学年沪科版数学九年级上册第十二章二次函数的概念(教案 练习 答案)
沪科版九年级数学上册:二次函数与反比例函数学案

沪科版九年级数学上册:二次函数与反比例函数学案21.1 二次函数学习目标:(1)能够根据实际问题,熟练地列出二次函数关系式,并求出函数的自变量的取值范围;(2)注重学生参与,联系实际,丰富学生的感性认识,培养学生的良好的学习习惯.重点难点:能够根据实际问题,熟练地列出二次函数关系式,并求出函数的自变量的取值范围。
学习过程:一、试一试1.设矩形花圃的垂直于墙的一边AB的长为xm,先取x的一些值,算出矩形的另一边BC的长,进而得出矩形的面积ym2.试将计算结果填写在下表的空格中,AB长x(m)1 2 3 4 5 6 7 8 9BC长(m) 12面积y(m2) 4 82.x的值是否可以任意取?有限定范围吗?3.我们发现,当AB的长(x)确定后,矩形的面积(y)也随之确定, y是x的函数,试写出这个函数的关系式,对于1.,可让学生根据表中给出的AB的长,填出相应的BC的长和面积,然后引导学生观察表格中数据的变化情况,提出问题:(1)从所填表格中,你能发现什么?(2)对前面提出的问题的解答能作出什么猜想?让学生思考、交流、发表意见,达成共识:当AB的长为5cm,BC的长为10m时,围成的矩形面积最大;最大面积为50m2。
对于2,可让学生分组讨论、交流,然后各组派代表发表意见。
形成共识,x的值不可以任意取,有限定范围,其范围是0 <x <10。
对于3,教师可提出问题,(1)当AB=xm时,BC长等于多少m?(2)面积y等于多少?并指出y=x(20-2x)(0 <x <10)就是所求的函数关系式.二、提出问题某商店将每件进价为8元的某种商品按每件10元出售,一天可销出约100件.该店想通过降低售价、增加销售量的办法来提高利润,经过市场调查,发现这种商品单价每降低0.1元,其销售量可增加10件。
将这种商品的售价降低多少时,能使销售利润最大?在这个问题中,可提出如下问题供学生思考并回答:1.商品的利润与售价、进价以及销售量之间有什么关系?[利润=(售价-进价)×销售量]2.如果不降低售价,该商品每件利润是多少元?一天总的利润是多少元? [10-8=2(元),(10-8)×100=200(元)]3.若每件商品降价x元,则每件商品的利润是多少元?一天可销售约多少件商品? [(10-8-x);(100+100x)]4.x的值是否可以任意取?如果不能任意取,请求出它的范围,[x的值不能任意取,其范围是0≤x≤2]5.若设该商品每天的利润为y元,求y与x的函数关系式。
沪科版九年级数学上册教案-二次函数的综合应用2

21.6 综合与实践获取最大利润教学目标【知识与技能】能够分析和表示实际问题中变量之间的二次函数关系,并运用二次函数的知识求出实际问题的最大(或小)值,培养学生解决问题的能力.【过程与方法】应用已有的知识,经过自主探索和合作交流尝试解决问题.【情感、态度与价值观】在经历和体验数学知识发现的过程中,提高思维品质,在勇于创新的过程中树立学好数学的自信心.重点难点【重点】二次函数在最优化问题中的应用.【难点】从现实问题中建立二次函数模型,学生较难理解和掌握.教学过程一、问题引入在日常生活、生产和科研中,常常会遇到求什么条件下可使面积最大、利润最大、材料最省、时间最少、效率最高等问题,这类问题称为最优化问题.其中一些问题可以归结为求二次函数的最大值或最小值.如何利用二次函数分析解决这样的问题呢?本节课我们来研究二次函数在实际问题中的应用.做一做:从地面竖直向上抛出一个小球,小球的高度h(单位:m)与小球的运动时间t(单位:s)之间的关系式是:h=30t-5t2(0≤t≤6).小球运动的时间是多少时,小球最高?小球运动中的最大高度是多少?我们可以借助函数图象解决这个问题,画出函数h=30t-5t2(0≤t≤6)的图象,如图所示,可以看出这个函数的图象是一条抛物线的一部分.这条抛物线的顶点是这个函数图象的最高点,也就是说,当t取顶点的横坐标时,这个函数有最大值.因此,当t=-=-=3时,h有最大值=45,也就是说,小球运动的时间是3s时,小球最高,小球运动中的最大高度是45 m.一般地,当a>0(或a<0)时,抛物线y=ax2+bx+c的顶点是最低(或高)点,也就是说,当x=-时,二次函数y=ax2+bx+c有最小(或大)值.二、新课教授问题1.用总长为60 m的篱笆围成矩形场地,矩形面积S随矩形一边长l的变化而变化.当l是多少时,场地面积S最大?师生活动:学生积极思考,找到等量关系式,并尝试解答.教师巡视、指导,最后给出解答过程.解:矩形场地的周长是60 m,一边长l,则另一边长为(-l),场地的面积S=l(30-l),即S=-l2+30l(0<l<30).因此,当l=-=-=15(m)时,S有最大值==225(m2).即当l是15 m时,场地面积S最大,最大值是225 m2.问题2.某商品现在的售价是每件60元,每星期可卖出300件,市场调查反映,如调整价格,每涨价1元,每星期要少卖出10件;每降价1元,每星期可多卖出20件.已知商品的进价为每件40元,如何定价才能使利润最大?师生活动:教师分析存在的问题,书写解答过程.分析:调整价格包括涨价和降价两种情况.我们先来看涨价的情况.设每件涨价x元,则每星期售出商品的利润y随之改变.我们先来确定y随x变化的函数关系式,涨价x元时,每星期少卖10x件,实际卖出(300-10x)元.销售额为(60+x)(300-10x)元,买进商品需付40(300-10x)元.因此,所得利润为y=(60+x)(300-10x)-40(300-10x),(0≤x≤30)即y=-10x2+100x+600=-10(x2-10x)+600=-10(x2-10x+25)+850=-10(x-5)2+850(0≤x≤30)所在,在涨价的情况下,涨价5元,即定价65元时,利润最大,最大为850元.思考:在降价的情况下,最大利润是多少?(降价2.5元,即定价57.5元时,利润最大,最大为6 125元.)思考:由上面的讨论及现在的销售情况,你知道如何定价才能使利润最大了吗?(在涨价的情况下,定价65元;在降价的情况下,定价57.5元.)问题3:图中是抛物线形拱桥,当水面在l时,拱顶离水面2 m,水面宽4 m.