1)

纯电动汽车通信协议版本号:V1.0(2016/08/18) 武汉合康动力技术有限公司

更改记录:

目录 一:整车网络拓扑结构: - 4 - 二:通讯协议制定的原则- 4 - 三:Can网络节点地址分配- 6 - 四:电池管理系统协议- 7 - 4.1电池基本信息 ID:0x18F201F3 ........................................................................................ - 7 - 4.2电池基本信息2 ID:0x18F202F3 ..................................................................................... - 7 - 4.3电池故障报警信息 ID:0x18F205F3 ................................................................................ - 9 - 4.4电池单体最高电压信息1 ID:0x18F206F3 ................................................................... - 12 - 4.5电池单体最高电压信息2 ID:0x18F207F3 ................................................................... - 12 - 4.6电池单体最低电压信息1 ID:0x18F208F3 ................................................................... - 13 - 4.7电池单体最低电压信息2 ID:0x18F209F3 ................................................................... - 14 - 4.8电池最高温度信息 ID:0x18F20AF3 ............................................................................. - 14 - 4.9电池最低温度信息 ID:0x18F20BF3.............................................................................. - 15 - 4.10电池极柱温度信息1 ID:0x18F210F3 ......................................................................... - 16 - 4.11电池极柱温度信息2 ID:0x18F211F3 ......................................................................... - 16 - 4.12电池极柱温度信息3 ID:0x18F212F3 ......................................................................... - 17 - 4.14电池箱体在线状态 ID:0x185017F3 ............................................................................ - 18 - 4.15电池组基本信息1(厂家容量) ID: 0x18F20CF3 ..................................................... - 19 - 4.16电池组基本信息2(序列号) ID:0x18F221F3 ........................................................ - 20 - 4.17电池组基本信息3(总能量) ID:0x18F222F3 ........................................................ - 21 - 4.18电池组充电状态(此帧只在充电过程中发出)ID 0x18F20DF3 .............................. - 21 - 4.19绝缘检测仪 ID: 0x1819A1A4....................................................................................... - 22 -五:整车控制器(VCU) 协议- 24 - 5.1整车控制器状态信息1 ID:0x18F101D0......................................................................... - 24 - 5.2整车控制器状态信息2 ID:0x18F103D0......................................................................... - 26 - 5.3VCU使能控制 ID:0x18F105D0 ....................................................................................... - 26 - 5.4高压柜状态信息 ID:0x18F106D0.................................................................................... - 27 -六:电机控制器(MCU) - 28 - 6.1AMT控制器报文1 ......................................................................................................... - 29 - 6.2驱动电机控制器报文1 (驱动电机反馈报文) ................................................................ - 30 - 6.3驱动电机控制器报文2 (驱动电机反馈报文) ................................................................ - 31 -七:高压附件控制器(发送) - 33 - 7.1助力油泵发送报文状态ID 0x0CF601 A0 ...................................................................... - 33 - 7.3气泵发送报文状态ID 0x0CF603 A2 .............................................................................. - 34 -八:仪表- 36 - 8.1车辆状态信息 ID:18F40117 ........................................................................................... - 36 - 8.2车辆里程信息 ID:18F40217 ........................................................................................... - 37 -

大众平台划分

概述及历史 平台知识简介:简单说,汽车的平台就是在开发过程中用差不多的底盘和车身结构,可以同时承载不同车型的开发及生产制造,产生出外形、功能都不尽相同的产品。 世界上第一个轿车平台在德国大众诞生,通过平台战略的实施,大众公司整合了产品系列,大大降低了成本,同时提高了产品的竞争力,加快了新产品推出的速度,使德国大众取得了巨大的成功。上世纪90年代,平台战略在世界各主要汽车跨国公司中兴起,大大增强了跨国公司的竞争实力,进一步拉开了大企业与小企业之间的距离。平台的产生,不仅推进了汽车制造领域的技术革命,对研发、对产品的供应链和服务链都产生了革命性的影响,同时为实现世界范围的兼并重组奠定了坚实的基础。 平台之所以如此神奇,主要是因为一个平台可以同时承载不同车型的开发及生产制造。这种设计思想可以大大满足用户个性化的需求,一个平台可以生产出适应全球不同市场的产品;在制造方面,同一平台的产品大量采用通用化的零部件和总成,大大降低了制造成本和采购成本;在研发方面,一个平台上实现了技术突破,等于这个平台上搭载的所有产品都实现了技术突破,大大降低了开发费用。 平台策略是各大汽车公司当前在产品开发中,最流行、最科学、效率最高的一个产品开发思路。这种设计思想不仅可以满足用户个性化的需求,还可以生产出适应全球不同市场的产品。在制造环节,同一平台的产品大量采用通用化的零部件和总成,大大降低了制造成本和采购成本。在研发环节,一个完善的平台设计有助于集团公司旗下多款同级车型的性能提升,并且大大降低了各自独立开发造成的研发费用和重复投入。 一、大众汽车 大众汽车(不包括奥迪、斯柯达)有三个生产平台,分别是PQ2X\PQ3X\PQ4X PQ2代表AO级轿车,PQ3代表A级车,PQ4代表B级车,X代表第几代,.如速腾是在PQ35平台上生产,表示A级轿车第5代产品。 此主题相关图片如下:大众平台.jpg

