九年级数学相似三角形单元测试题及答案

合集下载

第4章 相似三角形数学九年级上册-单元测试卷-浙教版(含答案)

第4章 相似三角形数学九年级上册-单元测试卷-浙教版(含答案)

第4章相似三角形数学九年级上册-单元测试卷-浙教版(含答案)一、单选题(共15题,共计45分)1、如图,在正方形ABCD中,点E在AB边上,且AE∶EB=2∶1,AF⊥DE于G交BC于F,则△AEG的面积与四边形BEGF的面积之比为()A.1∶2B.4∶9C.1∶4D.2∶32、如图,已知矩形中,点是边上的任一点,连接,过作的垂线交延长线于点,交边于点,则图中共有相似三角形()A.6对B.5对C.4对D.3对3、下列命题中,是真命题的为( )A.锐角三角形都相似B.直角三角形都相似C.等腰三角形都相似 D.等边三角形都相似4、如图,矩形ABCD中,由8个面积均为1的小正方形组成的L型模板如图放置,则矩形ABCD的周长为()A.12B.10C.8D.8+45、如图,已知DE∥BC,EF∥AB,则下列比例式错误的是( )A. B. C. D.6、在矩形ABCD中,AB=3,BC=4,M是对角线BD上的动点,过点M作ME⊥BC于点E,连接AM,当△ADM是等腰三角形时,ME的长为()A. B. C. 或 D. 或7、如图,已知△ABC与△BDE都是等边三角形,点D在边AC上(不与A、C重合),DE与AB相交于点F,则图中有()对相似三角形.A.2B.3C.4D.58、如图,已知,那么添加下列一个条件后,仍然无法判定的是()A. B. C. D.9、如图,中,,,点在的延长线上,且连接并延长,过作于点,若,则的面积为()A.1B.2C.D.10、在研究相似问题时,甲、乙同学的观点如下:甲:将边长为3、4、5的三角形按图1的方式向外扩张,得到新三角形,它们的对应边间距为1,则新三角形与原三角形相似.乙:将邻边为3和5的矩形按图2的方式向外扩张,得到新的矩形,它们的对应边间距均为1,则新矩形与原矩形不相似.对于两人的观点,下列说法正确的是()A.两人都对B.两人都不对C.甲对,乙不对D.甲不对,乙对11、如图,△ABC中,点D、E分别是AB、AC的中点,则下列结论:①BC=2DE;②△ADE∽△ABC;③.其中正确的有()A.3个B.2个C.1个D.0个12、如图,△ABC中,CD⊥AB,BE⊥AC,= ,则sinA的值为()A. B. C. D.13、若,则下列式子成立的是()A. B. C. D.14、下列四组图形中不一定相似的是。

九年级(上)数学第二十四章相似三角形课课练及单元测试卷一和参考答案

九年级(上)数学第二十四章相似三角形课课练及单元测试卷一和参考答案
9、两条线段a、b的长度比叫做,记作:
10、已知=,则=,=;
11、若 ,则 , =
12、在RtΔABC中,∠C=90°,∠A=30°则a:b:c=
13、如果a=4cm,b=6cm,c=5cm,那么a,b,c的第四比例项是
14、===k,则k的值为。
15、已知线段AB长为2m,P是AB的黄金分割点,则较长线段PA=;较短线段PB=。
数学九年级上第二十四章相似三角形
24.3三角形一边的平行线第一课时(1)
一、选择题
1、在△ABC中,DE//BC,DE分别交AB、AC于点D、E,AD=2,EC=3,则下列等式成立的是()

15.若 与 是相似形,点A与点 ,点B与点 ,点C与点 分别是对应顶点,那么便
AC的对应边是, 的对应角是
16.如右图,已知矩形ABCD,AB=1,四边形ABFE是正方形,若矩形ABCD与矩形CDEF相似,则AD的长为。
三、解答题
17.若 与 是相似形,点A与点 ,点B与点 ,点C与点 分别是对应顶点, , ,AB=2, =5,BC=3, =6求 的度数与边AC, 的长
()
A 1:200 B 1:2000 C 1:20 000 D 1:200 000
4.下列不一定是相似形的是()
A.边数相同的正多边形B.两个等腰直角三角形C.两个圆D.两个等腰三角形
5.下列给出的图形中,是相似形的是()
A.三角板的内、外三角形B.两张孪生兄弟的照片
C.行书中的“中”楷书中的“中”D.同一棵树上摘下的两片树叶
6.下列各组图形中,一定是相似多边形的是()
A.两个直角三角形B.两个平行四边形C.两个矩形D.两个等边三角形
7下列图形中,相似的有()

九年级数学相似三角形单元测试的题目及答案详解

九年级数学相似三角形单元测试的题目及答案详解

九年级数学相似单元测试一.选择题(每小题3分,共30分)1.在比例尺为1:5000的地图上,量得甲,乙两地的距离25cm,则甲,乙的实际距离是( ) A.1250km B.125km C. 12.5km D.1.25km 2.已知0432c b a ,则c b a的值为( )A.54B.45C.2D.213.已知⊿ABC 的三边长分别为2,6,2,⊿A ′B ′C ′的两边长分别是1和3,如果⊿ABC 与⊿A ′B ′C ′相似,那么⊿A ′B ′C ′的第三边长应该是( )A.2B.22C.26D.334.在相同时刻,物高与影长成正比。

如果高为 1.5米的标杆影长为 2.5米,那么影长为30米的旗杆的高为( ) A 20米 B 18米 C 16米 D 15米5.如图,∠ACB=∠ADC=90°,BC=a,AC=b,AB=c,要使⊿ABC ∽⊿CAD, 只要CD 等于( ) A.cb2B.ab2C.cabD.ca26.一个钢筋三角架三长分别为20cm,50cm,60cm,现要再做一个与其相似的钢筋三角架,而只有长为30cm 和50cm 的两根钢筋,要求以其中的一根为一边,从另一根截下两段(允许有余料)作为另两边,则不同的截法有( ) A.一种 B.两种 C.三种 D.四种7、用位似图形的方法,可以将一个图形放大或缩小,位似中心的位置可以选在( ) A 原图形的外部 B 原图形的内部 C 原图形的边上 D 任意位置8、如图,□ABCD 中,EF ∥AB ,DE ∶EA = 2∶3,EF = 4,则CD 的长()A .163B .8C .10D .169.已知a 、b 、c 为非零实数,设k=c ba bca a cb ,则k 的值为()A .2B .-1C .2或-1D .110、某校计划在一块三角形的空地上修建一个面积最大的正方形水池,使得水池的一边在△ABC的边BC 上,△ABC 中边BC=60m ,高AD=30m ,则水池的边长应为( ) A 10m B 20m C 30m D 40m二.填空题(每小题3分,共30分)11、已知43yx,则._____yy x12、.已知点C 是线段AB 的黄金分割点,且AC>BC,则AC ∶AB= . 13、.把一矩形纸片对折,如果对折后的矩形与原矩形相似,则原矩形纸片的长与宽之比为 .14、如图,⊿ABC中,D,E分别是AB,AC上的点(DE BC),当或或时,⊿ADE与⊿ABC相似.15、在△ABC中,∠B=25°,AD是BC边上的高,并且2·,则∠BCA的度数为____________。

