一阶网络的零输入响应和零状态响应实验

一阶网络的零输入响应和零状态响应实验
一阶网络的零输入响应和零状态响应实验

一阶电路的零输入响应和零状态响应实验

一. 实验目的

1.研究一阶电路的零输入响应和零状态响应的基本规律及其特点;了解电路参数对响应的影响。

2.学习利用示波器测量脉冲信号的基本参数以及一阶电路的时间常数。

3.进一步提高使用示波器和脉冲信号发生器的能力。

二.实验原理

1.零状态响应

??

????>?<<<=t t U t t u 当当当0000)(s s

τ

τt U t e U t u t C s s =?<<-=-0)

1()(

∴)1()(τ?

--=?e U u C s

1015?

= V 5.0= 2. 零输入响应 ?>?=?--t e u t u t C C τ

/)()()( )(37.0)()()(/?=?>?≈-C C t C C u u t e u t u ττ

三.实验测试及分析

1、 激励信号)(t u s 波形

2、测u c (t) 波形

3、误差分析

理论:RC =τ

实验:τ'

相对误差:100100?-'=τττγτ

一阶动态电路的响应测试实验报告

一阶动态电路的响应测试实验报告 1.实验摘要 1、研究RC电路的零输入响应和零状态响应。用示波器观察响应过程。电路参数:R=100K、C=10uF、Vi=5V 2.从响应波形图中测量时间常数和电容的充放电时间 2.实验仪器 5V电源,100KΩ电阻,10uF电容,示波器,导线若干 2.实验原理 (1)RC电路的零输入响应和零状态响应 (i)电路中某时刻的电感电流和电容电压称为该时刻的电路状态。t=0时,电容电压uc(0)称为电路的初始状态。 (ii)在没有外加激励时,仅由t=0零时刻的非零初始状态引起的响应称为零输入响应,它取决于初始状态和电路特性(通过时间常数τ=RC来体现),这种响应时随时间按指数规律衰减的。 (iii)在零初始状态时仅由在t0时刻施加于电路的激励引起的响应称为零状态响应,它取决于外加激励和电路特性,这种响应是由零开始随时间按指数规律增长的。 (iiii)线性动态电路的完全响应为零输入响应和零状态响应之和动态网络的过渡过程是十分短暂的单次变化过程。要用普通示波器观察过渡过程和测量有关的参数,就必须使这种单次变化的过程重复出现。为此,我们利用信号发生器输出的方波来模拟阶跃激励信号,即利用方波输出的上升沿作为零状态响应的正阶跃激励信号;利用方

波的下降沿作为零输入响应的负阶跃激励信号。只要选择方波的重复周期远大于电路的时间常数τ,那么电路在这样的方波序列脉冲信号的激励下,它的响应就和直流电接通与断开的过渡过程是基本相同的2.时间常数τ的测定方法: 用示波器测量零输入响应的波形,根据一阶微分方程的求解得知uc=Um*e-t/RC=Um*e-t/τ,当t=τ时,即t为电容放电时间,Uc(τ)=0.368Um。 此时所对应的时间就等于τ。亦可用零状态响应波形增加到0.632Um 所对应的时间测得,即电容充电的时间t. (2)测量电容充放电时间的电路图 如图所示,R=100KΩ,us=5V,c=10uF,单刀双掷开关A. 4实验步骤和数据记录 (i)按如图所示的电路图在连接好电路,测量电容C的两端电压变化,即一阶动态电路的响应测试。 (ii)用示波器测量电容两端的电压,示波器的测量模式调整为追踪。(iii)打开电源开关,将开关和电压源端相接触,使电容充电,用示

一阶动态电路响应实验

一阶动态电路响应实验 一、实验目的 1. 学习示波器和函数信号发生器的使用方法。 2. 学习自拟实验方案,合理设计电路和正确选用元件、设备完成实验。 3. 研究RC电路的零输入响应和零状态响应。 4. 研究RC电路的方波响应。 二、实验环境 面包板、导线若干、示波器、100kΩ电阻、单刀双掷开关、5V电压源、10μF电容。 三、实验原理 动态电路的过渡过程是十分短暂的单次变化过程,要用普通示波器观察过渡过程和测量有关的参数,就必须使这种单次变化的过程重复出现。为此,我们利用信号发生器输出的方波来模拟阶跃激励信号,即利用方波输出的上升沿作为零状态响应的正阶跃激励信号;利用方波的下降沿作为零输入响应的负阶跃激励信号。只要选择方波的重复周期远大于电路的时间常数τ,那么电路在这样的方波序列脉冲信号的激励下,它的响应就和直流电接通与断开的过渡过程是基本相同的。 方波的前沿相当于给电路一个阶跃输入,其响应就是零状态;方

波的后沿相当于在电容具有初始值uC(0-)时把电源用短路置换,这时电路响应转换成零输入响应。 四、实验电路 五、波形图 六、数据记录 充电过程:最大充电电压Us=4.60V、充电时间△X=4.880s

Uc=0.632×Us=2.9072V、最接近该电压值时间△X=1.000s 放电过程:最大放电电压Us=4.60V、放电时间△X=4.560s Uc=0.368×Us=1.6928V、最接近该电压时间△X=3.560s 七、实验总结 更加熟悉在面包板上搭接试验电路以及示波器的使用,了解一阶电路的零状态响应和方波响应,学习在示波器上使用追踪坐标读取数据。 八、误差分析 1.可能没将光标置于波形最值点; 2.可能无法精确达到Uc值所在点,读取的△X不准确。