电动汽车通讯协议 (1)

文件编号:T K C/J S(S)-E V3 3 文件版本号: 0/A版 安徽天康特种车辆装备有限公司 纯电动专用车辆通讯协议 编制: 审核: 批准: 发布日期:2014年12月22日实施日期:2014年12月22日 安徽天康特种车辆装备有限公司

纯电动专用车辆通讯协议 协议参考SAE J1939,,PEV-CANBUS等。 终端电阻说明:组合仪表与BMS配终端电阻(120Ω),其它零部件不带终电阻。 总线通信速率:250KBPS 1.网络拓扑结构说明 电动汽车网络采用双CAN互连结构如下图。蓄电池管理系统(BMS)采用三路CAN入网,车载充电机系统通过CAN2入网。

2.网络信号数据格式定义 电动客车网络信号数据格式遵守下表,双行定义遵循首行;电动汽车网络信号数据格式遵守下表,双行定义遵循第二行。 3.数据链路层应遵循的原则 数据链路层的规定主要参考和J1939的相关规定。 使用CAN扩展帧的29位标识符并进行了重新定义,以下为29标识符的分配表:

其中,优先级为3位,可以有8个优先级;R一般固定为0;DP现固定为0;8位的PF为报文的代码;8位的PS为目标地址或组扩展;8位的SA为发送此报文的源地址; 4.协议帧定义 下表是电池管理系统可能用到的ECU节点名称和分配的地址。 5. 电池管理系统相关协议

电池管理系统CAN2与电机控制器BMSC1_0: (ID: 0x1800D0F4) BMSC1_1: (ID: 0x1801D0F4)

Status_Flag1: 注:逻辑1表示事件为真;逻辑0表示事件为假

电动汽车充电桩运营管理合作协议

电动汽车充电桩运营管理合作协议 上海市外高桥国际贸易营运中心有限公司(以下简称甲方)与上海吹雪新能源科技有限公司(以下简称乙方)就电动汽车充电桩项目的相关事宜进行协议。双方经过友好协商,本着诚挚合作、平等互利的原则,根据《中华人民共和国合同法》的相关规定,特订立本协议,协议内容如下: 第一条项目的名称、目的、范围、期限 1.1项目名称:甲方地面停车场电动汽车充电桩的布控与运营管理。 1.2 项目目的:满足甲方电动汽车用户充电的需求以及加快电动汽车的推广与发展。 1.3项目范围:本协议对甲方的地下停车库与地面停车场进行电动汽车充电桩系统的安装及管理。 1.4项目期限:2015.9.21-2025.9.20 1.5甲乙双方约定,乙方预计于2015年9月21日左右向甲方交付20台电动汽车充电桩,电动汽车充电桩型号为:EV640,市场价值:10000 元/台。双方约定于2015年9月21日起,至双方协商终止合作为止,乙方应保证产品是正常使用,所有权与管理权归乙方,甲方有使用权。 1.6甲方需明确停车地点并附相应图纸。 第二条甲方和乙方的权利和义务 2.1乙方的权利和义务 2.1.1乙方无偿向甲方提供20台电动汽车充电桩,电动汽车充电桩型号为:EV640,保证所提供的电动汽车充电桩及施工过程、质量完全符合国家及相关技术标准。 2.1.2 乙方负责工程设计、电动汽车充电桩提供、电动汽车充电桩运送、电动汽车充电桩安装和电动汽车充电桩调试,并及时通知并配合甲方对电动汽车充电桩进行测试和验收。如验收结果不符合要求,乙方应根据甲方提出的整改意见进行相关安装完善工作,并再次及时通知并配合甲方开展进行测试和验收工作,直至验收结果符合要求。 2.1.3在协议期间,乙方负责电动汽车充电桩合同期限内的免费维修、保养,以确保电动汽车充电桩正常安全稳定地运行。 2.1.4乙方免收安装费并且免费提供安装所需要的各种辅材。 2.1.5 乙方免费为甲方的工程技术人员和操作人员进行操作、维护培训,使甲方工程技术人员