若水面下降1 m,水面宽度增加多少?师生活动:学生完成解答.教师分析存在的问题,书写解答过程.分析:我们知道二次函数的图象是抛物线,建立适当的坐标系,就可以求出这条抛物线表示的二次函数.为解题简便,以抛物线的对称轴为y轴建立直角坐标系.可设这条抛物线表示的二次函数为y=ax2.由抛物线经过点(2,-2),可得-2=a×22,解得a=-,这条抛物线表示的二次函数为y=-x2.水面下降1 m,水面所在位置的纵坐标为y=-3,代入上述表达式得x=±.故水面下降1 m,水面宽度增加(2-4)m.让学生回顾解题过程,讨论、交流、归纳解题步骤:(1)先分析问题中的数量关系,列出函数关系式;(2)研究自变量的取值范围;(3)研究所得的函数;(4)检验x的取值是否是自变量的取值范围内,并求相关的值;(5)解决提出的实际问题.学生尝试从前面四道题中找到解题规律.教师补充学生回答中的不足,及时纠正.三、巩固练习1.已知二次函数y=(3+x)(1-2x),当x=时,函数有最值,为.【答案】-大2.二次函数y=x2-8x+c的最小值为0,那么c的值等于()A.4B.8C.-4D.16【答案】D3.沿墙用长32 m的竹篱笆围成一个矩形的护栏(三面),怎样围才能使矩形护栏面积最大?最大面积为多少?试画出所得函数的图象.【答案】围成的矩形一边长为8 m、另一边长为16 m可使矩形护栏的面积最大,最大面积为128 m2.图象略.(注意自变量的取值范围)4.某旅社有客房120间,每间客房的日租金为50元,每天都客满,旅社装修后要提高租金,经市场调查,如果一间客房的日租金增加5元,则客房每天出租会减少6间,不考虑其他因素,旅社将每间客房的日租金提高到多少元时,客房日租金的总收入最高?比装修前的日租金总收入增加多少元?【答案】将每间客房的日租金提高到75元时,总收入最高,比装修前的日租金总收入增加750元.5.某产品每件的成本价是120元,试销阶段,每件产品的销售价x (元)与产品的日销售量y(台)之间的函数关系如下表所示:x(元)130150165 y(台)705035并且日销售量y是每件售价x的一次函数.(1)求y与x之间的函数关系式;(2)为获得最大利润,每件产品的销售价应定为多少元?此时每日销售的利润是多少?【答案】(1)y=-x+200(2)销售利润S=(-x+200)(x-120),当售价定为每件160元时,每日销售利润最大为1 600元.四、课堂小结1.得出用二次函数知识解决实际生活中的最值问题的一般步骤:(1)列出二次函数的表达式,并根据自变量的实际意义确定自变量的取值范围;(2)在自变量的取值范围内,运用公式法或通过配方求出二次函数的最大值或最小值.2.解题循环图:教学反思本节课充分运用导学提纲,教师提前通过一系列问题的设置引导学生课前预习.在课堂上通过对一系列问题的解决与交流,让学生通过二次函数掌握解决面积最大、利润最大等这一类题的方法,学会用建模的思想去解决和函数有关的应用问题.所以在例题的处理中适当地降低了难度,让学生的思维有一个拓展的空间.在训练的过程中,通过学生的独立思考与小组合作探究相结合,使学生的分析能力、表达能力及思维能力都得到训练和提高.同时也注重对解题方法与解题模式的归纳与总结,并适当地渗透转化、化归、数形结合等数学思想方法.就整节课看,学生的积极性得以充分调动,特别是学困生,在独立思考和小组合作中改变以往的配角地位,也能积极参与到课堂学习活动中.今后继续发扬从学生出发,从学生的需要出发,把问题的难度降低,让学生在能力范围内掌握新知识,等有了足够的热身运动之后再去拓展延伸.。
沪科版-数学-九年级上册- 二次函数 知识点解读

《二次函数》知识点解读知识点1 二次函数的概念二次函数的概念:形如y=ax 2+bx+c (a≠0,a,b,c 为常数)的函数是二次函数。
若b=0,则y=ax 2+c ;若c=0,则y=ax 2+bx ;若b=c=0,则y=ax 2。
以上三种形式都是二次函数的特殊形式,而y=ax 2+bx+c 是二次函数的一般式。
在二次函数y=ax 2+bx+c (a≠0,a,b,c 为常数)中,其中ax 2叫做二次项,a 叫做二次项的系数;bx 叫做一次项,b 叫做一次项的系数;c 叫做常数项。
为什么要规定二次项的系数a≠0?当a=0时,函数为y=bx+c 是一次函数,由此可见,一次函数是二次函数的特例。
(1)a≠0是保证y 是x 的二次函数的重要条件,不能缺少。
b 、c 可以为0.(2)因为解析式是整式,所以自变量x 的取值范围是全体实数。
(3)确定二次函数的解析式就是确定待定系数a ,b ,c ,一般需要三个条件。
(4)识别二次函数的条件:必须是整式,自变量的最高次数为2,即必须有二次项。
例1 下列函数中,哪些是二次函数?(1)y=2+5x 2 (2)322+=x y (3)y=3x (x+5) (4)225x y = (5)y=x 2-4(4-x )2分析:二次函数y=ax 2+bx+c (a≠0,a,b,c 为常数)是整式函数,二次函数不一定是一般式,通过化简变形可以化成一般式,注意隐含条件a≠0。
解:(1)(3)(4)(5)是二次函数;(2)不是。
例2 已知,函数22)2(-+=k x k y 是关于x 的二次函数,你能确定k 的值吗?请说明理由。
分析:要想确定k 的值,可由二次函数的定义来求解。
解:由题意,得{22022=-≠+k k解得k=2。
所以,当k=2时,函数22)2(-+=k x k y 是关于x 的二次函数。
知识点2 二次函数在实际问题中的应用例3 某商场第一个月销售额为50万元,第三个月的销售额y (万元)与月平均增长率x 之间的函数关系如何表示?解析:函数关系式是y=50(1+x )2,即y=50x 2+100x+50。
沪科版九年级数学上21.1二次函数 (共22张PPT)

• You have to believe in yourself. That's the secret of success. 人必须相信自己,这是成功的秘诀。
•
定义:一般地,形如y=ax²+bx+c(a,b,c是常 数,a≠ 0)的函数叫做x的二次函数。
注意: (1)等号左边是变量y,右边是关于自变量x的
例1、下列函数中,哪些是二次函数?若
是,分别指出二次项系数,一次项系数,常数项.
