电沉积法合成二氧化锰-金纳米复合材料及其分析应用

合集下载

文献综述二氧化锰

文献综述二氧化锰

第1章绪论1.1超级电容器简介超级电容器,也称电化学电容器,其性能介于电池和电容器之间。

近年来,电化学电容器(EC)因其高输出功率性能和循环寿命长,在电化学能量储存和转换领域得到了极大的关注。

作为一种主电源的可移动辅助能源设备,和电池或燃料电池一样,电化学电容器在短时间功率增强方面效果很好。

电化学电容器的电容材料电荷储存机制包括发生在电极和电解质界面处的电荷分离以及快速发生在电极上的法拉第反应。

由于电荷分离而产生的电容,通常被称为双电层电容(EDLC)。

因法拉第过程产生的电容器称为赝电容器。

因为这些类型的电容器电容量比传统的电容器大很多倍,所以又被成为超级电容器。

由于电荷分离而产生的电容,通常被称为双电层电容器(EDLC)。

因法拉第过程产生的电容称为法拉第准电容器。

因为这些类型的电容器电容量比传统的电容器大很多倍,所以称为超级电容器。

1.1.1超级电容与传统电池、电容器比较传统电池因为其功率密度值很难达到500kW/kg、充电时间长、充放电效率低、循环寿命短等缺点限制了它的发展,而静电电容器因为比电容太小而限制了其应用。

超级电容器则填补了电池和静电电容器之间的空白,它独特的性质使短时间大功率充放电储能机制成为可能。

表1.1 电池、静电电容器和超级电容器性能电池超级电容器静电电容器充电时间1~5h1~30s10-6~10-3放电时间0.3~3h1~30s10-5~10-3能量密度Wh/kg20~1001~10<0.1功率密度Wh/kg50~2001000~2000>10000循环效率0.7~0.850.90~0.95 1.0循环寿命500~2000>100000无限通过图 1.1,可以看出超级电容器具有另两种储能器件无法比拟的优点。

(1)充放电速度快,超级电容器是通过双电层充放电或者在电极活性材料表面发生的快速可逆的法拉第反应来进行充放电,这个过程几十秒就可以完成。

(2)功率密度高,这也是超级电容器最重要的一个优点。

mno2纳米花

mno2纳米花

mno2纳米花MNO2纳米花是一种具有特殊形状和结构的纳米材料。

它的独特之处在于其花瓣状的结构,使得它在许多领域具有广泛的应用潜力。

本文将介绍MNO2纳米花的制备方法、物理化学性质以及其在电化学储能、催化和传感等方面的应用。

MNO2纳米花的制备方法有多种途径。

一种常用的方法是通过溶剂热法制备,即将金属离子溶解于适当的溶剂中,并通过调节反应条件和添加适当的还原剂或氧化剂来控制其形貌和尺寸。

此外,还可以利用模板法、水热法、气相沉积等方法制备MNO2纳米花。

这些方法可以根据需要进行选择,以获得所需的形状和性质。

MNO2纳米花具有较高的比表面积和丰富的活性位点,使得其在电化学储能领域具有广泛的应用前景。

例如,MNO2纳米花可用作锂离子电池和超级电容器的电极材料。

其高比表面积有助于提高电荷传输速率和电容量,而丰富的活性位点则有助于提高电化学反应的活性和稳定性。

此外,MNO2纳米花还可以用于制备柔性电池和可穿戴设备等新型能源储存器件。

除了在电化学储能领域,MNO2纳米花还具有优异的催化性能。

由于其特殊的形状和结构,MNO2纳米花可以提供更多的活性位点和较大的反应表面积,从而提高催化反应的速率和选择性。

例如,MNO2纳米花可用作催化剂催化有机物的氧化反应、水的分解反应等。

此外,MNO2纳米花还可以用于催化有机合成反应、环境污染物的降解等领域。

MNO2纳米花还可以用于传感应用。

由于其高度可控的形貌和结构,MNO2纳米花可以通过调节其表面性质来实现对特定分子或离子的高灵敏检测。

例如,将MNO2纳米花修饰在电极表面,可以实现对葡萄糖、过氧化氢等生物分子的检测。

此外,MNO2纳米花还可用于环境监测、食品安全等领域。

总结起来,MNO2纳米花是一种具有特殊形状和结构的纳米材料,其制备方法多样且灵活。

由于其高比表面积、丰富的活性位点和可控的形貌,MNO2纳米花在电化学储能、催化和传感等领域都具有广泛的应用潜力。

随着研究的深入和技术的进步,相信MNO2纳米花将在未来发展中发挥越来越重要的作用。

制备mno2的方法

制备mno2的方法

制备mno2的方法Mno2是一种金属氧化物,具有重要的化学和物理性质,它是一种多功能材料,广泛用于电子、化学、精细化工领域。

自20世纪60年代起,Mno2的制备发生了很大的变化,其技术渐趋成熟。

Mno2可以通过多种方法制备,如水热法、湿法水解法、电解法、化学水解法等。

由于Mno2是金属离子和氧化物,具有很强的抗腐蚀性,所以制备过程必须充分考虑安全因素。

1、水热法水热法是一种常用的Mno2制备方法,主要是将金属(如钼、钔、氧化钴等)与氧化剂(如氧气、氯气等)混合在水中,随后加热,使金属与氧化剂发生反应,形成Mno2沉淀物。

Mno2沉淀的颗粒大小和形状受温度、时间、浓度、pH值等因素的影响。

此外,制备过程中还可以添加氧化剂、碱类或酸类调节剂,调节Mno2颗粒的大小和性质。

2、湿法水解法湿法水解法是Mno2制备中经常采用的方法,具体流程是将金属(如钼、钔、氧化钴等)、氧化剂(如氧气、氯气等)、水和有机溶剂混合,加入碱类、酸类调节剂后反应,形成稳定的Mno2溶液。