【3套】人教版九年级下学期相似三角形单元过关测试卷与参考答案

【3套】人教版九年级下学期相似三角形单元过关测试卷与参考答案

人教版九年级下学期相似三角形单元过关测试卷与参考答案一、选择题(每小题5分,共25分)1.如图,在△ABC 中,D 、E 分别是AB 、AC 的中点,下列说法中不正确的是( ) A .12DE BC =B .AD AEAB AC=C .△ADE ∽△ABCD .S △ADE :S △ABC =1:2 2.在△ABC ∽△'''A B C 中,有下列条件:①.''''AB BC A B B C =;②. ''''BC ACB C A C =;③.'A A ∠=∠;④.'C C ∠=∠.如果从中任取两个条件组成一组,那么能判断△ABC ∽△'''A B C 共有( ) A.1组 B.2组 C.3组 D.4组 3.如图,已知△ABC 和△ADE 均为等边三角形,D 在BC 上,DE 与AC 相交于点F ,AB=9,BD=3,则CF 等于( ) A .1 B .2C .3D .4(第1题) (第3题) (第4题 ) (第5题 ) 4.在四边形ABCD 中,∠B=90°,AC=4,AB ∥CD ,DH 垂直平分AC ,点H 为垂足.设AB=x ,AD=y ,则y 关于x 的函数关系用图象大致可以表示为( )A .B .C .D .5.如图,Rt △ABC 中,∠ACB=90°,∠ABC=60°,BC=2cm ,D 为BC 的中点,若动点E 以1cm/s 的速度从A 点出发,沿着A →B 的方向运动,设E 点的运动时间为t 秒(0≤t <4),连接DE ,当以B 、D 、E 为顶点的三角形与△ABC 相似时,t 的值为( )A .2B .2.5或3.5C .2或3.5D .2或2.5 二、填空题(每小题5分,共15分)6.两个相似三角形的一对对应边长分别为20cm ,25cm ,它们的周长差为12cm ,则这两个三角形的周长分别是________.7.如图,一束光线从点A (3,3)出发,经过y 轴上点C 反射后经过点B (1,0),则光线从点A 到点B 经过的路径长为 .第8题图第7题图8. 如图,在已建立直角坐标系中,Rt △ABO 的顶点O 与原点重合,顶点B 在x 轴上,ABO 90∠=,OA 与反比例函数()ky x 0x=<的图象交于点D ,且OD 2AD =,过点D 作x 轴的垂线交x 轴于点C . 若S 四边形ABCD 10=,则k 的值为 .三、解答题(共60分 第9、10题各10分,第11题12分,第12题13分,第13题15分) 9.如图,已知,AB 3AC BD 3AE ==,且BD ∥AC ,点B A E 、、在同一直线上. 求证:△ABD ∽△CAE ;10 .如图,在□ABCD 中,点E 在BC 边上,点F 在DC 的延长线上,且∠DAE =∠F . 若AB =5,AD =8,BE =2,求FC 的长.FEADCBB11.如图,正方形ABCD中,E为CD的中点,EF⊥AE,交BC于点F,试判断∠1与∠2的大小关系,并说明理由12.如图,△ABC中,AB=AC,E在BA的延长线上,AD平分∠CAE.(1)求证:AD∥BC;(2)过点C作CG⊥AD于点F,交AE于点G,若AF=4,求BC的长.13.如图,已知正方形ABCD中,BE平分∠DBC且交CD边于点E,将△BCE绕点C顺时针旋转到△DCF的位置,并延长BE交DF于点G.(1)求证:△BDG∽△DEG;(2)若EG•BG=4,求BE的长.单元测试卷与参考答案一、选择题1.D 2.C 3.B 4.D 5.C 二、填空题6.48cm 和60cm 7.5 8.-16 三、解答题 9.证明:∵ BD ∥AC,点B,A,E 在同一条直线上, ∴ ∠DBA=∠CAE,又∵,AB 3AC BD 3AE ==.3BDAE==.∴ABD CAE ∆∆∽.10.(1)证明:∵四边形ABCD 是平行四边形,∴AB ∥CD ,AD ∥BC . ∴∠B =∠ECF ,∠DAE =∠AEB. 又∵∠DAE =∠F ,∴∠AEB =∠F .∴△ABE ∽△ECF . ∵△ABE ∽△ECF ,∴AB BE EC CF=. ∵四边形ABCD 是平行四边形,∴BC =AD =8.∴EC =BC -BE =8-2=6.∴526CF =.∴125CF =.11.解:∵∠AED +∠CEF=90°,∠DAE +∠ADE=90°,∴∠DAE=∠CEF ,∵∠ADE=∠ECF=90°, ∴△ADE ∽△ECF ,且相似比为2,∴AE=2EF ,AD=2DE ,又∵∠ADE=∠AEF ,∴△ADE ∽△AEF , ∴∠1=∠2.12.(1)证明:∵AD 平分∠CAE ,∴∠DAG=12∠CAG ,∵AB=AC ,∴∠B=∠ACB , ∵∠CAG=∠B +∠ACB ,∴∠B=12∠CAG ,∴∠B=∠CAG ,∴AD ∥BC ; (2)解:∵CG ⊥AD ,∴∠AFC=∠AFG=90°, 在△AFC 和△AFG 中,CAF GAF AF AFAFC AFG ∠=∠=∠=∠⎧⎪⎨⎪⎩, ∴△AFC ≌△AFG (ASA ),∴CF=GF ,∵AD ∥BC ,∴△AGF ∽△BGC ,∴GF :GC=AF :BC=1:2,∴BC=2AF=2×4=8. 13.(1)证明:∵将△BCE 绕点C 顺时针旋转到△DCF 的位置,∴△BCE ≌△DCF ,∴∠FDC=∠EBC ,∵BE 平分∠DBC ,∴∠DBE=∠EBC ,∴∠FDC=∠EBD ,∵∠DGE=∠DGE ,∴△BDG ∽△DEG .(2)解:∵△BCE ≌△DCF ,∴∠F=∠BEC ,∠EBC=∠FDC ,∵四边形ABCD 是正方形, ∴∠DCB=90°,∠DBC=∠BDC=45°,∵BE 平分∠DBC ,∴∠DBE=∠EBC=22.5°=∠FDC , ∴∠BEC=67.5°=∠DEG ,∴∠DGE=180°﹣22.5°﹣67.5°=90°,即BG ⊥DF ,∵∠BDF=45°+22.5°=67.5°,∠F=90°﹣22.5°=67.5°,∴∠BDF=∠F,∴BD=BF,∴DF=2DG,∵△BDG∽△DEG,BG×EG=4,∴DG BGEG DG,∴BG×EG=DG×DG=4,∴DG2=4,∴DG=2,∴BE=DF=2DG=4人教版数学九年级下册第二十七章相似章末专题训练人教版数学九年级下册第二十七章相似章末专题训练一、选择题1.下列各组图形相似的是( B )A.B.C.D.2.制作一块3m×2m长方形广告牌的成本是120元,在每平方米制作成本相同的情况下,若将此广告牌的四边都扩大为原来的3倍,那么扩大后长方形广告牌的成本是( C )A.360元B.720元C.1080元D.2160元3.如图,直线l1∥l2∥l3,直线AC分别交,l1,l2,l3于点A,B,C,直线DF分别交,l1,l2,l3于点D,E,F.若DE=3,EF=6,AB=4,则AC的长是( D )A. 6B. 8C. 9D. 124.如图,已知DE∥BC,EF∥AB,则下列比例式错误的是( C )A. B.C. D.5.在△ABC和△DEF中,AB=AC,DE=DF,根据下列条件,能判断△ABC和△DEF相似的是( B )A.=B.=C.∠A=∠ED.∠B=∠D6.如图,在△ABC中,∠ACB=90°,CD⊥AB于点D,则图中相似三角形共有( C )A.1对B.2对C.3对D.4对7.如图,将一张直角三角形纸片BEC的斜边放在矩形ABCD的BC边上,恰好完全重合,BE、CE分别交AD于点F、G,BC=6,AF∶FG∶GD=3∶2∶1,则AB的长为( C )A. 1B.C.D. 28. 下列说法正确的是( A )A. 位似图形一定是相似图形B. 相似图形一定是位似图形C. 两个位似图形一定在位似中心的同侧D. 位似图形中每对对应点所在的直线必互相平行9.已知△ABC∽△DEF,△ABC的面积为1,△DEF的面积为4,则△ABC与△DEF的周长之比为( A )A. 1∶2B. 1∶4C. 2∶1D. 4∶110. 如图,△ABC∽△DEF,相似比为1∶2.若BC=1,则EF的长是( D )A .1B .2C .3D .4 二、填空题11.如图所示,C 为线段AB 上一点,且满足AC ∶BC =2∶3,D 为AB 的中点,且CD =2 cm ,则AB =________ cm.【答案】2012.在比例尺为 1:6 000 000 的海南地图上,量得海口与三亚的距离约为 3.7 厘米,则海口与三亚的实际距离约为 千米. 【答案】22213.在△ABC 中,MN ∥BC 分别交AB ,AC 于点M ,N ;若AM =1,MB =2,BC =3,则MN 的长为__________.【答案】114.如图,在▱ABCD 中,对角线AC 、BD 相交于点O ,在BA 的延长线上取一点E ,连接OE 交AD 于点F.若CD =5,BC =8,AE =2,则AF = . 【答案】16915.在△ABC 中,AB =6 cm ,AC =5 cm ,点D 、E 分别在AB 、AC 上.若△ADE 与△ABC 相似,且S △ADE ∶S 四边形BCED =1∶8,则AD =__________ cm. 【答案】2或 三、解答题16. 已知四条线段a ,b ,c ,d 的长度,试判断它们是否成比例: (1)a =16 cm,b =8 cm,c =5 cm,d =10 cm; (2)a =8 cm,b =5 cm,c =6 cm,d =10 cm.(1) 【答案】∵8×10=80,16×5=80,∴bd =ac.∴能够成比例. (2) 【答案】∵8×6=48,10×5=50,∴不能够成比例.17.问题背景:在某次活动课中,甲、乙、丙三个学习小组于同一时刻在阳光下对校园中一些物体进行了测量.下面是他们通过测量得到的一些信息如图1:甲组:测得一根直立于平地,长为80 cm的竹竿的影长为60 cm;如图2:乙组:测得学校旗杆的影长为900 cm;如图3:丙组:测得校园景灯(灯罩视为球体,灯杆为圆柱体,其粗细忽略不计)的高度为350 cm,影长为300 cm.解决问题:(1)请根据甲、乙两组得到的信息计算出学校旗杆的高度?(2)如图3,设太阳光线MH与⊙O相切于点M,请根据甲、丙两组得到的信息,求景灯灯罩的半径?【答案】解(1)∵同一时刻物高与影长成正比,∴=,即=,解得DE=1 200 cm;(2)连接OM,设OM=r,∵同一时刻物高与影长成正比,∴=,即=,解得NG=400 cm,在Rt△NGH中,NH===500 cm,设⊙O的半径为r,∵MH与⊙O相切于点M,∴OM⊥NH,∴∠NMO=∠NGH=90°,又∵∠ONM=∠GNH,∴△NMO∽△NGH,∴=,即=,又∵NO=NK+KO=(NG-KG)+KO=400-350+r=50+r,∴500r=300(50+r),解得r=75 cm.故景灯灯罩的半径是75 cm.18.如图已知,在△ABC中,CD⊥AB,BE⊥AC,BE交CD于点O.求证:△ABE∽△OCE.证明:因为CD ⊥AB ,BE ⊥AC ,所以∠AEB =∠ADC =90°.又∠A =∠A ,所以∠ABE =∠OCE.又因为∠AEB =∠OEC ,所以△ABE ∽△OCE.18.如图所示,△ABC 是等边三角形,点D 、E 分别在BC 、AC 上,且CE =BD ,BE 、AD 相交于点F .求证:(1)△ABD ≌△BCE ;(2)△AEF ∽△ABE .【答案】证明 (1)∵△ABC 是等边三角形,∴AB =BC ,∠ABD =∠C =∠BAC =60°,在△ABD 和△BCE 中,∴△ABD ≌△BCE (SAS);(2)∵△ABD ≌△BCE ,∴∠BAD =∠CBE ,∴∠EAF =∠ABE ,∵∠AEF =∠BEA ,∴△AEF ∽△ABE .19. 如图,在平面直角坐标系中,△ABC 的顶点坐标为A (-2,3),B (-3,2),C (-1,1).(1)若将△ABC 向右平移3个单位长度,再向上平移1个单位长度,请画出平移后的△A 1B 1C 1;(2)画出△A 1B 1C 1绕原点旋转180°后得到的△A 2B 2C 2;(3)△A'B'C'与△ABC 是位似图形,请写出位似中心的坐标: ;(4)顺次连接C ,C 1,C',C 2,所得到的图形是轴对称图形吗?(1) 【答案】如答图.(2) 【答案】如答图.(3) 【答案】(0,0)(4) 【答案】如答图,所得图形是轴对称图形.20.如图,△ABC、△DEP是两个全等的等腰直角三角形,∠BAC=∠PDE=90°.(1)若将△DEP的顶点P放在BC上(如图1),PD、PE分别与AC、AB相交于点F、G.求证:△PBG∽△FCP;(2)若使△DEP的顶点P与顶点A重合(如图2),PD、PE与BC相交于点F、G.试问△PBG与△FCP还相似吗?为什么?【答案】(1)证明如图1,∵△ABC、△DEP是两个全等的等腰直角三角形,∴∠B=∠C=∠DPE=45°,∴∠BPG+∠CPF=135°,在△BPG中,∵∠B=45°,∴∠BPG+∠BGP=135°,∴∠BGP=∠CPF,∵∠B=∠C,∴△PBG∽△FCP;(2)解△PBG与△FCP相似.理由如下:如图2,∵△ABC、△DEP是两个全等的等腰直角三角形,∴∠B=∠C=∠DPE=45°,∵∠BGP=∠C+∠CPG=45°+∠CAG,∠CPF=∠FPG+∠CAG=45°+∠CAG,∴∠AGP=∠CPF,∵∠B=∠C,∴△PBG∽△FCP.21.如图所示,△ABC是等边三角形,P是BC上一点,且△ABP∽△PCD.求∠APD的度数.解:△ABP∽△PCD,∴∠BAP=∠CPD.∵△ABC是等边三角形,∴∠B=60°,∴∠BAP+∠BPA=180°-60°=120°,∴∠BPA+∠CPD=120°,∴∠APD=180°-(∠BPA+∠CPD)=180°-120°=60°.22.将一张长、宽之比为的矩形纸ABCD依次不断对折,可得到的矩形纸BCFE,AEML,GMFH,LGPN.(1)矩形BCFE,AEML,GMFH,LGPN,长和宽的比变了吗?(2)在这些矩形中,有成比例的线段吗?(3)你认为这些大小不同的矩形相似吗?【答案】解(1)矩形BCFE,AEML,GMFH,LGPN,长和宽的比不变;(2)在这些矩形中,有成比例的线段.(3)这些大小不同的矩形相似.人教版九年级数学下第二十七章《相似》单元练习题(含答案)一、选择题1.下列说法正确的是()A.分别在△ABC的边AB,AC的反向延长线上取点D,E,使DE∥BC,则△ADE是△ABC 放大后的图形B.两位似图形的面积之比等于位似比C.位似多边形中对应对角线之比等于位似比D.位似图形的周长之比等于位似比的平方2.如图,以点O为位似中心,将△ABC缩小后得到△A′B′C′,已知OB=3OB′,则△A′B′C′与△ABC 的面积比为()A.1∶3B.1∶4C.1∶8D.1∶93.△ABC的三边之比为3∶4∶5,与其相似的△DEF的最短边是9 cm,则其最长边的长是()A.5 cmB.10 cmC.15 cmD.30 cm4.若矩形ABCD∽矩形EFGH,相似比为2∶3,已知AB=3 cm,BC=5 cm,则矩形EFGH的周长是()A.16 cmB.12 cmC.24 cmD.36 cm5.如图,∠ACB=∠ADC=90°,BC=a,AC=b,AB=c,要使△ABC∽△CAD,只要CD等于()A.B.C.D.6.如图,已知在正方形网格中的两个格点三角形是位似形,它们的位似中心是()A.点AB.点BC.点CD.点D7.“今有井径五尺,不知其深,立五尺木于井上,从木末望水岸,入径四寸,问井深几何?”这是我国古代数学《九章算术》中的“井深几何”问题,它的题意可以由图获得,则井深为()A.1.25尺B.57.5尺C.6.25尺D.56.5尺8.已知A、B两地的实际距离AB=5 km,画在图上的距离A′B′=2 cm,则图上的距离与实际距离的比是()A.2∶5B.1∶2 500C.250 000∶1D.1∶250 000二、填空题9.如图,练习本中的横格线都平行,且相邻两条横格线间的距离都相等,同一条直线上的三个点A、B、C都在横格线上.若线段AB=2 cm,则线段BC=________ cm.10.已知:如图,A′B′∥AB,A′C′∥AC,AA′的延长线交于BC于点D,△ABC与△A′B′C′是__________图形,其中____________点是位似中心.11.已知△ABC∽△A′B′C′,且S△ABC∶S△A′B′C′=16∶9,若AB=4,则A′B′=__________.12.已知△ABC∽△DEF,=,且AD为BC边上的中线,DG为EF边上的中线,则AD∶DG =__________.13.如图,以O为位似中心,将边长为256的正方形OABC依次作位似变换,经第一次变化后得正方形OA1B1C1,其边长OA1缩小为OA的,经第二次变化后得正方形OA2B2C2,其边长OA2缩小为OA1的,经第三次变化后得正方形OA3B3C3,其边长OA3缩小为OA2的,…,依次规律,经第n次变化后,所得正方形OAnBnCn的边长为正方形OABC边长的倒数,则n=________.14.如图,在△ABC中,D、E分别为AB、AC上的点,若DE∥BC,=,则=__________.15.若a∶b∶c=1∶3∶2,且a+b+c=24,则a+b-c=________.16.如图,用放大镜将图形放大,应属于哪一种变换:______________(请选填:对称变换、平移变换、旋转变换、相似变换).三、解答题17.有一个测量弹跳力的体育器材,如图所示,竖杆AC、BD的长度分别为200厘米、300厘米,CD=300厘米.现有一人站在斜杆AB下方的点E处,直立、单手上举时中指指尖(点F)到地面的高度为EF,屈膝尽力跳起时,中指指尖刚好触到斜杆AB上的点G处,此时,就将EG与EF的差值y(厘米)作为此人此次的弹跳成绩.(1)设CE=x(厘米),EF=a(厘米),求出由x和a表示y的计算公式;(2)现有一男生,站在某一位置尽力跳起时,刚好触到斜杆.已知该同学弹跳时站的位置为x =150厘米,且a=205厘米.若规定y≥50,弹跳成绩为优;40≤y<50时,弹跳成绩为良;30≤y<40时,弹跳成绩为及格,那么该生弹跳成绩处于什么水平?18.已知MN∥EF∥BC,点A、D为直线MN上的两动点,AD=a,BC=b,AE∶ED=m∶n;(1)当点A、D重合,即a=0时(如图1),试求EF.(用含m,n,b的代数式表示)(2)请直接应用(1)的结论解决下面问题:当A、D不重合,即a≠0,①如图2这种情况时,试求EF.(用含a,b,m,n的代数式表示)图1图2图3②如图3这种情况时,试猜想EF与a、b之间有何种数量关系?并证明你的猜想.19.下框中是小明对一道题目的解答以及老师的批改.题目:某村计划建造如图所示的矩形蔬菜温室,要求长与宽的比为2∶1,在温室内,沿前侧内墙保留3 m的空地,其他三侧内墙各保留1 m的通道,当温室的长与宽各为多少时,矩形蔬菜种植区域的面积是288 m2?解:设矩形蔬菜种植区域的宽为x_m,则长为2x m,根据题意,得x·2x=288.解这个方程,得x1=-12(不合题意,舍去),x2=12,所以温室的长为2×12+3+1=28(m),宽为12+1+1=14(m)答:当温室的长为28 m,宽为14 m时,矩形蔬菜种植区域的面积是288 m2.我的结果也正确!小明发现他解答的结果是正确的,但是老师却在他的解答中画了一条横线,并打了一个?.结果为何正确呢?(1)请指出小明解答中存在的问题,并补充缺少的过程:变化一下会怎样?(2)如图,矩形A′B′C′D′在矩形ABCD的内部,AB∥A′B′,AD∥A′D′,且AD∶AB=2∶1,设AB 与A′B′、BC与B′C′、CD与C′D′、DA与D′A′之间的距离分别为a、b、c、d,要使矩形A′B′C′D′∽矩形ABCD,a、b、c、d应满足什么条件?请说明理由.20.如图⊙O的内接△ABC中,外角∠ACF的角平分线与⊙O相交于D点,DP⊥AC,垂足为P,DH⊥BF,垂足为H.问:(1)∠PDC与∠HDC是否相等,为什么?(2)图中有哪几组相等的线段?(3)当△ABC满足什么条件时,△CPD∽△CBA,为什么?21.如图,图中的小方格都是边长为1的正方形,△ABC与△A′B′C′的顶点都在格点上.(1)求证:△ABC∽A′B′C′;(2)A′B′C′与△ABC是位似图形吗?如果是,在图形上画出位似中心并求出位似比.第二十七章《相似》单元练习题答案解析1.【答案】C【解析】∵分别在△ABC的边AB,AC的反向延长线上取点D,E,使DE∥BC,则△ADE是△ABC放大或缩小后的图形,∴A错误.∵位似图形是特殊的相似形,满足相似形的性质,∴B,D错误,正确的是C.故选C.2.【答案】D【解析】由位似变换的性质可知,A′B′∥AB,A′C′∥AC,∴==,∴==,∴△A′B′C′与△ABC的相似比为1∶3,∴△A′B′C′与△ABC的面积的比1∶9,故选D.3.【答案】C【解析】∵△ABC和△DEF相似,∴△DEF的三边之比为3∶4∶5,∴△DEF的最短边和最长边的比为3∶5,设最长边为x,则3∶5=9∶x,解得x=15,∴△DEF的最长边为15 cm,故选C.4.【答案】C【解析】∵AB=3 cm,BC=5 cm,∴矩形ABCD的周长=2×(3+5)=16 cm,∵矩形ABCD∽矩形EFGH,相似比为2∶3,∴矩形ABCD与矩形EFGH的周长比2∶3,∴矩形EFGH的周长为24 cm,故选C.5.【答案】A【解析】假设△ABC∽△CAD,∴=,即CD==,∴要使△ABC∽△CAD,只要CD等于,故选A.6.【答案】A【解析】如图,位似中心为点A.故选A.7.【答案】B【解析】依题意有△ABF∽△ADE,∴AB∶AD=BF∶DE,即5∶AD=0.4∶5,解得AD=62.5,BD=AD-AB=62.5-5=57.5尺.故选B.8.【答案】D【解析】∵5千米=500 000厘米,∴比例尺=2∶500 000=1∶250 000;故选D.9.【答案】6【解析】如图,过点A作AE⊥CE于点E,交BD于点D,∵练习本中的横格线都平行,且相邻两条横格线间的距离都相等,∴=,即=,∴BC=6 cm.10.【答案】位似O【解析】∵A′B′∥AB,A′C′∥AC,∴∠A′B′C′=∠B,∠A′C′B′=∠C,∴△A′B′C′∽△ABC,∵AA′的延长线交于BC于点D,∴△ABC与△A′B′C′是位似图形,其中O点是位似中心.11.【答案】3【解析】∵△ABC∽△A′B′C′,且S△ABC∶S△A′B″C′=16∶9,∴AB∶A′B′=4∶3,∵AB=4,∴A′B′=3.12.【答案】【解析】∵△ABC∽△DEF,∴BC∶EF=AD∶DG,∵=,∴BC∶EF=3∶2,∴AD∶DG=3∶2.13.【答案】16【解析】由图形的变化规律可得×256=,解得n=16.14.【答案】【解析】∵DE∥BC,∴△ADE∽△ABC,∴==.故答案为.15.【答案】8【解析】∵a∶b∶c=1∶3∶2,∴设a=k,则b=3k,c=2k,又∵a+b+c=24,∴k+3k+2k=24,∴k=4,∴a+b-c=k+3k-2k=2k=2×4=8.16.【答案】相似变换【解析】由一个图形到另一个图形,在改变的过程中形状不变,大小产生变化,属于相似变化.17.【答案】解(1)过A作AM⊥BD于点M,交GE于N.∵AC⊥CD,GE⊥CD,∴四边形ACEN为矩形,∴NE=AC,又∵AC=200,EF=a,FG=y,∴GN=GE-NE=a+y-200,∵DM=AC=200,∴BM=BD-DM=300-200=100,又∵GN∥BD,∴△ANG∽△AMB,∴=,即=,∴y=x-a+200;(2)当x=150 cm,a=205 cm时,y=×150-205+200=45( cm),y=45>40.故该生弹跳成绩处于良好水平.【解析】(1)利用相似三角形的判定与性质得出△ANG∽△AMB,进而得出=,即可得出答案;(2)当x=150 cm,a=205 cm时,直接代入(1)中所求得出即可.18.【答案】解(1)∵EF∥BC,∴△AEF∽△ABC,∴=,∵=,∴=,又BC=b,∴=,∴EF=;(2)①如图2,连接BD,与EF交于点H,由(1)知,HF=,EH=,∵EF=EH+HF,∴EF=;②猜想:EF=,证明:连接DE,并延长DE交BC于G,由已知,得BG=,EF=,∵GC=BC-BG,∴EF=(BC-BG)==.【解析】(1)由EF∥BC,即可证得△AEF∽△ABC,根据相似三角形的对应边成比例,即可证得=,根据比例变形,即可求得EF的值;(2)①连接BD,与EF交于点H,由(1)知,HF=,EH=,又由EF=EH+HF,即可求得EF的值;②连接DE,并延长DE交BC于G,根据平行线分线段成比例定理,即可求得BG的长,又由EF=与GC=BC-BG,即可求得EF的值.19.【答案】解(1)小明没有说明矩形蔬菜种植区域的长与宽之比为2∶1的理由.在“设矩形蔬菜种植区域的宽为x m,则长为2x m.”前补充以下过程:设温室的宽为x m,则长为2x m.则矩形蔬菜种植区域的宽为(x-1-1)m,长为(2x-3-1)m.∵==2,∴矩形蔬菜种植区域的长与宽之比为2∶1;(2)要使矩形A′B′C′D′∽矩形ABCD,就要=,即=,即=,即2AB-2(b+d)=2AB-(a+c),∴a+c=2(b+d),即=2.【解析】(1)根据题意可得小明没有说明矩形蔬菜种植区域的长与宽之比为2∶1的理由,所以应设矩形蔬菜种植区域的宽为x m,则长为2x m,然后由题意得==2,矩形蔬菜种植区域的长与宽之比为2∶1,再利用小明的解法求解即可;(2)由使矩形A′B′C′D′∽矩形ABCD,利用相似多边形的性质,可得=,即=,然后利用比例的性质,即可求得答案.20.【答案】解(1)相等.理由如下:∵CD为∠ACF的角平分线(已知),∴∠DCP=∠DCH,DP⊥AC,DH⊥BF.∴∠DPC=∠DHC=90°.∴∠PDC=∠HDC.(2)PC=HC,DP=DH,AP=BH,AD=BD.(3)∠ABC=90°且∠ACB=60°时,△CPD∽△CBA.∵∠CPD=90°,∴∠ABC=90°.∵CD为∠ACF的角平分线,∠PCD=∠DCF=∠ACB,∴∠ACB=60°.∴∠ABC=90°且∠ACB=60°时,△CPD∽△CBA.【解析】(1)根据角平分线与垂线的性质证明角相等;(2)发现全等三角形,根据全等三角形的对应边相等证明出线段相等;(3)根据其中一个是直角三角形得到AC必须是直径.再根据另一对角对应相等,结合利用平角发现必须都是60°才可.21.【答案】(1)证明∵AB=,BC=,AC=2,A′B′=2,B′C′=2,A′C′=4,∴==,∴△ABC∽A′B′C′;(2)解如图所示:两三角形对应点的连线相交于一点,故A′B′C′与△ABC是位似图形,O即为位似中心,位似比为2.【解析】(1)分别求出三角形各边长,进而得出答案;(2)利用位似图形的性质得出答案.。