大众汽车平台介绍及车型

大众汽车平台介绍及车型 Prepared on 24 November 2020

大众汽车平台介绍及车型【转】 2011-12-21 13:46:17|分类: |标签: |举报 |字号大中小订阅 平台是指一款车的头部骨架的基础设计,也就是前舱壁(驾驶舱与机器舱的隔板)前的部分,包括转向机构、前悬挂和前车轴,它们的的相对位置关系一经确定,不能再变。而舱壁之后的结构,可因设计而改变,如拉长轴距、展宽轮距、变换后桥悬挂方式等。 世界上第一个轿车平台在德国大众诞生,大众公司通过平台战略的实施,整合了产品系列,大大降低了成本,同时提高了产品的竞争力,加快了新产品推出的速度,这使德国大众取得了巨大的成功。而大众对于自己的平台命名有着独特的解释,大众现在所采用的PQ平台的含义: “PQ”是平台号, “P”表示平台(也有说代表“前轮驱动”), “Q”代表发动机横置(纵置的表示是“L”)。 第一位数字“2”代表A0级车,“3”代表A级车,“4”代表B级车。 第二位数字是代表第几代平台, 例如,PQ24是大众A0级第4代平台,PQ25是大众第五代A0级车平台;同理,PQ34以及PQ35分表大众A级车的第4代和第5代平台,PQ45和PQ46则分表代表大众第5代和第6代B级车平台。 由此可以看出,后面的第二位数字越高,平台越先进。 目前中国国内南北大众沿用的生产平台有: PQ24: POLO(上海大众) PQ24平台是大众比较老的平台之一,诞生在该平台的Polo也是有年头的车型了,在10万元的小车市场中Polo的保有量比较高,也成为品质车的代言词。PQ24平台的Polo值得骄傲的是其车身激光焊接技术和缝隙注腊技术,在2002年上市之初就已经应用,而直到如今该技术依然领先。PQ25:新POLO(上海大众)、晶锐(上海大众斯柯达) PQ25平台是大众专为生产小型车而开发的全新平台,在这个平台诞生的车型主要有斯柯达Fabia晶锐以及新POLO 和奥迪A1。法比亚采用大众最新的PQ25底盘,最先投入中国市场的法比亚将装配大众的升EA111发动机,这是一款大家很熟悉的发动机了,其最大功率77/5600kW/rpm,扭力达到155/3800N·m/rpm。 PQ32:桑塔纳、捷达(这些都是大众20多年前的淘汰生产线) PQ34:朗逸(上海大众)、老宝来(一汽大众,已停产)、新宝来(一汽大众) PQ35:明锐(上海大众斯柯达)、途观(上海大众)、途安(上海大众)、开迪(一汽大众)、速腾(一汽大众)、高尔夫6(一汽大众) PQ35是在PQ34平台的基础上进化而来的。它具有4轮独立悬挂,也就是前麦弗逊后四连杆系统,在提高操控性的同时有效提升驾驶乘坐的舒适性和平顺性。极大的衰减了振动的传递,延长了车辆的使用寿命。另外,PQ35平台还采用了激光无缝焊接技术、双面镀锌高强度钢板、Can-bus全车信息控制网络和全车多道涂装工艺等技术。目前在国内生产的大众速腾、开迪、途安、斯柯达明锐以及进口的奥迪TT、A3都是来自PQ35平台。目前产自PQ35平台的车型主要有速腾、途安、开迪、斯柯达明锐,第六代高尔夫也将出自这一平台。PQ45:帕萨特B5、老领域、新领域(都是上海大众基于PQ45平台的产品)

CAN总线的特点及J1939协议通信原理

CAN总线的特点及J1939协议通信原理、内 容和应用 众多国际知名汽车公司早在20世纪80年代就积极致力于汽车网络技术的研究及应用。迄今已有多种网络标准,如专门用于货车和客车上的SAE的 J1939、德国大众的ABUS、博世的CAN、美国商用机器的AutoCAN、ISO的VAN、马自达的PALMNET等。 在我国的轿车中已基本具有电子控制和网络功能,排放和其他指标达到了一定的要求。但货车和客车在这方面却远未能满足排放法规的要求。计划到2006年,北京地区的货车和客车的排放要满足欧Ⅲ标准。因此,为了满足日益严格的排放法规,载货车和客车中也必须引入计算机及控制技术。采用控制器局域网和国际公认标准协议J1939来搭建网络,并完成数据传输,以实现汽车内部电子单元的网络化是一种迫切的需要也是必然的发展趋势。 1 CAN总线特点及其发展 控制器局域网络(CAN)是德国Robert bosch公司在20世纪80年代初为汽车业开发的一种串行数据通信总线。CAN是一种很高保密性,有效支持分布式控制或实时控制的串行通信网络。CAN的应用范围遍及从高速网络到低成本底多线路网络。在自动化电子领域、发动机控制部件、传感器、抗滑系统等应用中,CAN的位速率可高达1Mbps。同时,它可以廉价地用于交通运载工具电气系统中,如灯光聚束、电气窗口等,可以替代所需要的硬件连接。它采用线性总线结构,每个子系统对总线有相同的权利,即为多主工作方式。CAN网络上任意一个节点可在任何时候向网络上的其他节点发送信息而不分主从。网络上的节点可分为不通优先级,满足不同的实时要求。采用非破坏性总线裁决技术,当两个节点(即子系统)同时向网络上传递信息时,优先级低的停止数据发送,而优先级高的节点可不受影响地继续传送数据。具有点对点、一点对多点及全局广播接收传送数据的功能。 随着CAN在各种领域的应用和推广,对其通信格式的标准化提出了要求。1991年9月Philips Semiconductors制定并发布了CAN技术规范(Versio 2.0)。该技术包括A和B两部分。2.OA给出了CAN报文标准格式,而2.OB给出了标准的和扩展的两种格式。1993年11月ISO颁布了道路交通运输工具-数据信息交换-高速通信局域网(CAN)国际标准ISO11898,为控制局域网的标准化和规范化铺平了道路。美国的汽车工程学会SAE于2000年提出的J1939,成为货车和客车中控制器局域网的通用标准。 2.J1939协议通信原理及内容 (1)J1939与CAN