信号与系统实验指导书——学生用资料

实验一 一阶电路的瞬态响应 一 实验目的 1 观察RC 电路的阶跃响应并测量其时间常数τ。 2 了解时间常数对响应波形的影响及积分、微分电路的特点。 二 原理说明 积分电路和微分电路 如图所示为一阶RC 串联电路图。 )(t Vs 是周期为T 的方波信号, 设0)0(=C V 则 dt t V RC dt R t V C dt t i C t V R R C ???===)(1)(1)(1)( 当时间常数RC =τ很大,即τ》T 时,在方波的激励下,C V 上冲得的电压远小于R V 上的电压,即)(t V R 》)(t V C 因此 )()(t V t Vs R ≈ 所以 dt t V RC t V S C ? ≈)(1)( 上式表明,若将)(t V C 作为输出电压,则)(t V C 近似与输出电压)(t Vs 对时间的积分成正比。我们称此时的RC 电路为积分电路,波形如下 V S V 图1-1 一阶RC 串联实验电路图 图1-2 积分电路波形

如果输出电压是电阻R 上的电压V R (t )则有 dt t dV RC t i R t V C R )()()(?=?= 当时间常数RC =τ很小 ,即τ《T 时,)(t V C 》)(t V R ,因此)()(t V t V C S ≈ 所以 dt t dV RC t V S R )()(≈ 上式表明,输出电压V R (t )近似与输出电压VS (t )对时间的微分成正比。我们称此时的RC 在实验中,我们可以选择不同的时间常数满足上述条件,以实现积分电路和微分电路。 三 预习练习 1 复习有关瞬态分析的理论,瞬态响应的测量,弄清一阶电路的瞬态响应及其观察方法。 2 定性画出本实验中不同时间常数的瞬态响应的波形,并从物理概念上加以说明。 四 实验内容和步骤 用观察并测量一阶电路的瞬态响应。 1. 启动计算机,在双击桌面“信号与系统”快捷方式, 运行软件。 2. 测试计算机与实验箱的通信是否正常,通信正常继续。如通信不正常查找原 因使通信正常后才可以继续进行实验。 检测信息 3. 连接模拟电路(图1-1)。电路的输入U1接A/D 、D/A 卡的DA1输出,电路的 输出U2接A/D 、D/A 卡的AD1输入。检查无误后接通电源。 4. 在实验项目的下拉列表中选择实验二[二、一阶电路的瞬态响应],鼠标单击V 图1-3 微分电路波形

RC一阶电路的响应测试 实验报告

实验六RC一阶电路的响应测试 一、实验目的 1. 测定RC一阶电路的零输入响应、零状态响应及完全响应。 2. 学习电路时间常数的测量方法。 3. 掌握有关微分电路和积分电路的概念。 4. 进一步学会用虚拟示波器观测波形。 二、原理说明 1. 动态网络的过渡过程是十分短暂的单次变化过程。要用普通示波器观察过渡过程和测量有关的参数,就必须使这种单次变化的过程重复出现。为此,我们利用信号发生器输出的方波来模拟阶跃激励信号,即利用方波输出的上升沿作为零状态响应的正阶跃激励信号;利用方波的下降沿作为零输入响应的负阶跃激励信号。只要选择方波的重复周期远大于电路的时间常数τ,那么电路在这样的方波序列脉冲信号的激励下,它的响应就和直流电接通与断开的过渡过程是基本相同的。 2.图6-1(b)所示的 RC 一阶电路的零输入响应和零状态响应分别按指数规律衰减和增长,其变化的快慢决定于电路的时间常数τ。 3. 时间常数τ的测定方法 用示波器测量零输入响应的波形如图6-1(a)所示。 根据一阶微分方程的求解得知u c=U m e-t/RC=U m e-t/τ。当t=τ时,Uc(τ)=0.368U m。此时所对应的时间就等于τ。亦可用零状态响应波形增加到0.632 U m所对应的时间测得,如图6-1(c)所示。 (a) 零输入响应 (b) RC一阶电路(c) 零状态响应 图 6-1 4. 微分电路和积分电路是RC一阶电路中较典型的电路,它对电路元件参数和输入信号的周期有着特定的要求。一个简单的 RC T时串联电路,在方波序列脉冲的重复激励下,当满足τ=RC<< 2(T为方波脉冲的重复周期),且由R两端的电压作为响应输出,这就是一个微分电路。因为此时 电路的输出信号电压与输入信号电压的微分成正比。如图6-2(a)

信号与线性系统实验指导书syzds

信号与线性系统实验指导书 《信号与线性系统》课程组 2006年9月修订

《信号与系统》实验箱简介 信号与系统实验箱有TKSS-A型、TKSS-B型和TKSS-C型三种。其中B型和C型实验箱除实验项目外,还带有与实验配套的仪器仪表。 TKSS-A型实验箱提供的实验模块有:用同时分析方法观测方波信号的频谱、方波的分解、各类无源和有源滤波器(包括LPF、HPF、BPF、BEF)、二阶网络状态轨迹的显示、抽样定理和二阶网络函数的模拟等。 TKSS-B型实验箱提供的实验模块与“TKSS-A型”基本一样,增加了函数信号发生器(可选择正弦波、方波、三角波输出,输出频率范围为20Hz~100KHz)、频率计(测频范围0~500KHz)、数字式交流电压表(测量范围10mV~20mV,10Hz~200KHz)等仪器。 TKSS-C型实验箱的实验功能和配备与“TKSS-B型”基本一样,增加了扫频电源(采用可编程逻辑器件ispLSI1032E和单片机AT89C51设计而成),它可在15Hz~50KHz的全程范围内进行扫频输出,亦可选定在某一频段(分9段)范围内的扫频输出,提供11档扫速,亦可选用手动点频输出,此外还有频标指示,亦可作频率计使用。 实验一无源和有源滤波器 一、实验目的 1、了解RC无源和有源滤波器的种类、基本结构及其特性。 2、对比研究无源和有源滤波器的滤波特性。 3、学会列写无源和有源滤波器网络函数的方法。 二、原理说明 1、滤波器是对输入信号的频率具有选择性的一个二端口网络,它允许某 些频率(通常是某个频带范围)的信号通过,而其他频率的信号受到 衰减或抑制,这些网络可以是由RLC元件或RC元件构成的无源滤 波器,也可以是由RC元件和有源器件构成的有源滤波器。 2、根据幅频特性所表示的通过或阻止信号频率范围的不同,滤波器可分 为低通滤波器(LPF)、高通滤波器(HPF)、带通滤波器(BPF)和 带阻滤波器(BEF)四种。我们把能够通过的信号频率范围定义为通 带,把阻止通过或衰减的信号频率范围定义为阻带。而通带与阻带的 分界点的频率f c称为截止频率或称转折频率。图1-1中的A up为通 带的电压放大倍数,f0为中心频率,f cL和f cH分别为低端和高端截止 频率。