最新九年级数学相似三角形单元测试题及答案

最新九年级数学相似三角形单元测试题及答案

精品文档相似单元测试九年级数学),选择题(每小题3分共30分一.( ) ,量得甲,乙两地的距离25cm,则甲,乙的实际距离是1.在比例尺为1:5000的地图上D.1.25km A.1250km B.125kmC. 12.5kmcabba? ( )2.已知 ,则的值为0???423c154 D. C.2 A.B. 524′与⊿′的两边长分别是1A和,3.已知⊿ABC如果⊿的三边长分别为ABC,,2,⊿A′B′C263( )′C′的第三边长应该是 B′C′相似,那么⊿A′B623 A. B.C. D. 22234.在相同时刻,物高与影长成正比。

如果高为1.5米的标杆影长为2.5米,那么影长为30米的旗杆的高为 ( )米 D 15 C 16米 A 20米 B 18米CAD, ∽⊿要使⊿ABCACB=∠ADC=90°,BC=a,AC=b,AB=c,5.如图,∠( ) 只要CD等于222abbab D. A. B. C.cacc而只有长,20cm,50cm,60cm,现要再做一个与其相似的钢筋三角架6.一个钢筋三角架三长分别为作为另两允许有余料)要求以其中的一根为一边,从另一根截下两段(30cm为和50cm的两根钢筋,) ( 边,则不同的截法有D.四种 C.三种 B.两种 A.一种( ) 7、用位似图形的方法,可以将一个图形放大或缩小,位似中心的位置可以选在任意位置C 原图形的边上 D 原图形的外部 B 原图形的内部 A□)的长(3,EF = 4,则CD、如图,ABCD中,EF∥AB,DE∶EA = 2∶81616 D.8 C. 10 A. B.3ba?ca?cb???k=c为非零实数,设已知a、,则k的值为() b、9.cba1-1 . D . C2或-1 A.2 B.ABC、某校计划在一块三角形的空地上修建一个面积最大的正方形水池,使得水池的一边在△10( ) ,则水池的边长应为AD=30mABC的边BC上,△中边BC=60m,高D 40mC 30m B 20m A 10m) 分分,共30二.填空题(每小题3y3x?x,、已知11则._____??4yy AB= .AC∶则的黄金分割点已知点.C是线段AB,且AC>BC,、12 ,则原矩形纸片如果对折后的矩形与原矩形相似把一矩形纸片对折、13., .的长与宽之比为精品文档.精品文档BC),(DEAB,AC上的点ABC中,D,E分别是14、如图,⊿. ABC相似,⊿ADE与⊿当或或时 BC边上的高,并且25°,AD是15、在△ABC中,∠B=2 ____________。

第4章 相似三角形数学九年级上册-单元测试卷-浙教版(含答案)

第4章 相似三角形数学九年级上册-单元测试卷-浙教版(含答案)

第4章相似三角形数学九年级上册-单元测试卷-浙教版(含答案)一、单选题(共15题,共计45分)1、如图,已知矩形ABCD中,AB=2,在BC上取一点E,沿AE将△ABE向上折叠,使B点落在AD上的F点处,若四边形EFDC与矩形ABCD相似,则AD=()A. B. +1 C.4 D.22、在比例尺是1:500的图纸上,测得一块长方形的土地长5厘米,宽4厘米,这块地的实际面积是()平方米.A.20平方米B.500平方米C.5000平方米D.500000平方米3、如图,在△ABC中,D、E分别是AB、AC的中点,下列说法中不正确的是()A.DE= BCB.C.△ADE∽△ABCD.S△ADE :S△ABC=1:24、如图,放映幻灯片时,通过光源,把幻灯片上的图形放大到屏幕上.若光源到幻灯片的距离为30cm,光源到屏幕的距离为90cm,且幻灯片中的图形的高度为7cm,则屏幕上图形的高度为()A.21cmB.14cmC.6cmD.24cm5、如图,已知直线a∥b∥c,直线m分别交直线a、b、C于点A,B,C,直线n分别交直线a、b、c于点D,E,F.若AB=3,AD=BC=5,则的值应该( ).A.等于B.小于C.大于D.不能确定6、如图,已知Rt△ABC中,∠ACB=90°, CD⊥AB于D,E是CD上一点(不与C,D重合),过E作FG⊥BC于G,交AB于F,过E作HK⊥AC于H,交AB于K,连结HF,GK.则的值是()A. B. C. D.7、如图,在矩形ABCD中,AB=6,BC=8,若将矩形折叠,使B点与D点重合,则折痕EF的长为( )A. B. C.5 D.68、如图,在一块斜边长30cm的直角三角形木板(Rt△ACB)上截取一个正方形CDEF,点D 在边BC上,点E在斜边AB上,点F在边AC上,若AF:AC=1:3,则这块木板截取正方形CDEF后,剩余部分的面积为( )A.100cm 2B.150cm 2C.170cm 2D.200cm 29、如图,在□ABCD中,E是BC的中点,且∠AEC=∠DCE,下列结论不正确的是( )A.BF= DFB.S△FAD =2S△FBEC.四边形AECD是等腰梯形D.∠AEB=∠ADC10、如图,已知A(﹣2,0),以B(0,1)为圆心,OB长为半径作⊙B,N是⊙B上一个动点,直线AN交y轴于M点,则△AOM面积的最大值是()A.2B.C.4D.11、若x:y=1:3,2y=3z,则的值是()A.﹣5B.﹣C.D.512、已知两个三角形相似,对应中线之比为1:4,那么对应周长之比为()A.1:2B.1:16C.1:4D.无法确定13、下列说法正确的是()A.等腰梯形的对角线互相平分.B.一组对边平行,另一组对边相等的四边形是平行四边形.C.线段的垂直平分线上的点到线段两个端点的距离相等.D.两边对应成比例且有一个角对应相等的两个三角形相似.14、如图,△ABC和△A1B1C1是以点O为位似中心的位似三角形,若C1为OC的中点,△A1B1C1面积是5,则△ABC的面积为()A.10B.20C.25 &nbsp;D.5015、如图中,点为边上一点,点在上,过点作交于点,过点作交于, 下列结论错误的是()A. B. C. D.二、填空题(共10题,共计30分)16、如图,已知点A在反比例函数y= (x>0)的图象上,作Rt△ABC,边BC在x轴上,点D为斜边AC的中点,连结DB并延长交y轴于点E,若△BCE的面积为4,则k=________.17、如图,已知点F是△ABC的重心,连接BF并延长,交AC于点E,连接CF并延长,交AB于点D,过点F作FG∥BC,交AC于点G.设三角形EFG,四边形FBCG的面积分别为S1,S2,则S1:S2=________.18、已知,则的值为________.19、赵爽弦图是由四个全等的直角三角形与中间的一个小正方形拼成的一个大正方形,如图所示,若这四个全等直角三角形的两条直角边分别平行于x轴和y轴,大正方形的顶点B1、C1、C2、C3、…、C n在直线y=﹣x+ 上,顶点D1、D2、D3、…、D n在x轴上,则第n 个阴影小正方形的面积为________.20、已知矩形纸片的边,(如图),将它折叠后,点落在边的中点处,那么折痕的长为________.21、如图,在△ABC中,AB=6,AC=8,点D是AB的中点,E是AC边上的一点,若以A、D、E为顶点的三角形与△ABC相似,则AE的长为________.22、若,则=________.23、已知反比例函数y= 在第二象限内的图象如图,经过图象上两点A、E分别引y轴与x轴的垂线,交于点C,且与y轴与x轴分别交于点M、B.连接OC交反比例函数图象于点D,且= ,连接OA,OE,如果△AOC的面积是15,则△ADC与△BOE的面积和为________.24、把10cm长的线段进行黄金分割后得两条线段,其中较长的线段的长为________cm.25、如图所示,在正方形ABCD中,G为CD边中点,连接AG并延长交BC边的延长线于E 点,对角线BD交AG于F点.已知FG=2,则线段AE的长度为________.三、解答题(共5题,共计25分)26、已知:,求的值.27、如图,在Rt△ABC中,∠C=90°,AC=4cm,BC=3cm.动点M,N从点C同时出发,均以每秒1cm的速度分别沿CA、CB向终点A,B移动,同时动点P从点B出发,以每秒2cm的速度沿BA向终点A移动,连接PM,PN,设移动时间为t(单位:秒,0<t<2.5).(1)当t为何值时,以A,P,M为顶点的三角形与△ABC相似?(2)是否存在某一时刻t,使四边形APNC的面积S有最小值?若存在,求S的最小值;若不存在,请说明理由.28、图1是由六个全等且边长为2的小正五边形,以及五个全等且顶角为36°、腰长为2的等腰三角形镶嵌而成的一个大正五边形,正五边形和等腰三角形的顶点称为格点,连接格点而成的三角形称为格点三角形.在图2的三个图中,分别画出一个与图中已知△ABC相似但不全等的格点三角形,并注明三角形的顶点字母.29、如图,.求证:AB=AE.30、已知反比例函数y=(m为常数)的图象经过点A(-1,6).(1)求m的值;(2)如图,过点A作直线AC与函数y=的图象交于点B,与x轴交于点C,且AB=2BC,求点C的坐标.参考答案一、单选题(共15题,共计45分)1、B2、B3、D4、A5、C6、B7、A8、A9、B10、B11、A13、C14、B15、A二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)27、28、29、30、。