3、电解法电解法是一种制备Mno2的高纯度的方法,它的基本原理是,将金属(如钼、钔、氧化钴等)作为负极,氧化剂(如氧气、氯气等)作为阳极,在溶液中通过电解,使金属与氧化剂发生化学反应,形成Mno2溶液,然后用烧结或活性炭活性等工艺将Mno2溶液脱水脱溶剂,室温即可获得Mno2沉淀物。

4、化学水解法化学水解法是利用金属氧化物的水解反应,通过合成金属氧化物及水解反应,将金属(如钼、钔、氧化钴等)与过氧化物(如H2O2、KMnO4等)混合,反应后蒸发去除溶剂,用烧结或活性炭吸附脱水脱溶剂后即可得到Mno2沉淀物。

综上所述,Mno2可以通过水热法、湿法水解法、电解法和化学水解法等方法制备,在制备过程中需要充分考虑安全因素,调节因素,同时要注意合成的Mno2沉淀物的粒径和形状等。

Mno2在电子、化学、精细化工领域都有广泛的应用,高纯度的Mno2至关重要,所以全过程需要严格控制。

电化学沉积制备ZnO

电化学沉积制备ZnO

5.结 论
• 本文主要介绍了ZnO薄膜的性质、CVD制备方 法、应用及研究进展。主要介绍的电化学沉 积法是一个低成本、沉积速度快、简单可控 的低温沉积技术, 可以成为一种可选择的宽 禁带半导体ZnO 薄膜的制备方法。
的说电化学反应是在电极(电子导体) 和溶液(离子导体)界面上进行的电能和化学能 相互转化的反应。根据溶液体系以及工艺条件 的不同,ZnO薄膜的生长机理也不完全一致。 从电化学电极过程来分,目前可分为阴极还原 理论和阳极氧化理论两种假说。
• 本文采用的电化学沉积法制备薄膜的优点突出 如下:
• ECD基本原理:
O2 + 2H2O+ 4e →4OHNO3- + H2O+ 2e → NO2- + 2OHITO + OH- ITO → - OH-ad Zn2++ 2OH-ad → Zn(OH)2(s) Zn(OH)2(s) → ZnO+ H2O 由于其简单、低成本、膜厚和形貌可控 (通过调节电化学参数) ,本文采用电化学沉积 法成功制备了高光学质量的ZnO 薄膜。
2.引 言
• 氧化锌( ZnO) 是一种性能很好的材料, 在电子、 光学、声学及化学等领域都有广泛应用。
• 而且, ZnO可实现p-型或n-型掺杂, 有很高的导电、 导热性能, 化学性质稳定, 用它来制备发光器件必 然具有高的稳定性。
• 根据1997 年ZnO 的光抽运近紫外受激发射现象的 报道,由于其发射的波长比GaN 蓝光更短, 将在提 高光记录密度和光信息的存取速度方面起到非常重 要的作用, 这引发了对ZnO 半导体激光器件的研究 热潮。
在阴极电流作用下, 溶液中的Zn2+首先在ITO 电 极表面还原为一层纳米级的金属锌, 有利于进一 步诱导生成高质量的ZnO 薄膜 。 3) 采用阴极恒电压模式电沉积ZnO 薄膜, 沉 积溶液为11 mol/ L Zn(NO3)2 水溶液, 沉积时 间为10 min。 4) 电沉积后用去离子水漂洗制备的ZnO 薄膜, 然后自然晾干。

MnO2纳米材料的制备及应用 孔祥荣 胡如男 吴延红 叶明富 许立信 陈国昌

MnO2纳米材料的制备及应用 孔祥荣 胡如男 吴延红 叶明富 许立信 陈国昌

凝胶法 采用溶胶制备了锰氧八面体分子筛等材料; 基于高锰酸钾与 甲酸( HCOOH ) 之间的氧化还原反应, 他们又用溶 。 , 胶 凝胶法制备了隧道型氧化锰 此外 该课题组采 用溶胶凝胶法首先制备了四乙铵锰氧层状复合物 , 接着通过离子交换和水热过程处理获得了钡镁锰矿 [20 ] 纳米带。王佳伟等 将一定量分析纯柠檬酸加到 醋酸锰水溶液中, 搅拌溶解均匀后用氨水调节溶液
Preparation and application of MnO2 nanomaterials
KONG Xiangrong1 , HU Runan2 , WU Yanhong3 , YE Mingfu2 , XU Lixin2 , CHEN Guochang2
( 1. National Center for Safety Quality Supervision and Testing of Fireproof Building Products, Beijing Building Materials Academy Sciences Research, Beijing 100141 , China; 2. School of Chemistry and Chemical Engineering, Anhui University of Technology, Maanshan 243002 , China; 3. Shandong Huayu University of Technology, Dezhou 255000 , China)
1550
应用化工
第 45 卷
80 ℃ 水浴保温 磨 30 min,再将混合物转到烧杯中, 10 h, 300 ℃ 马弗炉中煅烧 3 h, 获得了粒径约 20 nm MnO2 颗粒, 的 α电化学测试发现其有较好的电容稳 定性和循环性能。 龚良玉 用固相氧化法制备了 [11 ] 物理掺杂 PbO 的 MnO2 。陈野等 用低温固相反应 法制备了化学掺杂 La2 O3 的 MnO2 。 1. 2 热分解法 经典热分解法研究源于 LaMer 和 Dinegar, 他们 认为在制备单分散纳米晶时需要一短暂 、 不连续的 成核过程, 而后控制晶核的生长 。 在此基础上, [13 ] Chen 等 将不同浓度的 Mn ( NO2 ) 2 溶液通过水热 处理从而得到了不同晶型与形貌的纳米二氧化锰 , 涉及的热分解反应方程式为: Mn( NO2 ) 2 MnO2 + 2NO 4NO + O2 + 2H2 O 4HNO2 柠檬酸为原料制备了前 以乙酸锰、 , 驱体柠檬酸锰 接着将前驱体大气环境下 300 ℃ 煅 罗旭芳等 MnO2 , 烧一定时间获得黑色粉末 γ表征发现其有隧 道结构, 电化学研究表明其比电容高达 109. 76 F / g。 通过调节加热速率分解前驱体乙酰丙 酮锰( III) 制备了球状纳米 MnO x ( 2 /3 < x < 1 ) 。 溶剂热分解法拥有如下优点: ① 因在有机溶剂 Zhang 等 内可以进行温度比较高的反应, 从而使某些无法在 低温下反应的物质可以在有机溶剂中热分解或者发 生反应; ②在溶剂中反应物有可能生成很高反应活 性的中间体, 用它来代替固相反应, 实现某些物质的 软化学合成, 往往该法可以获得具有特殊的光、 电、 磁性能的亚稳相物质