信号与系统实验安排

信号与系统实验指导书 《信号与系统》精品课程建设组 适用专业:电子信息工程、电子信息科学与技术

目录 实验一滤波器 (2) 实验二一阶电路的瞬态响应 (6) 实验三一阶电路的零输入响应、零状态响应及完全响应 (11) 实验四二阶电路的瞬态响应 (13) 实验五二阶网络函数的模拟 (16) 实验六方波信号的分解 (19) 实验七方波信号的合成 (22) 实验八抽样定理 (24) 综合设计实验信号在线性时不变系统中的输入输出方法 (28)

实验一 滤波器 一 实验目的 1 了解无源和有源滤波器的种类、基本结构及其特性; 2 对比并研究无源滤波器和有源滤波器的滤波特性; 二 原理说明 1.滤波器的作用是对输入信号的频率具有选择性。滤波器的种类很多,但总的来说,可分为两大类,即经典滤波器和现代滤波器。经典滤波器可分为四种,即低通(LP )、高通(HP )、带通(BF )、带阻(BS )滤波器。图1-1分别给出了四种滤波器的理想幅频响应。 图1-1 四种滤波器的理想幅频特性 2 滤波器可认为是一个二端网络,可用图1-2的模型来描述。其幅频特性和相频特性可由下式反映: . . H (j ω) =U2/U1=A(ω)∠θ(ω) H (j ω)为网络函数,又称为传递函数。 三 预习练习 1 预习滤波器的有关内容和原理; 2 预习运算放大器的相关知识及用运算放大器构成滤波器的方法; 3 推导各类滤波器的网络函数。 (b )高通滤波器 (c) 带通滤波器 (a) 低通滤波器 0 fc f (d) 带阻滤波器 0 fcl f0 fch f 图1-2 滤波器

一阶动态响应(电路分析)

姓名:王硕

一、实验目的 1、研究一阶动态电路的零输入响应、零状态响应及完全响应的特点和规律。掌握测量一阶电路时间常数的方法。 2、理解积分和微分电路的概念,掌握积分、微分电路的设计和条件。 3、用multisim仿真软件设计电路参数,并观察输入输出波形。 二、实验原理 1、零输入响应和零状态响应波形的观察及时间常数τ的测量。 当电路无外加激励,仅有动态元件初始储能释放所引起的响应——零输入响应;当电路中动态元件的初始储能为零,仅有外加激励作用所产生的响应——零状态响应;在外加激励和动态元件的初始储能共同作用下,电路产生的响应——完全响应。 以一阶RC动态电路为例,观察电路的零输入和零状态响应波形,其仿真电路如图1(a)所示。 ( u i ( u o (a)(b) 图1 一阶RC动态电路 方波信号作为电路的激励加在输入端,只要方波信号的周期足够长,在方波作用期间或方波间隙期间,电路的暂态响应过程基本结束(τ5 2/≥ T)。故方波的正脉宽引起零状态响应,方波的负脉宽引起零输入响应,方波激励下的) (t u i 和) (t u o 的波形如图1(b)所 示。在)2/ 0(T t, ∈的零状态响应过程中,由于T << τ,故在2/ T t=时,电路已经达到 稳定状态,即电容电压 S o U t u= )(。由零状态响应方程 ) 1( )(/τt S o e U t u- - = 可知,当2/ ) ( S o U t u=时,计算可得τ 69 .0 1 = t。如能读出 1 t的值,则能测出该电路的时间常数τ。 2、RC积分电路 由RC组成的积分电路如图2(a)所示,激励) (t u i 为方波信号如图2(b)所示,输出电压) (t u o 取自电容两端。该电路的时间常数 2 T RC>> = τ(工程上称10倍以上关系为远远大于或远远小于关系。),故电容的充放电速度缓慢,在方波的下一个下降沿(或上升沿)

信号与系统及matlab硬件实验指导书

信号与系统及matlab实验指导书 严素清龚开月编

实验一 RC 一阶电路的响应及其应用 一、实验目的 测定RC 一阶电路的零输入响应、零状态响应及完全响应。 学习电路时间常数的测量方法,了解微分电路和积分电路的实际应用。 进一步熟悉示波器的使用,学会用示波器测绘图形。 二、实验原理 一阶电路的过渡过程是由于电路中有一个电容或电感逐步储存或释放能量的渐变过程引起的,该过渡过程是十分短暂的单次变化过程,对时间常数 较大的电路,可用慢扫描长余辉示波器观察光点移动的轨迹。然而能用一般的双踪示波器观察过渡过程和测量相关的参数,必须使这种单次变化的过程重复出现。为此,我们利用信号发生器输出的矩形脉冲序列波来模拟阶跃激励信号,即令方波输出的上升沿作为零状态响应的正阶跃激励信号;方波下降沿作为零输入响应的负阶跃激励信号。只要选择方波的重复周期T 与电路的时间常数 满足一定的关系,它的响应和直流电源接通与断开的过渡过程是基本相同的。 1、RC 电路的过程过渡 其电路组成和响应波形如图1-1所示。状态响应 图1-1 RC 一阶电路及其响应 零输入响应:设Uc (0)=Uo ,开关由1-2,换路后Uc (t )=Use-t/τ ,t ≥0,零状态响应:0)0(=c U ,开关由2-1,换路后Uc (t )=Us(1-e-t/τ),t ≥0RC 一阶电路的零输 入响应和零状态响应分别按指数规律衰减和增长,其变化的快慢决定于电路的时间常数τ ( RC =τ) 2、时间常数 τ 的测定 用示波器测定RC 电路时间常数的方法如下:在RC 电路输入矩阵脉冲序列信号,将示波器的测试探极接在电容两端,调节示波器Y 轴和X 轴各控制旋钮,使荧光屏上呈现出一个稳定的指数曲线如图1-2所示。 根据一阶微分方程的求解得知当T=τ时,Uc (τ)=0.623Us ,设轴扫描速度标称值为S(s/cm),在荧光屏上测得电容电压最大值)(cm a U U s cm == 在荧光屏Y 轴上取值:b=0.623*a(cm) 在曲线上找到对应点Q 和P ,使PQ =b