汽车ECU通讯新平台--FlexRay(V2.1)协议规范

汽车ECU通讯新平台--FlexRay(V2.1)协议规范 一、车载网络概述 汽车电子化程度与日俱增,应用在车上的ECU模块数量也随之增加,从而使线束也增加。汽车电子系统的成本已经超过总成本的20%,并且还将继续增加。由于汽车生产商对制造成本的严格控制,加上对车身质量的控制,减少线束已经成为一个必须要解决的问题。另一方面,以网络通讯为基础的线控技术(X-by-wire)将在汽车上普遍应用。因此,车载网络时代终将来临。 车载网络种类有很多种,应用较多的有LIN,CAN、FlexRay、TIP/C、SAEJ1850、TFCAN、ASRB、MOST等。美国汽车工程师协会(SAE)根据速率将汽车网络划分为A、B、C3类。 A类总线标准包括TTP/A(Time Triggered Protocol/A)和LIN(Local Interconnect Net-work),其传输速率较低。①TTP/A协议最初由维也纳工业大学制定,为时间触发类型的网络协议,主要应用于集成了智能变换器的实时现场总线。②LIN是在1999年由欧洲汽车制造商Audi、BMW、DaimlerChrysler、Volvo、Volkswagen、VCT公司以及Motorola 公司组成的LIN协会共同努力下推出的用于汽车分布式电控系统的开放式的低成本串行通讯标准,从2003年开始得到使用。 B类标准主要包括J1850、VAN,低速CAN。①1994年SAE正式将J1850作为B类网络标准协议。最早,SAEJ1850被用在美国Ford,GM以及Chrysler公司的汽车中。现在,J1850协议作为诊断和数据共享被广泛应用在汽车产品中。②VAN标准是ISO1994年6月推出的,它基于ISO11519-3,主要为法国汽车公司所用。但目前就动力与传动系统而言,甚至在法国也集中应用CAN总线。③CAN是德国BOSCH公司从20世纪80年代初为解决现代汽车中众多的控制与测试仪器之间的数据交换而开发的一种串行数据通讯协议。低速CAN具有许多容错功能,一般用在车身电子控制中,而高速CAN则大多用在汽车底盘和发动机的电子控制中。 C类总线标准主要包括TTP/C,FlexRay和高速CAN(ISO11898-2)。都用于与汽车安全相关以及实时性要求比较高的地方。如动力系统,其传输速率比较高,通常在125kb/s到10Mb/s之间,必须支持实时的周期性的参数传输。①TTP/C协议由维也纳工业大学研发,基于TDMA(Time Division Multiple Access)分时多址的访问方式。②FlexRay是BMW、Daimler Chrysler、Motorola和Philips等公司制定的功能强大的网络通讯协议。基于TDMA

一张图秒懂电动汽车充电接口及通信协议新国标2016年1月1日实施

一张图秒懂电动汽车充电接口及通信协议新国标 2016年1月1日起,我国正式实施5项最新修订的电动汽车充电接口及通信协议国家标准。 截至2015年底,全国已建成充换电站3600座,公共充电桩4.9万个,较上年增加1.8万个,同比增速58%。 作为实现电动汽车传导充电的基本要素,电动汽车充电用接口及通信协议技术内容的统一和规范,是保证电动汽车与充电基础设施互联互通的技术基础。 2015年12月底,质检总局、国家标准委、国家能源局、工信部、科技部等部门联合在京发布了新修订的《电动汽车传导充电系统第1部分:一般要求》、《电动汽车传导充电用连接装置第1部分:通用要求》、《电动汽车传导充电用连接装置第2部分:交流充电接口》、《电动汽车传导充电用连接装置第3部分:直流充电接口》、《电动汽车非车载传导式充电机与电池管理系统之间的通信协议》等5项电动汽车充电接口及通信协议国家标准。 新标准于2016年1月1日起正式实施。 新标准有何亮点? 此次5项标准修订全面提升了充电的安全性和兼容性。 在安全性方面,新标准增加了充电接口温度监控、电子锁、绝缘监测和泄放电路等功能,细化了直流充电车端接口安全防护措施,明确禁止不安全的充电模式应用,能够有效避免发生人员触电、设备燃烧等事故,保证充电时对电动汽车以及使用者的安全。 在兼容性方面,交直流充电接口型式及结构与原有标准兼容,新标准修改了部分触头和机械锁尺寸,但新旧插头插座能够相互配合,直流充电接口增加的电子锁止装置,不影响新旧产品间的电气连接,用户仅需更新通信协议版本,即可实现新供电设备和电动汽车能够保障基本的充电功能。交流充电占空比和电流限值的映射关系与国际标准兼容,并为今后交流充电的数字通信预留拓展空间。 ??新标准有何意义??? 目前,我国电动汽车直流接口、控制导引电路、通信协议等国家标准与美国、欧洲、日本并列为世界4大直流充电接口标准。 质检总局党组成员、国家标准委主任田世宏指出,新标准对充电接口和通信协议进行了全面系统的规范,为充电设施质量保证体系提供了技术保障,确保了电动汽车与充电设施的互联互通,避免了市场的无序发展和充电“孤岛”,有利于降低因不兼容而造成的社会资源浪费,对促进电动汽车产业政策落地,增强购买使用电动汽车消费信心将起到积极的促进作用。