纳米二氧化锰的可控制备及其电化学储能机理研究

纳米二氧化锰的可控制备及其电化学储能机理研究

纳米二氧化锰的可控制备及其电化学储能机理研究吴彻平;彭家惠【摘要】通过添加十二烷基溴化氨(CTAB)利用液相沉淀法制备了不同形貌的纳米二氧化锰,用扫描电镜、X射线衍射、孔结构以及循环伏安法等分析研究了CTAB添加量对二氧化锰形貌和电化学性能的影响.结果表明,随着CTAB添加量的增加,二氧化锰形貌从长棒状到均匀球状发生规律变化,此外随着颗粒尺寸变小,二氧化锰比容量从162F/g提高到了213F/g.%A series of nanosized manganese dioxides have been synthesized via a co-precipitation process with additive of CTAB. SEM result indicated that with additive of CTAB,MnO2 nanosphere with about 20nm in diameter and a narrow particle size distribution has been obtained, comparable with nanorode morphology with a wide particle size distribution synthesized without CTAB. The adding amount of CTAB has been studied by SEM,XRD, N2 adsorption and desorption and cyclic voltammetric tests. The results found that as the decrease in particle sizeof MnO2 ,the specific capacitance of MnO2 increased from 162 to 213F/g.【期刊名称】《功能材料》【年(卷),期】2011(042)002【总页数】3页(P359-361)【关键词】二氧化锰;十二烷基溴化氨;共沉淀法;形貌【作者】吴彻平;彭家惠【作者单位】重庆大学材料科学与工程学院,重庆,400045;重庆大学材料科学与工程学院,重庆,400045【正文语种】中文【中图分类】TB332随着低炭经济的到来,新型绿色能源的综合高效开发利用已得到研究人员的广泛关注。

中空二氧化锰纳米棒

中空二氧化锰纳米棒

中空二氧化锰纳米棒1. 引言1.1 中空二氧化锰纳米棒的定义中空二氧化锰纳米棒是指直径为纳米级别,长度为微米级别的中空管状结构的二氧化锰纳米材料。

这种纳米材料具有空心结构,表面积大,比表面积高,具有较好的化学活性和催化性能。

中空二氧化锰纳米棒通常由多个二氧化锰结晶单元组成,形成管状结构,内部空腔为空,外部表面尺寸均匀。

这种结构具有很强的催化活性,广泛应用于电化学领域、催化剂制备和储能材料等领域。

中空二氧化锰纳米棒的制备方法多样,可以通过溶剂热法、水热合成、溶剂挥发法等多种方法得到。

这种纳米材料的研究和应用对于开发高效、低成本的能源材料和环境友好型材料具有重要意义。

1.2 研究背景在研究背景部分,我们将探讨中空二氧化锰纳米棒的相关研究历史及现状。

二氧化锰是一种重要的过渡金属氧化物,在电化学储能、催化剂、传感器等领域有着广泛的应用。

传统的二氧化锰颗粒存在着比表面积小、活性位点暴露少等缺点,限制了其在某些领域的应用。

为了克服传统二氧化锰颗粒的不足,研究人员开始探索中空二氧化锰纳米棒。

中空结构具有更大的比表面积和更多的活性位点,能够提高材料在储能和催化等领域的性能。

纳米级尺寸使得材料具有更快的离子传输速率和更好的反应活性。

中空二氧化锰纳米棒被认为是一种具有巨大应用潜力的新型材料。

过去几年,研究人员对中空二氧化锰纳米棒进行了深入的研究,不断优化其制备方法和性质表征技术,探索其在锂离子电池、氧还原反应、污水处理等领域的应用。

随着材料科学和纳米技术的发展,我们有信心在未来能够进一步挖掘中空二氧化锰纳米棒的潜在应用,并为其在新能源、环境保护等领域做出贡献。

1.3 研究意义中空二氧化锰纳米棒具有重要的研究意义,它在催化、传感、超级电容器等领域具有潜在的应用前景,可以为相关领域的研究和开发提供新的思路和方法。

中空二氧化锰纳米棒的制备方法和性质表征对于理解纳米材料的结构和性能具有指导作用,有助于深入探索纳米领域的研究。

基于超级电容器用的纳米二氧化锰的制备及性能研究

基于超级电容器用的纳米二氧化锰的制备及性能研究

基于超级电容器用的纳米二氧化锰的制备及性能研究超级电容器以其高功率密度、长使用寿命和快充放电速度等优点被广泛用于混合电动汽车和便携式电子设备,已成为近年来的研究热点。