RC一阶电路(动态特性 频率响应)研究

9 RC 一阶电路(动态特性 频率响应) 一个电阻和一个电容串联起来的RC 电路看起来是很简单的电路。实际上其中的现象已经相当复杂,这些现象涉及到的概念和分析方法,是电子电路中随处要用到的,务必仔细领悟。 9.1 零输入响应 1.电容上电压的过渡过程 先从数学上最简单的情形来看RC 电路的特性。在图9.1 中,描述了问题的物理模型。假定RC 电路接在一个电压值为V 的直流电源上很长的时间了,电容上的电压已与电源相等(关于充电的过程在后面讲解),在某时刻t 0突然将电阻左端S 接地,此后电容上的电压会怎么变化呢?应该是进入了图中表示的放电状态。理论分析时,将时刻t 0取作时间的零点。数学上要解一个满足初值条件的微分方程。 看放电的电路图,设电容上的电压为v C ,则电路中电流 dt dv C i C =, 依据KVL 定律,建立电路方程: 0=+dt dv RC v C C 初值条件是 ()V v C =0 像上面电路方程这样右边等于零的微分方程称为齐次方程。 设其解是一个指数函数: ()t C e t v S K = K 和S 是待定常数。 代入齐次方程得 0=KS +K S S t t e RC e 约去相同部分得 0=S +1RC 于是 RC 1-=S 齐次方程通解 ()RC t C e t v -K = 还有一个待定常数K 要由初值条件来定: ()V K Ke v C ===00 最后得到: () t RC t C Ve Ve t v --==

在上式中,引入记号RC =τ,这是一个由电路元件参数决定的参数,称为时间常数。它有什么物理意义呢? 在时间t = τ 处, ()V V Ve v 0.368=e ==-1-C τττ 时间常数 τ是电容上电压下降到初始值的1/e =36.8% 经历的时间。 当t = 4 τ 时,()V v 0183.0=4C τ,已经很小,一般认为电路进入稳态。 数学上描述上述物理过程可用分段描述的方式,如图9.1 中表示的由V 到0的“阶跃波”的输入信号,取开始突变的时间作为时间的0点,可以描述为: ()()0=S ≤t V t v 对 ;()()00=S ≥t t v 对。 [练习.9.1]在仿真平台上打开本专题电路图,按图中提示作出“零输入响应”的波形图。观察电容、电阻上输出波形与输入波形的关系,由图上读出电路的时间常数值,与用电路元件值计算结果比较。 仿真分析本专题电路 得到波形图如图9.2 所示。 在0到1m 这时间内,电压源值为V ,在时刻1m 时电压源值突然变到0。仿真平台在对电路做瞬态分析之前,对电路作了直流分析,因此图中1m 以前一段波形只是表明电路已经接在电压源值为V “很长时间”后的持续状态。上面理论分析只适用于1m 以后的时间过程。时刻1m 是理论分析的时间“零”点。图上看到,电容上的电压随时间在下降,曲线的样子是指数下降曲线的典型模样。由v C 曲线找到电压值为0.368V 的地方,读出它的时刻值(=2m ),即可求到电路的时间常数是1m (1毫秒)。 图中也画出电阻上电压变化曲线。观察,发现在1m 以前,电阻电压为0,在时刻1m ,电阻电压突变到 -V ,然后逐渐升到0。怎样理解这个过程呢? 2.电阻上电压的过渡过程 虽然专题电路图中取电阻的电压时是由电阻直接落地的电路得到的,但电路元件参数是相同的,该电阻上的电压应和电容落地电路中的电阻是一样的。按照这种想法,看图9.1 ,注意电阻的电压的参考方向应是由S 点向右,即应是v(S 点)-v C ,在电源电压为V 的时间内,电容已被充电到v C =V ,那么v R = v(S 点)-v C =V -V =0。在理论分析时间0处,电压源的电压值突变到0,即v(S 点)=0,但电容上的电压不能突变(回顾电容的特性:电压有连续性)。为了区分突变时刻的前和后的状态,用0- 表示突变前,0+ 表示突变后。 即是说, v C (0+)= v C (0-)=V 那么, v R (0+)= 0-v C (0+)= -V 在随后的时间内,按KVL 定律, 电阻上的电压应为: ()()τt RC t C R Ve Ve t v t v ---=-=-=