大众汽车平台介绍汇编

平台是指一款车的头部骨架的基础设计,也就是前舱壁(驾驶舱与机器舱的隔板)前的部分,包括转向机构、前悬挂和前车轴,它们的的相对位置关系一经确定,不能再变。而舱壁之后的结构,可因设计而改变,如拉长轴距、展宽轮距、变换后桥悬挂方式等。而大众对于自己的平台命名有着独特的解释,以PQ35平台为例,P表示平台、Q表示发动机横置(纵置的表示是“L”)、3表示A级车(也就是我们的紧凑型车)、5表示第五代。本期,我们就带你了解几款大众车型出自哪些平台。 PQ24平台 代表车型: 大众Polo PQ24平台是大众比较老的平台之一,诞生在该平台的Polo也是有念头的车型了,在10万元的小车市场中Polo的保有量比较高,也成为品质车的代言词。Polo值得骄傲的是其车身激光焊接技术和缝隙注腊技术,在2002年上市之初就已经应用,而直到如今该技术依然领先。

[ 基于PQ24平台开发的POLO ] [ POLO自然而然带上大众家族风格 ]

内饰上Polo继承了大众家族的典型特征,为了突出这款小车的个性,在内饰设计上面大众还是做了一些改变,加入了大量的时尚元素,黑色加钛银金属风格装饰使得车内看上去有了许多的现代感,而大众引以为傲的6速Tiptronic手自一体变速箱也毫不吝啬地放到了Polo的身上。 [ POLO的变速器 ]

[ POLO的内部细节 ] [ POLO 1.6L的发动机 ] Polo的动力比老Polo有了明显的提升,发动机的动力跟同级车比也属于中等偏上的水平,手动5速变速器和自动6速手自一体变速器是很大的竞争优势,部分车型上增加了2个侧气囊。换了面孔增了配置,加上一直就领先于同级车的工艺和品质,让Polo这款小车仍保持着强有力的竞争力。 编辑点评:Polo良好的做工和出色的品质保证了Polo过硬的质量,也增加了polo强有力的竞争力。明年更换新平台的Polo将会给喜欢Polo的人带来更多新鲜的元素。 PQ25平台 代表车型: 斯柯达法比亚 PQ25平台是大众专为生产小型车而开发的全新平台,在这个平台诞生的车型主要有斯柯达法比亚以及还未即将换代的新POLO和奥迪A1,目前产自这一平台的小车只有11月份预售的法比亚。法比亚采用大众最新的PQ25底盘,最先投入中国市场的法比亚将装配大众的1.6升EA111发动机,这是一款大家很熟悉的发动机了,其最大功率77/5600kW/rpm,扭力达到155/3800N·m/rpm,足以运转这款标准的小型车。

纯电动物流车技术方案及产品技术协议

纯电动物流车技术方案及产品技术协议 协议编号: 签订日期: 签订地点:

技术协议 甲方(购货方): 乙方(供货方):武汉XXXX技术有限公司 甲、乙双方本着诚实守信、互惠互利的原则,经友好协商,达成如下技术协议: 一、概要 本协议为甲乙双方针对甲方H6纯电动物流车方案及乙供产品采购事宜达成的技术协议,主要就甲乙双方在此项目中的技术要求和验收规范等进行技术约定。该技术协议将作为采购乙供产品的的商务合同附件,具有相应的法律效应。 二、合作内容 乙方为甲方提供6M海狮纯电动商务客车用整车控制器、电机驱动器、辅助动力控制器,其作用为: 1.整车控制器:HK-VCUON1-03 1)接受处理驾驶员的操作指令,并向各部件发送控制指令。 2)与电机、辅助动力控制器、BMS等通过CAN进行通讯,对数据进行采集和控制。 3)接受各部件的信息,并将整车的运行状态通过仪表显示出来。 4)系统故障的判断、记录。 2.电机驱动器:HIE100-384T260-90-1S-HK 接收整车控制器指令,控制电机转速及输出转矩。 3.驱动电机:HIE170-T220-50-3S-WT 接受电机驱动器控制为整车提供可控稳定的驱动力。 4.三合一辅助动力控制器:HIEG380-3DCP-1S-HK02,包含: 1)DCDC直流电源,给车载蓄电池充电并为低压部件提供直流电源。 2)车载充电机,外接交流电源,实现动力电池的充电。 3)箱内集成高压配电柜,为车载高压电器分配电力并提供相应保护。 5.DCAC动力控制器:HIE160-D380T220-3.7-1F-12V-HK

给助力转向油泵提供交流电源。 三、引用标准及法规 四、通讯协议 1、通讯结构

电动汽车通讯协议

文件编号: TKC/JS(S)-EV33 文件版本号: 0/A版 安徽天康特种车辆装备有限公司 纯电动专用车辆通讯协议(VER1.2) 编制: 审核: 批准: 发布日期:2014年12月22日实施日期:2014年12月22日 安徽天康特种车辆装备有限公司