二氧化锰因具有高的理论比电容(1370 Fg-1)、资源丰富、价格低廉、环境友好等优点引起了人们的广泛关注,并被认为是最具发展潜力的超级电容器用过渡金属氧化物。

本文主要采用水热合成法制备一系列纳米二氧化锰电极材料。

采用SEM、XRD、BET、循环伏安、恒电流充放电和交流阻抗等方法对所制备材料的结构和电化学性能进行了表征。

主要研究内容如下所示:1.以KMnO4为锰源,以MnSO4为还原剂,在不使用任何表面活性剂的前提下,采用水热合成法通过改变反应物浓度可控合成了多枝状和长度可控的纳米棒等不同形貌的α-MnO2。

研究了反应物浓度和反应时间对产物的晶体结构和形貌的影响。

采用循环伏安法和恒电流充放电测试对多枝状α-MnO2进行电化学性能测试,在1 M的Na2SO4溶液中,电流密度为2Ag-1时,多枝状α-MnO2的比电容为182 F g-1,该电极材料同时具有良好的倍率性能和循环稳定性。

2.通过高锰酸钾和硫酸锰在水热合成的条件下反应制备了沉积在石墨棒上的α-MnO2薄膜电极。

研究结果表明α-MnO2纳米棒均匀的沉积在石墨棒上。

这些纳米棒相互连接而形成的多孔纳米结构有利于电解液渗透到材料内部、可提供快速的电子传输通道和缩短电子和离子在二氧化锰中的扩散距离。

电化学性能测试表明,α-MnO2纳米棒薄膜电极材料具有良好的倍率性能和循环稳定性,在2Ag-1的电流密度下循环2000次后,容量的衰减仅为2%,在1 M 的Na2SO4溶液中,电流密度为1 Ag-1时,该电极材料的比电容为229 F g-1。

3.采用水热合成法制备了生长在碳纸上的多孔二氧化锰纳米线网状结构的薄膜电极(α-MnO2/CFP)作为集流体的高导电性的CFP网状结构可以为快速的氧化还原反应提供理想的电子传输通道。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