(完整版)《相似三角形》单元测试题(含答案)

《相似三角形》单元测试题一、精心选一选(每小题4分,共32分)1.下列各组图形有可能不相似的是( ).(A)各有一个角是50°的两个等腰三角形 (B )各有一个角是100°的两个等腰三角形 (C)各有一个角是50°的两个直角三角形 (D)两个等腰直角三角形2。

如图,D 是⊿ABC 的边AB 上一点,在条件(1)△ACD =∠B ,(2)AC 2=AD·AB,(3)AB 边上与点C 距离相等的点D 有两个,(4)∠B =△ACB 中,一定使⊿ABC ∽⊿ACD 的个数是( )(A )1 (B )2 (C )3 (D )43.如图,∠ABD =∠ACD ,图中相似三角形的对数是( ) (A)2 (B)3 (C )4 (D )54。

如图,在矩形ABCD 中,点E 是AD 上任意一点,则有( ) (A )△ABE 的周长+△CDE 的周长=△BCE 的周长 (B )△ABE 的面积+△CDE 的面积=△BCE 的面积 (C )△ABE ∽△DEC (D)△ABE ∽△EBC5。

如果两个相似多边形的面积比为9:4,那么这两个相似多边形的相似比为( )A.9:4B.2:3 C 。

3:2 D 。

81:16 6. 下列两个三角形不一定相似的是( )。

A. 两个等边三角形B. 两个全等三角形C. 两个直角三角形 D 。

两个等腰直角三角形 7. 若⊿ABC ∽⊿C B A '',∠A=40°,∠B=110°,则∠C '=( )A 。

40° B110° C70° D30°8.如图,在ΔABC 中,AB=30,BC=24,CA=27,AE=EF=FB ,EG ∥FD ∥BC,FM ∥EN ∥AC,则图中阴影部分的三个三角形的周长之和为( )A 、70B 、75C 、81D 、80二、细心填一填(每小题3分,共24分)9.如图,在△ABC中,△BAC=90°,D是BC中点,AE∥AD交CB延长线于点E,则⊿BAE相似于______.10、在一张比例尺为1:10000的地图上,我校的周长为18cm,则我校的实际周长为。

《相似三角形》单元测试卷及答案

《相似三角形》
第Ⅰ卷(选择题)
评卷人
得 分
一.选择题(共6小题)
1.如图,已知矩形ABCD中,AB=2,在BC上取一点E,沿AE将△ABE向上折叠,使B点落在AD上的F点处,若四边形EFDC与矩形ABCD相似,则AD=( )
A. B. +1C.2
2.在平面直角坐标系中,正方形ABCD的位置如下图所示,点A的坐标为(1,0),点D的坐标为(0,3).延长CB交x轴于点A1,作正方形A1B1C1C;延长C1B1交x轴于点A2,作正方形A2B2C2C1…按这样的规律进行下去,第2012个正方形的面积为( )
≤x≤6),那么:
(1)点Q运动多少秒时,△OPQ的面积为5cm2;
(2)当x为何值时,以P、O、Q为顶点的三角形与△AOB相似?
15.如图,在矩形OABC中,AO=10,AB=8,沿直线CD折叠矩形OABC的一边BC,使点B落在OA边上的点E处.
(1)求AD的长;
(2)一动点P从点E出发,沿EC以每秒2个单位长的速度向点C运动,同时动点Q从点C出发,沿CO以每秒1个单位长的速度向点O运动,当点P运动到点C时,两点同时停止运动.设运动时间为t秒,当t为何值时,以P、Q、C为顶点的三角形与△ADE相似?
19.已知,△ABC在直角坐标平面内,三个顶点的坐标分别为A(﹣2,2)、B(﹣1,0)、C(0,1)(正方形网格中每个小正方形的边长是一个单位长度).
(1)画出△ABC关于y轴的轴对称图形△A1B1C1;
(2)以点O为位似中心,在网格内画出所有符合条件的△A2B2C2,使△A2B2C2与△A1B1C1位似,且位似比为2:1;
8.如图,AB、CD、EF都与BD垂直,垂足分别是B、D、F,且AB=1,CD=3,则EF:CD的值为.

初中数学(人教版)九(下)单元测试卷3—相似(含答案解析)