纯电动专用车辆通讯协议(VER1.2) 协议参考SAE J1939,CAN2.0B,PEV-CANBUS20051114等。 终端电阻说明:组合仪表与BMS配终端电阻(120Ω),其它零部件不带终电阻。 总线通信速率:250KBPS 1.网络拓扑结构说明 电动汽车网络采用双CAN互连结构如下图。蓄电池管理系统(BMS)采用三路CAN入网,车载充电机系统通过CAN2入网。 从板1从板2高压板诊断显示器 C A N BM S主控SA=243(F3) =244(F4) 电机控制器SA=208(EF)组合仪表 SA=40(28) 车载充电机 SA=229(E5) C A N2 地面充电机 或充电站 SA=230(E6) C A N1

2.网络信号数据格式定义 电动客车网络信号数据格式遵守下表,双行定义遵循首行;电动汽车网络信号数据格式遵守下表,双行定义遵循第二行。 3.数据链路层应遵循的原则 数据链路层的规定主要参考CAN2.0B和J1939的相关规定。 使用CAN扩展帧的29位标识符并进行了重新定义,以下为29标识符的分配表:

其中,优先级为3位,可以有8个优先级;R一般固定为0;DP现固定为0;8位的PF为报文的代码;8位的PS为目标地址或组扩展;8位的SA为发送此报文的源地址; 4.协议帧定义 下表是电池管理系统可能用到的ECU节点名称和分配的地址。

[教材]大众汽车平台介绍

[教材]大众汽车平台介绍 平台是指一款车的头部骨架的基础设计,也就是前舱壁(驾驶舱与机器舱的隔板)前的部分,包括转向机构、前悬挂和前车轴,它们的的相对位置关系一经确定,不能再变。而舱壁之后的结构,可因设计而改变,如拉长轴距、展宽轮距、变换后桥悬挂方式等。而大众对于自己的平台命名有着独特的解释,以PQ35平台为例,P表示平台、Q表示发动机横置(纵置的表示是“L”)、3表示A级车(也就是我们的紧凑型车)、5表示第五代。本期,我们就带你了解几款大众车型出自哪些平台。 PQ24平台 代表车型: 大众Polo PQ24平台是大众比较老的平台之一,诞生在该平台的Polo也是有念头的车型了,在10万元的小车市场中Polo的保有量比较高,也成为品质车的代言词。Polo 值得骄傲的是其车身激光焊接技术和缝隙注腊技术,在2002年上市之初就已经应用,而直到如今该技术依然领先。

基于PQ24平台开发的POLO ] [ [ POLO自然而然带上大众家族风格 ] 内饰上Polo继承了大众家族的典型特征,为了突出这款小车的个性,在内饰设计上面大众还是做了一些改变,加入了大量的时尚元素,黑色加钛银金属风格装饰使得车内看上去有了许多的现代感,而大众引以为傲的6速Tiptronic手自一体变速箱也毫不吝啬地放到了Polo的身上。

[ POLO的变速器 ] [ POLO的内部细节 ]

[ POLO 1.6L的发动机 ] Polo的动力比老Polo有了明显的提升,发动机的动力跟同级车比也属于中等偏上的水平,手动5速变速器和自动6速手自一体变速器是很大的竞争优势,部分车型上增加了2个侧气囊。换了面孔增了配置,加上一直就领先于同级车的工艺和品质,让Polo这款小车仍保持着强有力的竞争力。 编辑点评:Polo良好的做工和出色的品质保证了Polo过硬的质量,也增加了polo强有力的竞争力。明年更换新平台的Polo将会给喜欢Polo的人带来更多新鲜的元素。 PQ25平台 代表车型: 斯柯达法比亚 PQ25平台是大众专为生产小型车而开发的全新平台,在这个平台诞生的车型主要有斯柯达法比亚以及还未即将换代的新POLO和奥迪A1,目前产自这一平台的小车只有11月份预售的法比亚。法比亚采用大众最新的PQ25底盘,最先投入中国市场的法比亚将装配大众的1.6升EA111发动机,这是一款大家很熟悉的发动机了,