This article appeared in a journal published by Elsevier.The attached copy is furnished to the author for internal non-commercial research and education use,including for instruction at the authors institutionand sharing with colleagues.Other uses,including reproduction and distribution,or selling or licensing copies,or posting to personal,institutional or third partywebsites are prohibited.In most cases authors are permitted to post their version of thearticle(e.g.in Word or Tex form)to their personal website orinstitutional repository.Authors requiring further informationregarding Elsevier’s archiving and manuscript policies areencouraged to visit:/copyrightElectrochimica Acta 55(2010)3471–3476Contents lists available at ScienceDirectElectrochimicaActaj o u r n a l h o m e p a g e :w w w.e l s e v i e r.c o m /l o c a t e /e l e c t a c taElectrodeposited MnO 2/Au composite film with improved electrocatalytic activity for oxidation of glucose and hydrogen peroxideYu Jun Yang a ,b ,c ,Shengshui Hu a ,b ,∗aSchool of Chemistry and Molecular Sciences,Wuhan University,Wuhan 430072,ChinabSchool of Chemistry and Chemical Engineering,Xuchang University,Xuchang 461000,China cState Key Laboratory of Transducer Technology,Chinese Academy of Sciences,Chinaa r t i c l e i n f o Article history:Received 7December 2009Received in revised form 26January 2010Accepted 27January 2010Available online 2February 2010Keywords:Electrocatalysis CompositeEnzyme-free sensor Electrodeposition Glucosea b s t r a c tThe major drawback of currently used MnO 2film sensor is the loss of electrical conductivity due to the formation of a poorly conductive MnO 2layer.To overcome this problem,a coating in which the Au is alloyed with MnO 2has been developed.The fabrication of the codeposited film electrode of Au and MnO 2by using a cyclic voltammetric (CV)method was described,and systematic physical and electrochemical characterization was performed.This MnO 2/Au film electrode enhanced MnO 2electrocatalytic activity.The oxidation process of glucose at the codeposited MnO 2/Au shows a well-defined peak at 0.27V in alkaline aqueous solution.In contrast,the glucose oxidation at Au modified glassy carbon electrode (GCE)just shows a shoulder wave at 0.42V.The experimental results indicate that the modification of MnO 2on the surface of GCE significantly improved the electrocatalytic activity towards the oxidation of glucose.Further study shows that the MnO 2/Au could also effectively catalyze the oxidation of hydrogen peroxide in pH 7.0phosphate buffer solution (PBS).©2010Elsevier Ltd.All rights reserved.1.IntroductionThe electrocatalytic oxidation of glucose has been a focal sub-ject of many investigations,because of the great importance of glucose sensing in human blood and their potential use for fuel cell applications [1–5].Glucose oxidase as enzymatic catalyst has been widely used for glucose biosensor fabrication [6–11].Good selectivity and high sensitivity have been achieved for glucose detection by enzymatic glucose sensors.However,owing to the nature of enzymes,the most common and serious problem with enzymatic glucose sensors lies in their lack of long-term stability.For instance,the activity of GODx can be easily affected by tem-perature,pH value,humidity,and toxic chemicals [12–14].Direct electrocatalytic oxidation of glucose at an enzyme-free electrode would exhibit conveniences and advantages to avoid the draw-backs of the enzyme electrode.Early researches have focused on the use of noble metal-based (containing Pt [15–17]and Au [18]),and alloys-based (containing Pt,Ru,Pb,Au,and Cu [19–25])elec-trodes for developing enzyme-free sensors.Various attempts have been made during recent years and modified electrodes made from carbon nanotubes [26],CuO nanowire [27],CuO nanospheres [28]∗Corresponding author at:College of Chemistry &Molecular Sciences,Wuhan University,Wuhan 430072,China.E-mail addresses:sshu@ ,cghu@ ,yangyujun418@ (S.Hu).and metallophthalocyanines [29–32]were widely used.It was also reported that MnO 2with various crystalline structures are promis-ing electrode materials for electrocatalytical oxidation of glucose [33,34].Hydrogen peroxide is an intermediate or a product in biochem-ical reactions catalyzed by oxidase.Thus,the monitoring of H 2O 2with a reliable,rapid and economic method is of great significance [35].The catalytic effect of MnO 2towards the oxidation of H 2O 2was also reported [36–38].In this article,a new type of catalyst,MnO 2/Au,with enhanced sensing properties of glucose and hydrogen peroxide by taking advantages of MnO 2[33,34]and Au [18],was prepared by a CV deposition process.This MnO 2/Au film exhibited excellent electro-catalytic activity.It is highly tolerant to chloride ions and generates more stable,reproducible and larger current responses compared with other enzyme-free electrodes.Additionally,electro-oxidation of glucose on such MnO 2/Au surfaces took place at remarkably more negative potentials and,thus,interference could be effec-tively avoided by detecting glucose at a low potential.2.ExperimentalAll chemical reagents used in this experiment were of analytical grade.All solutions were prepared with doubly distilled water.Thin film of MnO 2/Au film was codeposited on GCE by cycling in 2mM HAuCl 4,10mM KMnO 4and 0.04M H 2SO 4aqueous solution from0013-4686/$–see front matter ©2010Elsevier Ltd.All rights reserved.doi:10.1016/j.electacta.2010.01.0953472Y.J.Yang,S.Hu /Electrochimica Acta 55(2010)3471–3476Fig.1.Scanning electron micrographs of gold (a),MnO 2(b)and MnO 2/Au (c)electrodeposited on GCE.0.3V to −0.5V at the scan rate of 2mV s −1for 2cycles.Au modified GCE (Au/GCE)was prepared by CV in 2mM HAuCl 4,0.04M H 2SO 4solution (from 0.3V to −0.5V at the scan rate of 2mV s −1)for 2cycles.MnO 2modified GCE (MnO 2/GCE)was