(1) y=3(x-1)²+1
(2)
y=x+
_1_ x
(3) s=3-2t² (5)y= _x1_²-x
(4) y=(x+3)²-x² (6) v=10πr²
先化简后判断
例2、y=(m+3)xm2-7 为二次函数,求m的值。
沪科版-数学-九年级上册-九上22.5二次函数的应用同步练习及答案

22.5二次函数的应用同步练习第1题. 用8m 长木条,做成如图的窗框(包括中间棱),若不计损耗,窗户的最大面积为2m .答案:43第2题. 在底边长20cm BC =,高12cm AM =的三角形铁板ABC 上,要截一块矩形铁板EFGH ,如图所示.当矩形的边EF =cm 时,矩形铁板的面积最大,其最大面积为2cm .答案:6 60AEM CHN第3题. 如图,用20m 长的铁丝网围成一个一面靠墙的矩形养殖场,其养殖场的最大面积为()2m A.45 B.50C.60D.65答案:B第4题. 用长8m 的铝合金条制成如图形状的矩形窗框,为了使窗户的透光面积最大,那么这个窗户的最大透光面积是()A.264m 25 B.24m 3C.28m 3D.24m答案:C第5题. 用长8m 的铝合金条制成如图形状的矩形窗框,为了使窗户的透光面积最大,那么这个窗户的最大透光面积是( ) A.264m 25B.24m 3 C.28m 3D.24m答案:C第6题. 如图,用长10m 的铝合金条制成下部为矩形、上部为半圆的窗框(包括窗棱CD ),若使此窗户的透光面积最大,则最大透光面积为()2mA.50πB.504+π C.508+πD.5016+π答案:C第7题. 图是某市一处十字路口立交桥的横断面在平面直角坐标系中的示意图,横截面的地平线为x 轴,横断面的对称轴为y 轴,桥拱的DGD '部分为一段抛物线,顶点G 的高度为8m ,AD 和A D ''是两侧高为5.5m 的支柱,OA 和OA '为两个方向的汽车通行区,宽都为15m ,线段CD 和C D ''为两段对称的上桥斜坡,其坡度为1:4(即:1:4DA AC =).(1)求桥拱DGD '所在抛物线的函数表达式.(2)BE 和B E ''为支撑斜坡的立柱,其高都为4m ,为相应的AB 和A B ''两个方向的行人及非机动车通行区,试求AB 和A B ''的宽.(3)按规定,汽车通过桥下时,载货最高处和桥拱间的距离不得小于0.4m ,今有一大型运货汽车,装载某大型设备后,其宽为4m ,设备的顶部与地面距离为7m ,它能否从OA (或OA ')区域安全通过,请说明理由.D CBD 'E ''B ' A 'OA BCxyG D E答案:(1)设DGD '所在抛物线为2(0)y ax c a =+<,(08)G ,,(15)D ,5.5,8225 5.5c a c =⎧∴⎨+=⎩,,190a =-,8c =,21890y x ∴=-+. (2)14EB BC =,4BE =,16BC =,22166AB AC BC =-=-=,AB ∴和A B ''宽都为6m . (3)在21890y x =-+中,当4x =时,137********y =-⨯+=.37197(70.4)04545∴-+=>,∴该货车可以从OA (或OA ')区域安全通过.第8题. 如图所示,公园要建造圆形的喷水池,在水池中央垂直于水面处安装一个柱子OA ,O 恰在水面中心, 1.25m OA =,由A 处的喷头向外喷水,水流在各个方向沿形状相同的抛物线路线落下,为使水流形状较为漂亮,要求设计成水流离OA 距离为1m 处达到距水面最大高度2.25m .(1)以O 为坐标轴原点,OA 为y 轴建立直角坐标系,求抛物线ACB 的函数表达式; (2)水池半径至少要多少米,才能使喷出的水流不致落到池外?(3)若水池的半径为3.5m ,要使水流不落到池外,此时水流高度应达多少米(精确到0.1m )?C AOy答案:(1)依题意可知(01.25)A ,,(12.25)C ,.抛物线开口向下,∴表达式为22(1) 2.252 1.25y x x x =--+=-++(2)令2(1) 2.250x --+=,得10.5x =-(舍去),2 2.5x =,∴水池半径至少2.5m . (3)由于抛物线形状与上面相同,即二次项系数为1-,故可设此抛物线为2()y x h k =--+,求得117h =,1413 3.7(m)196k =≈,水流的最大高度为3.7m .第9题. 如图,在△ABC 中,6AC =,12AB =,3cos 5A =,点M 在AB 上运动,MP AC ∥交BC 于P ,MQ AC ⊥于Q ,设AM x =,梯形MPCQ 的面积为y .(1)求y 关于x 的函数表达式及自变量x 的取值范围; (2)当梯形MPCQ 的面积为4时,求x 的值;(3)梯形MPCQ 的面积是否有最大值,如果有,求出最大值;如果没有,请说明理由.答案:(1)由MP AC ∥,得△MBP ∽△ABC ,MP MB AC AB =,162MP x =-.在Rt AQM △中,3cos 5A =,35AQ x =,365CQ x =-,45MQ x =.1()2y MP CQ MQ =+1134662255x x x ⎛⎫=-+- ⎪⎝⎭, PBQ21124255y x x ∴=-+,06x <<. (2)当1011x =时,4y =.(3)当6011x =时,梯形面积最大,为14411.第10题. 某农场种植一种蔬菜,销售员张平根据往年的销售情况,对今年这种蔬菜的销售价格进行了预测,预测情况如图,图中的抛物线(部分)表示这种蔬菜销售价与月份之间的关系.观察图象,你能得到关于这种蔬菜销售情况的哪些信息? 答题要求:(1)请提供四条信息; (2)不必求函数的表达式.答案:(1)2月份每千克销售价是3.5元 (2)7月份每千克销售价是0.5元(3)1月到7月的销售价逐月下降(4)7月到12月的销售价逐月上升(5)2月与7月的销售差价是3元/kg (6)7月份销售价最低,1月份销售价最高(7)6月与8月、5月与9月、4月与10月、3月与11月、2月与12月的销售价相同(答案不唯一)第11题. 用12m 长的木条,做一个有一条横档的矩形窗子,为使透进的光线最多,则窗子的横档长为 m .1 2 3 4 5 6 7 8 9 11112 3 45月份每千克销售价/元答案:2第12题. 如图,用12m 长的木方,做一个有一条横档的矩形窗子,为使透进的光线最多,应选择窗子的长、宽各为 m .答案:3、2第13题. 如图,在矩形ABCD 中,6cm AB =,12cm BC =,点P 从A 出发沿AB 边向点B 以1cm/s 的速度移动,同时点Q 从点B 出发沿BC 边以2cm/s 的速度移动,分别到达B ,C 两点后就停止运动.(1)设运动开始后第s t 时,五边形APQCD 的面积为2cm S ,试写出S 与t 的函数关系式,并指出自变量t 的取值范围.(2)第几秒五边形APQCD 的面积最小?是多少?答案:(1)第s t 时,AP t =,6PB t =-,2BQ t =, 故21(6)262PBQSt t t t =⨯-=-+. 61272ABCD S =⨯=矩形,272672(06)PBQS St t t ∴=-=-+≤≤.DCQBA(2)2(3)63S t =-+,故当3t =时,S 有最小值63,即第3s 时,五边形APQCD 的面积最小,为263cm .第14题. 如图,有长为24m 的篱笆,现一面利用墙(墙的最大可用长度a 为10m )围成中间隔有一道篱笆的长方形花圃,设花圃的宽AB 为cm x ,面积为2m S . (1)求S 与x 的函数关系式.(2)要围成面积为245m 的花圃,AB 的长是多少米?(3)能围成面积比245m 还大的花圃吗?如果能,求出最大面积,并说明围法;如果不能,请说明理由.答案:(1)243BC x =-,故214(243)32483S x x x x x ⎛⎫=-=-+<⎪⎝⎭≤. (2)由已知得232445x x -+=,即28150x x -+=,解得13x =,25x =,当3x =时,24331510BC =-⨯=>,不合题意,故5x =,即5m AB =. (3)2223243(8)3(4)48S x x x x x =-+=--=--+.1483x <≤,1443>,S ∴随着x 的增大而减小. 故当143x =时,S 有最大值22142483446(m )33⎛⎫--= ⎪⎝⎭.∴能围成面积比245m 还大的花圃.围法:42431031-⨯=,花圃的长BC 为10m ,宽为4m 32.这时花圃面积最大,为2246m 3.第15题. 如图,在Rt△ABC 中,90C ∠=,4BC =,8AC =,点D 在斜边AB 上,分别作DE AC ⊥于E ,DF BC ⊥于F ,设DE x =,DF y =. (1)求y 与x 之间的函数关系,并求出x 的取值范围. (2)设四边形DECF 的面积为S ,试求S 的最大值.答案:(1)由已知得DECF 是矩形,故EC DF y ==,88AE EC y =-=-.由DE BC ∥得△ADE ∽△ABC ,DE AE BC AC ∴=,即848x y-=,82(04)y x x ∴=-<<. (2)2(82)2(2)8S xy x x x ==-=--+. 当2x =时,S 有最大值8.