初中数学(人教版)九(下)单元测试卷3—相似(含答案解析)一.选择题1.若a:b=2:3,则下列各式中正确的式子是()A.2a=3b B.3a=2b C.D.2.若x:y=1:3,2y=3z,则的值是()A.﹣5B.﹣C.D.53.如图,在△ABC中,DE∥BC,若=,则=()A.B.C.D.4.如图,直线l1∥l2∥l3,一等腰直角三角形ABC的三个顶点A,B,C分别在l1,l2,l3上,∠ACB=90°,AC交l2于点D,已知l1与l2的距离为1,l2与l3的距离为3,则的值为()A.B.C.D.5.若两个相似多边形的面积之比为1:4,则它们的周长之比为()A.1:4B.1:2C.2:1D.4:16.)已知矩形ABCD中,AB=1,在BC上取一点E,沿AE将△ABE向上折叠,使B点落在AD上的F点,若四边形EFDC与矩形ABCD相似,则AD=()A.B.C.D.27.如图,点F在平行四边形ABCD的边AB上,射线CF交DA的延长线于点E,在不添加辅助线的情况下,与△AEF相似的三角形有()A.0个B.1个C.2个D.3个8.如图,点P在△ABC的边AC上,要判断△ABP∽△ACB,添加一个条件,不正确的是()A.∠ABP=∠CB.∠APB=∠ABC C.=D.=9.如图,在△ABC中,BF平分∠ABC,AF⊥BF于点F,D为AB的中点,连接DF延长交AC于点E.若AB=10,BC=16,则线段EF的长为()A.2B.3C.4D.510.△ABC与△DEF的相似比为1:4,则△ABC与△DEF的周长比为()A.1:2B.1:3C.1:4D.1:1611.如图是由边长相同的小正方形组成的网格,A,B,P,Q四点均在正方形网格的格点上,线段AB,PQ相交于点M,则图中∠QMB的正切值是()A.B.1C.D.212.如图,在直角坐标系中,有两点A(6,3),B(6,0),以原点O位似中心,相似比为,在第一象限内把线段AB缩小后得到线段CD,则点C的坐标为()A.(2,1)B.(2,0)C.(3,3)D.(3,1)二.填空题13.如果===k(b+d+f≠0),且a+c+e=3(b+d+f),那么k=.14.如图,AB∥CD∥EF,AF与BE相交于点G,且AG=2,GD=1,DF=5,那么的值等于.15.如图,在△ABC中,D是AB边上的一点,连接CD,请添加一个适当的条件,使△ABC∽△ACD.(只填一个即可)16.已知矩形ABCD中,AB=1,在BC上取一点E,将△ABE沿AE向上折叠,使B点落在AD上的F点.若四边形EFDC与矩形ABCD相似,则AD=.三.解答题17.如图,在△ABC中,AB=AC=1,BC=,在AC边上截取AD=BC,连接BD.(1)通过计算,判断AD2与AC•CD的大小关系;(2)求∠ABD的度数.18.如图,在△ABC中,AB=AC,∠A=36°,BD为角平分线,DE⊥AB,垂足为E.(1)写出图中一对全等三角形和一对相似比不为1的相似三角形;(2)选择(1)中一对加以证明.19.如图,在平面直角坐标系xOy中,直线y=﹣x+3与x轴交于点C,与直线AD交于点A(,),点D的坐标为(0,1)(1)求直线AD的解析式;(2)直线AD与x轴交于点B,若点E是直线AD上一动点(不与点B重合),当△BOD与△BCE相似时,求点E的坐标.20.如图,在△ABC中,AD平分∠BAC交BC于点D.点E、F分别在边AB、AC上,且BE=AF,FG∥AB交线段AD于点G,连接BG、EF.(1)求证:四边形BGFE是平行四边形;(2)若△ABG∽△AGF,AB=10,AG=6,求线段BE的长.21.如图,某校数学兴趣小组利用自制的直角三角形硬纸板DEF来测量操场旗杆AB的高度,他们通过调整测量位置,使斜边DF与地面保持平行,并使边DE与旗杆顶点A在同一直线上,已知DE=0.5米,EF=0.25米,目测点D到地面的距离DG=1.5米,到旗杆的水平距离DC=20米,求旗杆的高度.22.如图,是一个照相机成像的示意图.(1)如果像高MN是35mm,焦距是50mm,拍摄的景物高度AB是4.9m,拍摄点离景物有多远?(2)如果要完整的拍摄高度是2m的景物,拍摄点离景物有4m,像高不变,则相机的焦距应调整为多少?答案解析一.选择题1.若a:b=2:3,则下列各式中正确的式子是()A.2a=3b B.3a=2b C.D.【考点】比例的性质.【分析】根据比例的性质,对选项一一分析,选择正确答案.【解答】解:A、2a=3b⇒a:b=3:2,故选项错误;B、3a=2b⇒a:b=2:3,故选项正确;C、=⇒b:a=2:3,故选项错误;D、=⇒a:b=4:3,故选项错误.故选B.【点评】考查了比例的性质.在比例里,两个外项的乘积等于两个内项的乘积.2.若x:y=1:3,2y=3z,则的值是()A.﹣5B.﹣C.D.5【考点】比例的性质.【专题】计算题.【分析】根据比例设x=k,y=3k,再用k表示出z,然后代入比例式进行计算即可得解.【解答】解:∵x:y=1:3,∴设x=k,y=3k,∵2y=3z,∴z=2k,∴==﹣5.故选:A.【点评】本题考查了比例的性质,利用“设k法”分别表示出x、y、z可以使计算更加简便.3.如图,在△ABC中,DE∥BC,若=,则=()A.B.C.D.【考点】平行线分线段成比例.【分析】直接利用平行线分线段成比例定理写出答案即可.【解答】解:∵DE∥BC,∴==,故选C.【点评】本题考查了平行线分线段成比例定理,了解定理的内容是解答本题的关键,属于基础定义或定理,难度不大.4.(2016•淄博)如图,直线l1∥l2∥l3,一等腰直角三角形ABC的三个顶点A,B,C分别在l1,l2,l3上,∠ACB=90°,AC交l2于点D,已知l1与l2的距离为1,l2与l3的距离为3,则的值为()A.B.C.D.【考点】平行线分线段成比例.【专题】线段、角、相交线与平行线.【分析】先作出作BF⊥l3,AE⊥l3,再判断△ACE≌△CBF,求出CE=BF=3,CF=AE=4,然后由l2∥l3,求出DG,即可.【解答】解:如图,作BF⊥l3,AE⊥l3,∵∠ACB=90°,∴∠BCF+∠ACE=90°,∵∠BCF+∠CFB=90°,∴∠ACE=∠CBF,在△ACE和△CBF中,,∴△ACE≌△CBF,∴CE=BF=3,CF=AE=4,∵l1与l2的距离为1,l2与l3的距离为3,∴AG=1,BG=EF=CF+CE=7∴AB==5,∵l2∥l3,∴=∴DG=CE=,∴BD=BG﹣DG=7﹣=,∴=.故选A.【点评】此题是平行线分线段成比例试题,主要考查了全等三角形的性质和判定,平行线分线段成比例定理,勾股定理,解本题的关键是构造全等三角形.5.若两个相似多边形的面积之比为1:4,则它们的周长之比为()A.1:4B.1:2C.2:1D.4:1【考点】相似多边形的性质.【分析】根据相似多边形的面积之比等于相似比的平方,周长之比等于相似比,就可求解.【解答】解:∵两个相似多边形面积比为1:4,∴周长之比为=1:2.故选:B.【点评】本题考查相似多边形的性质.相似多边形对应边之比、周长之比等于相似比,而面积之比等于相似比的平方.6.已知矩形ABCD中,AB=1,在BC上取一点E,沿AE将△ABE向上折叠,使B点落在AD上的F点,若四边形EFDC与矩形ABCD相似,则AD=()A.B.C.D.2【考点】相似多边形的性质.【分析】可设AD=x,根据四边形EFDC与矩形ABCD相似,可得比例式,求解即可.【解答】解:∵沿AE将△ABE向上折叠,使B点落在AD上的F点,∴四边形ABEF是正方形,∵AB=1,设AD=x,则FD=x﹣1,FE=1,∵四边形EFDC与矩形ABCD相似,∴=,=,解得x1=,x2=(负值舍去),经检验x1=是原方程的解.故选B.【点评】考查了翻折变换(折叠问题),相似多边形的性质,本题的关键是根据四边形EFDC与矩形ABCD相似得到比例式.7.如图,点F在平行四边形ABCD的边AB上,射线CF交DA的延长线于点E,在不添加辅助线的情况下,与△AEF相似的三角形有()A.0个B.1个C.2个D.3个【考点】相似三角形的判定.【分析】直接利用平行四边形的性质得出AD∥BC,AB∥DC,再结合相似三角形的判定方法得出答案.【解答】解:∵四边形ABCD是平行四边形,∴AD∥BC,AB∥DC,∴△AEF∽△CBF,△AEF∽△DEC,∴与△AEF相似的三角形有2个.故选:C.【点评】此题主要考查了相似三角形的判定以及平行四边形的性质,正确掌握相似三角形的判定方法是解题关键.8.如图,点P在△ABC的边AC上,要判断△ABP∽△ACB,添加一个条件,不正确的是()A.∠ABP=∠CB.∠APB=∠ABC C.=D.=【考点】相似三角形的判定.【分析】分别利用相似三角形的判定方法判断得出即可.【解答】解:A、当∠ABP=∠C时,又∵∠A=∠A,∴△ABP∽△ACB,故此选项错误;B、当∠APB=∠ABC时,又∵∠A=∠A,∴△ABP∽△ACB,故此选项错误;C、当=时,又∵∠A=∠A,∴△ABP∽△ACB,故此选项错误;D、无法得到△ABP∽△ACB,故此选项正确.故选:D.【点评】此题主要考查了相似三角形的判定,正确把握判定方法是解题关键.9.如图,在△ABC中,BF平分∠ABC,AF⊥BF于点F,D为AB的中点,连接DF延长交AC于点E.若AB=10,BC=16,则线段EF的长为()A.2B.3C.4D.5【考点】相似三角形的判定与性质.【分析】根据直角三角形斜边上中线是斜边的一半可得DF=AB=AD=BD=5且∠ABF=∠BFD,结合角平分线可得∠CBF=∠DFB,即DE∥BC,进而可得DE=8,由EF=DE﹣DF可得答案.【解答】解:∵AF⊥BF,∴∠AFB=90°,∵AB=10,D为AB中点,∴DF=AB=AD=BD=5,∴∠ABF=∠BFD,又∵BF平分∠ABC,∴∠ABF=∠CBF,∴∠CBF=∠DFB,∴DE∥BC,∴△ADE∽△ABC,∴=,即,解得:DE=8,∴EF=DE﹣DF=3,故选:B.【点评】本题主要考查直角三角形的性质和相似三角形的判定与性质,熟练运用其判定与性质是解题的关键.10.△ABC与△DEF的相似比为1:4,则△ABC与△DEF的周长比为()A.1:2B.1:3C.1:4D.1:16【考点】相似三角形的性质.【分析】由相似三角形周长的比等于相似比即可得出结果.【解答】解:∵△ABC与△DEF的相似比为1:4,∴△ABC与△DEF的周长比为1:4;故选:C.【点评】本题考查了相似三角形的性质;熟记相似三角形周长的比等于相似比是解决问题的关键.11.如图是由边长相同的小正方形组成的网格,A,B,P,Q四点均在正方形网格的格点上,线段AB,PQ相交于点M,则图中∠QMB的正切值是()A.B.1C.D.2【考点】相似三角形的性质.【专题】网格型.【分析】根据题意平移AB使A点与P点重合,进而得出,△QPB′是直角三角形,再利用tan∠QMB=tan∠P=,进而求出答案.【解答】解:如图所示:平移AB使A点与P点重合,连接B′Q,可得∠QMB=∠P,∵PB′=2,PQ=2,B′Q=4,∴PB′2+PB′2=B′Q2,∴△QPB′是直角三角形,∴tan∠QMB=tan∠P===2.故选:D.【点评】此题主要考查了勾股定理以及锐角三角函数关系,正确得出△QPB′是直角三角形是解题关键.12.如图,在直角坐标系中,有两点A(6,3),B(6,0),以原点O位似中心,相似比为,在第一象限内把线段AB缩小后得到线段CD,则点C的坐标为()A.(2,1)B.(2,0)C.(3,3)D.(3,1)【考点】平面直角坐标系中的位似变换.【分析】根据位似变换的性质可知,△ODC∽△OBA,相似比是,根据已知数据可以求出点C的坐标.【解答】解:由题意得,△ODC∽△OBA,相似比是,∴=,又OB=6,AB=3,∴OD=2,CD=1,∴点C的坐标为:(2,1),故选:A.【点评】本题考查的是位似变换,掌握位似变换与相似的关系是解题的关键,注意位似比与相似比的关系的应用.二.填空题13.如果===k(b+d+f≠0),且a+c+e=3(b+d+f),那么k=3.【考点】比例的性质.【分析】根据等比性质,可得答案.【解答】解:由等比性质,得k===3,故答案为:3.【点评】本题考查了比例的性质,利用了等比性质:===k⇒k==.14.(2016•济宁)如图,AB∥CD∥EF,AF与BE相交于点G,且AG=2,GD=1,DF=5,那么的值等于.【考点】平行线分线段成比例.【分析】首先求出AD的长度,然后根据平行线分线段成比例定理,列出比例式即可得到结论.【解答】解:∵AG=2,GD=1,∴AD=3,∵AB∥CD∥EF,∴=,故答案为:.【点评】该题主要考查了平行线分线段成比例定理及其应用问题;解题的关键是准确找出图形中的对应线段,正确列出比例式求解、计算.15.如图,在△ABC中,D是AB边上的一点,连接CD,请添加一个适当的条件∠ACD=∠ABC(答案不唯一),使△ABC∽△ACD.(只填一个即可)【考点】相似三角形的判定.【专题】开放型.【分析】相似三角形的判定有三种方法:①三边法:三组对应边的比相等的两个三角形相似;②两边及其夹角法:两组对应边的比相等且夹角对应相等的两个三角形相似;③两角法:有两组角对应相等的两个三角形相似.由此可得出可添加的条件.【解答】解:由题意得,∠A=∠A(公共角),则可添加:∠ACD=∠ABC,利用两角法可判定△ABC∽△ACD.故答案可为:∠ACD=∠ABC.【点评】本题考查了相似三角形的判定,解答本题的关键是熟练掌握三角形相似的三种判定方法,本题答案不唯一.16.已知矩形ABCD中,AB=1,在BC上取一点E,将△ABE沿AE向上折叠,使B点落在AD上的F点.若四边形EFDC与矩形ABCD相似,则AD=.【考点】相似多边形的性质.【专题】压轴题.【分析】可设AD=x,由四边形EFDC与矩形ABCD相似,根据相似多边形对应边的比相等列出比例式,求解即可.【解答】解:∵AB=1,设AD=x,则FD=x﹣1,FE=1,∵四边形EFDC与矩形ABCD相似,∴=,=,解得x1=,x2=(不合题意舍去),经检验x1=是原方程的解.故答案为.【点评】本题考查了翻折变换(折叠问题),相似多边形的性质,本题的关键是根据四边形EFDC与矩形ABCD相似得到比例式.三.解答题(共52分)17.(2016•福州)如图,在△ABC中,AB=AC=1,BC=,在AC边上截取AD=BC,连接BD.(1)通过计算,判断AD2与AC•CD的大小关系;(2)求∠ABD的度数.【考点】相似三角形的判定.【分析】(1)先求得AD、CD的长,然后再计算出AD2与AC•CD的值,从而可得到AD2与AC•CD的关系;(2)由(1)可得到BD2=AC•CD,然后依据对应边成比例且夹角相等的两三角形相似证明△BCD∽△ABC,依据相似三角形的性质可知∠DBC=∠A,DB=CB,然后结合等腰三角形的性质和三角形的内角和定理可求得∠ABD的度数.【解答】解:(1)∵AD=BC,BC=,∴AD=,DC=1﹣=.∴AD2==,AC•CD=1×=.∴AD2=AC•CD.(2)∵AD=BC,AD2=AC•CD,∴BC2=AC•CD,即.又∵∠C=∠C,∴△BCD∽△ACB.∴,∠DBC=∠A.∴DB=CB=AD.∴∠A=∠ABD,∠C=∠BDC.设∠A=x,则∠ABD=x,∠DBC=x,∠C=2x.∵∠A+∠ABC+∠C=180°,∴x+2x+2x=180°.解得:x=36°.∴∠ABD=36°.【点评】本题主要考查的是相似三角形的性质和判定、等腰三角形的性质、三角形内角和定理的应用,证得△BCD∽△ABC是解题的关键.18.如图,在△ABC中,AB=AC,∠A=36°,BD为角平分线,DE⊥AB,垂足为E.(1)写出图中一对全等三角形和一对相似比不为1的相似三角形;(2)选择(1)中一对加以证明.【考点】相似三角形的判定.【分析】(1)利用相似三角形的判定以及全等三角形的判定方法得出符合题意的答案;(2)利用相似三角形的判定以及全等三角形的判定方法分别得出即可.【解答】解:(1)△ADE≌△BDE,△ABC∽△BCD;(2)证明:∵AB=AC,∠A=36°,∴∠ABC=∠C=72°,∵BD为角平分线,∴∠ABD=∠ABC=36°=∠A,在△ADE和△BDE中∵,∴△ADE≌△BDE(AAS);证明:∵AB=AC,∠A=36°,∴∠ABC=∠C=72°,∵BD为角平分线,∴∠DBC=∠ABC=36°=∠A,∵∠C=∠C,∴△ABC∽△BCD.【点评】此题主要考查了相似三角形以及全等三角形的判定,正确把握判定方法是解题关键.19.(2016•广州)如图,在平面直角坐标系xOy中,直线y=﹣x+3与x轴交于点C,与直线AD交于点A(,),点D的坐标为(0,1)(1)求直线AD的解析式;(2)直线AD与x轴交于点B,若点E是直线AD上一动点(不与点B重合),当△BOD与△BCE相似时,求点E的坐标.【考点】相似三角形的性质.【分析】(1)设直线AD的解析式为y=kx+b,用待定系数法将A(,),D(0,1)的坐标代入即可;(2)由直线AD与x轴的交点为(﹣2,0),得到OB=2,由点D的坐标为(0,1),得到OD=1,求得BC=5,根据相似三角形的性质得到或,代入数据即可得到结论.【解答】解:(1)设直线AD的解析式为y=kx+b,将A(,),D(0,1)代入得:,解得:.故直线AD的解析式为:y=x+1;(2)∵直线AD与x轴的交点为(﹣2,0),∴OB=2,∵点D的坐标为(0,1),∴OD=1,∵y=﹣x+3与x轴交于点C(3,0),∴OC=3,∴BC=5∵△BOD与△BEC相似,∴或,∴==或,∴BE=2,CE=,或CE=,∵BC•EF=BE•CE,∴EF=2,CF==1,∴E(2,2),或(3,).【点评】本题考查了相似三角形的性质,待定系数法求函数的解析式,正确的作出图形是解题的关键.20.如图,在△ABC中,AD平分∠BAC交BC于点D.点E、F分别在边AB、AC上,且BE=AF,FG∥AB交线段AD于点G,连接BG、EF.(1)求证:四边形BGFE是平行四边形;(2)若△ABG∽△AGF,AB=10,AG=6,求线段BE的长.【考点】相似三角形的性质.【专题】综合题.【分析】(1)根据FG∥AB,又AD平分∠BAC,可证得,∠AGF=∠GAF,从而得:AF=FG=BE,又因为FG∥AB,所以可知四边形BGFE是平行四边形;(2)根据△ABG∽△AGF,可得,求出AF的长,再由(1)的结论:AF=FG=BE,即可得BE的长.【解答】(1)证明:∵FG∥AB,∴∠BAD=∠AGF.∵∠BAD=∠GAF,∴∠AGF=∠GAF,AF=GF.∵BE=AF,∴FG=BE,又∵FG∥BE,∴四边形BGFE为平行四边形.(4分)(2)解:△ABG∽△AGF,∴,即,∴AF=3.6,∵BE=AF,∴BE=3.6.【点评】解决此类题目,要掌握平行四边形的判定及相似三角形的性质.21.如图,某校数学兴趣小组利用自制的直角三角形硬纸板DEF来测量操场旗杆AB的高度,他们通过调整测量位置,使斜边DF与地面保持平行,并使边DE与旗杆顶点A在同一直线上,已知DE=0.5米,EF=0.25米,目测点D到地面的距离DG=1.5米,到旗杆的水平距离DC=20米,求旗杆的高度.【考点】利用标杆测量物体的高度.【分析】根据题意可得:△DEF∽△DCA,进而利用相似三角形的性质得出AC 的长,即可得出答案.【解答】解:由题意可得:△DEF∽△DCA,则=,∵DE=0.5米,EF=0.25米,DG=1.5m,DC=20m,∴=,解得:AC=10,故AB=AC+BC=10+1.5=11.5(m),答:旗杆的高度为11.5m.【点评】此题主要考查了相似三角形的应用,得出△DEF∽△DCA是解题关键.22.如图,是一个照相机成像的示意图.(1)如果像高MN是35mm,焦距是50mm,拍摄的景物高度AB是4.9m,拍摄点离景物有多远?(2)如果要完整的拍摄高度是2m的景物,拍摄点离景物有4m,像高不变,则相机的焦距应调整为多少?【考点】利用镜子测量物体的高度.【分析】(1)利用相似三角形对应边上的高等于相似比即可列出比例式求解;(2)和上题一样,利用物体的高和拍摄点距离物体的距离及像高表示求相机的焦距即可.【解答】解:根据物体成像原理知:△LMN∽△LBA,∴.(1)∵像高MN是35mm,焦距是50mm,拍摄的景物高度AB是4.9m,∴,解得:LD=7,∴拍摄点距离景物7米;(2)拍摄高度是2m的景物,拍摄点离景物有4m,像高不变,∴,解得:LC=70,∴相机的焦距应调整为70mm.【点评】本题考查了相似三角形的应用,解题的关键是根据题意得到相似三角形,并熟知相似三角形对应边上的高的比等于相似比.。