prepared by CV in 6mM KMnO 4,0.04M H 2SO 4solution (from 0.3V to −0.5V at the scan rate of 2mV s −1)for 2cycles.A three-electrode electrolytic cell was employed for electrode-position and electrochemical tests.A GCE (5mm diameter)was used as the cathode.A platinum wire was used as an anode.The sat-urated calomel electrode (SCE)was used as a reference electrode.Morphology study of the films on the GCE surface was carried out with a Quanta 200scanning electron microscope (SEM;FEI Com-pany,Holland).The electrochemical tests were carried out with a CHI 830potentiostat (Chen Hua Company,China).3.Results and discussionFig.1shows the SEM micrographs of the Au,MnO 2and MnO 2/Au thin films electrodeposited on GCE.The pure Au sample (Fig.1a)consists of nanoparticles with the average diameter of about 200nm.The pure MnO 2sample (Fig.1b)shows a surface morphol-ogy resembling that of the GC substrate,indicating the presence of a continuous MnO 2film on top of the substrate rather than iso-lated particles.Fig.1c corresponding to the codeposited MnO 2/Au catalyst indicates the presence of MnO 2/Au microspheres with the diameter ranging between 200nm and 1.2␮m.The deposition mechanism can be attributed to the diffusion and cathodic reduction of anionic MnO 4−species.The reductionof MnO 4−species and precipitation of manganese dioxide are in agreement with the Pourbaix diagram for Mn [39].However,only limited information is available in literature related to the com-plex chemistry of the reduction of MnO 4−.The kinetic pathway of reducing Mn 7+to Mn 4+depends on electrode potential,pH,concen-tration of MnO 4−and other species in the solutions [40].In acidic aqueous solutions the following reaction can result in thereductionFig.2.XRD pattern of the MnO 2film electrodeposited on GCE.Y.J.Yang,S.Hu/Electrochimica Acta55(2010)3471–34763473Fig.3.The CV behaviors of the MnO2/Au modified GCE in the absence(a)and pres-ence(b)of10mM glucose in0.10M NaOH solution at100mV s−1,scan range:−0.5V to0.7V,initial potential:−0.5V.of MnO4−species:MnO4−+4H++3e−→MnO2+2H2O(1) Fig.2shows a typical XRD pattern of the as-synthesized pure MnO2 sample.All the reflection peaks can be readily indexed to pure body-centered tetragonal␣-MnO2phase,with lattice constants of a=9.816Å,c=2.857Å;which are in agreement with the standard values(JCPDS44-0141,a=9.784Å,c=2.863Å).No other phase was detected in thefinal products.The electrocatalytic performance of the MnO2/Au towards the oxidation of glucose was investigated by CV.Fig.3shows the CV behaviors of the MnO2/Au in the absence(a)and presence(b)of 10mM glucose in0.10M NaOH solution.CV of the MnO2/Au mod-ified GCE in0.1M NaOH aqueous solution showed two pairs of redox peaks(curve a).The thin MnO2electrodeposited on gold has been studied[41,42]using X-ray photoelectronspectroscopy Fig.4.The CV behaviors of the bare GCE(curve a),MnO2modified GCE(curve b), gold modified GCE(curve c)and MnO2/Au modified GCE(curve d)in10mM glucose, 0.1M NaOH solution at100mV s−1,scan range:−0.5V to0.7V,initial potential:−0.5V.(XPS),Raman spectroscopy(RS)and electrochemically modulated infrared spectroscopy(EMIRS).Their experimental results indicate that,in borate solutions at pH9.2,during the MnO2reduction, MnO2is reduced to Mn(III)OOH while in the reversal positive scan, Mn(III)OOH was oxidized to MnO2:MnO2+H2O+e=MnOOH+OH−(2) MnOOH+OH−−e=MnO2+H2O(3) Without the addition of glucose,there is a pair of redox peaks for the MnO2/Au modified electrode in alkaline solution(Fig.3a).In the negative scan,MnO2was reduced to MnOOH,which was subse-quently oxidized to MnO2in reversal scan.Two anodic peaks(peak I a and II a)can be assigned to the oxidation of MnOOH to Mn(IV),and gold to gold oxide,respectively.Two cathodic peaks(peaks I c and II c)can be taken to represent the generation of MnOOH fromMn(IV)Fig.5.(a)CVs of MnO2/Au modified GCE in0.10M NaOH solution containing0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9and1.0mM glucose at100mV s−1;(b)CVs of MnO2/Au modified GCE in0.10M NaOH solution containing1.0,2.0,3.0,4.0,5.0,6.0,7.0,8.0,9.0and10.0mM glucose at100mV s−1;(c)the plot of the oxidation peak current with the concentration of glucose.3474Y.J.Yang,S.Hu /Electrochimica Acta 55(2010)3471–3476Fig.6.CVs of MnO 2/Au modified GCEs in 0.10M NaOH,0.10M KCl solution containing 6.0mM glucose at 100mV s −1.The MnO 2/Au modified GCEs were prepared in 5mL deposition bath containing 2mM HAuCl 4,10mM KMnO 4and 0.04M H 2SO 4,scan range:0.3V to −0.5V,initial potential:0.3V,(a)at scan rate of 1,2,and 4mV s −1for 1,2,and 4cycles,respectively and (b)at 2mV s −1for 1,2,and 3cycles.[43],and gold oxide to gold,respectively [18].In the presence of glucose,two strong anodic peaks (peak III a and IV a )were observed at 0.271V and 0.076V (curve b)during the anodic scan and the reverse cathodic scan,respectively while the peak current of peak II a increased significantly with the addition of glucose.The peak III a at 0.271V presents the oxidation process of glucose.Above a poten-tial of +0.3V,the decrease of current occurs due to the formation of gold oxide,which competes for surface adsorption sites with glu-cose,also inhibiting the direct electro-oxidation of glucose.In the reverse cathodic scan,with the reduction of the surface gold oxide,enough surface active sites are available for the direct oxidation of glucose,resulting in large peak at around 0.076V.The electrocatalytic performance of the bare GCE,Au/GCE,MnO 2/GCE and MnO 2/Au modified GCE (MnO 2/Au/GCE)towards the oxidation of glucose was investigated by CV.Fig.4illus-trates the CV behaviors of the bare GCE,MnO 2/GCE,Au/GCE,and MnO 2/Au/GCE in 0.10M NaOH solution containing 10mM glucose.No current response is observed at the bare GCE (cure a).Because of the loss of electrical conductivity due to the formation of a