第16题. 某通讯器材公司销售一种市场需求较大的新型通讯产品. 已知每件产品的进价为40元,每年销售该种产品的总开支 (不含进价)总计120万元.在销售过程中发现,年销售量y (万件)与销售单位x (元)之间存在着如图所示的一次函数关系.(1)求y 关于x 的函数关系式;(2)试写出该公司销售该种产品的年获利z (万元)关于销售单价x (元)的函数关系式(年获利=年销售额-年销售产品总进价-年总开支).当销售单价x 为何值时,年获利最大?并求这个最大值;(3)若公司希望该种产品一年的销售获利不低于40万元,借助(2)中函数的图象,请你帮助该公司确定销售单价的范围.在此情况下,要使产品销售量最大,你认为销售单价应定为多少元?ACD答案:解:(1)设y kx b =+,它过点(605)(804),,,560480k b k b =+⎧⎨=+⎩解得:1208k b ⎧=-⎪⎨⎪=⎩1820y x =-+∴. (2)21140120(8)(40)120104402020z yx y x x x x =--=-+--=-+- ∴当100x =元时,最大年获利为60万元.(3)令40z =,得21401044020x x =-+-, 整理得:220096000x x -+= 解得:180x =,2120x =由图象可知,要使年获利不低于40万元,销售单价应在80元到120元之间.又因为销售单价越低,销售量越大,所以要使销售量最大,又要使年获利不低于40万元,销售单价应定为80元.第17题. 如图9,在平行四边形ABCD 中,AD =4 cm ,∠A =60°,BD ⊥AD . 一动点P 从A 出发,以每秒1 cm 的速度沿A →B →C 的路线匀速运动,过点P 作直线PM ,使PM ⊥AD .(1) 当点P 运动2秒时,设直线PM 与AD 相交于点E ,求△APE 的面积;0 20 4060 8012 3 4 5 6 y (万件)x (元4060 080 100 120x (元)z (万元)(2) 当点P 运动2秒时,另一动点Q 也从A 出发沿A →B →C 的路线运动,且在AB 上以每秒1 cm 的速度匀速运动,在BC 上以每秒2 cm 的速度匀速运动. 过Q 作直线QN ,使QN ∥PM . 设点Q 运动的时间为t 秒(0≤t ≤10),直线PM 与QN 截平行四边形ABCD 所得图形的面积为S cm 2 .① 求S 关于t 的函数关系式;② (附加题) 求S 的最大值.答案:(1) 当点P 运动2秒时,AP =2 cm ,由∠A =60°,知AE =1,PE =3.∴ S ΔAPE =23. (2) ① 当0≤t ≤6时,点P 与点Q 都在AB 上运动,设PM 与AD 交于点G ,QN 与AD 交于点F ,则AQ =t ,AF =2t ,QF =t 23,AP =t +2,AG =1+2t ,PG =t 233+. ∴ 此时两平行线截平行四边形ABCD 的面积为S =2323+t . 当6≤t ≤8时,点P 在BC 上运动,点Q 仍在AB 上运动. 设PM 与DC 交于点G ,QN 与AD 交于点F ,则AQ =t ,AF =2t,DF =4-2t ,QF =t 23,BP =t-6,CP =10-t ,PG =3)10(t -, 而BD =34,故此时两平行线截平行四边形ABCD 的面积为S =3343108352-+-t t . 当8≤t ≤10时,点P 和点Q 都在BC 上运动. 设PM 与DC 交于点G ,QN 与DC 交于点F ,则CQ =20-2t ,QF =(20-2t )3,CP =10-t ,PG =3)10(t -.∴ 此时两平行线截平行四边形ABCD 的面积为S =31503302332+-t t .故S 关于t 的函数关系式为2233(06)53103343(68)33303150 3.(810)t t S t t t t t t ⎧+⎪⎪⎪⎪=-+-⎨⎪⎪-+⎪⎪⎩,≤≤,≤≤≤≤ ②(附加题)当0≤t ≤6时,S 的最大值为237; 当6≤t ≤8时,S 的最大值为36;当8≤t ≤10时,S 的最大值为36;所以当t =8时,S 有最大值为36第18题. 在青岛市开展的创城活动中,某居民小区要在一块一边靠墙(墙长15m )的空地上修建一个矩形花园ABCD ,花园的一边靠墙,另三边用总长为40m 的栅栏围成(如图所示).若设花园的BC x 边长为(m ),花园的面积为y (m 2).(1)求y 与x 之间的函数关系式,并写出自变量x 的取值范围;(2)满足条件的花园面积能达到200 m 2吗?若能,求出此时x 的值;若不能,说明理由;(3)根据(1)中求得的函数关系式,描述其图象的变化趋势;并结合题意判断当x 取何值时,花园的面积最大?最大面积为多少?解:(1)(2)A BCD(3)答案:解:(1)根据题意得:(40)2x y x-= 2120(015)2y x x x =-+<∴≤ (2)当200y =时,即21202002x x -+= ∴2404000x x -+=解得:2015x =>015x <∵≤∴此花园的面积不能达到200m 2(3)21202y x x =-+的图像是开口向下的抛物线,对称轴为20x =. ∴当015x <≤时,y x 随的增大而增大∴当15x y =时,有最大值21152015187.52y =-⨯+⨯=最大值(m 2) 即:当15x =时,花园面积最大,最大面积为187.5m 2第19题. 市政府为改善居民的居住环境,修建了环境幽雅的环城公园,为了给公园内的草评定期喷水,安装了一些自动旋转喷水器,如图所示,设喷水管AB 高出地面1.5m ,在B 处有一个自动旋转的喷水头,一瞬间喷出的水流呈抛物线状.喷头B 与水流最高点C 的连线与地平面成45的角,水流的最高点C 离地平面距离比喷水头B 离地平面距离高出2m ,水流的落地点为D .在建立如图所示的直角坐标系中:(1) 求抛物线的函数解析式;(2) 求水流的落地点D 到A 点的距离是多少m ?答案: 解:在如图所建立的直角坐标系中, 由题意知,B 点的坐标为(01.5),, 45CBE BEC ∠=∴,△为等腰直角三角形, 2BE ∴=,C ∴点坐标为(23.5),(1)设抛物线的函数解析式为2(0)y ax bx c a =++≠, 则抛物线过点(01.5),顶点为(23.5),,∴当0x =时, 1.5y c ==由22ba -=,得4b a =-, 由24 3.54ac b a -=,得2616 3.54a a a -=解之,得0a =(舍去),1422a b a =-∴=-=,.所以抛物线的解析式为213222y x x =-++.(2)D 点为抛物线213222y x x =-++的图象与x 轴的交点,∴当0y =时,即:2132022x x -++=,解得27x =±,27x =-不合题意,舍去,取27x =+. D ∴点坐标为()(2727AD ∴=+,,(m ). 答:水流的落地点D 到A 点的距离是(27+m .E CFA(O)x D 1.5m45 B。
初中数学沪科版九年级上册《21.3二次函数与一元二次方程》教案

21.3二次函数与一元二次方程教学设计题目:写出二次函数y=x2-2x-3的顶点坐标,对称轴,并画出它的图象.教师提示:通过列表法展示该二次函数的画图过程探究一提问:当x为何值时,y=0?展示列表与图像,启发学生思考图像与x轴的交点,同时y=0时,即是方程x2-2x-3=0的解。
【例】如图,说一说二次函数y=x2+3x+2的图像与x轴有几个交点?交点的横坐标与一元二次方程x2+3x+2=0的根有什么关系?引导并帮学生完善结论:总结:一般地,如果二次函数y=ax2+bx+c 的图象与x轴有两个公共点(x1,0)、(x2,0 )那么一元二次方程ax2+bx+c=0 有两个不相等的实数根x=x1、x=x2 ,反之亦成立.探究二:观察二次函数y=x²-6x+9的图象和二次函数y=x²-2x+3的图象,分别说出一元二次方程x²-6x+9=0和x²-2x+3=0的根的情况.提问:二次函数y=ax2+bx+c的图象与x轴交点的坐标与一元二次方程ax2+bx+c=0根的关系?例:用图象法求一元二次方程x²+2x-1= 0 的近似解(精确到0.1)。
教师展示两种不同的解答方法。
变式:利用二次函数的图象求一元二次方程x²+x -1= 0 的近似解。
小试牛刀:1.如图,在平面直角坐标系中,抛物线y=(x-h)2与x轴只有一个交点M,与平行于x轴的直线l交于点A、B,若AB=4,则点M到直线l的距离为()A. 2 B.3 C.4 D.52.小明研究二次函数y=-x2+2mx-m2+1(m为常数)性质时有如下结论:①该二次函数图象顶点始终在平行于x轴的直线上;②该二次函数图象的顶点与x轴的两个交点构成等腰直角三角形;③当-1<x<2时,y随x的增大而增大,则m的值范围为m≥2;④点A(x1y1)与点B(x2,y2)在函数图象上,若x1<x2,x1+x2>2m,则y1>y2;其中正确结论的个数为()A.1 B.2 C.3 D.43. 一如图,抛物线y=x2-3x+k+1与x轴相交于O,A两点.求k的值及点A的坐标。
最新【沪科版适用】九年级数学上册《21.1二次函数》课件
但不能没有二次项.