人教版九年级下学期相似三角形单元过关测试卷与参考答案

人教版九年级下学期相似三角形单元过关测试卷与参考答案一、选择题(每小题5分,共25分)1.如图,在△ABC 中,D 、E 分别是AB 、AC 的中点,下列说法中不正确的是( ) A .12DE BC =B .AD AEAB AC=C .△ADE ∽△ABCD .S △ADE :S △ABC =1:2 2.在△ABC ∽△'''A B C 中,有下列条件:①.''''AB BC A B B C =;②. ''''BC ACB C A C =;③.'A A ∠=∠;④.'C C ∠=∠.如果从中任取两个条件组成一组,那么能判断△ABC ∽△'''A B C 共有( ) A.1组 B.2组 C.3组 D.4组 3.如图,已知△ABC 和△ADE 均为等边三角形,D 在BC 上,DE 与AC 相交于点F ,AB=9,BD=3,则CF 等于( ) A .1 B .2C .3D .4(第1题) (第3题) (第4题 ) (第5题 ) 4.在四边形ABCD 中,∠B=90°,AC=4,AB ∥CD ,DH 垂直平分AC ,点H 为垂足.设AB=x ,AD=y ,则y 关于x 的函数关系用图象大致可以表示为( )A .B .C .D .5.如图,Rt △ABC 中,∠ACB=90°,∠ABC=60°,BC=2cm ,D 为BC 的中点,若动点E 以1cm/s 的速度从A 点出发,沿着A →B 的方向运动,设E 点的运动时间为t 秒(0≤t <4),连接DE ,当以B 、D 、E 为顶点的三角形与△ABC 相似时,t 的值为( )A .2B .2.5或3.5C .2或3.5D .2或2.5 二、填空题(每小题5分,共15分)6.两个相似三角形的一对对应边长分别为20cm ,25cm ,它们的周长差为12cm ,则这两个三角形的周长分别是________.7.如图,一束光线从点A (3,3)出发,经过y 轴上点C 反射后经过点B (1,0),则光线从点A 到点B 经过的路径长为 .第8题图第7题图8. 如图,在已建立直角坐标系中,Rt △ABO 的顶点O 与原点重合,顶点B 在x 轴上,ABO 90∠=,OA 与反比例函数()ky x 0x=<的图象交于点D ,且OD 2AD =,过点D 作x 轴的垂线交x 轴于点C . 若S 四边形ABCD 10=,则k 的值为 .三、解答题(共60分 第9、10题各10分,第11题12分,第12题13分,第13题15分) 9.如图,已知,AB 3AC BD 3AE ==,且BD ∥AC ,点B A E 、、在同一直线上. 求证:△ABD ∽△CAE ;10 .如图,在□ABCD 中,点E 在BC 边上,点F 在DC 的延长线上,且∠DAE =∠F . 若AB =5,AD =8,BE =2,求FC 的长.FEADCBB11.如图,正方形ABCD中,E为CD的中点,EF⊥AE,交BC于点F,试判断∠1与∠2的大小关系,并说明理由12.如图,△ABC中,AB=AC,E在BA的延长线上,AD平分∠CAE.(1)求证:AD∥BC;(2)过点C作CG⊥AD于点F,交AE于点G,若AF=4,求BC的长.13.如图,已知正方形ABCD中,BE平分∠DBC且交CD边于点E,将△BCE绕点C顺时针旋转到△DCF的位置,并延长BE交DF于点G.(1)求证:△BDG∽△DEG;(2)若EG•BG=4,求BE的长.单元测试卷与参考答案一、选择题1.D 2.C 3.B 4.D 5.C 二、填空题6.48cm 和60cm 7.5 8.-16 三、解答题 9.证明:∵ BD ∥AC,点B,A,E 在同一条直线上, ∴ ∠DBA=∠CAE,又∵,AB 3AC BD 3AE ==.3BDAE==.∴ABD CAE ∆∆∽.10.(1)证明:∵四边形ABCD 是平行四边形,∴AB ∥CD ,AD ∥BC . ∴∠B =∠ECF ,∠DAE =∠AEB. 又∵∠DAE =∠F ,∴∠AEB =∠F .∴△ABE ∽△ECF . ∵△ABE ∽△ECF ,∴AB BE EC CF=. ∵四边形ABCD 是平行四边形,∴BC =AD =8.∴EC =BC -BE =8-2=6.∴526CF =.∴125CF =.11.解:∵∠AED +∠CEF=90°,∠DAE +∠ADE=90°,∴∠DAE=∠CEF ,∵∠ADE=∠ECF=90°, ∴△ADE ∽△ECF ,且相似比为2,∴AE=2EF ,AD=2DE ,又∵∠ADE=∠AEF ,∴△ADE ∽△AEF , ∴∠1=∠2.12.(1)证明:∵AD 平分∠CAE ,∴∠DAG=12∠CAG ,∵AB=AC ,∴∠B=∠ACB , ∵∠CAG=∠B +∠ACB ,∴∠B=12∠CAG ,∴∠B=∠CAG ,∴AD ∥BC ; (2)解:∵CG ⊥AD ,∴∠AFC=∠AFG=90°, 在△AFC 和△AFG 中,CAF GAF AF AFAFC AFG ∠=∠=∠=∠⎧⎪⎨⎪⎩, ∴△AFC ≌△AFG (ASA ),∴CF=GF ,∵AD ∥BC ,∴△AGF ∽△BGC ,∴GF :GC=AF :BC=1:2,∴BC=2AF=2×4=8. 13.(1)证明:∵将△BCE 绕点C 顺时针旋转到△DCF 的位置,∴△BCE ≌△DCF ,∴∠FDC=∠EBC ,∵BE 平分∠DBC ,∴∠DBE=∠EBC ,∴∠FDC=∠EBD ,∵∠DGE=∠DGE ,∴△BDG ∽△DEG .(2)解:∵△BCE ≌△DCF ,∴∠F=∠BEC ,∠EBC=∠FDC ,∵四边形ABCD 是正方形, ∴∠DCB=90°,∠DBC=∠BDC=45°,∵BE 平分∠DBC ,∴∠DBE=∠EBC=22.5°=∠FDC , ∴∠BEC=67.5°=∠DEG ,∴∠DGE=180°﹣22.5°﹣67.5°=90°,即BG ⊥DF ,∵∠BDF=45°+22.5°=67.5°,∠F=90°﹣22.5°=67.5°,∴∠BDF=∠F,∴BD=BF,∴DF=2DG,∵△BDG∽△DEG,BG×EG=4,∴DG BGEG DG,∴BG×EG=DG×DG=4,∴DG2=4,∴DG=2,∴BE=DF=2DG=4人教版九年级下册数学《第27章相似》单元测试卷(解析版)一.选择题(共10小题)1.若a:b=3:2,且b2=ac,则b:c=()A.4:3B.3:2C.2:3D.3:42.下列各组中的四条线段成比例的是()A.a=,b=3,c=2,d=B.a=4,b=6,c=5,d=10C.a=2,b=,c=2,d=D.a=2,b=3,c=4,d=13.已知点C在线段AB上,且点C是线段AB的黄金分割点(AC>BC),则下列结论正确的是()A.AB2=AC•BC B.BC2=AC•BC C.AC=BC D.BC=AC 4.如图,在△ABC中,D、E分别是AB、AC上的点,且DE∥BC,若AD:DB=3:2,则AE:AC等于()A.3:2B.3:1C.2:3D.3:55.将直角三角形三边扩大同样的倍数,得到的新的三角形是()A.锐角三角形B.直角三角形C.钝角三角形D.任意三角形6.如果两个相似多边形的面积比为4:9,那么它们的周长比为()A.4:9B.2:3C.:D.16:817.两三角形的相似比是2:3,则其面积之比是()A.:B.2:3C.4:9D.8:278.如图所示,每个小正方形的边长均为1,则下列A、B、C、D四个图中的三角形(阴影部分)与△EFG相似的是()A.B.C.D.9.如图,在△ABC中,已知∠ADE=∠B,则下列等式成立的是()A.B.C.D.10.如图,是小孔成像原理的示意图,根据图所标注的尺寸,这支蜡烛在暗盒中所成的像CD的长是()A.B.C.D.1 cm二.填空题(共5小题)11.若,则=.12.如果在比例尺为1:1000000的地图上,A、B两地的图上距离是5.8cm,那么A、B两地的实际距离是km.13.若线段AB=6cm,点C是线段AB的一个黄金分割点(AC>BC),则AC的长为cm (结果保留根号).14.已知:AM:MD=4:1,BD:DC=2:3,则AE:EC=.15.若一个三角形的各边长扩大为原来的5倍,则此三角形的周长扩大为原来的倍.三.解答题(共4小题)16.已知a:b:c=2:3:4,且2a+3b﹣2c=10,求a,b,c的值.17.某考察队从营地P处出发,沿北偏东60°前进了5千米到达A地,再沿东南方向前进到达C地,C地恰好在P地的正东方向.回答下列问题:(1)用1cm代表1千米,画出考察队行进路线图;(2)量出∠PAC和∠ACP的度数(精确到1°);(3)测算出考察队从A到C走了多少千米?此时他们离开营地多远?(精确到0.1千米).18.如图,△ABC中,AB=AC,∠A=36°,CE平分∠ACB交AB于点E,(1)试说明点E为线段AB的黄金分割点;(2)若AB=4,求BC的长.19.如图,l1∥l2∥l3,AB=3,AD=2,DE=4,EF=7.5.求BC、BE的长.2019年人教版九年级下册数学《第27章相似》单元测试卷参考答案与试题解析一.选择题(共10小题)1.若a:b=3:2,且b2=ac,则b:c=()A.4:3B.3:2C.2:3D.3:4【分析】根据比例的基本性质,a:b=3:2,b2=ac,则b:c可求.【解答】解:∵b2=ac,∴b:a=c:b,∵a:b=3:2,∴b:c=a:b=3:2.故选:B.【点评】利用比例的基本性质,对比例式和等积式进行互相转换即可得出结果.2.下列各组中的四条线段成比例的是()A.a=,b=3,c=2,d=B.a=4,b=6,c=5,d=10C.a=2,b=,c=2,d=D.a=2,b=3,c=4,d=1【分析】根据比例线段的概念,让最小的和最大的相乘,另外两条相乘,看它们的积是否相等即可得出答案.【解答】解:A.×3≠2×,故本选项错误;B.4×10≠5×6,故本选项错误;C.2×=×2,故本选项正确;D.4×1≠3×2,故本选项错误;故选:C.【点评】此题考查了比例线段,理解成比例线段的概念和变形是解题的关键,注意在线段两两相乘的时候,要让最小的和最大的相乘,另外两条相乘,看它们的积是否相等进行判断.3.已知点C在线段AB上,且点C是线段AB的黄金分割点(AC>BC),则下列结论正确的是()A.AB2=AC•BC B.BC2=AC•BC C.AC=BC D.BC=AC【分析】根据黄金分割的定义得出=,从而判断各选项.【解答】解:∵点C是线段AB的黄金分割点且AC>BC,∴=,即AC2=BC•AB,故A、B错误;∴AC=AB,故C错误;BC=AC,故D正确;故选:D.【点评】本题主要考查黄金分割,掌握黄金分割的定义和性质是解题的关键.4.如图,在△ABC中,D、E分别是AB、AC上的点,且DE∥BC,若AD:DB=3:2,则AE:AC等于()A.3:2B.3:1C.2:3D.3:5【分析】由DE∥CB,根据平行线分线段成比例定理,可求得AE、AC的比例关系.【解答】解:∵DE∥BC,AD:DB=3:2,∴AE:EC=3:2,∴AE:AC=3:5.故选:D.【点评】此题主要考查了平行线分线段成比例定理,根据已知得出AE与EC的关系是解题关键.5.将直角三角形三边扩大同样的倍数,得到的新的三角形是()A.锐角三角形B.直角三角形C.钝角三角形D.任意三角形【分析】因为直角三角形三边扩大同样的倍数,而角的度数不会变,所以得到的新的三角形是直角三角形.【解答】解:因为角的度数和它的两边的长短无关,所以得到的新三角形应该是直角三角形,故选B.【点评】主要考查“角的度数和它的两边的长短无关”的知识点.6.如果两个相似多边形的面积比为4:9,那么它们的周长比为()A.4:9B.2:3C.:D.16:81【分析】直接根据相似多边形周长的比等于相似比,面积的比等于相似比的平方进行解答即可.【解答】解:∵两个相似多边形面积的比为4:9,∴两个相似多边形周长的比等于2:3,∴这两个相似多边形周长的比是2:3.故选:B.【点评】本题考查的是相似多边形的性质,即相似多边形周长的比等于相似比,面积的比等于相似比的平方.7.两三角形的相似比是2:3,则其面积之比是()A.:B.2:3C.4:9D.8:27【分析】根据相似三角形的面积比等于相似比的平方计算即可.【解答】解:∵两三角形的相似比是2:3,∴其面积之比是4:9,故选:C.【点评】本题考查的是相似三角形的性质,掌握相似三角形的面积比等于相似比的平方是解题的关键.8.如图所示,每个小正方形的边长均为1,则下列A、B、C、D四个图中的三角形(阴影部分)与△EFG相似的是()A.B.C.D.【分析】根据相似三角形的判定,易得出△ABC的三边的边长,故只需分别求出各选项中三角形的边长,分析两三角形对应边是否成比例即可.【解答】解:∵小正方形的边长为1,∴在△ABC中,EG=,FG=2,EF=,A中,一边=3,一边=,一边=,三边与△ABC中的三边不能对应成比例,故两三角形不相似.故A错误;B中,一边=1,一边=,一边=,有,即三边与△ABC中的三边对应成比例,故两三角形相似.故B正确;C中,一边=1,一边=,一边=2,三边与△ABC中的三边不能对应成比例,故两三角形不相似.故C错误;D中,一边=2,一边=,一边=,三边与△ABC中的三边不能对应成比例,故两三角形不相似.故D错误.故选:B.【点评】本题考查了相似三角形的判定.识别两三角形相似,除了要掌握定义外,还要注意正确找出两三角形的对应边、对应角,可利用数形结合思想根据图形提供的数据计算对应角的度数、对应边的比.本题中把若干线段的长度用同一线段来表示是求线段是否成比例时常用的方法.9.如图,在△ABC中,已知∠ADE=∠B,则下列等式成立的是()A.B.C.D.【分析】首先证明△AED∽△ACB,再根据相似三角形的性质:对应边成比例可得答案.【解答】解:∵∠A=∠A,∠ADE=∠B,∴△AED∽△ACB,∴=.故选:A.【点评】此题主要考查了相似三角形的性质与判定,关键是掌握判断三角形相似的方法和相似三角形的性质.10.如图,是小孔成像原理的示意图,根据图所标注的尺寸,这支蜡烛在暗盒中所成的像CD的长是()A.B.C.D.1 cm【分析】据小孔成像原理可知△AOB∽△COD,利用它们的对应边成比例就可以求出CD 之长.【解答】解:如图过O作直线OE⊥AB,交CD于F,依题意AB∥CD∴OF⊥CD∴OE=12,OF=2而AB∥CD可以得△AOB∽△COD∵OE,OF分别是它们的高∴,∵AB=6,∴CD=1,故选:D.【点评】本题考查了相似三角形的应用,解题的关键在于理解小孔成像原理给我们带来的已知条件,还有会用相似三角形对应边成比例.二.填空题(共5小题)11.若,则= .【分析】根据合比定理[如果a :b =c :d ,那么(a +b ):b =(c +d ):d (b 、d ≠0)]解答即可.【解答】解:∵,∴,即=.故答案为:.【点评】本题主要考查了合比定理:在一个比例里,第一个比的前后项的差与它的后项的比,等于第二个比的前后项的差与它们的后项的比,这叫做比例中的分比定理. 12.如果在比例尺为1:1000000的地图上,A 、B 两地的图上距离是5.8cm ,那么A 、B 两地的实际距离是 58 km .【分析】实际距离=图上距离:比例尺,根据题意代入数据可直接得出实际距离.【解答】解:根据题意,5.8÷=5800000厘米=58千米.即实际距离是58千米. 故答案为:58.【点评】本题考查了比例线段的知识,注意掌握比例线段的定义及比例尺,并能够灵活运用,同时要注意单位的转换.13.若线段AB =6cm ,点C 是线段AB 的一个黄金分割点(AC >BC ),则AC 的长为 3(﹣1) cm (结果保留根号).【分析】把一条线段分成两部分,使其中较长的线段为全线段与较短线段的比例中项,这样的线段分割叫做黄金分割,他们的比值()叫做黄金比.