汽车总线系统通信协议分析与比较

河南机电高等专科学校 《汽车单片机与局域网技术》 大作业 专业班级:汽电112 姓名:史帅峰 学号:111606240 成绩: 指导老师:袁霞 2013年4月16日 汽车总线系统通信协议分析与比较 摘要:本文主要针对汽车总线系统通讯协议,探讨汽车总线通讯协议的种类、发展趋势以及技术特点。在对诸多组织和汽车制造商研发的各类汽车总线进行比较和探讨的基础上,对其现状进行了分析;并综合汽车工业的特点对这两大类汽车总线协议的发展前景作了分析。关键词:汽车总线技术通讯协议车载网络 引言:汽车电子技术是汽车技术和电子技术结合发展的产物。从20世纪60年代开始,随着电子技术的飞速发展,汽车的电子化已经成为公认的汽车技术发展方向。在汽车的发展过程中,为了提高汽车的性能而增加汽车电器,电器的增加导致线缆的增加,而线束的增加又使整车质量增加、布线更加复杂、可维护性变差,从而又影响了汽车经济性能的提高。因此,一种新的技术就被研发出来,那就是汽车总线技术。总线技术在汽车中的成功应用,标志着汽车电子逐步迈向网络化。 一、车载网络的发展历程 20世纪80年代初,各大汽车公司开始研制使用汽车内部信息交互的通信方式。博世公司与英特尔公司推出的CAN总线具有突出的可靠性、实时性和灵活性,因而得到了业界的广泛认同,并在1993年正式成为国际标准和行业标准。TTCAN对CAN协议进行了扩展,提供时间触发机制以提高通讯实时性。TTCAN的研究始于2000年,现已成为CAN标准的第4部分ISO11898-4,该标准目前处于CD(委员会草案)阶段。 1994年美国汽车工业协会提出了1850通信协议规范。从1998年开始,由宝马、奥迪等七家公司和IC公司共同开发能满足车身电子要求的低成本串行总线技术,该技术在2000年2月2日完成开发,它就是LIN。 FlexRay联盟推进了FlexRay的标准化,使之成为新一代汽车内部网络通信协议。FlexRay车载网络标准已经成为同类产品的基准,将在未来很多年内,引导整个汽车电子产品控制结构的发展方向。FlexRay是继CAN和LIN之后的最新研发成果。 车载网络的分类及其网络协议 从20世纪80年代以来不断有新的网络产生,为了方便研究和应用,美国汽车工业协会(SAE)的车辆委员会将汽车数据传输网络划分为A、B、C三类。 A类网络 A类网络是面向传感器/执行器控制的低速网络,数据传输速度通常小于10kb/s,主要用于后视镜调整、电动车窗、灯光照明等控制。 A类网络大都采用通用异步收发器(UART,Universal Asynchronous Receiver/Trsmitter)标准,使用起来既简单又经济。但随着技术水平的发展,将会逐步被其他标准所代替。 A类网络目前首选的标准是LIN总线,是一种基于UART数据格式、主从结构的单线12V总线通信系统,主要用于智能传感器和执行器的串行通信。

大众汽车平台介绍及车型完整版

大众汽车平台介绍及车 型 Document serial number【NL89WT-NY98YT-NC8CB-NNUUT-NUT108】

大众汽车平台介绍及车型【转】 2011-12-2113:46:17|?分类:|?标签:|举报|字号大中小订阅 平台是指一款车的头部骨架的基础设计,也就是前舱壁(驾驶舱与机器舱的隔板)前的部分,包括转向机构、前悬挂和前车轴,它们的的相对位置关系一经确定,不能再变。而舱壁之后的结构,可因设计而改变,如拉长轴距、展宽轮距、变换后桥悬挂方式等。 世界上第一个轿车平台在德国大众诞生,大众公司通过平台战略的实施,整合了产品系列,大大降低了成本,同时提高了产品的竞争力,加快了新产品推出的速度,这使德国大众取得了巨大的成功。而大众对于自己的平台命名有着独特的解释,大众现在所采用的PQ平台的含义: “PQ”是平台号, “P”表示平台(也有说代表“前轮驱动”), “Q”代表发动机横置(纵置的表示是“L”)。 第一位数字“2”代表A0级车,“3”代表A级车,“4”代表B级车。 第二位数字是代表第几代平台, 例如,PQ24是大众A0级第4代平台,PQ25是大众第五代A0级车平台;同理,PQ34以及PQ35分表大众A级车的第4代和第5代平台,PQ45和PQ46则分表代表大众第5代和第6代B级车平台。 由此可以看出,后面的第二位数字越高,平台越先进。 目前中国国内南北大众沿用的生产平台有: PQ24:POLO(上海大众) PQ24平台是大众比较老的平台之一,诞生在该平台的Polo也是有年头的车型了,在10万元的小车市场中Polo的保有量比较高,也成为品质车的代言词。PQ24平台的Polo值得骄傲的是其车身激光焊接技术和缝隙注腊技术,在2002年上市之初就已经应用,而直到如今该技术依然领先。PQ25:新POLO(上海大众)、晶锐(上海大众斯柯达) PQ25平台是大众专为生产小型车而开发的全新平台,在这个平台诞生的车型主要有斯柯达Fabia晶锐以及新POLO和奥迪A1。法比亚采用大众最新的PQ25底盘,最先投入中国市场的法比亚将装配大众的1.6升EA111发动机,这是一款大家很熟悉的发动机了,其最大功率77/5600kW/rpm,扭力达到155/3800N·m/rpm。 PQ32:桑塔纳、捷达(这些都是大众20多年前的淘汰生产线) PQ34:朗逸(上海大众)、老宝来(一汽大众,已停产)、新宝来(一汽大众) PQ35:明锐(上海大众斯柯达)、途观(上海大众)、途安(上海大众)、开迪(一汽大众)、速腾(一汽大众)、高尔夫6(一汽大众) PQ35是在PQ34平台的基础上进化而来的。它具有4轮独立悬挂,也就是前麦弗逊后四连杆系统,在提高操控性的同时有效提升驾驶乘坐的舒适性和平顺性。极大的衰减了振动的传递,延长了车辆的使用寿命。另外,PQ35平台还采用了激光无缝焊接技术、双面镀锌高强度钢板、Can-bus全车信息控制网络和全车多道涂装工艺等技术。目前在国内生产的大众速腾、开迪、途安、斯柯达明锐以及进口的奥迪TT、A3都是来自PQ35平台。目前产自PQ35平台的车型主要有速腾、途安、开迪、斯柯达明锐,第六代高尔夫也将出自这一平台。PQ45:帕萨特B5、老领域、新领域(都是上海大众基于PQ45平台的产品) PQ45平台迄今为止已经有10余年的历史了,从技术上讲PQ45平台与其他新的中型车有着一定的差距。虽然大众产自大众先进平台PQ46的迈腾在性能上高于领驭,但是销量上却不及领驭的一半,这也说明了领驭的优势是很大的,并不一定先进技术就能得到好的回报。 PQ46:昊锐(上海大众斯柯达)、迈腾(一汽大众)、新帕萨特 PQ46平台是生产中高级车的平台,在同级别车中首先采用全球同步先进的底盘技术。前优化麦弗逊、后多连杆独立悬挂。四轮独立悬架设计,后多连杆加横向稳定杆的独立悬架。PQ46平台的特点主要体现在运动性能更加卓越,可以提供更高的驾驶时速。更“软”的悬架系统、更轻便的电