练一练
下列函数中,(x是自变量),哪些是二次函数?
为什么?
① y=ax2+bx+c 不一定是,缺少 a≠0的条件. ② s=3-2t² ③y=x2
1 ④ y= 2 x
不是,右边 是分式.
⑤y=x² +x³ +25 不是,x的最 高次数是3.
⑥ y=(x+3)² -x² y=6x+9
C. m,n是常数,且m≠n
D . m,n为任何实数
)
y 2 x
3.下列函数是二次函数的是 ( C
A.y=2x+1
C.y=3x2+1
B.
1 D. y 2 1 x
4. n个球队参加比赛,每两个队之间进行一场比赛,比赛的 场次数m与球队数n有什么关系?
1 m n n 1 2
5. 某工厂一种产品现在的年产量是20件,计划今后两年增加
产量.如果每年都比上一年的产量增加x倍,那么两年后这种产
品的产量y将随计划所定的x的值而确定,y与x之间的关系怎样 表示? y=20x2+40x+20;
6.矩形的周长为16cm,它的一边长为x(cm),面积为y(cm2).求
(1)y与x之间的函数解析式及自变量x的取值范围;
(2)当x=3时矩形的面积. 解:(1)y=(8-x)x=-x2+8x (0<x<8); (2)当x=3时,y=-32+8×3=15 cm2 .
一个值,S都有唯一的一个对应值,即S是x的函数.
问题3 有一玩具厂,如果安排装配工15人,那么每人每天可 装配玩具190个;如果增加人数,那么每增加1人,可使每人每 天少装配玩具10个.问增加多少人才能使每天装配玩具总数最 多?最多为多少? 设增加x 人,这时,则共有 (15+x) 个装配工,每人每天可少 装配10x 个玩具,因此,每人每天只装配 (190-10x) 个玩具.所
沪科版九年级数学上二次函数 (2)
问题2:多边形的对角线数d与边数n有什么关系?
由图可以想出,如果多边形有n条边,那么它有 n 个顶点,从
一个顶点出发,连接与这点不相邻的各顶点,可以作(n-3) 条
对角线.
因为像线段MN与NM那样,连
接相同两顶点的对角线是同一条 M
N
对角线,所以多边形的对角线总数
②式表示了多边形的
对角线数d与边数n之
(3)s=3-2t² (是) (7)y=(x+3)²-x² (否)
(5)y= - x
(否) (8)y=2²+2x (否)
(6)v=r ²
(是)
例2. y=(m+3)xm2-7 (1) m取什么值时,此函数是正比例函数? (2) m取什么值时,此函数是二次函数?
看谁算得快!
1.函数 2.函数
3.函数
2.如果函数y=(k-3) 数,
0
则k的值一定是______
+kx+1是二次函
如果函数y=(k-3)
+kx+1 (x≠0)是一次
函数,则k的值一定是__3_或__1_ 或2
w是二次函数关系式.
w随堂作业:相信你一定 1、行某果园有100棵橙子树,每一棵树平均 结600个橙子。现准备多种一些橙子树以
提高产量,但是如果多种树,那么树之间
的距离和每一棵树所接受的阳光就会减少
。根据经验估计,每多种一棵树,平均每
棵树就会少结5个橙子。 (1)问题中有那些变量?
(2)假设果园增种x棵橙子树,果园橙子 的总产量为y个,那么请你写出y与x之间的 关系式。
即
③式表示了每天的装配量y与增加人数x之间的关系 ,对于x的每一个值, y都有一个对应值,即y是x的函数.