【解答】解:根据黄金分割点的概念和AC >BC ,得:AC =AB =3(﹣1).故本题答案为:3(﹣1).【点评】此题考查了黄金分割点的概念,要熟记黄金比的值. 14.已知:AM :MD =4:1,BD :DC =2:3,则AE :EC = 8:5 .【分析】过点D作DF∥BE,再根据平行线分线段成比例,而为公共线段,作为中间联系,整理即可得出结论.【解答】解:过点D作DF∥BE交AC于F,∵DF∥BE,∴△AME∽△ADF,∴AM:MD=AE:EF=4:1=8:2∵DF∥BE,∴△CDF∽△CBE,∴BD:DC=EF:FC=2:3∴AE:EC=AE:(EF+FC)=8:(2+3)∴AE:EC=8:5.【点评】本题主要考查平行线分线段成比例定理的应用,作出辅助线,利用中间量EF 即可得出结论.15.若一个三角形的各边长扩大为原来的5倍,则此三角形的周长扩大为原来的5倍.【分析】由题意一个三角形的各边长扩大为原来的5倍,根据相似三角形的性质及对应边长成比例来求解.【解答】解:∵一个三角形的各边长扩大为原来的5倍,∴扩大后的三角形与原三角形相似,∵相似三角形的周长的比等于相似比,∴这个三角形的周长扩大为原来的5倍,故答案为:5.【点评】本题考查了相似三角形的性质:相似三角形的周长的比等于相似比.三.解答题(共4小题)16.已知a:b:c=2:3:4,且2a+3b﹣2c=10,求a,b,c的值.【分析】运用设k法,再进一步得到关于k的方程,解得k的值后,即可求得a、b、c 的值.【解答】解:设a=2k,b=3k,c=4k,又∵2a+3b﹣2c=10,∴4k+9k﹣8k=10,5k=10,解得k=2.∴a=4,b=6,c=8.【点评】已知几个量的比值时,常用的解法是:设一个未知数,把题目中的几个量用所设的未知数表示出来.17.某考察队从营地P处出发,沿北偏东60°前进了5千米到达A地,再沿东南方向前进到达C地,C地恰好在P地的正东方向.回答下列问题:(1)用1cm代表1千米,画出考察队行进路线图;(2)量出∠PAC和∠ACP的度数(精确到1°);(3)测算出考察队从A到C走了多少千米?此时他们离开营地多远?(精确到0.1千米).【分析】(1)先画出方向标,再确定方位角、比例尺作图;(2)动手操作利用量角器测量即可;(3)先利用刻度尺测量出图上距离,再根据比例尺换算成实际距离.【解答】解:(1)路线图(6分)(P、A、C点各2分)注意:起点是必须在所给的图形中画,否则即使画图正确扣;(2分)(2)量得∠PAC≈105°,∠ACP≈45°;(9分)(只有1个正确得2分)(3)量路线图得AC≈3.5厘米,PC≈6.8厘米.∴AC≈3.5千米;PC≈6.8千米(13分)【点评】主要考查了方位角的作图能力.要会根据比例尺准确的作图,并根据图例测算出实际距离.18.如图,△ABC中,AB=AC,∠A=36°,CE平分∠ACB交AB于点E,(1)试说明点E为线段AB的黄金分割点;(2)若AB=4,求BC的长.【分析】(1)根据等腰三角形两底角相等求出∠ACB=72°,再根据角平分线的定义求出∠BCE=36°,从而得到∠BCE=∠A,然后判定△ABC和△CBE相似,根据相似三角形对应边成比例列出比例式整理,并根据黄金分割点的定义即可得证;(2)根据等角对等边的性质可得AE=CE=BC,再根据黄金分割求解即可.【解答】(1)证明:∵AB=AC,∠A=36°,∴∠ACB=(180°﹣36°)=72°,∵CE平分∠ACB,∴∠BCE=∠ACB=×72°=36°,∴∠BCE=∠A=36°,∴AE=BC,又∵∠B=∠B,∴△ABC∽△CBE,∴=,∴BC2=AB•BE,即AE2=AB•BE,∴E为线段AB的黄金分割点;(2)∵AB=AC,∠A=36°,∴∠B=∠ACB=72°,∴∠BEC=180°﹣72°﹣36°=72°,∴BC=CE,由(1)已证AE=CE,∴AE=CE=BC,∴BC=•AB=×4=2﹣2.【点评】本题考查了黄金分割点的定义,相似三角形的判定与性质,理解黄金分割点的定义:把一条线段分成两部分,使其中较长的线段为全线段与较短线段的比例中项,这样的线段分割叫做黄金分割,他们的比值()叫做黄金比是解题的关键.19.如图,l1∥l2∥l3,AB=3,AD=2,DE=4,EF=7.5.求BC、BE的长.【分析】根据平行线分线段成比例定理得==,则可计算出BC=6,BF=BE,然后利用BE+BE=7.5求BE.【解答】解:∵l1∥l2∥l3,∴==,即==,∴BC=6,BF=BE,∴BE+BE=7.5,∴BE=5.【点评】本题考查了平行线分线段成比例:三条平行线截两条直线,所得的对应线段成比例.人教版九年级下册《第27章相似》检测试卷含答案一、选择题(本题共12小题,每小题3分,共36分)1.观察下列每组图形,相似图形是( )2.如果两个相似三角形对应边中线之比是1∶4,那么它们的对应高之比是( ) A .1∶2 B .1∶4 C .1∶8 D .1∶163.已知△ABC ∽△DEF ,且AB ∶DE =1∶2,则△ABC 的面积与△DEF 的面积之比为( )A .1∶2B .1∶4C .2∶1D .4∶14.如图,l 1∥l 2∥l 3,直线a 、b 与l 1、l 2、l 3分别交于点A 、B 、C 和点D 、E 、F .若ABBC=23,DE =4,则EF 的长是( ) A.83 B.203C .6D .10第4题图第5题图第6题图5.如图,在直角坐标系中,有两点A (6,3),B (6,0),以原点O 为位似中心,相似比为13,在第一象限内把线段AB 缩小后得到CD ,则C 的坐标为( ) A .(2,1) B .(2,0) C .(3,3) D .(3,1)6.如图,点P 在△ABC 的边AC 上,要判断△ABP ∽△ACB ,添加一个条件,不正确的是( )A .∠ABP =∠CB .∠APB =∠ABC C.AP AB =AB AC D.AB BP =ACCB7.如图,在6×6的正方形网格中,连接两格点A ,B ,线段AB 与网格线的交点为M ,N ,则AM ∶MN ∶NB 为( )A .3∶5∶4B .1∶3∶2C .1∶4∶2D .3∶6∶5第7题图第8题图8.如图,为测量河的宽度,在河对岸选定一个目标点A ,在近岸取点B 、C 、D ,使得AB ⊥BC ,点E 在BC 上,并且点A 、E 、D 在同一直线上.若测得BE =15m ,EC =9m ,CD =16m ,则河的宽度AB 等于( )A .35m B.653m C.803m D.503m9.如图,四边形ABCD 是平行四边形,点E 在BA 的延长线上,点F 在BC 的延长线上,连接EF ,分别交AD ,CD 于点G ,H ,则下列结论错误的是( )A.EA BE =EG EFB.EG GH =AG GDC.AB AE =BC CFD.FH EH =CF AD第9题图第10题图10.如图,若∠1=∠2=∠3,则图中的相似三角形有( ) A .1对 B .2对 C .3对 D .4对11.如图,把△ABC 沿AB 边平移到△A ′B ′C ′的位置,它们重叠部分(即图中阴影部分)的面积是△ABC 面积的一半.若AB =2,则此三角形移动的距离AA ′是( )A.2-1B.22 C .1 D.12第11题图第12题图12.如图,在矩形ABCD 中,E 是AD 边的中点,BE ⊥AC 于点F ,连接DF ,分析下列四个结论:①△AEF ∽△CAB ;②CF =2AF ;③DF =DC ;④S 四边形CDEF =52S △ABF .其中正确的结论有( )A .4个B .3个C .2个D .1个二、填空题(本大题共6小题,每小题4分,共24分)13.在比例尺为1∶4000 000的地图上,两城市间的图上距离为3cm ,则这两城市间的实际距离为 km.14.若实数a 、b 、c 满足b +c a =a +c b =a +bc=k ,则k = .15.如图,身高为1.7m 的小明AB 站在河的一岸,利用树的倒影去测量河对岸一棵树CD 的高度,CD 在水中的倒影为C ′D ,A 、E 、C ′在一条线上.已知河BD 的宽度为12m ,BE =3m ,则树CD 的高为 .第15题图16.如图,正方形OABC 与正方形ODEF 是位似图形,点O 为位似中心,相似比为1∶3,点E 的坐标为(3,3),则点A 的坐标是 .第16题图第17题图第18题图17.如图,在Rt △ABC 中,AB =BC ,∠B =90°,AC =10 2.四边形BDEF 是△ABC 的内接正方形(点D 、E 、F 在三角形的边上),则此正方形的面积是 .18.如图,菱形ABCD 的边长为1,直线l 过点C ,交AB 的延长线于M ,交AD 的延长线于N ,则1AM +1AN= . 三、解答题(本题共6小题,共70分,解答时应写出必要的文字说明、证明过程或演算步骤) 19.(10分)如图,在边长为1个单位长度的小正方形组成的网格中,给出了格点△ABC (顶点是网格线的交点).(1)将△ABC 向上平移3个单位得到△A 1B 1C 1,请画出△A 1B 1C 1; (2)请画一个格点△A 2B 2C 2,使△A 2B 2C 2∽△ABC ,且相似比不为1.20.(10分)如图,在△ABC中,D是AB上一点,且∠ACD=∠B,已知AD=8cm,BD=4cm,求AC的长.21.(12分)如图,已知在梯形ABCD中,AD∥BC,AB⊥BC,∠AEB=∠ADC.(1)求证:△ADE∽△DBC;(2)连接EC,若CD2=AD·BC,求证:∠DCE=∠ADB.22.(12分)一天晚上,李明和张龙利用灯光下的影子来测量一路灯D的高度.如图,当李明走到点A处时,张龙测得李明直立身高AM与其影子长AE正好相等,接着李明沿AC方向继续向前走,走到点B处时,李明直立时身高BN的影子恰好是线段AB,并测得AB=1.25m.已知李明直立时的身高为1.75m,求路灯CD的高.23.(12分)如图,△ABC 中,∠ACB =90°,D 为AB 上一点,以CD 为直径的⊙O 交BC 于点E ,连接AE 交CD 于点P ,交⊙O 于点F ,连接DF ,∠CAE =∠ADF .(1)判断AB 与⊙O 的位置关系,并说明理由;(2)若PF ∶PC =1∶2,AF =5,求CP 的长.24.(14分)如图,矩形OABC 的顶点A 、C 分别在x 轴和y 轴上,点B 的坐标为(2,3),双曲线y =kx(x >0)的图象经过BC 上的点D ,与AB 交于点E ,连接DE ,若E 是AB 的中点.(1)求点D 的坐标;(2)点F 是OC 边上一点,若△FBC 和△DEB 相似,求点F 的坐标.答案1.D 2.B 3.B 4.C 5.A 6.D 7.B 8.C 9.C 10.D 11.A12.A 解析:过D 作DM ∥BE 交AC 于点N ,交BC 于点M .∵四边形ABCD 是矩形,∴AD ∥BC ,∠ABC =90°,AD =BC ,∴∠EAC =∠ACB .∵BE ⊥AC 于点F ,∴∠AFE =∠ABC =90°,∴△AEF ∽△CAB ,故①正确;∵AD ∥BC ,∴△AEF ∽△CBF ,∴AE BC =AF CF .∵AE =12AD =12BC ,∴AF CF =12,∴CF =2AF ,故②正确;∵DE ∥BM ,BE ∥DM ,∴四边形BMDE 是平行四边形,∴BM =DE =12BC ,∴BM =CM ,∴CN =NF .∵BE ⊥AC 于点F ,DM ∥BE ,∴DN ⊥CF ,∴DN 垂直平分CF ,∴DF =DC ,故③正确;∵△AEF ∽△CBF ,EF BF =AE BC =12,∴S △AEF =12S △ABF ,∴S △AEF =13S △ABE =112S矩形ABCD .又∵S四边形CDEF =S △ACD -S △AEF =12S 矩形ABCD-112S 矩形ABCD =512S 矩形ABCD =5S △AEF =52S △ABF ,故④正确.故选A. 13.120 14.-1或2 15.5.1m 16.(0,1) 17.25 18.119.解:(1)作出△A 1B 1C 1,如图所示;(5分)(2)作出△A 2B 2C 2,如图所示(本题是开放题,答案不唯一,只要作出的△A 2B 2C 2满足条件即可)(10分).20.解:∵在△ACD 和△ABC 中,⎩⎪⎨⎪⎧∠A =∠A ,∠ACD =∠B ,∴△ACD ∽△ABC ,∴AD AC =ACAB .(5分)∵AD =8cm ,BD =4cm ,∴AB =12cm ,∴8AC =AC12,(8分)∴AC =46cm.(10分)21.证明:(1)∵AD ∥BC ,∴∠ADE =∠DBC ,∠ADC +∠BCD =180°.(2分)∵∠AEB =∠ADC ,∠AEB +∠AED =180°,∴∠AED =∠BCD ,(5分)∴△ADE ∽△DBC ;(6分)(2)由(1)可知△ADE ∽△DBC ,∴AD DB =DEBC ,∴DB ·DE =AD ·BC .(7分)∵CD 2=AD ·BC ,∴CD 2=DB ·DE ,∴CD DB =DECD .(8分)又∵∠CDE =∠BDC ,∴△CDE ∽△BDC ,∴∠DCE =∠DBC .(10分)又∵∠ADB =∠DBC ,∴∠DCE =∠ADB .(12分)22.解:设CD =x m.∵AE =AM ,AM ⊥EC ,∴∠E =45°,∴EC =CD =x m ,AC =(x -1.75)m.(2分)∵CD ⊥EC ,BN ⊥EC ,BN ∥CD ,∴△ABN ∽△ACD ,(7分)∴BN CD =AB AC ,即1.75x= 1.25x -1.75,解得x =6.125.(11分) 答:路灯CD 的高为6.125m.(12分)23.解:(1)AB 是⊙O 的切线.(1分)理由如下:∵∠ACB =90°,∴∠CAE +∠CEA =90°.(3分)又∵∠CEA =∠CDF ,∠CAE =∠ADF ,∴∠ADF +∠CDF =90°,∴∠ADC =90°,∴CD ⊥AD ,∴AB 是⊙O 的切线;(6分)(2)∵∠CPF =∠APC ,连接DE 、CF ,如图.∵CD 是直径,∴∠DEC =90°.∵∠ACB =90°,∴∠DEC +∠ACE =180°,∴DE ∥AC ,∴∠DEA =∠CAE ,又∵∠PCF =∠DEA ,∴∠PCF =∠P AC .∴△PCF ∽△P AC ,∴PC P A =PF PC ,∴PC 2=PF ·P A .(9分)设PF =a ,∵PF ∶PC=1∶2,则PC =2a ,P A =a +5,∴4a 2=a (a +5),∴a =53或a =0(舍去),∴PC =2a =103.(12分)24.解:(1)∵四边形OABC 为矩形,∴AB ⊥x 轴.∵E 为AB 的中点,点B 的坐标为(2,3),∴点E 的坐标为⎝⎛⎭⎫2,32.∵点E 在反比例函数y =kx 的图象上,∴k =3,∴反比例函数的解析式为y =3x .(4分)∵四边形OABC 为矩形,∴点D 与点B 的纵坐标相同,将y =3代入y =3x 可得x =1,∴点D 的坐标为(1,3);(6分)(2)由(1)可得BC =2,CD =1,∴BD =BC -CD =1.∵E 为AB 的中点,∴BE =32.(8分)若△FBC ∽△DEB ,则CB BE =CF BD ,即232=CF 1,∴CF =43,∴OF =CO -CF =3-43=53,∴点F的坐标为⎝⎛⎭⎫0,53;(11分)若△FBC ∽△EDB ,则BC DB =CF BE ,即21=CF32,∴CF =3,此时点F 和点O 重合.(13分)综上所述,点F 的坐标为⎝⎛⎭⎫0,53或(0,0).(14分)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