RC一阶电路的响应测试实验报告

? 实验七 RC 一阶电路的响应测试 一、实验目的 1. 测定RC 一阶电路的零输入响应、零状态响应及完全响应。 2. 学习电路时间常数的测量方法。 3. 掌握有关微分电路和积分电路的概念。 4. 进一步学会用示波器观测波形。 二、原理说明 1. 动态网络的过渡过程是十分短暂的单次变化过程。要用普通示波器观察过渡过程和测量有关的参数,就必须使这种单次变化的过程重复出现。为此,我们利用信号发生器输出的方波来模拟阶跃激励信号,即利用方波输出的上升沿作为零状态响应的正阶跃激励信号;利用方波的下降沿作为零输入响应的负阶跃激励信号。只要选择方波的重复周期远大于电路的时间常数τ,那么电路在这样的方波序列脉冲信号的激励下,它的响应就和直流电接通与断开的过渡过程是基本相同的。 2.图7-1(b )所示的 RC 一阶电路的零输入响应和零状态响应分别按指数规律衰减和增长,其变化的快慢决定于电路的时间常数τ。 3. 时间常数τ的测定方法: 用示波器测量零输入响应的波形如图7-1(a)所示。 根据一阶微分方程的求解得知u c =U m e -t/RC =U m e -t/τ 。当t =τ时,Uc(τ)=0.368U m 。 此时所对应的时间就等于τ。亦可用零状态响应波形增加到0.632U m 所对应的时间测得,如图13-1(c)所示。 a) 零输入响应 (b) RC 一阶电路 (c) 零状态响应 图 7-1 4. 微分电路和积分电路是RC 一阶电路中较典型的电路, 它对电路元件参数和输入信号的周期有着特定的要求。一个简单的 RC 串联电路, 在方波序列脉冲的重复激励下, 当 满足τ=RC<< 2 T 时(T 为方波脉冲的重复周期),且由R 两端的电压作为响应输出,则该电路就是一个微分电路。因为此时电路的输出信号电压与输入信号电压的微分成正比。如图 0.368t t t t 0.6320 000c u u U m c u c u u U m U m U m

试验五二阶网络函数的模拟

实验五二阶网络函数的模拟 一实验目的 1 掌握求解系统响应的一种方法——模拟解法。 2 研究系统参数变化对响应的影响。 二原理说明 1 为了求解系统的响应,需建立系统的微分方程,一些实际系统的微分方程可能是一个高阶微分方程或者是一个微分方程组,它们的求解是很费时间甚至是困难的。由于描述各种不同系统(如电系统,机械系统)的微分方程有惊人的相似之处,因而可以用电系统来模拟各种非电系统,并进一步用基本运算单元获得该实际系统响应的模拟解。这种装置又称为“电子模拟计算机”。应用它能较快地求解系统的微分方程,并能用示波器将求解结果显示出来。在初学这种方法时不妨以简单的二阶系统为例(本实验就是如此),其系统的微分方程为: y”+a1y’+a0y=x 方框图如图5-1所示: 图5-1 二阶网络函数方框图 实际装置如图5-2所示。 图5-2实验线路图

由模拟电路可得模拟方程为: ????????-=--=--=--=-===dt dVo C R Vn Vb dt dVb C R Vq Va Rw Vb Vm R Vm Vi Rw Va Vh R Vh Vo Vn Vq Vm Vh 24,13 22,110,0, 只要适当的选定模拟装置的元件参数,可得模拟方程和实际系统的微分方程完全相同。 本模拟实验的电路中:R1= R2= R3= R4=10k Ω Rw1= Rw2=10k Ω C1=C2=0.1uF 由上式可得: Vb Va Vo Vi -+= 根据电路整理可得: "'214324Vo C C R R Vo C R Vo Vi ????+??+= 将电阻和电容参数代入 则有: " 6'31010Vo Vo Vo Vi --++= 3 、实际系统响应的变化范围可能很大,持续时间可能很长,但是运算放大器输出电压是有一定限制的,大致在±10伏之间。积分时间受RC 元件数值限制也不能太长,因此要合理的选择变量的比例尺度My 和时间的比例尺Mt ,使得Vy=MyY ,t M =M t t ,式中Y 和t 为实验系统方程中的变量和时间,V y 和t M 为模拟方程中的变量和时间。 在求解系统的微分方程时,需了解系统的初始状态y (0)和y ’(0)。 三 预习练习 1 系统如实验图5-3所示,弹簧的倔强系统K=100牛/米,M=1Kg ,物体离开静止位置距离为y ,且y (0)=1cm ,列出y 变化的方程式。(提示:用F=Ma 列方程)。 2 拟定求得上述方程模拟解的实验电路和比例尺。 图5- 3 物理系统 四 实验内容及步骤 1 列出实验电路的微分方程,并求解之(见原理说明部分)。 2 将正弦波接入电路,用示波器观察各测试点的波形,并记录之。 3 调节电位器,重复上述内容。

(电路分析)一阶电路的零输入响应

一阶电路的零输入响应 第 3 节一阶电路的零输入响应 零输入响应:电路无外加激励,仅由动态元件的初始储能作用所产生的响应,称为零输入响应( zero-input response )。 一、 RC 电路的零输入响应 图 5.3-1 ( a )电路, t=0 时开关 S 由位置 1 拨到位置 2 ,讨论换路后时的电容电压、电容电流等响应的变化规律。 电路换路之前开关 S 处于位置 1 ,直流电压源 Us 对电容 C 充电,电路已处于稳定状态,换路前的等效电路如图 5.3-1 ( b )所示。时刻,电容电压等于直流电压源的电压 Us ,即 时刻,电容与电压源断开,与电阻 R 形成新的回路,这时的等效电路如图 5.3-1 ( c )所示。 由换路定则得换路后电容电压的初始值 电容电流的初始值为 图 5.3-1 ( c )电路,由 KVL ,可得