九年级数学上册 21.2.3 二次函数的图象与性质课时练习 (新版)沪科版-(新版)沪科版初中九年级
二次函数y=a(x+h)2的图象和性质一、精心选一选1﹒在平面直角坐标系中,二次函数y=a(x-h)2(a≠0)的图象可能是()A. B. C. D.2﹒二次函数y=3(x-2)2的图象的对称轴是()A.直线x=2B.直线x=-2C.y轴D.x轴3﹒函数y=a(x-1)2,y=ax+a的图象在同一坐标系的图象可能是()A. B. C. D.4﹒与函数y=2(x-2)2形状相同的抛物线解析式是()A.y=x2B.y=-2x2C.y=(2x+1)2D.y=(x-2)25﹒关于二次函数y=-(x-2)2的图象,下列说法正确的是()A.该函数图象是中心对称图形B.开口向上C.对称轴是直线x=-2D.最高点是(2,0)6﹒在下列二次函数中,其图象对称轴为x=-2的是()A.y=(x+2)2B.y=2x2-2C.y=-2x2-2D.y=2(x-2)27﹒将二次函数y=-2x2的图象平移后,可得到二次函数y=-2(x+3)2的图象,平移的方法是()A.向上平移3个单位B.向下平移3个单位C.向左平移3个单位D.向右平移3个单位8﹒二次函数y=a(x+h)2的图象的位置()A.只与a有关B.只与h有关C.与a、h都有关D.与a、h都无关9﹒已知抛物线y=5(x-1)2,下列说法中错误的是()A.顶点坐标为(1,0)B.对称轴为直线x=0C.当x>1时,y随x的增大而增大D.当x<1时,y随x的增大而增减小y=a(x+h)2的图象如图所示,下列结论:①a>0;②h>0;③y的最小值是0;④x<0时,y随x的增大而减小.其中正确结论的个数是()A.1个B.2个C.3个D.4个二、细心填一填11.将二次函数y=x2的图象沿x轴向左平移2个单位,则平移后的抛物线对应的二次函数的表达式为____________________.12.若抛物线y=ax2向右平移3个单位后经过(-1,4),则a=______,平移后的抛物线所对应的函数关系式为_______________________.13.抛物线y=3(x-1)2的图象关于x轴成轴对称的图象的关系式为___________________.14.二次函数y=-2(x-2)2的图象在对称轴左侧部分是________.(填“上升”或“下降”)15.二次函数y=-2(x+1)2图象的顶点坐标为___________,函数的最大值为____________.16.抛物线y=-3(x-5)2的开口方向是___________,对称轴是______________.17.抛物线y=49(x-3)2与x轴的交点为A,与y轴的交点为B,则△AOB的面积为_______.18.如图,在平面直角坐标系中,抛物线y=(x-2)2与x轴交于点A,与y轴交于点B.过点B作BC∥x轴,交抛物线于点C,过点A作AD∥y轴,交BC于点D,点P在BC下方的抛物线上(P不与B、C重合),连接PC,PD,则△PCD面积的最大值是___________.三、解答题19.已知二次函数y=-12(x-2)2.(1)画出函数图角,确定抛物线的开口方向、顶点坐标和对称轴;(2)当x取何值时,y随x的增大而增大?当x取何值时,y随x的增大而减小?20.已知:抛物线y=a(x+h)2的对称轴为直线x=12,形状、开口方向均与抛物线y=-3x2相同.(1)试求该抛物线的函数关系式;(2)求出该抛物线与y轴的交点坐标.21.二次函数y=12(x-h)2的图象如图所示,已知抛物线的顶点为A,与y轴交于点B,且OA=OB.(1)求该抛物线的函数关系式;(2)请直接写出该抛物线关于y轴对称的图象表达式.22.如图,直线y=-x-2交x轴于点A,交y轴于点B,抛物线y=a(x+h)2的顶点为A,且经过点B.(1)求该抛物线的函数关系式;(2)若点C(m,-92)在该抛物线上,求m的值.23.如图,已知抛物线y=2(x+2)2交y轴于点A,交直线y=2x+4于点B、C两点,试求△ABC的面积.24.如图,在Rt△OAB中,∠OAB=90°,O为坐标原点,边OA在x轴上,OA=AB=1个单位长度,,现把△OAB沿x轴的正方向平移1个单位长度后得△AA1B1.(1)求以A为顶点,且经过点B1的抛物线的解析式;(2)若(1)中的抛物线与OB交于点C,与y轴交于点D,求点D、C的坐标.二次函数y=a(x+h)2的图象和性质课时练习题参考答案一、精心选一选题号 1 2 3 4 5 6 7 8 9 10答案 D B B C D A C B B C1﹒在平面直角坐标系中,二次函数y=a(x-h)2(a≠0)的图象可能是()A. B. C. D.解答:抛物线y=a(x-h)2(a≠0)顶点在x轴上,故D选项符合,故选:D.2﹒二次函数y=3(x-2)2的图象的对称轴是()A.直线x=2B.直线x=-2C.y轴D.x轴解答:二次函数y=3(x-2)2的图象的对称轴是直线x=2,故选:B.3﹒函数y=a(x-1)2,y=ax+a的图象在同一坐标系的图象可能是()A. B. C. D.解答:∵抛物线y=a(x-1)2的对称轴是x=1,∴可排除D选项错误;当a>0时,直线y=ax+a经一、二、三象限,抛物线y=a(x-1)2开口向上,故B选项符合要求,故选:B.4﹒与函数y=2(x-2)2形状相同的抛物线解析式是()A.y=x2B.y=(2x+1)2C.y=-2x2D.y=(x-2)2∴它与y=-2x2的图象形状相同,解答:∵函数y=2(x-2)2中a=2,且2=2故选:C.5﹒关于二次函数y=-(x-2)2的图象,下列说法正确的是()A.该函数图象是中心对称图形B.开口向上C.对称轴是直线x=-2D.最高点是(2,0)解答:A.该函数图象是轴对称图形,故A选项错误;B.抛物线 y=-(x-2)2的开口向下,故B选项错误;C.对称轴是直线x=2,故C选项错误;D.抛物线y=-(x-2)2的最高点是(2,0),故D选项正确,故选:D.6﹒在下列二次函数中,其图象对称轴为x=-2的是()A.y=(x+2)2B.y=2x2-2C.y=-2x2-2D.y=2(x-2)2解答:二次函数y=(x+2)2的对称轴为x=-2,故选:A.7﹒将二次函数y=-2x2的图象平移后,可得到二次函数y=-2(x+3)2的图象,平移的方法是()A.向上平移3个单位 B.向下平移3个单位C.向左平移3个单位D.向右平移3个单位解答:二次函数y=-2x2的图象的顶点坐标为(0,0),二次函数y=-2(x+3)2的图象的顶点坐标为(-3,0),所以平移的方法是向左平移3个单位,故选:C.8﹒二次函数y=a(x+h)2的图象的位置()A.只与a有关B.只与h有关C.与a、h都有关D.与a、h都无关解答:二次函数y=a(x+h)2中a决定抛物线的开口方向,h决定抛物线的位置,故选:B.9﹒已知抛物线y=5(x-1)2,下列说法中错误的是()A.顶点坐标为(1,0)B.对称轴为直线x=0C.当x>1时,y随x的增大而增大D.当x<1时,y随x的增大而增减小解答:抛物线y=5(x-1)2,其顶点坐标为(1,0),故A选项不合题意;对称轴为直线x=1,故B 符合题意;当x>1时,y随x的增大而增大,故C选项不符合题意;当x<1时,y随x的增大而增减小,故D不符合题意,故选:B.10. 已知二次函数y=a(x+h)2的图象如图所示,下列结论:①a>0;②h>0;③y的最小值是0;④x<0时,y随x的增大而减小.其中正确结论的个数是()A.1个B.2个C.3个D.4个解答:由二次函数图象可知:抛物线开口向上,故①正确;抛物线的对称轴在y轴的左侧,则h>0,故②正确;抛物线的开口向上,所以顶点是最低点,y有最小值,而顶点在x轴上,所以y的最小值是0,故③正确;x<0时图象在y轴的左侧,在左侧部分x<-h时,y随x的增大而减小,-h <x<0时,y随x的增大而增大,故④错误,故3个选项都是正确的,故选:C.