poorly conductive MnO 2layer,it is not a surprise to find out that no peak occurs on MnO 2/GCE (curve b).A barely observable anodic peak is obtained at 0.42V during the anodic scan at the Au/GCE (curve c).In the case of the MnO 2/Au/GCE,three strong anodic peaks are observed at 0.271V,0.076V and 0.45V (curve d).Like MnO 2/Au/GCE electrode,there is an anodic peak at ∼0.2V during the cathodic scan for Au/GCE electrode too (curve c).The anodic peak at 0.16V for Au/GCE electrode is also due to the oxidation of glucose [44].The CVs of the MnO 2/Au electrode in different concentrations of glucose were also measured.Fig.5a and b shows the standard addi-tions of 100␮M and 1mM of glucose,respectively,and after each addition the voltammetric response was recorded.These results clearly indicate that,as the concentration of glucose increased,the peak currents of three anodic peaks at 0.271V,0.076V and 0.45V also increased.The variation of the peak current at 0.271V vs .glu-cose concentration is linear in the glucose concentration range of 100␮M to 20mM with a sensitivity and correlation coefficient of 18.9␮A mM −1and 0.9988,respectively.This linear concentration range of 0.1–20mM is of advantage as the likely glucose level in normal and diabetic person usually varies from 0.2to 20mM [45].The anodic peak at 0.076V is assigned to the oxidation of glucose.Thus,it is not surprising to find out that the peak current at 0.076V is also linear with the glucose concentration.The fabrication repro-ducibility of six biosensors,prepared under the same conditions,showed an acceptable reproducibility with a R.S.D.of 3.2%for the peak current obtained in the glucose concentration of 1.0mM.The results indicate that the MnO 2/Au electrode has a good operational stability.The activity of the electrode retained almost its initialcurrent response after it was stored at room temperature for 30days,indicating the excellent stability of the sensor.These results demonstrate that the MnO 2/Au electrode is very efficient for the determination of glucose.As shown in Fig.4,MnO 2in the MnO 2/Au plays a crucial role for the oxidation of glucose.The catalytic effect of MnO 2towards the oxidation of glucose is probably due to a parallel catalytic reaction.As soon as MnO 2is reduced to lower valence states by glucose,it is electro-oxidized back to MnO 2at the electrode surface.The catalytic mechanism of gold towards the oxidation of glucose in alkaline solution may be described as following [18]:Au +OH −=AuOH +e(4)AuOH +CHO(CHOH)4CH 2OH OH −−→COOH(CHOH)4CH 2OH+Au +H 2O +e(5)Therefore,MnO 2and gold act not only as the electron mediate but as catalyst as well [33].Studies on the SEM of MnO 2/Au/GCE (Fig.1c)and Au (Fig.1b)further confirm our assumption that the improve-ment in catalytic activity is attributed to catalytic effects of MnO 2and gold rather than any physical effects (such as increase in surface area).The effects of scan rate and number of scan cycles during the CV deposition process on the catalytic oxidation of glucose were also investigated.As shown in Fig.6a,the oxidation peak shifted positively as the scan rate is increased from 1to 2and 4mV s −1Fig.7.(a)CVs of MnO 2/Au modified GCE in 0.10M NaOH,0.10M KCl solution con-taining 6.0mM glucose at 100mV s −1and (b)CVs of MnO 2/Au modified GCE in 0.10M NaOH solution containing 6.0mM glucose at 100mV s −1.Y.J.Yang,S.Hu/Electrochimica Acta55(2010)3471–34763475Fig.8.(a)CVs of H2O2on MnO2/Au/GCE in PBS(pH7.0)in the absence(curve a)and presence of10mM H2O2(curve b).Scan rate:100mV s−1;(b)dynamic current responses of MnO2/Au/GCE to successive addition of H2O2at pH7.0.Inject20␮L5×10−2M H2O2solution into10mL PBS(pH7.0)with a microsyringe.The concentration change of H2O2is10␮M per addition.Applied potential:0.70V;(c)calibration curve of H2O2amperometric biosensor based on MnO2/Au/GCE in PBS buffer(pH7.0).Applied potential 0.70V.while the highest peak current is obtained at2mV s−1.At2mV s−1, the oxidation current is increased significantly with increasing the number of scan cycles from2to3cycles(Fig.6b).However the obtainedfilm will be too thick and easy to crack when the GCE was scanned for3cycles in the plating bath.Thus,the number of scan adopted in this experiment is2cycles.To evaluate the selectivity of the proposed biosensor,three pos-sible interfering biomolecules,ascorbic acid(AA),dopamine(DA), and uric acid(UA),which normally coexist with glucose in real samples(human blood)were examined[46].Considering that the concentration of glucose in the human blood is about30times of AA, DA or UA,the voltammetric response of the MnO2/Au towards the addition of1mM glucose and0.1mM AA,DA,and UA was examined in0.10M NaOH solution and the i glucose+interferent/i glucose is103%, 99%and98%,respectively.To sum up,the selectivity was improved so much on this enzyme-free biosensor that the three common interfering biomolecules,AA,DA,and UA caused negligible inter-ference to the response of glucose at the MnO2/Au electrode.Electrodes based on metals[15,17]or alloys[18,24]towards the oxidation of glucose usually lose their activity due to the poisoning of chloride ions[19].In order to understand whether chloride ions will poison the MnO2/Au electrode,the CV was measured in the solution with high concentration of chloride ions(i.e.,replacing 0.10M NaOH with0.10M KCl+0.10M NaOH as the electrolyte). The current response of MnO2/Au/GCE towards glucose oxidation remains almost unchanged(Fig.7),implying that the MnO2/Au/GCE is also highly resistant to poisoning by chloride ions and can be used as a glucose sensor even in the presence of high concentration of chloride ions.Fig.8a shows the CVs for hydrogen peroxide with the prepared MnO2/Au modified GCE.In the absence of hydrogen peroxide,there is a pair of very broad but barely observable waves