用积分变量分离法进行求解,得 式中, 为 RC 电路的时间常数( time constant ),当 R 的单位为Ω, C 的单位为 F 时,τ的单位是秒( s )。 时间常数:时间常数是反映一阶电路过渡过程进展快慢的一个重要的参数,其大小仅取决于电路的结构和参数。τ越大,响应衰减的速度就越慢;τ越小,响应衰减的速度就越快。 用表示电路换路后的响应,用表示该响应的初始值,则 RC 一阶电路的零输入响应可表示为 RC 电路零输入响应的规律 RC 电路换路后,各处的零输入响应都是从初始值开始,按指数规律衰减。衰减得快慢由时间常数τ决定。 二、 RL 电路的零输入响应

图 5.3-3 ( a )是 RL 动态电路。电路换路之前开关 S 处于位置 1 , t=0 时开关 S 由位置 1 拨到位置 2 。下面讨论换路后时的电感电流、电感电压等响应的变化规律。 时刻,电路换路之前开关 S 处于位置 1 ,直流电流源 Is 对电感 L 充电,电路已处于稳定状态,换路前的等效电路如图 5.3-3 ( b )所示。 t=0 时,开关 S 拨到位置 2 ,时,电感与电流源断开,而与电阻 R 形成新的回路,这时的等效电路如图5.3-3 ( c )所示。 由换路定则得换路后电感电流的初始值为 电感电压的初始值为 对于图 5.3-3 ( c )电路,由 KVL 可得 采用积分变量分离法进行求解,得

二阶电路的动态响应

实验三:二阶电路的动态响应【实验目的】 1.学习用实验的方法来研究二阶动态电路的响应。 2.研究电路元件参数对二阶电路动态响应的影响。 3.研究欠阻尼时,元件参数对α和固有频率的影响。 研究RLC串联电路所对应的二阶微分方程的解与元件参数的关系。 【实验原理】 用二阶微分方程描述的动态电路称为二阶电路。图6.1所示的线性RLC串联电路是一个典型的二阶电路。可以用下述二阶线性常系数微分方程来描述: s 2 U 2 = + + c c c u dt du RC dt u d LC(1)初始值为 C I C i dt t du U u L t c c ) 0( )( ) 0( = = = - = - - 求解该微分方程,可以得到电容上的电压u c(t)。 再根据: dt du c t i c c = )(可求得i c(t),即回路电流i L(t)。 式(1)的特征方程为:0 1 p p2= + +RC LC 特征值为:

2 0222,11)2(2p ωαα-±-=-±- =LC L R L R (2) 定义:衰减系数(阻尼系数)L R 2= α 自由振荡角频率(固有频率)LC 10=ω 由式2可知,RLC 串联电路的响应类型与元件参数有关。 1.零输入响应 动态电路在没有外施激励时,由动态元件的初始储能引起的响应,称为零输入响应。 设电容已经充电,其电压为U 0,电感的初始电流为0。 (1) C L R 2 >,响应是非振荡性的,称为过阻尼情况。 电路响应为: ) () ()()()(2 1 2 1 120 121 20 t P t P t P t P C e e P P L U t i e P e P P P U t u ---=--= 整个放电过程中电流为正值, 且当2 11 2ln P P P P t m -=时,电流有极大值。 (2)C L R 2 =,响应临界振荡,称为临界阻尼情况。 电路响应为 t t c te L U t i e t U t u ααα--=+=00)()1()( t ≥0 (3) C L R 2 <,响应是振荡性的,称为欠阻尼情况。 电路响应为

信号与系统实验指导书

信号与系统实验指导书 赵欣、王鹏 信息与电气工程学院 2006.6.26

前言 “信号与系统”是无线电技术、自动控制、生物医学电子工程、信号图象处理、空间技术等专业的一门重要的专业基础课,也是国内各院校相应专业的主干课程。 当前,科学技术的发展趋势既高度综合又高度分化,这要求高等院校培养的大学生,既要有坚实的理论基础,又要有严格的工程技术训练,不断提高实验研究能力、分析计算能力、总结归纳能力和解决各种实际问题的能力。21世纪要求培养“创造型、开发型、应用型”人才,即要求培养智力高、能力强、素质好的人才。 由于该课程核心的基本概念、基本理论和分析方法都非常重要,而且系统性、理论性很强,为此在学习本课程时,开设必要的实验,对学生加深理解、深入掌握基本理论和分析方法,培养学生分析问题和解决问题的能力,以及使抽象的概念和理论形象化、具体化,对增强学习的兴趣有极大的好处,做好本课程的实验,是学好本课程的重要教学辅助环节。 在做完每个实验后,请务必写出详细的实验报告,包括实验方法、实验过程与结果、心得和体会等。

目录 实验一无源和有源滤波器 (1) 实验二方波信号的分解 (6) 实验三用同时分析法观测方波信号的频谱 (8) 实验四二阶网络状态轨迹的显示 (10) 实验五二阶网络函数的模拟 (14) 实验六抽样定理 (18) 附录 (22)

实验一无源和有源滤波器 一、实验目的 1、了解RC无源和有源滤波器的种类、基本结构及其特性。 2、对比研究无源和有源滤波器的滤波特性。 3、学会列写无源和有源滤波器网络函数的方法。 二、基本原理 1、滤波器是对输入信号的频率具有选择性的一个二端口网络,它允许某些频率(通常是某个频带范围)的信号通过,而其它频率的信号受到衰减或抑制,这些网络可以是由RLC元件或RC元件构成的无源滤波器,也可以是由RC元件和有源器件构成的有源滤波器。 2、根据幅频特性所表示的通过或阻止信号频率范围的不同,滤波器可分为低通滤波器(LPF)、高通滤波器(HPF)、带通滤波器(BPF)和带阻滤波器(BEF)四种。我们把能够通过的信号频率范围定义为通带,把阻止通过或衰减的信号频率范围定义为阻带。而通带与阻带的分界点的频率f,称为截止频率或称转折频率。图1-1中的A up为通带的电压放大倍数,f0为中心频率,f CL和f CH分别为低端和高端截止频率。 A A up f C f f C f f CL f CH f f CL f CH f 图1-1 各种滤波器的理想幅频特性 四种滤波器的实验线路如图1-2所示:

(电路分析)一阶电路的零状态响应

一阶电路的零状态响应 一阶电路的零状态响应 零状态响应:储能元件的初始状态为零,仅由外加激励作用所产生的响应,称为零状态响应( zero-state response )。 一、 RC 电路的零状态响应 图 5.4-1 所示 RC 电路,开关闭合之前电路已处于稳态,且电容中无储能,即。时开关闭合,讨论时响应的变化规律。 t=0 时开关闭合,则由换路定则得 这时直流电压源 Us 与 R 、 C 构成回路,由 KVL 得 这是一阶非齐次微分方程,它的解由对应的齐次微分方程的通解和非齐次微分方程的特解组成。采用常数变易法来解,得 RC 电路的零状态响应为 当 t →∞时,电路已达到新的稳态,电容又相当于开路,则, 因此,电容电压的零状态响应为 式中,为 RC 电路的时间常数。

二、 RL 电路的零状态响应 图 5.4-3 所示电路,时开关 S 处于闭合状态,电感的初始状态,时开关打开。讨论开关打开后响应的变化规律。 t=0 时,开关 S 打开,直流电流源 Is 开始对电感充电,这时 这也是一阶非齐次微分方程,解得 式中,为 RL 电路的时间常数。当 t →∞时,这时电路已达到新的稳态,电感相当于短路。 , 因此,电感电流的零状态响应为

三、一阶电路零状态响应的计算 计算步骤 1 、求 t →∞时的稳态值。 对于 RC 电路,求;对于 RL 电路,求。 2 、求电路的时间常数τ。 对于 RC 电路,,对于 RL 电路,。其中, R 为从电容 C 或电感 L 两端看进去的戴维南等效电阻。 3 、求出零状态响应 RC 电路: RL 电路: 4 、如需求其它响应,再根据已求得的或去求解。 例 5.4-1 图 5.4-5 所示电路,已知时开关 S 处于位置 2 ,且电感中无储能, t=0 时开关 S 拨到位置 1 ,求时的,。 解:电感的初始储能为 0 ,则 电路换路后, t →∞时,电路进入新的稳态,电感又相当于短路,则 换路后,从电感两端看进去的等效电阻是 4 Ω和 8 Ω两个电阻串联,即R=4 + 8=12 Ω

一阶动态电路响应研究实验报告

一阶动态电路响应的研究 实验目的: 1.学习函数信号发生器和示波器的使用方法。 2.研究一阶动态电路的方波响应。 实验仪器设备清单: 1.示波器 1台 2.函数信号发生器 1台 3.数字万用表 1块 4. 1kΩ电阻X1 ;10kΩ电阻 X1 ;100nf电容X1 ;面包板;导线若干。 实验原理: 1.电容和电感的电压与电流的约束关系是通过导数和积分来表达的。积分电路和 微分电路时RC一阶电路中典型的电路。一个简单的RC串联电路,在方波序列 脉冲的重复激励下,由R两端的电压作为输出电压,则此时该电路为微分电路, 其输出信号电压与输入电压信号成正比。若在该电路中,由C两端的电压作为 响应输出,则该电路为积分电路。 2.电路中在没有外加激励时,仅有t=0时刻的非零初始状态引起的响应成为零输 入响应,其取决于初始状态和电路特性,这种响应随时间按指数规律衰减。在 零初始状态时仅有在t=0时刻施加于电路的激励所引起的响应成为零状态响应,其取决于外加激励和电路特性,这种响应是由零开始随时间按指数规律增长的。 线性动态电路的全响应为零输入响应和零状态响应之和。 实验电路图: 实验内容: 1.操作步骤、: (1).调节信号源,使信号源输出频率为1KHz,峰峰值为1.2VPP的方波信号。 (2).将示波器通道CH1与信号源的红色输出端相接,黑色端也相接,调示波器显示 屏控制单位,使波形清晰,亮度适宜,位置居中。 (3).调CH1垂直控制单元,使其灵敏度为0.2V,即在示波器上显示出的方波的幅值 在屏幕垂直方向上占6格。 (4).调CH2水平控制单元,使其水平扫描速率为0.2ms,表示屏幕水平方向每格为 0.2ms。 (5).按照实验原理的电路图接线,将1K电阻和10nf电容串联,将信号源输出线的 红色夹子,示波器CH1的红色夹子连电阻的一端,电容的另一端与信号源,示波器的黑色夹子连在一起,接着将CH2的输入探极红色夹子接在电容的非接地端,黑色夹子接在电容的接地端。

二阶网络函数的模拟

课程名称:信号与系统 实验题目:二阶网络函数 一、实验目的和任务 1、了解二阶网络函数的电路模型 2、研究系统参数变化对响应的影响 3、用基本运算器模拟系统的微分方程和传递函数。 二、实验仪器及器件 1、信号与系统实验箱。 2、双踪示波器。 三、实验内容及原理 1、微分方程的一般形式为: ()(1)10n n n y a y a y x --+++= 其中x 为激励,y 为响应。模拟系统微分方程的规则是将微分方程输出函数的最高阶导数保留在等式左边。把其余各项一起移到等式右边,这个最高阶导数作为第一积分器输入,以后每经过一个积分器,输出函数导数就降低一阶,直到输出y 为止。各个阶数降低了的导数及输出函数分别通过各自的比例运算器再送至第一个积分器前面的求和器与输入函数x 相加,则该模拟装置的输入和输出所表征的方程与被模拟的实际微分方程完全相同。图3-1与图3-2分别为一阶微分方程的模拟框图和二阶微分方程的模拟框图。 图3-1 图3-2 2、网络函数的一般形式为: ⊕ x ⊕ x