二、细心填一填11.y=(x+2)2; 12. 14,y=14(x-3)2; 13. y=-3(x-1)2;14. 上升; 15. (-1,0),0; 16. 向下,直线x=5;17. 4; 18. 6.y=x2的图象沿x轴向左平移2个单位,则平移后的抛物线对应的二次函数的表达式为____________________.解答:将二次函数y=x2的图象沿x轴向左平移2个单位,则平移后的抛物线对应的二次函数的表达式为y=(x+2)2,故答案为:y=(x+2)2.y=ax2向右平移3个单位后经过(-1,4),则a=______,平移后的抛物线所对应的函数关系式为_______________________.解答:抛物线y=ax2向右平移3个单位后得到的解析式为y=a(x-3)2,把(-1,4)代入y=a(x-3)2得:4=a(-1-3)2,解得:a=14,故答案为:14,y=14(x-3)2.y=3(x-1)2的图象关于x轴成轴对称的图象的关系式为___________________.解答:抛物线y=3(x-1)2的图象关于x轴成轴对称的图象的关系式为y=-3(x-1)2,故答案为:y=-3(x-1)2.y=-2(x-2)2的图象在对称轴左侧部分是________.(填“上升”或“下降”)解答:∵a=-2,∴抛物线开口向下,故在对称轴的左侧部分是上升的,故答案为:上升.y=-2(x+1)2图象的顶点坐标为___________,函数的最大值为____________.解答:二次函数y=-2(x+1)2图象的顶点坐标为(-1,0),函数的最大值为0,故答案为:(-1,0),0.y=-3(x-5)2的开口方向是___________,对称轴是______________.解答:抛物线y=-3(x-5)2的开口方向是向下,对称轴是直线x=5,故答案为:向下,直线x=5.y=49(x-3)2与x轴的交点为A,与y轴的交点为B,则△AOB的面积为_______.解答:∵当y=0时,即49(x-3)2=0,∴x=3,∴A(3,0),∵当x=0时,y=4,∴B(0,4),∴OA=3,OB=4,∴S△AOB=12×3×4=6,故答案为:6.18.如图,在平面直角坐标系中,抛物线y=(x-2)2与x轴交于点A,与y轴交于点B.过点B作BC∥x轴,交抛物线于点C,过点A 作AD∥y轴,交BC于点D,点P在BC下方的抛物线上(P不与B、C重合),连接PC,PD,则△PCD面积的最大值是___________.解答:∵抛物线y=(x-2)2与x轴交于点A,与y轴交于点B,∴A(2,0),B(0,4),∵抛物线y=(x-2)2的对称轴为x=2,BC∥x轴,AD∥y轴,∴直线AD就是抛物线y=(x-2)2的对称轴,∴B、C关于直线BD对称,∴BD=DC=2,∵顶点A到直线BC的距离最大,∴点P与A重合时,△PCD面积最大,最大值为:12DC×AD=12×2×4=4,故答案为:4.三、解答题y=-12(x-2)2.(1)画出函数图角,确定抛物线的开口方向、顶点坐标和对称轴;(2)当x取何值时,y随x的增大而增大?当x取何值时,y随x的增大而减小?解答:(1)二次函数y=-12(x-2)2的图象为:抛物线的开口向下、顶点坐标为(2,0),对称轴为直线x=2;(2)当x<2时,y随x的增大而增大,当x>2时,y随x的增大而减小.20.已知:抛物线y=a(x+h)2的对称轴为直线x=12,形状、开口方向均与抛物线y=-3x2相同.(1)试求该抛物线的函数关系式;(2)求出该抛物线与y轴的交点坐标.解答:(1)∵抛物线y=a(x+h)2的对称轴为直线x=12,∴h=-12,则y=a(x-12)2,又∵抛物线y=a(x-12)2的形状、开口方向均与抛物线y=-3x2相同,∴a=-3,∴该抛物线的函数关系式为:y=-3(x-12 );(2)∵当x=0时,y=-3(x-12)=-3×(-12)=32,∴该抛物线与y轴的交点坐标为(0,32).y=12(x-h)2的图象如图所示,已知抛物线的顶点为A,与y轴交于点B,且OA=OB.(1)求该抛物线的函数关系式;(2)请直接写出该抛物线关于y轴对称的图象表达式.解答:(1)∵点A为抛物线y=12(x-h)2的顶点,∴A(h,0),∴OA=h,∵OA=OB,且点B在y轴的正半轴上,∴OB=h,∴B(0,h),把B(0,h)代入y=12(x-h)2得:h=12(0-h)2,解得:h1=0(不合题意,舍去),h2=2,∴该抛物线的函数关系式y=12(x-2)2,(2)由(1)知:OA=2,∴将该抛物线向左平移4个单位即可得到它的关于y轴对称的图象,∴平移后的抛物线的解析式为:y=12(x+2)2,故该抛物线关于y轴对称的图象表达式为y=12(x+2)2.22.如图,直线y=-x-2交x轴于点A,交y轴于点B,抛物线y=a(x+h)2的顶点为A,且经过点B.(1)求该抛物线的函数关系式;(2)若点C(m,-92)在该抛物线上,求m的值.解答:(1)∵直线y=-x-2交x轴于点A,交y轴于点B,∴A(-2,0),B(0,-2),∵抛物线y=a(x+h)2的顶点为A,∴h=2,则y=a(x+2)2,∵该抛物线经过点B(0,-2),∴a(0+2)2=-2,解得:a=-12,∴该抛物线的函数关系式为:y=-12(x+2)2,(2)∵点C(m,-92)在该抛物线y=-12(x+2)2上,∴-12(m+2)2=-92,解得:m1=1,m2=-5,即m的值为1或-5.23.如图,已知抛物线y=2(x+2)2交y轴于点A,交直线y=2x+4于点B、C两点,试求△ABC的面积.解答:∵当x=0时,y=2(x+2)2=8,∴A(0,8),由22(2)24y xy x⎧=+⎨=+⎩,得:112xy=-⎧⎨=⎩,2212xy=-⎧⎨=⎩,∴B(-2,0),C(-1,2),设直线BC的解析式为y=kx+b,交y轴于点D,∴202k bk b-+=⎧⎨-+=⎩,解得:24kb=⎧⎨=⎩,∴直线BC的解析式为y=2x+4,当x=0时,y=4,∴D(0,4),∴AD=8-4=4,∴S△ABC=S△ABD-S△ACD=12×4×2-12×4×1=2.24.如图,在Rt△OAB中,∠OAB=90°,O为坐标原点,边OA在x轴上,OA=AB=1个单位长度,,现把△OAB沿x轴的正方向平移1个单位长度后得△AA1B1.(1)求以A为顶点,且经过点B1的抛物线的解析式;(2)若(1)中的抛物线与OB交于点C,与y轴交于点D,求点D、C的坐标.解答:(1)∵OA=AB=1,∠OAB=90°,∴A(1,0),B(1,1),由平称性质得:A1(2,0),B1(2,1),∵抛物线的顶点A(1,0),∴可设抛物线的解析式为y=a(x-1)2,把B1(2,1)代入y=a(x-1)2得:a=1,∴以A为顶点,且经过点B1的抛物线的解析式为y=(x-1)2;(2)设直线OB的解析式为y=kx,把B(1,1)代入得:k=1,∴直线OB 的解析式为y =x ,由2(1)y x y x =⎧⎨=-⎩,得x y ⎧=⎪⎪⎨⎪=⎪⎩x y ⎧=⎪⎪⎨⎪=⎪⎩, 故点C的坐标为(32-,32-),对于y =(x -1)2,当x =0时,y =1, ∴D (0,1)故C(32,32-),D (0,1).。
沪科版-数学-九年级上册-21.4 二次函数的应用教案