九年级数学 相似 单元测试
一.选择题(每小题3分,共30分)
1.在比例尺为1:5000的地图上,量得甲,乙两地的距离25cm,则甲,乙的实际距离是( )
A.1250km B.125km C. 12。5km D.1。25km

2.已知0432cba,则cba的值为 ( )

A。54 B.45 C.2 D。21
3.已知⊿ABC的三边长分别为2,6,2,⊿A′B′C′的两边长分别是1和3,如果⊿ABC与⊿
A′B′C′相似,那么⊿A′B′C′的第三边长应该是 ( )
A。2 B.22 C。26 D。33
4。在相同时刻,物高与影长成正比.如果高为1。5米的标杆影长为2。5米,那么影长为30米的
旗杆的高为 ( )
A 20米 B 18米 C 16米 D 15米
5。如图,∠ACB=∠ADC=90°,BC=a,AC=b,AB=c,要使⊿ABC∽⊿CAD,
只要CD等于 ( )

A.cb2 B。ab2 C.cab D.ca2
6.一个钢筋三角架三 长分别为20cm,50cm,60cm,现要再做一个与其相似的钢筋三角架,而只有
长为30cm和50cm的两根钢筋,要求以其中的一根为一边,从另一根截下两段(允许有余料)作
为另两边,则不同的截法有 ( )
A。一种 B。两种 C。三种 D.四种
7、用位似图形的方法,可以将一个图形放大或缩小,位似中心的位置可以选在( )
A 原图形的外部 B 原图形的内部 C 原图形的边上 D 任意位置
8、如图,□ABCD中,EF∥AB,DE∶EA = 2∶3,EF = 4,则CD的长( )
A.错误! B.8 C.10 D.16

9。已知a、b、c为非零实数,设k=cbabcaacb,则k的值为()
A.2 B.—1 C.2或-1 D.1
10、某校计划在一块三角形的空地上修建一个面积最大的正方形水池,使得水池的一边在△ABC的
边BC上,△ABC中边BC=60m,高AD=30m,则水池的边长应为( )
A 10m B 20m C 30m D 40m
二。填空题(每小题3分,共30分)

11、已知43yx,则._____yyx

12、.已知点C是线段AB的黄金分割点,且AC>BC,则AC∶AB= .
13、.把一矩形纸片对折,如果对折后的矩形与原矩形相似,则原矩形纸片
的长与宽之比为 .

14、如图,⊿ABC中,D,E分别是AB,AC上的点(DEBC),
当 或 或 时,⊿ADE与⊿ABC相似.
15、在△ABC中,∠B=25°,AD是BC边上的高,并且

ADBDDC2·
,则∠BCA的度数为____________。
16、如图,小伟在打网球时,击球点距离球网的水平距离是8米,已知网高是0.8
米,要使球恰好能打过网,且落在离网4米的位置,则球拍击球的高度h为
米.

17、如图,在△ABC中,D、E分别是AB、AC的中点,那么△ADE与四边形DBCE的
面积之比是 .

18、大矩形的周长是与它位似的小矩形的2倍,小矩形的面积是5cm2,大矩形的长
为5cm,则大矩形的宽为 cm。

19、斜拉桥是利用一组组钢索,把桥面重力传递到耸立在两侧高塔上的桥
梁,它不需要建造桥墩,(如图所示),其中A1B1、A2B2、A3B3、A4B4是斜
拉桥上互相平行的钢索,若最长的钢索A1B1=80m,最短的钢索A4B4=20m,
那么钢索A2B2= m,A3B3= m

20、已知△ABC周长为1,连结△ABC三边中点构成第二个三角形,再连结
第二个三角形三边中点构成第三个三角形,以此类推,第2006个三角
形的周长为

三。解答题(60分)
21.(8分)在方格纸中,每个小格的顶点叫做格点,以格点连线为边的三角形叫做格点三角形。请
你在如图所示的4×4的方格纸中,画出两个相似但不全等的格点三角形(要求:所画三角形
为钝角三角形,标明字母,并说明理由).

22。、(5分)如图,测量小玻璃管口径的量具ABC,AB的长为10cm,AC被分为60等份.如果小玻
璃管口DE正好对着量具上20等份处,且DE∥AB,那么小玻璃管口径DE是多大?
23、.如图, 等边⊿ABC,点D、E分别在BC、AC上,且BD=CE,AD与BE相交于点F。
(1)试说明⊿ABD≌⊿BCE。 (2)⊿AEF与⊿ABE相似吗?说说你的理由.
(3)BD2=AD·DF吗?请说明理由. (9分)

24、(8分)如图:学校旗杆附近有一斜坡.小明准备测量学校旗杆
AB的高度,他发现当斜坡正对着太阳时,旗杆AB
的影子恰好落在水平

地面和斜坡的坡面上,此时小明测得水平地面上的影长BC=20米,斜坡
坡面上的影长CD=8米,太阳光线AD与水平地面成30°角,斜坡CD与
水平地面BC成30°的角,求旗杆AB的高度(精确到1米).

25、(8分)(06苏州)如图,梯形ABCD中.AB∥CD.且AB=2CD,
E,F分别是AB,BC的中点。EF与BD相交于点M.
(1)求证:△EDM∽△FBM;
(2)若DB=9,求BM.

A
B
C
D

M
E

D
C

B
A
26。 .(10分) 在三角形ABC中,CD⊥AB于D,DE⊥AC于E,DF⊥BC于F,
(1)若DE=2,AC=5,求CE、AE、CD、AD的长度.
(2)求证:△CEF∽△CBA

27、(12分)如图,平面直角坐标系中,直线AB与x轴,y轴分别交于A(3,0),B(0,3)两点, ,
点C为线段AB上的一动点,过点C作CD⊥x轴于点D.
(1)求直线AB的解析式;

(2)若S梯形OBCD=433,求点C的坐标;
(3)在第一象限内是否存在点P,使得以P,O,B为顶点的三角形与△OBA相似。若存在,请
求出所有符合条件的点P的坐标;若不存在,请说明理由。
参考答案
1、D 2、B 3、A 4、B 5、A 6、B 7、D 8、C 9、C 10、B

11、-1/4 12、(5-1)/2 13、2 14、略 15、65° 16、2。4米
17、1:3 18、4 19、60,40 20、1/2
2005
21、略 22、20/3 23、略 24、20 25、(1)略(2)3
26、(1)△ABD∽△AEC∽△BED (2)成立。证明△DFC∽△DCK

27、(1)直线AB解析式为:y=33x+3.

(2)方法一:设点C坐标为(x,33x+3),那么OD=x,CD=33x+3.
∴OBCDS梯形=2CDCDOB=3632x.
由题意:3632x =334,解得4,221xx(舍去)∴C(2,33)
方法二:∵ 23321OBOASAOB,OBCDS梯形=334,∴63ACDS
由OA=3OB,得∠BAO=30°,AD=3CD.
∴ ACDS=21CD×AD=223CD=63.可得CD=33.
∴ AD=1,OD=2.∴C(2,33).
(3)当∠OBP=Rt∠时,如图
①若△BOP∽△OBA,则∠BOP=∠BAO=30°,BP=3OB=3,

∴1P(3,3).

②若△BPO∽△OBA,则∠BPO=∠BAO=30°,OP=33OB=1.
∴2P(1,3).
当∠OPB=Rt∠时
③ 过点P作OP⊥BC于点P(如图),此时△PBO∽△OBA,∠BOP=∠BAO=30°
过点P作PM⊥OA于点M.

方法一: 在Rt△PBO中,BP=21OB=23,OP=3BP=23.
∵ 在Rt△PMO中,∠OPM=30°,
∴ OM=21OP=43;PM=3OM=433.∴3P(43,433).

方法二:设P(x ,33x+3),得OM=x ,PM=33x+3
由∠BOP=∠BAO,得∠POM=∠ABO.

OMPM=xx333=OB
OA
=3.

∴33x+3=3x,解得x=43.此时,3P(43,433).
④若△POB∽△OBA(如图),则∠OBP=∠BAO=30°,∠POM=30°.
∴ PM=33OM=43.

∴ 4P(43,43)(由对称性也可得到点4P的坐标).
当∠OPB=Rt∠时,点P在x轴上,不符合要求。
综合得,符合条件的点有四个,分别是:

1
P
(3,3),2P(1,3),3P(43,433),4P(43,43).

相关文档
最新文档