011111011 111()() ()()1() n n n n n n n n n n a a s a s Y s a s a s a P s H s s b s b F s b s b s Q s --------++ ++++====+++++ + 则有 11 1 ()() ()() Y s P s F s Q s --= 令11 ()() X F s Q s -= ,得 11212112012()()()()n n n n F s Q s X X b Xs b Xs b Xs Y s P s X a X a Xs a Xs a Xs --------??==++++?==++++?? 因而 n n Xs b Xs b Xs b s F X -------= 2211)( 根据上式,可画出图3-3所示的模拟方框图,图中1s -表示积分器 图3-3 图3-4 图1-4为二阶网络函数的模拟方框图,由该图求得下列三种传递函数,即 2112 ()1 ()(1)l l v s H s v s b s b ==++ 低通函数

一阶动态电路的响应测试一

实验八 一阶动态电路的响应测试一 一、实验目的:测定RC 一阶电路的零输入响应、零状态响应及完全 响应;学习电路时间常数的测量方法。 二、实验原理及电路图 1、实验原理: 1) 电路中某时刻的电感电流和电容电压称为该时刻的电路状态。t=0时电感的初始电流iL (0)和电容电压uc (0)称为电路的初始状态。在没有外加激励时,仅由t=0零时刻的非零初始状态引起的响应称为零输入响应,它取决于初始状态和电路特性(通过时间常数τ=RC 来体现),这种响应时随时间按指数规律衰减的。在零初始状态时仅由在t0时刻施加于电路的激励引起的响应称为零状态响应,它取决于外加激励和电路特性,这种响应是由零开始随时间按指数规律增长的。 2)动态网络的过渡过程是十分短暂的单次变化过程。要用普通示波器观察过渡过程和测量有关的参数,就必须使这种单次变化的过程重复出现。为此,我们利用信号发生器输出的方波来模拟阶跃激励信号,即利用方波输出的上升沿作为零状态响应的正阶跃激励信号;利用方波的下降沿作为零输入响应的负阶跃激励信号。 3) 时间常数τ的测定方法 零状态响应:)1()1(τt m RC t m c e U e U U ---=-=。当t =τ时,Uc(τ)=0.632Um 。此时所对应的时间就等于τ。

零输入响应:τt m RC t m c e U e U U --==。当t =τ时,Uc(τ)= 0.368Um 。此时所对应的时间就等于τ。 2、电路图 图1 三、实验环境: 面包板(SYB —130)、直流电源(IT6302),一个100k ?电阻、10uF 的电容、单刀双置开关、导线、Tek 示波器。 四、实验步骤: 1)在面包板上将电路搭建如图1所示,在直流电源面板上将输入电压设置好,分别为3V 、50Hz 。 2)观察示波器上的信号,将开关拨至另一端是信号会发生改变,当整个过程完成后,按run/stop 键,使得信号停止。 3)分别对对充放电过程进行2)操作,并用联动光标测量充放电时间,及其对应的时间常数τ,记录波形及数据。

一阶RC电路的零状态响应

1 PSPICE概述 PSpice是一个电路通用分析程序,是EDA中的重要组成部分,它的主要任务是对电路进行模拟和仿真。该软件的前身是SPICE(Simulation Program with Integrated Circuit Emphasis),由美国加州大学伯克莱分校于1972年研制。1975年推出正式实用化版本SPICE2G,1988年被定为美国国家标准。1984年Microsim公司推出了基于SPICE的微机版本PSpice(Personal-SPICE),此后各种版本的SPICE不断问世,功能也越来越强。进入20世纪90年代,随着计算机软件的发展,特别是Windows操作系统的广泛流行,PSpice又出现了可在Windows环境下运行的、、、等版本,也称为窗口版,采用图形输入方式,操作界面更加直观,分析功能更强,元器件参数库及宏模型库也更加丰富。1998年1月,著名的EDA公司、OrCAD公司与开发PSpice软件的Microsim公司实现了强强联合,于1998年11月推出了最新版本OrCAD/PSpice 9。为了迅速推广普及OrCAD/PSpice 9软件,OrCAD公司提供了一张试用光盘OrCAD/PSpice 9 Demo,它与商业版是完全一致的,不同之处只是在元器件上受一定的限制,因此又被称为普及版。 OrCAD/PSpice 9可模拟以下6类常用的电路元器件: 1.基本无源元件,如电阻、电容、电感、传输线等。 2.常用的半导体器件,如二极管、双极晶体管、结型场效应管、MOS管等。 3.独立电压源和独立电流源。 4.各种受控电压源、受控电流源和受控开关。 5.基本数字电路单元,如门电路、传输门、触发器、可编程逻辑阵列等。 6.常用单元电路,如运算放大器、555定时器等。在这里集成电路可作为一个单元电路整体出现在电路中,而不必考虑该单元电路的内部结构。 OrCAD/PSpice 9可分析的电路特性有6类15种: 1.直流分析,包括静态工点、直流灵敏度、直流传输特性、直流特性扫描分析。 2.交流分析,包括频率特性、噪声特性分析。 3.瞬态分析,包括瞬态响应分析,傅立叶分析。 4.参数扫描,包括温度特性分析,参数扫描分析。 5.统计分析,包括蒙托卡诺分析、最坏情况分析。 6.逻辑模拟,包括逻辑模拟、数模混合模拟、最坏情况时序分析。 OrCAD/PSpice 9的配套软件 OrCAD是一个软件包,进行电路模拟分析的核心软件是PSpice A/D,为使模拟工作做得更快更好,OrCAD软件包还提供了以下5个配套软件与之相配合。 1.电路图生成软件:其主要功能是人机交互方式在屏幕上绘制电路图,设置电路中元器件的参数,生成多种格式要求的电连接网表。在该程序中可直接运行PSpice及其它配套软件。 2.激励信号编辑软件:其主要功能是以人机交互方式生成电路模板中需要的各种激

相关文档
最新文档