between0.2V and0.8V(curve a)in PBS solution.It may be assigned to the reduc-tion of MnO2to Mn(II,III)and the reoxidation of Mn(II,III)back to MnO2[36].In the presence of H2O2,the CV displays a very signifi-cant oxidative current at potentials between0.5V and1.0V(curve b).The current for the oxidation of Mn(II,III)to MnO2significantly increases with increasing H2O2concentration.The characteristic shape of the CV in this potential region indicates that the signal is probably due to a parallel catalytic reaction.As soon as MnO2 is reduced to lower states by H2O2,it is electro-oxidized back to MnO2at the electrode surface[36]:MnO2+H2O2→MnO(or Mn2O3)+O2+H2O(6) MnO(or Mn2O3)→MnO2+2e(7) Since the above two reactions are fast,the parallel current is much higher than the oxidation current of MnO2on the electrode sur-face without H2O2.Effect of applied potential on the amperometric response of10␮M H2O2in phosphate buffer solution was studied. Although at0.80V the signal is highest,we choose0.70V as the operating potential because above0.70V there is increased noise, which is a disadvantage for measuring low H2O2concentrations. The relationship between the oxidation current and the concentra-tion of H2O2was examined in a PBS solution(pH7.0).The solution was stirred to ensure uniform distribution of H2O2in the cell.Fig.8b displays the amperometric response for the H2O2.When the same amount of H2O2was injected into the cell,the concentration change of H2O2in the cell is10␮M per addition and the current was recorded instantly.Calibration curves for H2O2measurement are also presented in Fig.8c.The current is linear for concentrations of H2O2from5×10−6to1×10−2M.The upper limit of linearity range (10−2M)was attained by examining the relationship between the oxidation current and the concentration of H2O2after injecting same amount of H2O2(concentration change:5×10−4M/addition) into the cell.The sensitivity of the sensor to H2O2was calculated to be1.49×104␮A M−1.The detection limit was estimated to be 1×10−6M(signal/noise=3).3476Y.J.Yang,S.Hu/Electrochimica Acta55(2010)3471–34764.ConclusionIn this work we have been able to synthesize MnO2/Au on the surface of GCE via a simple CV codeposition method.The size and morphology of the sample was investigated through the use of FE-SEM showing the sample to consist of MnO2/Au nanoclusters.These MnO2/Au modified GCEs can be used in the catalytic oxidation of glucose and hydrogen peroxide.This novel MnO2/Au composite film is a potential candidate for application in terms of fuel cells and enzyme-free sensors.AcknowledgementThe authors acknowledgefinancial support by the National Nature Science Foundation of China(Nos.30770549,20805035and 90817103).References[1]J.L.C.Clark,C.Lyons,A.N.Y.Aead,Science102(1962)29.[2]G.Reach,G.S.Wilson,Anal.Chem.64(1992)381A.[3]A.P.F.Turner,B.Chen,A.P.Sergey,Clin.Chem.45(1999)1596.[4]E.Katz,I.Willner,A.B.Kotlyar,J.Electroanal.Chem.479(1999)64.[5]N.Mano,F.Mao,A.Heller,J.Am.Chem.Soc.125(2003)6588.[6]X.H.Kang,Z.B.Mai,X.Y.Zou,P.X.Cai,J.Y.Mo,Anal.Biochem.369(2007)71.[7]S.G.Wang,Q.Zhang,R.L.Wang,S.F.Yoon,J.Ahn,D.J.Yang,-mun.5(2003)800.[8]H.Tang,J.H.Chen,S.Z.Yao,L.H.Nie,G.H.Deng,Y.F.Kuang,Anal.Biochem.331(2004)89.[9]X.Chu,D.X.Duan,G.L.Shen,R.Q.Yu,Talanta71(2007)2040.[10]Y.J.Zou,C.L.Xiang,L.X.Sun,F.Xu,Biosens.Bioelectron.23(2008)1010.[11]Y.C.Tsai,S.C.Li,J.M.Chen,Langmuir21(2005)3653.[12]R.Wilson,A.P.F.Turner,Biosens.Bioelectron.7(1992)165.[13]F.Shoji,M.S.Freund,J.Am.Chem.Soc.123(2001)3383.[14]S.J.Park,H.K.Boo,T.D.Chung,Anal.Chim.Acta556(2006)46.[15]B.Beden,rgeaud,K.B.Kokoh,my,Electrochim.Acta41(1996)701.[16]A.N.Gracea,K.Pandian,J.Phys.Chem.Solids68(2007)2278.[17]X.H.Kang,Z.B.Mai,X.Y.Zou,P.X.Cai,J.Y.Mo,Talanta74(2008)879.[18]M.Tominaga,T.Shimazoe,M.Nagashima,H.Kusuda,A.Kubo,Y.Kuwahara,I.Taniguchi,J.Electroanal.Chem.590(2006)37.[19]Y.P.Sun,H.Buck,T.E.Mallouk,Anal.Chem.73(2001)1599.[20]R.Qiu,X.L.Zhang,R.Qiao,Y.Li,Y.I.Kim,Y.S.Kang,Chem.Mater.19(2007)4174.[21]S.B.Aoun,Z.Dursun,T.Koga,G.S.Bang,J.Electroanal.Chem.567(2004)175.[22]H.F.Cui,J.S.Ye,X.Liu,W.D.Zhang,F.S.Sheu,Nanotechnology17(2006)2334.[23]C.C.Jin,Z.D.Chen,Synth.Met.157(2007)592.[24]J.P.Wang,D.F.Thomas,A.C.Chen,Anal.Chem.80(2008)997.[25]Y.Bai,Y.Y.Sun,C.Q.Sun,Biosens.Bioelectron.24(2008)579.[26]J.S.Ye,Y.Wen,W.D.Zhang,L.M.Gan,G.Q.Xu,F.S.Sheu,mun.6(2004)66.[27]Z.J.Zhuang,X.D.Su,H.Y.Yuan,Q.Sun,D.Xiao,M.M.F.Choi,Analyst33(2008)126.[28]E.Reitz,W.Z.Jia,M.Gentile,Y.Wang,Y.Lei,Electroanalysis20(2008)2482.[29]C.Barrera,I.Zhukov,E.Villagra,F.Bedioui,M.A.Paez,J.Costamagna,J.H.Zagal,J.Electroanal.Chem.589(2006)212.[30]K.I.Ozoemena,T.Nyokong,Electrochim.Acta51(2006)5131.[31]P.N.Mashazi,K.I.Ozoemena,T.Nyokong,Electrochim.Acta52(2006)177.[32]L.Ozcan,Y.Sahin,H.Turk,Biosens.Bioelectron.24(2008)512.[33]D.Das,P.K.Sen,K.Das,J.Electroanal.Chem.611(2007)19.[34]J.Chen,W.D.Zhang,J.S.Ye,mun.10(2008)1268.[35]K.Schachl,H.Alemu,K.Kalcher,I.Svancara,K.Vytras,Analyst122(1997)985.[36]S.J.Yao,S.Yuan,J.H.Xu,Y.Wang,J.L.Luo,S.S.Hu,Appl.Clay Sci.33(2006)35.[37]X.W.Zheng,Z.H.Guo,Talanta50(2000)1157.[38]K.Schachl,H.Alemu,K.Kalcher,H.Moderegger,I.Svancara,K.Vytras,FreseniusJ.Anal.Chem.362(1998)194.[39]A.Moussard,J.Brenet,F.Jolas,M.Pourbaix,J.van Muylder,in:M.Pourbaix(Ed.),Atlas of Electrochemical Equilibria in Aqueous Solutions,National Association of Corrosion Engineers,Pergamon Press,Oxford,1974.[40]J.Wei,I.Zhitomirsky,Surf.Eng.24(2008)45.[41]B.A.Lopez de Mishima,T.Ohtsuka,K.Konno,N.Sato,Electrochim.Acta36(1991)1458.[42]B.A.Lopez de Mishima,T.Ohtsuka,N.Sato,Electrochim.Acta38(1993)341.[43]C.Batchelor-McAuley,L.Shao,G.G.Wildgoose,M.L.H.Green,pton,New J.Chem.32(2008)1195.[44]M.P.Bui,S.Lee,K.N.Han,X.H.Pham,C.A.Li,J.Choo,G.H.Seong,mun.(2009)5549.[45]B.R.Eggins,Chemical Sensors and Biosensors,John Wiley&Sons,UK,2003.[46]B.H.Liu,R.Q.Hu,J.Q.Deng,Anal.Chem.69(1997)2343.。

相关文档
最新文档