21.4 二次函数的应用┃教学整体设计┃第1课时二次函数的应用(1)┃教学过程设计┃例2(教材第37页例2)如图1,悬索桥两端主塔塔顶之间的主悬钢索,其形状可近似地看作抛物线,水平桥面与主悬索之间用垂直钢索连接.若两端主塔之间的水平距离为900 m,两主塔塔顶距桥面的高度为81.5 m,主悬钢索最低点离桥面的高度为0.5 m.(1)若以桥面所在直线为x轴,抛物线的对称轴为y轴,建立平面直角坐标系,如图2,求这条抛物线对应的函数表达式;(2)计算距离桥两端主塔分别为100 m,50 m处垂直钢索的长.教师引导学生(1)这个抛物线的顶点坐标是什么?对称轴是什么?你还能写出这个抛物线上哪几个点的坐标?(2)这个抛物线对应的函数表达式可设什么形式?(3)第(2)题中离两端主塔分别为100 m,50m的点的横坐标各是多少?(4)第(2)题转化为数学语言是什么?思考:如果本题不给出坐标系,你还有没有其他方法建立坐标系,从而解决问题?初步了解建立平面直角坐标系解决实际问题.三、运用新知,解决问题 1.教材第38页练习第1题.2.某公园要建造一个圆形的喷水池,在水池中央垂直于水面竖一根柱子,上面的A 处安装一个喷头向外喷水.连喷头在内,柱高为0.8 m.水流在各个方向上沿形状相同的抛物线路径落下,如图1所示.根据设计图纸已知:如图2所示的平面直角坐标系中,水流喷出的高度y (m)与水平距离x (m)之间的函数表达式是y =-x 2+2x +45.(1)喷出的水流距水平面的最大高度是多少? (2)如果不计其他因素,那么水池半径至少为多少时,才能使喷出的水流都落在水池内? 教师板演,纠错,巡视指导,讲评. 及时巩固所学知识.四、课堂小结,提炼观点1.通过学习本节,你有哪些收获?2.对本节课你还有什么疑惑? 总结回顾学习的重点、难点内容,巩固所学知识.五、布置作业,巩固提升 1.教材第42页习题21.4第1、2题. 2.(选做题)教材第42页习题21.4第5题. 体现分层,加深认识,深化提高.┃教学小结┃【板书设计】二次函数的应用(1)例1 S =x (20-x ),配方,得S =-(x -10)2+100.因为a =-1<0,所以当x =10时,S 取得最大值,最大值为100.21.4二次函数的应用┃教学整体设计┃第2课时二次函数的应用(2)┃教学过程设计┃┃教学小结┃。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二次函数概念;
二次函数所描述的关系;
二次函数2axy的图象和性质
二. 本周学习目标:
1、函数概念的理解主要注意:
(1)有两个变量;
(2)一个变量的数值随着另一个变量的数值变化而变化;
(3)对于每一个确定的自变量值,函数都有唯一确定数值。
2、二次函数的判断要注意以下三点:
(1)函数的右边为整式;
(2)函数的右边含有自变量的二次项;
(3)自变量的二次项系数不能够为0。
3、二次函数图像的画法:
(1)列表:以原点为中心去点,两边各对称取两到三个点;
(2)描点;
(3)连线,由于二次函数不是一次函数,所以连线不能够用线段连接各点,二次函数的图像是一条
光滑的曲线。
4、函数解析式的通用求解方法:解析式法。
5、
2
axy
(0a)的性质:
a决定了函数图像的开口方向和开口大小,|a|越大,开口越小。
三. 考点分析:
本节内容是中学数学中的重要内容,二次函数也是中考的必考内容,而且二次函数的难度会有很大的
差异性,二次函数的综合性题目往往涉及的知识点较多。
【典型例题】
例1.
已知7m2x)3m(y是y关于x的二次函数,求m的值。
解:
由题意可得
②①03m
27m
2
由①可得,3m由②可得
3m
∴m=-3
思路回顾:
二次函数定义来求解,注意函数条件。
例2.
已知y与2x成正比例,且当2x时,6y。
(1)求y与x之间的函数关系式;
(2)求12y时x的值。
思路点拨:
y与2x成正比例,说明y与2x的函数关系式为2kxy。
解:
(1)设y与
2
x
的函数关系式为
)0k(kxy2
将6y,2x代入得:k)2(62解得3k。
∴y与
2
x
的关系式为
2
x3y
(2)将12y代入可得:
,4x,x31222
解得
.2x
例3.
已知关于x的二次函数,当0x时的值是1,当1x时值是0,当1x时的值为3。求这个函数
解析式。
思路点拨:
根据已知函数模型,设出它的一般形式,再根据已知条件列出相应的方程组求解。
解:
设这个二次函数的解析式为
),0a(cbxaxy2
根据题意,得:3cba0cba1c解得
1c
2
3
b
2
1
a
∴这个二次函数的解析式是
1x23x21y2
。
例4.
画出二次函数2xy的图象,并根据图象回答下列问题:
(1)当21x时,y的值是多少?
(2)当2y时,x的值是多少?
(3)当0x时,y随x的增大如何变化?
当0x时,y随x的增大如何变化?
(4)当x取何值时,y有最大值,最大值是多少?
思路点拨:
注意观察图形,结合图形回答以上各题。
解:
由图可得:
(1)当21x时,
4
1
y
(2)2y时,
2x
(3)当0x时,y随x的增大而减小;
当0x时,y随x的增大而增大。
(4)当0x时,y有最大值,y最大值为0。
例5.
求直线4x3y与抛物线2xy的交点坐标,并求出两交点与原点所围成的三角形的面积。
思路点拨:
因为交点既在直线上,又在抛物线上,所以解方程组2xy4x3y求得解即得交点坐标。
解:
由题意,得2xy4x3y解得,16y4x或
,
1y1x
则直线4x3y与抛物线2xy的交点坐标为(4,16),(-1,1)。直线4x3y与y轴相交于
点C(0,4)
.21421S,844214CO21SBOCAOC
.1028SSSBOCAOCABO
【模拟试题】(答题时间:30分钟)
一、选择题。
1、下列函数中,是二次函数的有()
①2xy②)1x(x3y③
1x2xy2
④2x1y⑤
1x2axy2
A. 1个 B. 2个 C. 3个 D. 4个
2、对任意实数m,下列选项中一定是二次函数的是()
A. 2x)1m(y B.
2
x)1m(y
C. 22x)1m(y D.
22
x)1m(y
3、已知二次函数
1x2xy2
,当0y时x的值为()
A. 1 B. -1 C. 0 D.
1
4、已知二次函数
3m2mx)1m(y22
,当0x时0y,则m的值是()
A. -1或3 B. -1 C. 3 D. -3或1
5、下列抛物线中,开口向下且开口最大的是()
A. 2xy B. 2x32y C. 2x31y D.
2
x3y
6、二次函数
2
kxy
与一次函数kkxy在同一坐标中的图象大致是()
二、填空题:
7、一个长方形的长是宽的2倍,设长为x,面积为S,则S与x之间的函数关系式为____________。
8、若函数
mm22x)mm(y
是二次函数,则m的值为____________。
9、如果函数
1kxx)3k(y2k3k2
是二次函数,那么k的值是____________,解析式是
____________。
10、抛物线
2
x45y
的开口____________,顶点坐标是__________,对称轴是__________。
三、解答题:
11、已知二次函数
1x3xy2
,求当21x时,y的值;当1y时,x的值。
12、已知
)1m(mx)1m(y
是关于x的二次函数,求m的值。
13、若函数
2
x3y
与直线3kxy的交点为(2,b),求k、b值。
14、已知抛物线
2
axy
经过点A(―2,―8)
(1)求函数解析式
(2)判断点B(-1,-4)是否在抛物线上。
(3)画出函数图象
(4)求出此抛物线上纵坐标为-6的点。
【试题答案】
一、1、B 2、C 3、A 4、C 5、D 6、C
二、7、
2
x21S
8、2
9、0,1x3y2 10、向下,(0,0),
y轴
三、11、
3x,0x,41y21
12、2
13、
2
9
k,12b
14、(1)
2
x2y
(2)不在此抛物线上
(3)略
(4)
).6,3(),6,3(