纯电动车BMS与整车系统CAN通信协议详情

文件类型:技术类密级:保密 正宇纯电动车 电池管理系统与整车系统CAN通信协议 (GX-ZY-CAN-V1.00)

版本记录 版本制作者日期说明 V1.00 用于永康正宇纯电动车系统姓名日期签名 拟定 审查 核准 1 范围 本标准规定了电动汽车电池管理系统(Battery Management System,以下简称BMS)与电机控制器(Vehicle Control Unit,简称VCU)、智能充电机(Intelligent Charger Unit,简称ICU)之间的通信协议。 本标准适用于电动汽车电池管理系统与整车系统和充电系统的数据交换。

本标准的CAN标识符为29位,通信波特率为250kbps。 本标准数据传输采用低位先发送的格式。 本标准应用于正宇纯电动轿车电池管理系统。 2 规范性引用文件 下列文件对于本文件的应用是必不可少的。凡是注日期的版本适用于本文件。凡不是注日期的引用文件,其最新版本(包括所有的修改单)适用于本文件。 ISO 11898-1:2006 道路车辆控制器局域网络第1部分:数据链路层和物理信令(Road Vehicles –Controller Area Network (CAN) Part 1:Data Link Layer and Physical Signalling). SAE J1939-11:2006 商用车控制系统局域网络(CAN)通信协议第11部分:物理层,250Kbps,屏蔽双绞线(Recommanded Practice for a Serial Control and Communications Vehicle Network Part 11:Physical Layer,250Kbps,Twisted shielded Pair). SAE J1939-21:2006商用车控制系统局域网络(CAN)通信协议第21部分:数据链路层(Recommanded Practice for a Serial Control and Communications Vehicle Network Part 21:Data Link Layer). 3 网络拓扑结构说明 电动汽车网络采用CAN 互连结构如下所示,CAN1总线为电池管理系统与电机控制器之间的数据通信总线,CAN2总线为电池管理系统与充电机之间的数据通信总线。电池管理系统内部主控单元与电池管理单元之间通过内部CAN总线进行数据通信。电机控制

汽车电子通信协议解析

汽车电子通信协议解析 核心提示:Internet让世界成了一个地球村,同样目前汽车内采用的各种通信协议使得汽车更加集成化一体化,理想状态下各种信息自由交互,实时到达并且准确无误。在汽车由机械化电气化向电子化过渡的过程中,针对具体应用的不同要求而出现了若干通信协议用于解决电子单元之间的信息交互问题,使用最广泛的是CAN 总线, Internet让世界成了一个地球村,同样目前汽车内采用的各种通信协议使得汽车更加集成化一体化,理想状态下各种信息自由交互,实时到达并且准确无误。在汽车由机械化电气化向电子化过渡的过程中,针对具体应用的不同要求而出现了若干通信协议用于解决电子单元之间的信息交互问题,使用最广泛的是CAN 总线,在主导汽车工业的欧美车系中它早已经得到大规模使用,近年来相继出现了LIN总线和flexray总线,由于LIN总线的易于实施加上成本低,而且应用在对实时性要求不高的场合,所以近几年也开始得到大规模使用,而Flexray总线由于用在事关安全的线控系统和动力系统,技术门槛高,实施难度大,目前只有掌握顶尖技术的宝马在其高端车上采纳。除了这种总线式的通信协议,近几年来蓝牙通信也开始在车载信息娱乐系统中得到使用。 在通信协议的实施中,产业链最底层的便是芯片厂商,它们提供了各种协议的收发器和控制器,协议一致性基本不用考虑,另外的汽车电子零部件供应商,汽车整车厂和车载网络开发商各起不同的作用,整车厂定义功能,网络开发商制定总线的应用层协议,零部件供应商便是具体协议的实施和功能的实现,网络开发商和零部件供应商有时是可以合二为一的,事实上汽车电子巨头如西门子博世德尔福都是这样的角色。车载网络开发就是目前争论甚广的应用层协议的制定,不可否认,这是个很复杂的问题,里面有哪些关键技术,有哪些设计协议的原则,需要考量的功能性和实时性的要求,怎么仿真怎么验证,这些都是系统性的难

相关文档
最新文档